Science.gov

Sample records for advanced nickel-base disk

  1. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  2. Nickel Base Superalloy Turbine Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P. (Inventor); Gauda, John (Inventor); Telesman, Ignacy (Inventor); Kantzos, Pete T. (Inventor)

    2005-01-01

    A low solvus, high refractory alloy having unusually versatile processing mechanical property capabilities for advanced disks and rotors in gas turbine engines. The nickel base superalloy has a composition consisting essentially of, in weight percent, 3.0-4.0 N, 0.02-0.04 B, 0.02-0.05 C, 12.0-14.0 Cr, 19.0-22.0 Co, 2.0-3.5 Mo, greater than 1.0 to 2.1 Nb, 1.3 to 2.1 Ta,3.04.OTi,4.1 to 5.0 W, 0.03-0.06 Zr, and balance essentially Ni and incidental impurities. The superalloy combines ease of processing with high temperature capabilities to be suitable for use in various turbine engine disk, impeller, and shaft applications. The Co and Cr levels of the superalloy can provide low solvus temperature for high processing versatility. The W, Mo, Ta, and Nb refractory element levels of the superalloy can provide sustained strength, creep, and dwell crack growth resistance at high temperatures.

  3. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  4. The Effect of Stabilization Heat Treatments on the Tensile and Creep Behavior of an Advanced Nickel-Based Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.

  5. On the creep deformation mechanisms of an advanced disk nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Unocic, Raymond R.

    The main objective of this research was aimed at investigating the fundamental relationship between microstructure and creep deformation mechanisms using a variety of electron microscopy characterization techniques. The alloy used in this research, Rene 104, is a newer generation powder metallurgy Ni-base superalloy that was developed specifically for aircraft gas turbine disk applications with extended service durability at temperatures exceeding 650°C. The influence of stress and temperature was studied first and it was found that during creep deformation at temperatures between 677--815°C and stresses between 345--724MPa a variety of distinctly different creep deformation mechanisms were operative. In addition to identifying the creep deformation mechanisms an attempt was made to determine the creep rate limiting process so that an improved understanding of the fundamental processes that control deformation can be better understood. Microtwinning was found to the dominant deformation mechanism following creep at 677°C/690MPa and 704°C/724MPa. Microtwins form by the motion of paired a/6<112> Shockley partial dislocations that shear both the gamma matrix and gamma' precipitates. The rate limiting process in this mechanism is diffusion mediated atomic reordering that occurs in the wake of the shearing, twinning partial dislocations in order to maintain the ordered L12 structure of the gamma' precipitates. This reordering process helps to fundamentally explain the temperature and rate dependence of microtwinning under creep conditions within this temperature and stress regime. At a slightly higher temperature but lower stress (760°C and 345MPa), a stacking fault related shearing mechanism, which typically spanned only a few micrometers in length, was the principle deformation mode. The faults left behind in the gamma' precipitates determined to be extrinsic in nature. During creep at the highest temperature and lowest stress (815°C and 345MPa) a thermally

  6. Quench Crack Behavior of Nickel-base Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete; Miller, Jason

    2002-01-01

    There is a need to increase the temperature capability of superalloy turbine disks to allow higher operating temperatures in advanced aircraft engines. When modifying processing and chemistry of disk alloys to achieve this capability, it is important to preserve the ability to use rapid cooling during supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is an understanding of the key variables controlling the cracking tendencies of nickel-base disk alloys during quenching from supersolvus heat treatments. The objective of this study was to investigate the quench cracking tendencies of several advanced disk superalloys during simulated heat treatments. Miniature disk specimens were rapidly quenched after solution heat treatments. The responses and failure modes were compared and related to the quench cracking tendencies of actual disk forgings. Cracking along grain boundaries was generally observed to be operative. For the alloys examined in this study, the solution temperature not alloy chemistry was found to be the primary factor controlling quench cracking. Alloys with high solvus temperatures show greater tendency for quench cracking.

  7. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  8. Advanced microcharacterization of nickel-base superalloys

    SciTech Connect

    Anderson, I.M.; Miller, M.K.; Pike, L.M.; Klarstrom, D.L.

    2000-02-01

    The purpose of this project was to characterize the microstructural and microchemical effects of a process revision on HAYNES{reg{underscore}sign} 242{trademark}, a polycrystalline Ni-base superalloy used principally for high temperature applications, such as seal and containment rings in gas turbine engines. The process revision from the current one-step heat treating cycle to a two-step heat treatment would result in savings of energy and ultimately cost to the consumer. However, the proposed process revision could give rise to unforeseen microstructural modifications, such as a change in the size distribution of the ordered particles responsible for alloy strength or the formation of additional phases, which could affect alloy properties and hence performance. Advanced microcharacterization methods that allow images of the microstructure to be acquired at length scales from one micrometer down to the atomic level were used to reveal the effect of the process revision on alloy microstructure. Energy filtered imaging was used to characterize the size distribution and morphology of ordered precipitates and other phases, as well as the partitioning behavior of major elements (Ni, Mo, Cr) among these phases. The compositions of individual ordered particles, including fine-scale compositional variations at precipitate-matrix interfaces, and solute segregation behavior at grain boundaries were characterized at the atomic level by atom probe tomography. The atomic site distributions of selected elements in the ordered precipitates were characterized by atom-location by channeling-enhanced microanalysis (ALCHEMI). The results of these advanced microcharacterization methods were correlated with mechanical testing of similar alloys to address structure-property relationships.

  9. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; Mills, Michael J.

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  10. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  11. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  12. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  13. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  14. Formation of Minor Phases in a Nickel-Based Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Garg, A.; Miller, D. R.; Sudbrack, C. K.; Hull, D. R.; Johnson, D.; Rogers, R. B.; Gayda, J.; Semiatin, S. L.

    2012-01-01

    The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approximate equilibrium. Additional heat treatments were also performed for shorter times, to then assess non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their transformation temperatures, lattice parameters, compositions, average sizes and total area fractions were determined, and compared to estimates of an existing phase prediction software package. Parameters measured at equilibrium sometimes agreed reasonably well with software model estimates, with potential for further improvements. Results for shorter times representing non-equilibrium indicated significant potential for further extension of the software to such conditions, which are more commonly observed during heat treatments and service at high temperatures for disk applications.

  15. Successful Surface Treatments for Reducing Instabilities in Advanced Nickel-base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; MacKay, Rebecca A.; Garg, Anita; Ritzert, Frank J.

    2004-01-01

    An optimized carburization treatment has been developed to mitigate instabilities that form in the microstructures of advanced turbine airfoil materials. Current turbine airfoils consist of a single crystal superalloy base that provides the mechanical performance of the airfoil, a thermal barrier coating (TBC) that reduces the temperature of the base superalloy, and a bondcoat between the superalloy and the TBC, that improves the oxidation and corrosion resistance of the base superalloy and the spallation resistance of the TBC. Advanced nickel-base superalloys containing high levels of refractory metals have been observed to develop an instability called secondary reaction zone (SRZ), which can form beneath diffusion aluminide bondcoats. This instability between the superalloy and the bondcoat has the potential of reducing the mechanical properties of thin-wall turbine airfoils. Controlled gas carburization treatments combined with a prior stress relief heat treatment and adequate surface preparation have been utilized effectively to minimize the formation of SRZ. These additional processing steps are employed before the aluminide bondcoat is deposited and are believed to change the local chemistry and local stresses of the surface of the superalloy. This paper presents the detailed processing steps used to reduce SRZ between platinum aluminide bondcoats and advanced single crystal superalloys.

  16. Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications

    SciTech Connect

    Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S.; Cetel, A.D.

    1999-07-01

    The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine tests and the effect on the misfit energy between the phases in the alloys; (2) examining the oxidation performance of these newly-developed alloys; (3) identifying the influence of pre-oxidation processing on the subsequent oxidation performance; and (4) relating the microstructural and microchemical observations to the observed performance of these superalloys. The comparison of the base and modified alloys will produce a better understanding of the interaction between chemistry, structure, and performance in superalloys. In addition, it will lead to optimized alloys with improved performance including enhanced durability in the operating environments at the elevated temperature required to improve energy efficiency. The availability of alloys capable of higher temperature operation will minimize the need for expensive coatings in extreme temperature applications.

  17. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    NASA Astrophysics Data System (ADS)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  18. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  19. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The

  20. Overview of recent advances in accretion disk theory

    NASA Astrophysics Data System (ADS)

    Ohsuga, Ken

    2012-07-01

    The accretion disk theory, which is initiated in 1970's, has made a success for understanding the powerful compact objects, XRBs, AGNs, and so on. Although one- dimensional accretion disk models (standard disk, slim disk, RIAF) were constructed based on the phenomenological α-viscosity prescription, multi-dimensional MHD/Radiation-MHD simulations are recently performed to resolve the disk structure and dynamics from the first principle. The time variations of the disk and the disk-jet connection are also investigated by the multi-dimensional study. We briefly summarize the disk models and introduce the recent advances of the numerical simulations of the black-hole accretion flows and outflows.

  1. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  2. The Effect of Alloying on Topologically Close Packed Phase Instability in Advanced Nickel-Based Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Arenas, David; Keller, Dennis; Vasudevan, Vijay

    1998-01-01

    An investigation was conducted to describe topologically close packed (TCP) phase instability as a function of composition in the advanced Ni-base superalloy Rene N6. TCP phases are detrimental to overall high-temperature performance of Ni-base superalloys because of their brittle nature and because they deplete the Ni-rich matrix of potent solid solution strengthening elements. Thirty-four variations of polycrystalline Rene N6 determined from a design-of-experiments approach were cast and homogenized at 1315"C for 80 hours followed by exposure at 10930C for 400 hours to promote TCP formation. The alloys had the following composition ranges in atomic percent: Co 10.61 to 16.73%, Mo 0.32 to 1.34%, W 1.85 to 2.52%, Re 1.80 to 2.1 1 %, Ta 2.36 to 3.02%, Al 11.90 to 14.75%, and Cr 3.57 to 6.23%. Physical and chemical characteristics of all n-ticrostructures obtained were described using various analytical techniques. From these observations, a mathematical description of TCP occurrence (omega and P phase) was generated for polycrystalline Rene N6.

  3. Burst Testing of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2002-01-01

    Room temperature burst testing of an advanced nickel-base superalloy disk with a dual grain structure was conducted. The disk had a fine grain bore and a coarse grain rim. The results of this test showed that the disk burst at 39,100 rpm in line with predictions based on a 2-D finite element analysis. Further, significant growth of the disk was observed before failure which was also in line with predictions.

  4. Forging of Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Falsey, John

    2005-01-01

    The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.

  5. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  6. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  7. Mechanical Properties of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy; Kantzos, Peter

    2003-01-01

    Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.

  8. Superalloy Disk With Dual-Grain Structure Spin Tested

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete T.

    2003-01-01

    Advanced nickel-base disk alloys for future gas turbine engines will require greater temperature capability than current alloys, but they must also continue to deliver safe, reliable operation. An advanced, nickel-base disk alloy, designated Alloy 10, was selected for evaluation in NASA s Ultra Safe Propulsion Project. Early studies on small test specimens showed that heat treatments that produced a fine grain microstructure promoted high strength and long fatigue life in the bore of a disk, whereas heat treatments that produced a coarse grain microstructure promoted optimal creep and crack growth resistance in the rim of a disk. On the basis of these results, the optimal combination of performance and safety might be achieved by utilizing a heat-treatment technology that could produce a fine grain bore and coarse grain rim in a nickel-base disk. Alloy 10 disks that were given a dual microstructure heat treatment (DMHT) were obtained from NASA s Ultra-Efficient Engine Technology (UEET) Program for preliminary evaluation. Data on small test specimens machined from a DMHT disk were encouraging. However, the benefit of the dual grain structure on the performance and reliability of the entire disk still needed to be demonstrated. For this reason, a high temperature spin test of a DMHT disk was run at 20 000 rpm and 1500 F at the Balancing Company of Dayton, Ohio, under the direction of NASA Glenn Research Center personnel. The results of that test showed that the DMHT disk exhibited significantly lower crack growth than a disk with a fine grain microstructure. In addition, the results of these tests could be accurately predicted using a two-dimensional, axisymmetric finite element analysis of the DMHT disk. Although the first spin test demonstrated a significant performance advantage associated with the DMHT technology, a second spin test on the DMHT disk was run to determine burst margin. The disk burst in the web at a very high speed, over 39 000 rpm, in line with

  9. Understanding the roles of the strategic element cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Dreshfield, R. L.

    1983-01-01

    The United States imports over 90% of its cobalt, chromium, columbium, and tantalum, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. Research progress in understanding the roles of cobalt and some possible substitutes effects on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed.

  10. High Temperature Burst Testing of a Superalloy Disk With a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Kantzos, P.

    2004-01-01

    Elevated temperature burst testing of a disk with a dual grain structure made from an advanced nickel-base superalloy, LSHR, was conducted. The disk had a fine grain bore and coarse grain rim, produced using NASA's low cost DMHT technology. The results of the spin testing showed the disk burst at 42 530 rpm in line with predictions based on a 2-D finite element analysis. Further, significant growth of the disk was observed before failure which was also in line with predictions.

  11. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth

    2002-01-01

    The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.

  12. Advances in solid-phase extraction disks for environmental chemistry

    USGS Publications Warehouse

    Thurman, E.M.; Snavely, K.

    2000-01-01

    The development of solid-phase extraction (SPE) for environmental chemistry has progressed significantly over the last decade to include a number of new sorbents and new approaches to SPE. One SPE approach in particular, the SPE disk, has greatly reduced or eliminated the use of chlorinated solvents for the analysis of trace organic compounds. This article discusses the use and applicability of various SPE disks, including micro-sized disks, prior to gas chromatography-mass spectrometry for the analysis of trace organic compounds in water. Copyright (C) 2000 Elsevier Science B.V.

  13. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  14. Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Kantzos, Peter T.

    2005-01-01

    A low solvus, high refractory (LSHR) powder metallurgy disk alloy was recently designed using experimental screening and statistical modeling of composition and processing variables on sub-scale disks to have versatile processing-property capabilities for advanced disk applications. The objective of the present study was to produce a scaled-up disk and apply varied heat treat processes to enable full-scale demonstration of LSHR properties. Scaled-up disks were produced, heat treated, sectioned, and then machined into specimens for mechanical testing. Results indicate the LSHR alloy can be processed to produce fine and coarse grain microstructures with differing combinations of strength and time-dependent mechanical properties, for application at temperatures exceeding 1300 F.

  15. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  16. Role of cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R.; Barefoot, J.; Tien, J.; Sanchez, J.

    1982-01-01

    The effect of cobalt or substituting for cobalt on the mechanical properties of nickel-based superalloys is discussed. Waspaloy, UDIMET 700, and NIMONIC 115, which are representative of Ni-Cr-Co-Al-Ti-Mo superalloys having different gamma prime contents which are strengthened by a heavily alloyed matrix, coherent gamma prime precipitates, and carbides at the grain boundaries. Microstructure and in situ and extracted phase STEM micro-analysis were used to evaluate the three alloys.

  17. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  18. High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; OConnor, Kenneth

    2001-01-01

    The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.

  19. High weldability nickel-base superalloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    This is a nickel-base superalloy with excellent weldability and high strength. Its composition consists essentially of, by weight percent, 10-20 iron, 57-63 nickel, 7-18 chromium, 4-6 molybdenum, 1-2 niobium, 0.2-0.8 silicon, 0.01-0.05 zirconium, 1.0-2.5 titanium, 1.0-2.5 aluminum, 0.02-0.06 carbon, and 0.002-0.015 boron. The weldability and strength of this alloy give it a variety of applications. The long-time structural stability of this alloy together with its low swelling under nuclear radiation conditions, make it especially suitable for use as a duct material and controlling element cladding for sodium-cooled nuclear reactors.

  20. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  1. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  2. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those

  3. Understanding the roles of the strategic element cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Dreshfield, R. L.

    1984-01-01

    Research progress in understanding the effects of cobalt and some possible substitute on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed. The United States imports over 90 percent of its cobalt, chromium, tantalum and columbium, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. NASA, through joint government/industry/university teams, undertook a long range research program aimed at reducing or eliminating these strategic elements by examining their basic roles in superalloys and identifying viable substitutes.

  4. Nickel-base alloys combat corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  5. The strainrange partitioning behavior of an advanced gas turbine disk alloy, AF2-1DA

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Nachtigall, A. J.

    1979-01-01

    The low-cycle, creep-fatigue characteristics of the advanced gas turbine disk alloy, AF2-1DA have been determined at 1400 F and are presented in terms of the method of strainrange partitioning (SRP). The mean stresses which develop in the PC and CP type SRP cycles at the lowest inelastic strainrange were observed to influence the cyclic lives to a greater extent than the creep effects and hence interfered with a conventional interpretation of the results by SRP. A procedure is proposed for dealing with the mean stress effects on life which is compatible with SRP.

  6. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  7. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  8. Creep Resistance of Disk Alloy CH98 with Tungsten and Niobium Additions

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will likely have higher pressure ratios which will require nickel-base superalloy disks with temperature capability up to 1400 F, an increase of about 200 F over current engines. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA's AST Program. Additions of the refractory elements tungsten and niobium have been shown to improve tensile and creep properties while maintaining good high temperature fatigue crack growth resistance. Further improvements in creep and crack growth resistance can be achieved with a coarse grain microstructure. The purpose of the present study is aimed at providing a detailed assessment of 0.2 percent creep rates for coarse grain CH98 with tungsten and niobium additions over a range of temperatures and stresses of interest to disk applications.

  9. Temperature dependence of gamma-gamma prime lattice mismatch in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.; Garlick, R. G.

    1985-01-01

    High temperature X-ray diffraction techniques were used to determine the gamma-gamma prime lattice mismatch of three different nickel-base superalloys at temperatures between 18 and 1000 C. The measurements were performed on oriented single-crystal disks which had been aged to produce a semicoherent gamma-gamma prime structure. The thermal expansion of the lattice parameters of the gamma and gamma-prime phases was described by a second-order polynomial expression. The expansion of the gamma-prime phase was consistently smaller than that of the gamma phase, which caused the lattice mismatch to become more negative at higher temperatures. It was also shown that high values of lattice mismatch resulted in increased rates of directional gamma-prime coarsening during elevated temperature creep exposure.

  10. The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.

  11. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  12. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  13. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  14. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  15. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  16. Nickel-Based Superalloy Resists Embrittlement by Hydrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Chen, PoShou

    2008-01-01

    A nickel-based superalloy that resists embrittlement by hydrogen more strongly than does nickel alloy 718 has been developed. Nickel alloy 718 is the most widely used superalloy. It has excellent strength and resistance to corrosion as well as acceptably high ductility, and is recognized as the best alloy for many high-temperature applications. However, nickel alloy 718 is susceptible to embrittlement by hydrogen and to delayed failure and reduced tensile properties in gaseous hydrogen. The greater resistance of the present nickel-based superalloy to adverse effects of hydrogen makes this alloy a superior alternative to nickel alloy 718 for applications that involve production, transfer, and storage of hydrogen, thereby potentially contributing to the commercial viability of hydrogen as a clean-burning fuel. The table shows the composition of the present improved nickel-based superalloy in comparison with that of nickel alloy 718. This composition was chosen to obtain high resistance to embrittlement by hydrogen while maintaining high strength and exceptional resistance to oxidation and corrosion. The most novel property of this alloy is that it resists embrittlement by hydrogen while retaining tensile strength greater than 175 kpsi (greater than 1.2 GPa). This alloy exhibits a tensile elongation of more than 20 percent in hydrogen at a pressure of 5 kpsi (approximately equal to 34 MPa) without loss of ductility. This amount of elongation corresponds to 50 percent more ductility than that exhibited by nickel alloy 718 under the same test conditions.

  17. Metal dusting and carburization resistance of nickel-base alloys

    SciTech Connect

    Kloewer, J.; Grabke, H.J.; Mueller-Lorenz, E.M.; Agarwal, D.C.

    1997-08-01

    Severe material failures caused by so-called metal dusting have been reported during recent years. The reason for these failures were strongly carburizing CO-H{sub 2} gas mixtures such as encountered in chemical plants for the synthesis of hydrocarbons, methanol, ammonia etc. as well as in plants for the reduction of iron ores. The carburization behavior of nine commercial nickel-base alloys and four iron-nickel-chromium alloys was investigated at 650 C in a carburizing H{sub 2}-CO-H{sub 2}O-gas with a carbon activity of a{sub c} {much_gt} 1. The iron-nickel-chromium alloys suffered severe metal dusting after a very short test period. Nickel base alloys were generally less susceptible to metal dusting than iron-base alloys. However, their corrosion behavior was found to depend sensitively on the chromium concentration of the respective alloys. Alloys like alloy 600H, with a chromium concentration of only 16%, suffered wastage rates which were similar to those of the more resistant iron-base alloys. Nickel-base alloys with chromium concentrations of 25% and above, on the other hand, showed no significant evidence of metal dusting even after 10,000 hours of exposure. It was found that these alloys are protected against metal dusting by the formation of a dense, self-healing chromia scale, which prevents the penetration of carbon into the base metal.

  18. Methodology Developed for Modeling the Fatigue Crack Growth Behavior of Single-Crystal, Nickel-Base Superalloys

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Because of their superior high-temperature properties, gas generator turbine airfoils made of single-crystal, nickel-base superalloys are fast becoming the standard equipment on today's advanced, high-performance aerospace engines. The increased temperature capabilities of these airfoils has allowed for a significant increase in the operating temperatures in turbine sections, resulting in superior propulsion performance and greater efficiencies. However, the previously developed methodologies for life-prediction models are based on experience with polycrystalline alloys and may not be applicable to single-crystal alloys under certain operating conditions. One of the main areas where behavior differences between single-crystal and polycrystalline alloys are readily apparent is subcritical fatigue crack growth (FCG). The NASA Lewis Research Center's work in this area enables accurate prediction of the subcritical fatigue crack growth behavior in single-crystal, nickel-based superalloys at elevated temperatures.

  19. The continuing battle against defects in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.

    1986-01-01

    In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that application. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and proceses have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.

  20. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  1. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  2. Weldability and microstructure development in nickel-base superalloys

    SciTech Connect

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1997-11-01

    The integrity of nickel-base superalloy single-crystal welds depends on the weld cracking tendency, weld metal dendrite selection process, stray crystal formation, and macro- and microstructure development. These phenomena have been investigated in commercial nickel-base superalloy single crystal welds. During electron beam and laser beam welding, transverse and longitudinal weld cracking occurred. However, the weld cracking tendency was reduced with preheating. Most of the dendritic growth pattern development in these welds can be explained by a geometric model. However, the welds also contained misoriented stray crystals, which were frequently associated with weld cracks. The formation of stray crystals was related to thermal and constitutional supercooling effects. Fine-scale elemental partitioning between {gamma} and {gamma}{prime} phase was measured with atom-probe field-ion microscopy. Marked differences in partitioning characteristics in two welds were observed and are related to differences in cooling rates. In this paper, the modeling tools available to describe the above are reviewed.

  3. Stress corrosion crack tip microstructure in nickel-based alloys

    SciTech Connect

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content.

  4. Effects of cobalt in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  5. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  6. Effect of Environmental Exposures on Fatigue Life of P/M Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan

    2011-01-01

    As the temperature capability of Ni-base superalloy powder metallurgy disks is steadily increased, environmental resistance and protection of advanced nickel-based turbine disk components are becoming increasingly important. Localized surface hot corrosion attack and damage from oxidation have been shown to impair disk fatigue life and may eventually limit disk operating temperatures. NASA Research Announcement (NRA) contracts have been awarded to GE Aviation and Honeywell Aerospace to separately develop fatigue resistant metallic and ceramic coatings for corrosion resistance and the corrosion/fatigue results of selected coatings will be presented. The microstructural response of a bare ME3 disk superalloy has been evaluated for moderate (704 C) and aggressive (760-816 C) oxidizing exposures up to 2,020 hours. Cross section analysis reveals sub-surface damage (significant for aggressive exposures) that consists of Al2O3 "fingers", interfacial voids, a recrystallized precipitate-free layer and GB carbide dissolution. The effects of a Nichrome corrosion coating on this microstructural response will also be presented.

  7. Wave propagation in an anisotropic nickel-based superalloy

    PubMed

    Amulele; Every

    2000-03-01

    The effects of elastic anisotropy on ultrasound propagation in a nickel-based single crystal test component are studied using a 25 MHz focused probe in a water immersion system. Anisotropy gives rise to directionally dependent acoustic wavespeeds, beam steering, acoustic energy focusing and mode conversion for normal incidence. Transverse mode echoes are particularly strong in the vicinity of crystallographic directions in which the Gaussian curvature of the slowness surface is zero and divergence of the echo amplitude is predicted on the basis of the stationary phase approximation. There are other directions where the transverse mode echoes vanish for symmetry reasons. The longitudinal mode echo amplitude also shows significant variation with direction. Overall there is good agreement between the echo signal arrival times and amplitudes we measure and calculation. Progress in applying this technique to gas turbine blades is reported. PMID:10829669

  8. Wave propagation in an anisotropic nickel-based superalloy

    PubMed

    Amulele; Every

    2000-03-01

    The effects of elastic anisotropy on ultrasound propagation in a nickel-based single crystal test component are studied using a 25 MHz focused probe in a water immersion system. Anisotropy gives rise to directionally dependent acoustic wavespeeds, beam steering, acoustic energy focusing and mode conversion for normal incidence. Transverse mode echoes are particularly strong in the vicinity of crystallographic directions in which the Gaussian curvature of the slowness surface is zero and divergence of the echo amplitude is predicted on the basis of the stationary phase approximation. There are other directions where the transverse mode echoes vanish for symmetry reasons. The longitudinal mode echo amplitude also shows significant variation with direction. Overall there is good agreement between the echo signal arrival times and amplitudes we measure and calculation. Progress in applying this technique to gas turbine blades is reported.

  9. Microstructural study of the nickel-base alloy WAZ-20 using qualitative and quantitative electron optical techniques

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1973-01-01

    The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.

  10. Dual-Alloy Disks are Formed by Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  11. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  12. Coarsening in high volume fraction nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.

    1990-01-01

    The coarsening behavior of the gamma-prime precipitate has been examined in high volume fraction nickel-base alloys aged at elevated temperatures for times of up to 5000 h. Although the cube rate law was observed during coarsening, none of the presently available coarsening theories showed complete agreement with the experimental particle size distributions (PSDs). These discrepancies were thought to be due to elastic coherency strains which were not considered by the available models. Increasing the Mo content significantly influenced the PSDs and decreased the coarsening rate of the gamma-prime cubes, as a result of increasing the magnitude of the lattice mismatch. After extended aging times, the gamma-prime cubes underwent massive coalescence into plates at a rate which was much faster than the cuboidal coarsening rate. Once the gamma-prime plates were formed, further coarsening was not observed, and this stabilization of the microstructure was attributed to the development of dislocation networks at the gamma-gamma-prime interfaces.

  13. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  14. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  15. HIP clad nickel base Alloy 625 for deep sour wells

    SciTech Connect

    Uhl, W.K.; Pendley, M.R.

    1984-05-01

    The hot isostatic pressing (HIP) process was used to clad nickel base Alloy 625 to AISI 4130 low alloy steel. The performance of the HIP clad material in the corrosive environment characteristic of deep, sour oil and gas wells was evaluated in laboratory tests. Included in the test program were NACE TM-01-77 sulfide stress cracking tests, chloride stress corrosion cracking tests in boiling MgCl /SUB 2'/ , and pitting and crevice corrosion tests. The HIP clad 625 performed excellently, displaying essentially the same corrosion resistance as wrought 625. Specifically the HIP clad 625 resisted sulfide stress cracking at applied stresses as high as 120% of yield strength and resisted chloride stress corrosion cracking at stresses exceeding 100% of yield. The HIP clad 625 also displayed immunity to pitting and crevice corrosion, with corrosion rates of <0.025 mm/y (1 mil/y). The 4130 base metal, however, was attacked severly in all tests. SEM/EDX analysis of the 625/4130 interface demonstrated that dilution of the cladding by the base metal was essentially eliminated.

  16. Permeation characteristics of some iron and nickel based alloys

    SciTech Connect

    Mitchell, D.J.; Edge, E.M.

    1985-06-15

    The permeation characteristics of deuterium in several iron and nickel based alloys were measured by the gas phase breakthrough technique in the temperature range 100 to 500 /sup 0/C with applied pressures ranging from 10 Pa to 100 kPa. The restriction of the gas flux imposed by surface oxides was modeled in order to evaluate the effects of surface oxide retardation of the gas flux on the effective values of the deuterium permeabilities and diffusivities in the alloys. The most permeable alloys were 430 and 431 stainless steels. The next most permeable alloy was Monel K-500, which exceeded the permeability of pure Ni by more than a factor of five at room temperature. The alloys with permeabilities less than pure Ni were, in order of decreasing permeability: the Inconels 625, 718, and 750, the Fe-Ni-Co glass-sealing alloys Kovar and Ceramvar, and the 300-series stainless steels. Deuterium trapping within the alloys appeared to influence the values of bulk diffusivities, which were not correlated with either the permeabilities or the chemical compositions of the alloys.

  17. Mechanical properties of nanostructured nickel based superalloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Mukhtarov, Sh; Ermachenko, A.

    2010-07-01

    This paper will describe the investigations of a nanostructured (NS) state of nickel based INCONEL® alloy 718. This structure was generated in bulk semiproducts by severe plastic deformation (SPD) via multiple isothermal forging (MIF) of a coarse-grained alloy. The initial structure consisted of γ-phase grains with disperse precipitations of γ"-phase in the forms of discs, 50-75 nm in diameter and 20 nm in thickness. The MIF generated structures possess a large quantity of non-coherent plates and rounded precipitations of δ-phase, primarily along grain boundaries. In the duplex (γ+δ) structure the grains have high dislocation density and a large number of nonequilibrium boundaries. Investigations to determine mechanical properties of the alloy in a nanostructured state were carried out. Nanocrystalline Inconel 718 (80 nm) possesses a very high room-temperature strength after SPD. Microcrystalline (MC) and NS states of the alloy were subjected to strengthening thermal treatment, and the obtained results were compared in order to determine their mechanical properties at room and elevated temperatures.

  18. Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers

    PubMed Central

    Baykal, D.; Siskey, R.S.; Haider, H.; Saikko, V.; Ahlroos, T.; Kurtz, S.M.

    2013-01-01

    The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their predictive in vivo wear behavior. However, there are still uncertainties regarding POD test parameters for facilitating clinically relevant wear mechanisms of UHMWPE. Studies on the development of POD testing were briefly summarized. We systematically reviewed wear rate data of UHMWPE generated by POD testers. To determine if POD testing was capable of correctly ranking bearings and if test parameters outlined in ASTM F732 enabled differentiation between wear behavior of various formulations, mean wear rates of non-irradiated, conventional (25–50 kGy) and highly crosslinked (≥90 kGy) UHMWPE were grouped and compared. The mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 7.03, 5.39 and 0.67 mm3/MC. Based on studies that complied with the guidelines of ASTM F732, the mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 0.32, 0.21 and 0.04 mm3/km, respectively. In both sets of results, the mean wear rate of highly crosslinked UHMPWE was smaller than both conventional and non-irradiated UHMWPEs (p<0.05). Thus, POD testers can compare highly crosslinked and conventional UHMWPEs despite different test parameters. Narrowing the allowable range for standardized test parameters could improve sensitivity of multi-axial testers in correctly ranking materials. PMID:23831149

  19. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  20. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    SciTech Connect

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S. )

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of {gamma}{prime} (Ni{sub 3}(Al,Ti)) has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300{degree}C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the {gamma}{prime} (Ni{sub 3}(Al,Ti)) system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100{degree}C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni{sub 3}(Al,Ti) phase was active with respect to the matrix. The peak in activity near 100{degree}C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate {gamma}{prime} on the grain boundaries. 20 refs., 23 figs., 3 tabs.

  1. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    SciTech Connect

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.; Burke, M.G.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.

  2. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan E-mail: jd@astro.washington.ed E-mail: roskar@astro.washington.ed E-mail: aseth@cfa.harvard.ed E-mail: skillman@astro.umn.ed

    2010-06-10

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m {sub F814W} = 26 (M {sub F814W} = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages <300 Myr. Our deepest field reaches m {sub F814W} = 27.2 (M {sub F814W} = -0.2), sufficient to resolve the red clump and main-sequence stars with ages <500 Myr. Although we detect trace amounts of star formation at times more recent than 10 Gyr ago for all fields, the proportion of red giant stars to asymptotic giants and main-sequence stars suggests that the disk is dominated by an ancient (>10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that {approx}70% of the stellar mass in the NGC 404 disk formed by z {approx} 2 (10 Gyr ago) and at least {approx}90% formed prior to z {approx} 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, {approx} 0

  3. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  4. Hot Corrosion of Nickel-Base Alloys in Biomass-Derived Fuel Simulated Atmosphere

    SciTech Connect

    Leyens, C.; Pint, B.A.; Wright, I.G.

    1999-02-28

    Biomass fuels are considered to be a promising renewable source of energy. However, impurities present in the fuel may cause corrosion problems with the materials used in the hot sections of gas turbines and only limited data are available so far. As part of the Advanced Turbine Systems Program initiated by the U.S. Department of Energy, the present study provides initial data on the hot corrosion resistance of different nickel-base alloys against sodium sulfate-induced corrosion as a baseline, and against salt compositions simulating biomass-derived fuel deposits. Single crystal nickel-superalloy Rene N5, a cast NiCrAlY alloy, a NiCoCrAlY alloy representing industrially used overlay compositions, and a model {beta}NiAl+Hf alloy were tested in 1h thermal cycles at 950 C with different salt coatings deposited onto the surfaces. Whereas the NiCoCrAlY alloy exhibited reasonable resistance against pure sodium sulfate deposits, the NiCrAiY alloy and Rene N5 were attacked severely. Although considered to be an ideal alumina former in air and oxygen at higher temperatures, {beta}NiAl+Hf also suffered from rapid corrosion attack at 950 C when coated with sodium sulfate. The higher level of potassium present in biomass fuels compared with conventional fuels was addressed by testing a NiCoCrAlY alloy coated with salts of different K/Na atomic ratios. Starting at zero Na, the corrosion rate increased considerably when sodium was added to potassium sulfate. In an intermediate region the corrosion rate was initially insensitive to the K/Na ratio but accelerated when very Na-rich compositions were deposited. The key driver for corrosion of the NiCoCrAlY alloy was sodium sulfate rather than potassium sulfate, and no simple additive or synergistic effect of combining sodium and potassium was found.

  5. Synthetic Microstructure-Based Lifing of Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Tucker, Joseph C.

    This work focuses on the root cause of life limiting behavior in Ni-based superalloys for high pressure and temperature turbine disks applications in low cycle fatigue (LCF) by generating statistical volume elements (SVEs) of directly measured 3D microstructures for finite element method (FEM) simulations with crystal plasticity. Synthetic microstructures with experimentally determined microstructurally small fatigue crack (MSFC) weakest link features of as large as (ALA) grains and long annealing twins comprise the test cases. Upper limit truncated log-normal distributions account for the log-normal upper tail departure in grain size distributions of Ni-based superalloys more accurately representing ALA grains. Probability plots quantify the log-normality of grain sizes more effectively than traditional histograms. Twins are inserted into synthetic microstructures according to the coherent Sigma3 orientation relationship. A 3D measured dataset of the Inconel 100 (IN100) validates the Saltykov method stereology technique for estimating 3D grain size distributions from 2D; the 3D grain size distribution mean field and upper tail of IN100 is accurately predicted. The Saltykov method gave 3D grain sizes from a Rene 88 Damage Tolerant (R88DT) 2D dataset resulting in fatigue SVEs of approximately 1.5 million elements and 200 grains from FEM sensitivity studies. Changing mesh resolution minimally impacted global damage response, but converging locally requires significantly higher refinement. Fatigue interrogating FEM studies evolved hot spots in the local MSFC environment in one SVE, but not in another SVE with different crystallographic orientations, suggesting strong 3D full-field neighbor effects. The study revealed a need for slip line length considerations in crystal plasticity to better capture life limiting behavior. The findings point towards strictly limiting the ALA grain size in Ni-based superalloys to extend service life.

  6. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based

  7. Herniated Disk

    MedlinePlus

    ... keep them in place. As you age, the disks break down or degenerate. As they do, they lose their cushioning ability. This can lead to pain if the back is stressed. A herniated disk is a disk that ruptures. This allows the ...

  8. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  9. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  10. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  11. New approach for assessing the weldability of precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Moosavy, Homam Naffakh; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Khodabakhshi, Meisam; Mapelli, Carlo

    2013-12-01

    A new procedure was proposed for evaluating the weldability of nickel-base superalloys. The theory is on the basis of two microstructural patterns. In pattern I, the weld microstructure exhibits severe alloying segregation, many low-melting eutectic structures, and low weldability. The weld requires a weaker etchant and a shorter time for etching. In pattern II, the weld microstructure displays less alloying segregation, low quantity of eutectic structures, and high weldability. The weld needs a stronger etchant and a longer time for etching. Five superalloys containing different amounts of Nb and Ti were designed to verify the patterns. After welding operations, the welds were etched by four etchants with different corrosivities. The weldability was determined by TG-DSC measurements. The metallography and weldability results confirmed the theoretic patterns. Finally, the etchant corrosivity and etching time were proposed as new criteria to evaluate the weldability of nickel-base superalloys.

  12. Strainrange partitioning behavior of the nickel-base superalloys, Rene' 80 and in 100

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Nachtigall, A. J.

    1978-01-01

    A study was made to assess the ability of the method of Strainrange Partitioning (SRP) to both correlate and predict high-temperature, low cycle fatigue lives of nickel base superalloys for gas turbine applications. The partitioned strainrange versus life relationships for uncoated Rene' 80 and cast IN 100 were also determined from the ductility normalized-Strainrange Partitioning equations. These were used to predict the cyclic lives of the baseline tests. The life predictability of the method was verified for cast IN 100 by applying the baseline results to the cyclic life prediction of a series of complex strain cycling tests with multiple hold periods at constant strain. It was concluded that the method of SRP can correlate and predict the cyclic lives of laboratory specimens of the nickel base superalloys evaluated in this program.

  13. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity.

    PubMed

    Magaye, Ruth; Zhao, Jinshun

    2012-11-01

    Recently, nanoparticles have been the focus of many research and innovation. Metallic nickel and nickel-based nanoparticles are among those being exploited. Nickel fine particles are known to be genotoxic and carcinogenic. It has been discovered that many properties of nano sized elements and materials are not present in their bulk states. The nano size of these particles renders them the ability to be easily transported into biological systems, thus raising the question of their effects on the susceptible system. Therefore scientific research on the effects of nickel nanoparticles is important. This mini-review intends to summarize the current knowledge on the genotoxicity and carcinogenicity potential of metallic nickel and nickel-based nanoparticles implicated in in vitro and in vivo mammalian studies. PMID:23000472

  14. Welding of nickel-base superalloys having a nil-ductility range

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1999-01-01

    An article made of a nickel-base superalloy having a nil-ductility range from the solidus temperature of the alloy to about 600.degree. F. below the solidus temperature is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, adjusting the temperature of the article to a welding temperature of from about 1800.degree. F. to about 2100.degree. F., welding a preselected area in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected area so as to locally melt the alloy in the preselected area, providing a filler metal having the same composition as the nickel-based superalloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  15. Method of Making a Nickel Fiber Electrode for a Nickel Based Battery System

    NASA Technical Reports Server (NTRS)

    Britton, Doris L. (Inventor)

    2001-01-01

    The general purpose of the invention is to develop a high specific energy nickel electrode for a nickel based battery system. The invention discloses a method of producing a lightweight nickel electrode which can be cycled to deep depths of discharge (i.e., 40% or greater of electrode capacity). These deep depths of discharge can be accomplished by depositing the required amount of nickel hydroxide active material into a lightweight nickel fiber substrate.

  16. Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time

    SciTech Connect

    Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.; Liaw, Peter K; Kai, Ji-Jung; Ren, Yang

    2011-01-01

    An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.

  17. Corrosion behavior of iron and nickel base alloys under solid oxide fuel cell exposure conditions

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.

    2006-03-01

    Topography and phase composition of the scales formed on commercial ferritic stainless steels and experimental low CTE nickel-based alloys were studied in atmospheres simulating solid oxide fuel cell (SOFC) environments. The materials were studied under dual environment conditions with air on one side of the sample and carbon monoxide on the other side at 750°C. Surface characterization techniques, such as scanning electron microscopy and X-ray diffraction analysis were used in this study.

  18. Mechanism of beneficial effect of tantalum in hot corrosion of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Stearns, C. A.; Kohl, F. J.

    1977-01-01

    X-ray diffraction and electron microprobe analyses were used to examine a prominent NaTaO3 pattern formed in a number of nickel-base superalloys. It is found that a beneficial effect of tantalum with respect to hot corrosion attack arises from the ability of Ta2O5 to tie up Na2O and prevent the formation of a molten Na2MoO4 phase.

  19. A concept for the EQ coating system for nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Kawagishi, K.; Sato, A.; Harada, H.

    2008-07-01

    Nickel-based single-crystal superalloys with high concentrations of refractory elements are prone to generate a diffusion layer called a secondary reaction zone (SRZ) beneath their bond coating during long exposure to high temperatures. The SRZ causes a reduction of the load-bearing cross section and it is detrimental to the creep properties of thin-walled turbine airfoils. In this study, a new bond coat system, “EQ coating,” which is thermodynamically stable and suppresses SRZ has been proposed. Diffusion couples of coating materials and substrate alloys were made and heat treated at 1,100°C for 300 h and 1,000 h. Cyclic oxidation examinations were carried out at 1,100°C in air and the oxidation properties of EQ coating materials were discussed. High-velocity frame-sprayed EQ coatings designed for second-generation nickel-based superalloys were deposited on fourth-and fifth-generation nickel-based superalloys, and the stability of the microstructure at the interface and creep property of the coating system were investigated.

  20. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    NASA Astrophysics Data System (ADS)

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-10-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.

  1. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  2. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  3. A measurement of the shape of the solar disk: The solar quadrupole moment, the solar octopole moment, and the advance of perihelion of the planet mercury

    SciTech Connect

    Lydon, T.J.; Sofia, S.

    1996-01-01

    The Solar Disk Sextant experiment has measured the solar angular diameter for a variety of solar latitudes. Combined with solar surface angular rotation data, the solar quadrupole moment {ital J}{sub 2} and the solar octopole moment {ital J}{sub 4} have been derived first by assuming constant internal angular rotation on cylinders and then by assuming constant internal angular rotation on cones. We have derived values of 1.8{times}10{sup {minus}7} for {ital J}{sub 2} and 9.8{times}10{sup {minus}7} for {ital J}{sub 4}. We conclude with a discussion of errors and address the prediction of general relativity for the rate of advance of perihelion of the planet Mercury. {copyright} {ital 1996 The American Physical Society.}

  4. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells

    PubMed Central

    Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting

    2015-01-01

    Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847

  5. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  6. Analyses of Elemental Partitioning in Advanced Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Thomas, Kimberly J.

    2005-01-01

    Aircraft propulsion engines for the High Speed Civil Transport which may be developed early in the 21st century will require significantly different durability requirements than those which currently power civil aircraft. The durability will be more difficult to achieve because it is expected that the new aircraft engines will have to operate at near maximum power for more than half of each flight compared to 5 to 10 percent for typical current aircraft. To meet this requirement, a team of NASA, Pratt & Whitney Aircraft, and General Electric personnel have been formed to develop an appropriate alloy for the mission. This report summarizes the work performed by a part of that team up to the retirement of one of its members, R.L. Dreshfield. The prime purpose of the report is to assemble the data obtained in a single document so that it may be more accessible to those who may wish to pursue it at a later date.

  7. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Li, D. H.; Lui, R. D.; Huang, H. F.; Li, J. J.; Lei, G. H.; Huang, Q.; Bao, L. M.; Yan, L.; Zhou, X. T.; Zhu, Z. Y.

    2016-06-01

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  8. Laser-Aided Direct Writing of Nickel-Based Single-Crystal Super Alloy (N5)

    NASA Astrophysics Data System (ADS)

    Wang, Yichen; Choi, Jeongyoung; Mazumder, Jyoti

    2016-09-01

    This communication reports direct writing of René N5 nickel-based Super alloy. N5 powder was deposited on (100) single-crystal substrate of René N5, for epitaxial growth, using laser and induction heating with a specially designed closed-loop thermal control system. A thin wall (1 mm width) of René N5 single crystal of 22.1 mm (including 3 mm SX substrate) in height was successfully deposited within 100 layers. SEM and EBSD characterized the single-crystal nature of the deposit.

  9. Process of welding gamma prime-strengthened nickel-base superalloys

    DOEpatents

    Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony

    2003-11-25

    A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.

  10. Manufacturing of nickel-base superalloys with improved high-temperature performance

    SciTech Connect

    McKamey, C.G.; George, E.P.; Liu, C.T.; Horton, J.A.; Carmichael, C.A.; Kennedy, R.L.; Cao, W.D.

    2000-01-01

    This report summarizes the results of research conducted as part of CRADA ORNL95-0327 between Oak Ridge National Laboratory and Teledyne Allvac (now Allvac, an Allegheny Teledyne Co.). The objective was to gain a better understanding of the role of trace elements in nickel-based superalloys, with the ultimate goal of enhancing performance without significantly increasing production cost. Two model superalloys, IN 718 and Waspaloy, were selected for this study, and the synergistic effects of P and B additions on creep and stress rupture properties were determined. Wherever possible the underlying physical mechanisms responsible for the observed effects were investigated.

  11. Interface reaction between nickel-base self-fluxing alloy coating and steel substrate

    NASA Astrophysics Data System (ADS)

    Otsubo, F.; Era, H.; Kishitake, K.

    2000-06-01

    The interface reaction between a nickel-base, self-fluxing alloy coating and a steel substrate has been investigated to examine the formation of “pores,” which are observed along the interface of used boiler tubes. It was found that lumpy precipitates form along the interface instead of pores after heating at high temperatures and that the precipitates are of Fe2B boride. The adhesion strength of the coating is not decreased by the formation of Fe2B precipitates along the interface because of the increase of the adhesion due to interdiffusion.

  12. Thermal and mechanical treatments for nickel and some nickel-base alloys: Effects on mechanical properties

    NASA Technical Reports Server (NTRS)

    Hall, A. M.; Beuhring, V. F.

    1972-01-01

    This report deals with heat treating and working nickel and nickel-base alloys, and with the effects of these operations on the mechanical properties of the materials. The subjects covered are annealing, solution treating, stress relieving, stress equalizing, age hardening, hot working, cold working, combinations of working and heat treating (often referred to as thermomechanical treating), and properties of the materials at various temperatures. The equipment and procedures used in working the materials are discussed, along with the common problems that may be encountered and the precautions and corrective measures that are available.

  13. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  14. Evaluation of commercially available coating techniques for application of thermographic phosphor to nickel-based alloys

    SciTech Connect

    Beshears, D.L.; Bridges, M.J.; Harris, L.A.

    1986-04-01

    Remote temperature measurements using laser-induced fluorescence of phosphors has been established for temperatures ranging from room temperature to 1200/sup 0/C. This remote surface thermometry requires that the phosphors be firmly bonded to the surface of interest. The intent of this paper is to take a quick look at several bonding techniques used to bond the thermographic phosphor yttrium oxide doped with europium (Y/sub 2/O/sub 3/:Eu) to nickel-based alloy. The evaluation of the samples were performed after the samples had been subjected to extreme heat and, in some cases, mechanically deformed.

  15. Stack linings in high-alloy stainless steels and nickel-base alloys

    SciTech Connect

    Herda, W.R.; Grossmann, G.K.

    1999-11-01

    In power stations as well as in waste incineration plants, the stack is the last component in which residues and condensates can separate from the treated flue gas. The process of condensate formation due to temperatures below dewpoint, and the extreme corrosiveness of specific condensates are discussed in detail. Stack lining, using an appropriately corrosion-resistant metallic material, has proven to be an effective means of corrosion protection. Selected high-alloy stainless steels and nickel-base alloys, particularly well suited to this application, are introduced. The various techniques available for fitting such highly corrosion resistant linings are described in selected case histories.

  16. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S.

    1988-03-01

    The precipitation of the equilibrium δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys—INCONEL 718 and INCONEL* 625—both of which are hardenable by the precipitation of the metastable γ″-Ni3Nb phase. The morphology and the distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and the δ phases has been determined. The nucleation of the δ phase at stacking faults within pre-existing δ" precipitates has been discussed.

  17. Effects of cobalt on the hot workability of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Collier, J. P.; Tien, J. K.

    1984-01-01

    The effect of cobalt on the workability of nickel-base superalloys is examined with reference to experimental results for four heats of alloys based on the Nimonic 115 composition with varying amounts of nickel substituted for the nominal 14 percent cobalt. It is shown that Co lowers the gamma-prime solvus, which in turn lowers the Cr23C6 carbide solvus. It is further shown that these solvus temperatures bracket the hot working range for the alloys. However, thermomechanical processing modifications reflecting the effect of Co on the gamma-prime and carbide solvi are shown to restore the workability and the properties of alloys with little or no cobalt.

  18. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    NASA Astrophysics Data System (ADS)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-07-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  19. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  20. Herniated disk

    MedlinePlus

    ... roots. Slipped disks occur more often in middle-aged and older men, usually after strenuous activity. Other ... calm the nerves Muscle relaxants to relieve back spasms LIFESTYLE CHANGES If you are overweight, diet and ...

  1. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  2. High-temperature microstructural stability in iron- and nickel-base alloys from rapid solidification processing

    SciTech Connect

    Flinn, J.E. ); Bae, J.C.; Kelly, T.F. )

    1991-08-01

    The properties and performance of metallic alloys for heat resistant applications depend on the fineness, homogeneity, and stability of their microstructures, particularly after high temperature exposures. Potential advantages of rapid solidification processing (RSP) of alloys for such applications are the homogeneity in composition and fine microstructural features derived from the nature of the RSP process. The main RSP product form is powder, is which obtained by atomizing a narrow melt stream into fine molten droplets. Rapid cooling of the droplets is typically achieved through convective cooling with noble gases such as argon or helium. Consolidation of RSP powder, either using near-net-shape methods or into forms that can be converted to final product shapes, requires exposures to fairly high temperatures, usually 900 to 1200{degrees}C for iron- and nickel-base alloys. Full consolidation, i.e., complete densification with accompanying particle bonding, usually requires pressure or stress assistance. Consolidation, as well as any subsequent thermal-mechanical processing, may affect the chemical homogeneity and fine microstructures. A study has been performed on a series of RSP iron- and nickel-base alloys. The results of microstructure examinations and mechanical properties tests of the consolidated powders, and their correlation, will be covered in this paper. 14 refs., 10 figs., 1 tab.

  3. Dendritic growth and crystalline quality of nickel-base single grains

    NASA Astrophysics Data System (ADS)

    Siredey, Nathalie; Boufoussi, M'Bareck; Denis, Sabine; Lacaze, Jacques

    1993-05-01

    It is a usual observation that subgrains exist in nickel-base single grain components solidified by the lost wax process. The associated misorientations are generally small, but they can eventually lead to casting defects in the case of highly complex mold shapes. This work presents an attempt to relate the formation of subgrain boundaries with the development of the dendritic solidification microstructure. Experimental investigations have been undertaken on cast components made of AM1 nickel-base superalloy designed for high temperature turbine blades. Single grains were obtained by means of a grain selector at the bottom of each part. Metallographic observations have been made to characterize the dendritic array, together with gamma diffraction to measure the crystalline quality of the material and X-ray topography for mapping of misorientations on a dendritic scale. Small misorientations between dendrite stems have been found at the upper end of the selector which lead to the formation of subgrains. Moreover, during the growth process, the total mosaicity of the material increases, firstly as a consequence of an increase in the misorientations between subgrains, and secondly because of a decrease of the internal quality of each subgrain. It is proposed that misorientations are due to thermomechanical stresses which build up during λ' precipitation at temperatures slightly below the solidus temperature of the alloy.

  4. Underwater wet flux-cored arc welding development of stainless steel and nickel-based materials

    SciTech Connect

    Findlan, S.J.; Frederick, G.J.

    1995-12-31

    The inaccessibility and high radiation fields of components in the lower two thirds of a reactor pressure vessel (RPV) has generated the need for an automated underwater wet welding process to address repair applications. Mechanical methods presently employed for this type of repair application produce crevices, which promote concerns of intergranular stress corrosion cracking (IGSCC), crevice corrosion and pitting. To address these concerns, the EPRI Repair and Replacement Applications Center (RRAC) has developed underwater wet flux-cored arc welding (FCAW) technology for the welding of stainless steel and nickel based materials. The benefits of underwater wet welding include: (1) provides a permanent repair; (2) offers crevice-five conditions; (3) reduces future inspection requirements (4) eliminates the potential for ``loose parts`` (5) can be performed in a timely approach. Underwater wet shielded metal arc welding (SMAW) has been successfully used to repair components in radiation areas of the upper section of the RPV, although this process is a manual operation and is impractical for remote applications. The developmental work at the EPRI RRAC is directed towards remote repair applications of nickel-based and stainless steel components, which are inaccessible with normal manual repair techniques, e.g., access hole covers. The flux-cored arc welding process (FCAW) was considered a viable option for underwater development, due to the ease of automation, out of position welding proficiency and self-shielding capabilities.

  5. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Blodgett, M. P.; Yu, F.; Nagy, P. B.

    2005-04-01

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.

  6. Laser rapid manufacturing of special pattern Inco 718 nickel-based alloy component

    NASA Astrophysics Data System (ADS)

    Zhong, Minlin; Yang, Lin; Liu, Wenjin; Huang, Ting; He, Jingjiang

    2005-01-01

    Laser rapid manufacturing based on laser cladding is a novel layer additive manufacturing technology, which can be well used for producing specific material, geometry and properties components normally unavailable or very costly by conventional methods. This paper presents a project research work on laser rapid manufacturing of special pattern Inco 718 nickel based alloy component with special pattern for aeronautical application. The required pattern Inco 718 nickel based alloy component was manufactured directly by laser deposition with optimized parameters: laser power: 800W, laser beam diameter: 0.8 mm, scanning speed: 0.5 m/min, powder feeding rate: 3g/min; The basic microstructure of laser deposited sample is directionally solidified columnar structure, with metallurgical bound to the substrate. Laser deposited component has good metallurgical and compositional and hardness homogeneity. The average hardness is about Hv0.2 440. The tensile strength of the laser deposited Inco 718 sample is respectively 121 and 116 kgf/mm2 at room temperature and at 650°C, which are a little bit less than the data of forged Inco 718 plate 142 and 127 kgf/mm2 due to its directional solidified columnar structure perpendicular to the tensile test force.

  7. Prediction of rupture lifetime in thin sections of a nickel base superalloy

    SciTech Connect

    Pandey, M.C. ); Taplin, D.M.R. . School of Manufacturing, Materials and Mechanical Engineering)

    1994-09-15

    The prediction of rupture lifetime of a component can be based on the data generated from round, flat and tubular specimens. An investigation on the influence of specimen geometry on the creep behavior of Inconel alloy X-750 showed that the tubular specimen exhibited better creep performance when rupture lifetime data were compared on the basis of section size. However, the time to rupture data of all three specimen geometries merged together when compared on the basis of the volume to surface area ratio (V/S) indicating that there is a definite relationship between V/S and the rupture lifetime. This analysis is now extended in another gamma prime strengthened nickel base superalloy. The chemical composition of the alloy in wt%, is as follows: 0.07C-0.66Si-0.07Cu-0.79Fe-19.1Cr-2.35Ti-1.52Al and remainder nickel. Analysis of the rupture lifetime data of a gamma prime strengthened nickel base superalloy shows that time-to-rupture is controlled by the volume to surface area ratio. Furthermore, the normalization of the volume to surface area ratio with the grain size shows that the time-to-rupture data of two grain sizes, 55 and 250 [mu]m, can be represented by a single curve.

  8. The physical and chemical evolution of protostellar disks. The growth of protostellar disks: Progress to date

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1993-01-01

    This study constitutes one part of our multi-disciplinary approach to the evolution of planet-forming disks. The goal is to establish the disks' thermal and mechanical properties as they grow by the infall of their parent interstellar clouds. Thus far, significant advances toward establishing the evolving surface density of such disks was made.

  9. Oxidation and thermal fatigue of coated and uncoated NX-188 nickel-base alloy in a high velocity gas stream

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Young, S. G.

    1972-01-01

    A cast nickel-base superalloy, NX-188, coated and uncoated, was tested in a high-velocity gas stream for resistance to oxidation and thermal fatigue by cycling between room temperature and 980, 1040, and 1090 C. Contrary to the behavior of more conventional nickel-base alloys, uncoated NX-188 exhibited the greatest weight loss at the lowest test temperature. In general, on the basis of weight change and metallographic observations a coating consisting of vapor-deposited Fe-Cr-Al-Y over a chromized substrate exhibited the best overall performance in resistance to oxidation and thermal fatigue.

  10. The corrosion performance of nickel-based alloys in a reverse osmosis plant utilizing seawater

    SciTech Connect

    Al-Hashem, A.; Carew, J.; Al-Odwani, A.

    1998-12-31

    Four nickel-based alloys, UNS N06625, UNS N08825, UNS N10276, and UNS N05500, were evaluated in terms of their corrosion performance in a seawater reverse osmosis plant using the electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and linear polarization resistance (LPR) measurements. Slight changes in the EIS spectra were observed for UNS N06625, UNSN10276 and UNS N05500 at low frequencies. However, UNS N08825 EIS spectra exhibited more changes than the other alloys at low frequencies. The OCP of UNS N10276 was more noble than the other alloys under the same conditions. The LPR measurements indicated that UNS N10276 and UNS N05500 exhibited lower corrosion rates than UNS NO6625 and UNS N08825.

  11. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    SciTech Connect

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed

  12. Growth of pores during the creep of a single crystal nickel-base superalloy

    SciTech Connect

    Komenda, J.; Henderson, P.J.

    1997-12-01

    The use of single crystal (SX) nickel-base superalloys is set to increase in the future with the introduction of SX blades into land-based gas turbines for power generation. Cavities are pre-existing in SX alloys as interdendritic casting porosity, from which cracks nucleate and grow during the later stages of creep. It is generally assumed that no new cavities nucleate during creep. In this respect, cavities in SX alloys have been considered uninteresting and there have been no quantitative studies of cavities during the creep of SX alloys. However, cavities can be easily studied by optical microscopy, which could be readily developed into a remaining life assessment technique should the results prove interesting. This was the motivation for the work presented here.

  13. Fatigue and creep-fatigue deformation of several nickel-base superalloys at 650 C

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Maier, R. D.

    1982-01-01

    Transmission electron microscopy has been used to study the bulk deformation characteristics of seven nickel-base superalloys tested in fatigue and creep-fatigue at 650 C. The alloys were Waspalloy, HIP Astroloy, H plus F Astroloy, H plus F Rene 95, IN 100, MERL 76, and NASA IIB-7. The amount of bulk deformation observed in all the alloys was low. In tests with inelastic strain amplitudes less than about 0.003, only some grains exhibited yielding and the majority of those had the 110 line near the tensile axis. Deformation occurred on octahedral systems for all of the alloys except MERL 76 which also showed abundant primary cube slip. Creep-fatigue cycling occasionally produced extended faults between partial dislocations, but otherwise deformation was much the same as for fatigue cycling.

  14. Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Milligan, W. W., Jr.

    1986-01-01

    Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a stong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.

  15. Influence of Solid Solution Hardening on Creep Properties of Single-Crystal Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ernst; Konrad, Christian; Preußner, Johannes; Völkl, Rainer; Affeldt, Ernst; Glatzel, Uwe

    2015-03-01

    Improving the creep resistance of the matrix by alloying with refractory elements is a major strengthening effect in nickel-based superalloy with rhenium as one of the most effective elements. In this work, the influence of rhenium on creep properties of single-phase single crystals with varying rhenium content and matrix-near composition is investigated. The use of single-crystalline material leads to very distinct results which are not deteriorated by grain boundary effects. So the strengthening effect can be solely attributed to the alloying element rhenium and is quantified for the first time. By comparing the creep strength of two matrix compositions with the corresponding single-crystal superalloys using the threshold stress concept, the potential of creep strengthening of the matrix in two-phase single-crystal alloys is quantified.

  16. Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue

    NASA Astrophysics Data System (ADS)

    Fleury, E.; Rémy, L.

    1994-12-01

    The thermal-mechanical fatigue behavior of AM1 nickel-base superalloy single crystals is studied using a cycle from 600 °C to 1100 °C. It is found to be strongly dependent on crystallo-graphic orientation, which leads to different shapes of the stress-strain hysteresis loops. The cyclic stress-strain response is influenced by variation in Young’s modulus, flow stress, and cyclic hardening with temperature for every crystallographic orientation. The thermalmechanical fatigue life is mainly spent in crack growth. Two main crack-initiation mechanisms occur, depending on the mechanical strain range. Oxidation-induced cracking is the dominant damage mechanism in the lifetime of interest for turbine blades.

  17. Microstructure-property relationships in directionally solidified single-crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, Rebecca A.; Nathal, Michael V.

    1988-01-01

    This paper discusses some of the microstructural features which influence the creep properties of directionally solidified and single-crystal nickel-base superalloys. Gamma prime precipitate size and morphology, gamma-gamma (prime) lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single-crystal superalloys at high temperatures, where directional gamma (prime) coarsening is prominent, and at lower temperatures, where gamma (prime) coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  18. Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.

    1986-01-01

    Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  19. Analysis of Nickel Based Hardfacing Materials Manufactured by Laser Cladding for Sodium Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aubry, P.; Blanc, C.; Demirci, I.; Dal, M.; Malot, T.; Maskrot, H.

    For improving the operational capacity, the maintenance and the decommissioning of the future French Sodium Fast Reactor ASTRID which is under study, it is asked to find or develop a cobalt free hardfacing alloy and the associated manufacturing process that will give satisfying wear performances. This article presents recent results obtained on some selected nickel-based hardfacing alloys manufactured by laser cladding, particularly on Tribaloy 700 alloy. A process parameter search is made and associated the microstructural analysis of the resulting clads. A particular attention is made on the solidification of the main precipitates (chromium carbides, boron carbides, Laves phases,…) that will mainly contribute to the wear properties of the material. Finally, the wear resistance of some samples is evaluated in simple wear conditions evidencing promising results on tribology behavior of Tribaloy 700.

  20. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G.

    1989-01-01

    The high temperature cyclic stress softening response of the single crystal nickel-base superalloy PWA 1480 was investigated. Specimens oriented near the 001- and 111-lines were tested at 1050 C in low-cycle fatigue and then microstructurally evaluated. The 001- and 111-line specimens had dissimilar flow behavior in monotonic tensile tests, but comparable softening in low-cycle fatigue. This softening was accompanied by rapid generation of dislocation networks at the gamma-gamma-prime interfaces and by a slower time-dependent coarsening of gamma-prime precipitates. Due to the rapid formation of a dislocation substructure at the gamma-gamma-prime interfaces, the cyclic stress softening could be modeled with an existing theory which related cyclic stress to the evolving microstructure and dislocation structure.

  1. Calibration approach to electron probe microanalysis: A study with PWA-1480, a nickel base superalloy

    NASA Technical Reports Server (NTRS)

    Terepka, F. M.; Vijayakumar, M.; Tewari, S. N.

    1989-01-01

    The utility of an indirect calibration approach in electron probe microanalysis is explored. The methodology developed is based on establishing a functional relationship between the uncorrected k-ratios and the corresponding concentrations obtained using one of the ZAF correction schemes, for all the desired elements in the concentration range of interest. In cases where a very large number of analyses are desired, such a technique significantly reduces the total time required for the microprobe analysis without any significant loss of precision in the data. A typical application of the method in the concentration mapping of the transverse cross-section of a dendrite in directionally solidified PWA-1480, a nickel-based superalloy, is described.

  2. Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1989-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  3. Stereological characterization of {gamma}' phase precipitation in CMSX-6 monocrystalline nickel-base superalloy

    SciTech Connect

    Szczotok, Agnieszka; Richter, Janusz; Cwajna, Jan

    2009-10-15

    The purpose of this investigation was to study in detail the means to quantitatively evaluate {gamma}' phase precipitation. Many of the mechanical properties of superalloys are directly influenced by the presence of the {gamma}' (gamma prime) precipitate phase dispersed in a {gamma} matrix phase. The {gamma}' precipitates act as effective barriers to dislocation motion and restrict plastic deformation, particularly at high temperatures. Due to this, it is essential to accurately quantify the {gamma}' precipitate size, volume fraction and distribution. Investigations based on quantitative metallography and image analysis were performed on a monocrystalline nickel-base superalloy taking into consideration various {gamma}' precipitate sizes present in that alloy microstructure. The authors of the present paper propose a new method of quantifying the total volume fraction of the {gamma}' phase applying images of the microstructure with {gamma}' phase precipitates registered using light microscopy, scanning electron microscopy (at two different magnifications) and scanning transmission electron microscopy.

  4. Microstructures induced by a stress gradient in a nickel-based superalloy

    SciTech Connect

    Ignat, M.; Buffiere, J.Y.; Chaix, J.M. )

    1993-03-01

    The evolution of the microstructure of single crystals of a nickel-based superalloy during high temperature (1,323 K, 1,050 C) creep in bending has been studied. Bending provides both tensile and compressive stress gradients, consequently the effects of varying stress conditions on the evolution of the morphology of the [gamma][prime] precipitates can be determined from a single specimen. The morphological changes were analyzed by scanning electron microscopy using image analysis techniques and by transmission electron microscopy, then described by dimensionless parameters. The authors discuss the dependence of the morphological changes in the superalloy on the stresses acting in the sample (magnitude and sign). The authors also discuss the driving mechanisms for the observed morphological changes.

  5. Thermal stress development in a nickel based superalloy during weldability test

    SciTech Connect

    Feng, Z.; Zacharia, T.; David, S.A.

    1997-11-01

    A finite element model has been developed to quantitatively evaluate the local thermomechanical conditions for weld metal solidification cracking in a laboratory weldability test (the Sigmajig test). The loading mechanism in the Sigmajig test was simulated by means of nonlinear spring elements. The effects of weld pool solidification on the thermal and mechanical behaviors of the specimen were considered. An efficient algorithm was developed to include the solidification effects in the material constitutive relations. Stress/temperature/location diagrams were constructed to reveal the local stress development behind the traveling weld pool where solidification cracking occurs. Based on the concept of the material resistance to cracking and the mechanical driving force for cracking, the calculated local stress in the solidification temperature range was used to explain the experimentally observed cracking initiation behaviors of a nickel-based superalloy single crystal under different welding and loading conditions.

  6. Shock wave loading of Nickel based superalloy and microstructural features of the compacts

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2015-02-01

    Explosive shock wave loading has been employed to consolidate micro-sized nickel based IN718 superalloy powder. Cylindrical geometry configuring the various critical parameters with optimized detonation pressure has been used to consolidate the powder with desirable means. The thrust on the work is to compact the powder nearer to theoretical density having almost negligible density gradient and without melting the core of the specimen. XRD study indicates that the crystal structure of the post compacts remains the same. Shock wave loading deformed the particles as has been inferred from SEM. The variation in particle size has been measured from Laser Diffraction based Particle Size Analyzer (LDPSA). It is found that this is a rapid fast technique to produce larger and crack free compacts of metal powders without their melting and with less particle size variation.

  7. Assessment of special stainless steels and nickel-base alloys for use under offshore conditions

    SciTech Connect

    Jasner, M.R.; Herda, W.R.

    1994-12-31

    Major offshore installations are designed for a 25-years` life span and more. To predict the corrosion behavior of various alloys for such a long period results from accelerated laboratory tests have to be verified by suitable field tests. The results from laboratory tests and exposure to natural seawater show that nickel-based alloys such as alloy 59 (UNS N06059) and alloy 31 (UNS N08031) can be employed to most severe conditions. For general applications 6Mo stainless steels with 25% Ni such as alloy 926 (UNS N08926) may be used. If higher strength is required alloy 24 (18 Ni-24.5 Cr-6.2 Mn-4.3 Mo-0.6 Cu-0.45 Mn) is the preferred material.

  8. Thermal stability of the nickel-base superalloy B-1900 + Hf with tantalum variations

    NASA Technical Reports Server (NTRS)

    Harmon, B. S.; Pletka, B. J.; Janowski, G. M.

    1987-01-01

    The microstructure of the solutionized and aged nickel-base superalloy B-1900 + Hf was examined after additional aging at 982 C for 72, 250, and 1000 hours. Alloy compositions that were examined contained the normal 1.34 at. pct (4.3 wt pct) Ta as well as 0.67 at. pct and zero Ta levels. The gamma-prime phase agglomerated, became platelike in morphology, and decreased in volume fraction for all three alloys throughout the aging treatments. Changes which occurred in the gamma and gamma-prime phase compositions were nearly complete after 72 hours of aging while changes in the MC carbide composition continued throughout the aging. Blocky M6C carbides precipitated along the grain boundaries of all three alloys in the first 72 hours of aging. In addition, an acicular form of this Mo/Cr/Ni-rich carbide developed in the intragranular regions of the Ta-containing alloys.

  9. Replacing critical and strategic refractory metal elements in nickel-base superalloys. [NASA's COSAM program

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Dreshfield, R. L.; Nathal, M. V.

    1983-01-01

    Because of the import status and essential nature of their use, cobalt, chromium, tantalum, and niobium were identified as strategic and critical in the aerospace industry. NASA's Conservation of Strategic Aerospace Materials (COSAM) program aims to reduce the need for strategic materials used in gas turbine engines. Technological thrusts in two major areas are under way to meet the primary objective of conserving the use of strategic materials in nickelbase superalloys. These thrusts consist of strategic element substitution and alternative material identification. The program emphasizes cooperative research teams involving NASA Lewis Research Center, universities, and industry. The adoption of refractory metals in nickel-base superalloys is summarized including their roles in mechanical strengthening and environmental resistance; current research activities under way in the COSAM Program are presented as well as research findings to date.

  10. Electrochemical polarisation studies on plasma-sprayed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Khan, M. Adam

    2015-08-01

    The plasma-sprayed NiCr-Cr2O3 and Al2O3-40 % TiO2 powders are deposited as coating on nickel-based superalloy. The electrochemical polarisation studies were carried out with 1.0 M H2SO4 solution as a corrosive medium. The corrosion current density of the coated sample was found to be decreased and exhibits better corrosion resistance than bare metal. The characterisation studies on the exposed sample result reveal that the bare metal has undergone severe intergranular attack and segregation on austenitic phase. The corrosion products formed are in the form of sulphides, and contribution of sulphur was noticed through EDS analysis.

  11. Comparison of joining processes for Haynes 230 nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Williston, David Hugh

    Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.

  12. Low Cost Heat Treatment Process for Production of Dual Microstructure Superalloy Disks

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Tim; Kantzos, Pete; Furrer, David

    2003-01-01

    There are numerous incidents where operating conditions imposed on a component mandate different and distinct mechanical property requirements from location to location within the component. Examples include a crankshaft in an internal combustion engine, gears for an automotive transmission, and disks for a gas turbine engine. Gas turbine disks are often made from nickel-base superalloys, because these disks need to withstand the temperature and stresses involved in the gas turbine cycle. In the bore of the disk where the operating temperature is somewhat lower, the limiting material properties are often tensile and fatigue strength. In the rim of the disk, where the operating temperatures are higher than those of the bore, because of the proximity to the combustion gases, resistance to creep and crack growth are often the limiting properties.

  13. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    NASA Astrophysics Data System (ADS)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  14. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.

    PubMed

    Kawi, Sibudjing; Kathiraser, Yasotha; Ni, Jun; Oemar, Usman; Li, Ziwei; Saw, Eng Toon

    2015-11-01

    In recent decades, rising anthropogenic greenhouse gas emissions (mainly CO2 and CH4 ) have increased alarm due to escalating effects of global warming. The dry carbon dioxide reforming of methane (DRM) reaction is a sustainable way to utilize these notorious greenhouse gases. This paper presents a review of recent progress in the development of nickel-based catalysts for the DRM reaction. The enviable low cost and wide availability of nickel compared with noble metals is the main reason for persistent research efforts in optimizing the synthesis of nickel-based catalysts. Important catalyst features for the rational design of a coke-resistant nickel-based nanocatalyst for the DRM reaction are also discussed. In addition, several innovative developments based on salient features for the stabilization of nickel nanocatalysts through various means (which include functionalization with precursors, synthesis by plasma treatment, stabilization/confinement on mesoporous/microporous/carbon supports, and the formation of metal oxides) are highlighted. The final part of this review covers major issues and proposed improvement strategies pertaining to the rational design of nickel-based catalysts with high activity and stability for the DRM reaction.

  15. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.

    PubMed

    Kawi, Sibudjing; Kathiraser, Yasotha; Ni, Jun; Oemar, Usman; Li, Ziwei; Saw, Eng Toon

    2015-11-01

    In recent decades, rising anthropogenic greenhouse gas emissions (mainly CO2 and CH4 ) have increased alarm due to escalating effects of global warming. The dry carbon dioxide reforming of methane (DRM) reaction is a sustainable way to utilize these notorious greenhouse gases. This paper presents a review of recent progress in the development of nickel-based catalysts for the DRM reaction. The enviable low cost and wide availability of nickel compared with noble metals is the main reason for persistent research efforts in optimizing the synthesis of nickel-based catalysts. Important catalyst features for the rational design of a coke-resistant nickel-based nanocatalyst for the DRM reaction are also discussed. In addition, several innovative developments based on salient features for the stabilization of nickel nanocatalysts through various means (which include functionalization with precursors, synthesis by plasma treatment, stabilization/confinement on mesoporous/microporous/carbon supports, and the formation of metal oxides) are highlighted. The final part of this review covers major issues and proposed improvement strategies pertaining to the rational design of nickel-based catalysts with high activity and stability for the DRM reaction. PMID:26440576

  16. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  17. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  18. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  19. Effect of crystallographic orientation on plastic deformation of single crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Westbrooke, Eboni F.

    Nickel-base superalloys, with gamma/gamma' microstructure, are the primary material used in turbines for aerospace applications. The blades in the hottest region of the turbine engine are made of single crystal Ni-base superalloys. It has been shown that the critical resolved shear stress (CRSS) of these materials is orientation dependent (also known as non-Schmid effect). The purpose of this research was to investigate the plastic deformation mechanisms of single crystal Ni-base superalloys as a function of crystallographic orientation in order to understand the factors that contribute to the non-Schmid effect. The superalloys in this study possessed alloying elements in amounts which defined them as 1st and 2nd generation superalloys. Tensile samples of various orientations were loaded to different strain levels. The mechanisms of plastic deformation were characterized by optical and scanning electron microscopy (SEM) observations of deformation bands as well as the dislocation structures using transmission electron microscopy (TEM). It was confirmed that the CRSS of the single crystals did not follow Schmid's law and the near <111> specimens showed the lowest values. The degree of non-Schmid behavior in the <111> specimens was diminished by HIP'ing, which resulted in closure of solidification pores. Furthermore, it was shown that the CRSS for the <100> loaded samples was smallest when loaded along the secondary dendrite arms. The slip analysis by optical microscopy showed that the deformation bands did not follow the expected {111} slip planes for all samples. Studies in SEM proved that those slip bands that followed the {111} planes were associated with extensive shearing of gamma' particles. In addition, it was found that the presence of tri-axial stress states within the macrostructure influenced the deformation path significantly. The TEM observations of deformed specimens revealed that plastic deformation took place mainly in the gamma channels in specimens

  20. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  1. Modelling of recovery controlled creep in nickel-base superalloy single crystals

    SciTech Connect

    Svoboda, J.; Lukas, P.

    1997-01-01

    A model of the kinetics of recovery controlled creep in {l_angle}001{r_angle} oriented nickel-base superalloy single crystals has been developed. Two basic deformation mechanisms have been considered, namely (1) deformation of {gamma} channels by slip in discrete slip systems connected with the generation of dislocations and their deposition at the {gamma}/{gamma}{prime} interfaces; and (2) dynamic recovery of the dislocation structure due to non-conservative motion (a combination of slip and climb) of dislocations along the {gamma}/{gamma}{prime} interfaces and their annihilation. The climb of dislocations is conditioned by the diffusive transport of vacancies generated and annihilated at the climbing dislocations. In the steady-state creep the rate of the slip deformation in all the {gamma} channels is in equilibrium with the recovery induced diffusional deformation. The model predicts realistic values of the steady-state creep rates and their dependence on the applied stress, as well as the strains corresponding to the end of the primary creep stage, dislocation densities at the {gamma}/{gamma}{prime} interfaces and resolved shear stresses both in the {gamma} channels and in the {gamma}{prime} particles.

  2. Method of improving fatigue life of cast nickel based superalloys and composition

    DOEpatents

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  3. Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach

    NASA Astrophysics Data System (ADS)

    Heilmaier, M.; Reppich, B.

    1996-12-01

    The high-temperature creep behavior of the oxide-dispersion-strengthened (ODS) nickel-base superalloys MA 754 and MA 6000 has been investigated at temperatures up to 1273 K and lifetimes of approximately 4000 hours using monotonic creep tests at constant true stress σ, as well as true constant extension rate tests (CERTs) atdot \\varepsilon . The derivation of creep rupture-lifetime diagrams is usually performed with conventional engineering parametric methods, according to Sherby and Dorn or Larson and Miller. In contrast, an alternative method is presented that is based on a more microstructural approach. In order to describe creep, the effective stress model takes into account the hardening contribution σ p caused by the presence of second-phase particles, as well as the classical Taylor back-stress σ p caused by dislocations. The modeled strain rate-stress dependence can be transferred directly into creep-rupture stress-lifetime diagrams using a modified Monkman-Grant (MG) relationship, which adequately describes the interrelation betweendot \\varepsilon representing dislocation motion, and lifetime t f representing creep failure. The comparison with measured creep-rupture data proves the validity of the proposed micromechanical concept.

  4. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  5. Laser micro-hole drilling in thermal barrier coated nickel based superalloy

    NASA Astrophysics Data System (ADS)

    Gupta, Umashanker; Nath, A. K.; Bandyopadhyay, P. P.

    2016-09-01

    This investigation deals with laser drilling of micro holes in yttria stabilised zirconia coated nickel based superalloy using a power modulated fiber laser. The parameters taken into account are assist gas pressure, modulation frequency, pulse on time and hole inclination angle. These parameters affect the important geometrical characteristics of holes, e.g., hole diameter, hole wall smoothness, taper angle and recast layer thickness. It has been found that the assist gas pressure has a significant effect on hole entry and exit diameter, taper angle and hole wall smoothness. It has also been observed less number of pulses of higher energy produces a hole with smaller entry and exit diameter, smaller taper angle, smoother hole wall and a thin stretched recast layer (∼ 15μm). The minimum achieved hole entrance diameter, exit diameter and taper was 342 μm, 200 μm and 3.54° respectively. Off normal drilling produces a hole with elliptical entrance. The eccentricity of such holes increases with inclination angle. Thick recast layers are produced at high inclination angles.

  6. Fatigue crack propagation of nickel-base superalloys at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1988-01-01

    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interaction are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

  7. Fatigue crack propagation of nickel-base superalloys at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1985-01-01

    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

  8. Infrared repair brazing of 403 stainless steel with a nickel-based braze alloy

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; Hung, C. M.

    2002-06-01

    Martensitic stainless steel (403SS) is extensively used for intermediate and low-pressure steam turbine blades in fossil-fuel power plants. The purpose of this investigation is to study the repair of shallow cracks on the surface of 403SS steam turbine blades by infrared repair brazing using rapid thermal cycles. A nickel-based braze alloy (NICROBRAZ LM) is used as filler metal. The braze alloy after brazing is primarily comprised of borides and an FeNi3 matrix with different amounts of alloying elements, especially B and Si. As the brazing temperature increases, more Fe atoms are dissolved into the molten braze. Some boron atoms diffuse into the 403SS substrate primarily via grain boundary diffusion and form B-Cr-Fe intermetallic precipitates along the grain boundaries. The LM filler metal demonstrates better performance than 403SS in both microhardness and wear tests. It is also noted that specimens brazed in a vacuum have less porosity than those brazed in an Ar atmosphere. The shear strength of the joint is around 300 MPa except for specimens brazed in short time periods, e.g., 5 seconds in Ar flow and 30 seconds in vacuum. The fractographs mainly consist of brittle fractures and no ductile dimple fractures observed in the scanning electron microscope (SEM) examination.

  9. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1984-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperature range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4 - MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significant role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Ns2MoO4 - MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4 - MoO3 melt.

  10. The stability of lamellar gamma-gamma-prime structures. [nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.

    1987-01-01

    The stability of stress-annealed gamma/gamma-prime lamellar structures were investigated using three nickel-base single-crystal alloys (the NASAIR 100 and two similar alloys, E and F, containing 5 and 10 wt pct Co, respectively) stress-annealed at 1000 C to form lamellae perpendicular to the applied stress. The rate of the lamellar thickening under various thermal and creep exposures was examined by SEM. For unstressed aging at 1100 C, the lamellar structures of the NASAIR and the E alloys exhibited continuous but slow lamellar coarsening, whereas the lamellae of the alloy F showed pronounced thickening plus spheroidization. Resistance to lamellar thickening was correlated with high magnitudes of lattice mismatch, which promoted a more regular lamellar structure and a finer spacing of misfit dislocations. Specimens which were tension-annealed prior to compressive creep testing exhibited an earlier onset of tertiary creep in comparison with only heat-treated specimens. This was associated with accelerated lamellar coarsening in the stress-annealed specimens.

  11. Imaging and characterization of fine gamma' precipitates in a commercial nickel-base superalloy.

    PubMed

    Sarosi, P M; Viswanathan, G B; Whitis, D; Mills, M J

    2005-04-01

    Empirical datasets of volume fractions and size distributions of small gamma' precipitates from "real" multi-component engineering nickel-based superalloys are vital to calibrate and validate the computer models which predict high sensitivities of mechanical properties to size and volume fraction of these fine gamma precipitates, and in order to accelerate microstructure and alloy development. Consequently, we investigated a number of imaging techniques available in a Tecnai F-20 FEG/TEM and selected the technique which best enabled rapid and extensive acquisition of these datasets using the engineering alloy, René 88'DT. The EFTEM technique was found to be the most appropriate method for imaging fine gamma' precipitates while further investigation showed that the Cr-M-edge, in comparison with other ionization-edges provided the best images based largely on contrast-to-noise ratio. Imaging of the Cr-M-edge elemental maps were further improved by investigating the effects of microscope parameters, imaging filter parameters and analysis of the experimental electron energy loss spectra obtained from this alloy. In addition, a novel technique to determine the volume fraction of the fine gamma' precipitates without the need to determine the absolute thickness of the TEM foil is proposed. PMID:15777602

  12. Spectrophotometric studies and applications for the determination of yttrium in pure and in nickel base alloys.

    PubMed

    Amin, A S; Mohammed, T Y; Mousa, A A

    2003-09-01

    Yttrium reacts with 5-(4'-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (I), 5-(2'-bromophenylazo)-6-hydroxypyrimidine-2,4-dione (II), 5-(2',4'-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (III), 5-(4'-nitro-2',6'-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (IV), 5-(2'-methyl-4'-hydroxyphenylazo)-6-hydroxypyrimidine-2,4-dione (V) to form a dark pink complexes, having an absorption maximum at 610, 577, 596, 567 and 585 nm, respectively. The complex formation was completed spontaneously in theil buffer solution and the resulting complex was stable for at least 3 h after dilution. Under the optimum conditions employed, the molar absorptivities were found to be 1.60 x 10(4), 1.29 x 10(4), 1.96 x 10(4), 1.45 x 10(4) and 1.21 x 10(4) l mol(-1) cm(-1) and the molar ratios were (1:1) and (1:2) (M:L). The linear ranges were found within 95 microg of yttrium in 25 ml solution. One of the characteristics of the complex was its high tolerance for calcium and hence a method of separation and enrichment of microamounts of yttrium by using calcium oxalate precipitate was developed and applied to measure yttrium in nickel-base alloys. Interfering species and their elimination have been studied. The precision and recovery are both satisfactory.

  13. Effect of casting geometry on mechanical properties of two nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.

    1976-01-01

    An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.

  14. Thermomechanical fatigue behavior of coated and bare nickel-based superalloy single crystals

    SciTech Connect

    Chataigner, E.; Remy, L.

    1996-12-31

    The thermal-mechanical fatigue behavior of chromium-aluminum coated [001] single crystals of AM1, a nickel-base superalloy for turbine blades, is studied using a diamond shape cycle from 600 to 1,100 C. Comparison with bare specimens does not show any significant difference in thermal-mechanical fatigue nor in isothermal low cycle fatigue at high temperature. Metallographic observations on fracture surfaces and longitudinal sections of specimens tested to fatigue life or to a definite fraction of expected life have shown that the major crack tends to initiate from casting micropores in the sub-surface area very early in bare and coated specimens, under low cycle fatigue or thermal-mechanical fatigue. But the interaction between oxidation and fatigue cracking seems to play a major role. A simple model proposed by Reuchet and Remy has been identified for this single crystal superalloy. Its application to the life prediction under low cycle fatigue and thermal-mechanical fatigue for bare and coated single crystals with different orientations is shown.

  15. Temperature dependence of the structural order in the {gamma}{prime} phase of nickel base superalloy

    SciTech Connect

    Royer, A.; Bastie, P.; Veron, M.

    1999-03-19

    Single crystal nickel base superalloys are used for the high-temperature parts of aircraft engines like turbine blades. Their good mechanical properties at high temperature are related to the precipitation of an ordered {gamma}{prime} phase which induces a structural hardening of the material. The {gamma}{prime} phase has an ordered L1{sub 2} structure while the {gamma} matrix is disordered and has a FCC structure. The volume fraction of f{gamma}{prime} of the {gamma}{prime} phase evolves with the temperature and a complete solutionizing occurs above 1,280 C in the AM1 superalloy. The {gamma}{prime} phase of Ni based superalloys is usually analyzed through its prototype Ni{sub 3}Al. As the Ni{sub 3}Al structure remains totally ordered up to temperature very close to the melting point, it is commonly assumed in superalloys that the {gamma}{prime} phase precipitates are fully ordered up to their solutionizing and that the volume fraction of the precipitates is equivalent to the volume fraction of the ordered phase. However, in superalloys, it is difficult to separate experimentally the effects related to the solutionizing of the precipitates from those due to a possible partial disordering of the {gamma}{prime} phase and this assumption has not been verified yet. The aim of this paper is to study the structural order in the {gamma}{prime} phase of a superalloy.

  16. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    SciTech Connect

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  17. Imaging and characterization of fine gamma' precipitates in a commercial nickel-base superalloy.

    PubMed

    Sarosi, P M; Viswanathan, G B; Whitis, D; Mills, M J

    2005-04-01

    Empirical datasets of volume fractions and size distributions of small gamma' precipitates from "real" multi-component engineering nickel-based superalloys are vital to calibrate and validate the computer models which predict high sensitivities of mechanical properties to size and volume fraction of these fine gamma precipitates, and in order to accelerate microstructure and alloy development. Consequently, we investigated a number of imaging techniques available in a Tecnai F-20 FEG/TEM and selected the technique which best enabled rapid and extensive acquisition of these datasets using the engineering alloy, René 88'DT. The EFTEM technique was found to be the most appropriate method for imaging fine gamma' precipitates while further investigation showed that the Cr-M-edge, in comparison with other ionization-edges provided the best images based largely on contrast-to-noise ratio. Imaging of the Cr-M-edge elemental maps were further improved by investigating the effects of microscope parameters, imaging filter parameters and analysis of the experimental electron energy loss spectra obtained from this alloy. In addition, a novel technique to determine the volume fraction of the fine gamma' precipitates without the need to determine the absolute thickness of the TEM foil is proposed.

  18. Microscopic evaluation of creep-fatigue interaction in a nickel-based superalloy

    SciTech Connect

    Santella, Michael L; Yamamoto, Masato; Shingledecker, John P; Boehlert, C. J.; Ogata, Takashi

    2009-01-01

    In order to verify the applicability of Nickel-based alloy Alloy 263 for the thick component, a series of creep, fatigue and creep-fatigue experiments were carried out. To investigate the detailed damage process under the creep-fatigue condition, simple aged, crept, fatigued, and creep-fatigued specimens were subjected to electron back scattering diffraction (EBSD) pattern observation in the SEM. While the simple aged and fatigued specimens showed no remarkable local change in orientation (less than 1deg), the crept specimen exhibited inhomogeneous change of crystallographic orientation, at most 5 degrees, within the grains. This shows that the creep strain is inhomogeneously distributed in the grains due to the effect of relative constraint among the grains. The creep-fatigued specimen exhibited similar local inhomogeniety in strain distribution compared to the crept sample near the center of the grains. However, the creep-fatigued specimen showed remarkable local change in orientation at the vicinity of grain boundaries up to 15 degrees, indicating the occurrence of high strain concentration nearby the grain boundaries. A detailed observation of creep-fatigue damage evolution process in SEM revealed that the inhomogeneous grain deformation precedes the remarkable inhomogeneous deformation nearby the grain boundaries, and followed by the grain boundary cracking.

  19. Internal hydrogen effects on tensile properties of iron- and nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Altstetter, C. J.

    1990-01-01

    Two nickel-base alloys [superalloys INCONEL 718 (IN718) and INCONEL 625 (IN625)] and one iron-base superalloy (A286) were chosen to study the effects of internal H charging on their room-temperature slow strain rate mechanical behavior. Uniform internal H contents ranged from 0 to 50 wt ppm H (0 to 3000 at. ppm H), and a strain rate of 8.5 X 10-7 m/s was used with notched strip specimens. The three alloys showed varying losses in strength and ductility, and the strongest alloy, IN718, showed a decrease of 67 pet in ductility for a dissolved H content of 40 wt ppm. Superalloy A286 showed a corresponding 50 pet decrease in ductility, and IN625 showed a 29 pet loss in ductility. Fractographic evidence and the marked decrease in strength of the alloys lead the authors to conclude that the enhanced localized plasticity mechanism for H embrittlement is possibly operative in these face-centered cubic (fcc) alloys.

  20. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chen, Xiao-Min; Chen, Ming-Song; Zhou, Ying; Wen, Dong-Xu; He, Dao-Guang

    2016-06-01

    The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, `maximum stress method,' is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy.

  1. Anisotropic constitutive model for nickel base single crystal alloys: Development and finite element implementation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1986-01-01

    A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.

  2. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1986-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperture range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4-MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significnt role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Na2MoO4-MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4-MoO3 melt.

  3. CO2 laser cut quality of Inconel 718 nickel - based superalloy

    NASA Astrophysics Data System (ADS)

    Hasçalık, Ahmet; Ay, Mustafa

    2013-06-01

    This paper experimentally investigates the cut quality of laser cutting for the age hardened Inconel 718 nickel based super alloy, with the use of a continuous CO2 4.0 kW laser cutting system. The quality of the cut has been monitored by measuring the kerf taper ratio, the recast layer thickness and the surface roughness of the cut specimens. The effects of processing parameters, such as the laser power, the cutting speed and the assisting gas pressure were evaluated. Scanning electron microscopy (SEM), Energy Dispersive Spectrography (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Knoop hardness tests are carried out to examine the cutting defects, the kerf size variation and formed carbide on the surfaces. A statistical analysis of the results has been performed in order for the effect of each parameter on the cutting quality to be determined. The regression analysis has been used for the development of empirical models able to describe the effect of the process parameters on the quality of laser cutting.

  4. STEM analysis of the local chemical composition in the nickel-based superalloy CMSX-2 after creep at high temperature

    SciTech Connect

    Buffiere, J.Y.; Cheynet, M.C.; Ignat, M.

    1996-02-01

    High temperature creep of nickel-based superalloy single crystals is characterized by directional coalescence of the {gamma}{prime} reinforcing precipitates. The morphology of the coalesced structures depends on experimental parameters such as the sense and direction of the creep stress as well as on intrinsic parameters such as the sign of the misfit between matrix and precipitates. For single crystals of the commercial superalloy CMSX-2 submitted to <100> creep at 1,323K, the initially cuboidal {gamma}{prime} precipitates coalesce into platelets arranged perpendicular or parallel to the stress direction when the stress is in tension or in compression, respectively. So far, however, the evolution of the local chemical composition around dislocations had not been experimentally investigated in nickel-based superalloys.

  5. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  6. Development of a hydrogen-based annealing process for desulfurization of single crystalline, nickel-based superalloy. Final report

    SciTech Connect

    Smith, M.; Mickle, T.H.; Frazier, W.E.; Waldman, J.

    1994-11-05

    The presence of minor amounts of sulfur (1-10 ppm) in nickel-based superalloys has been associated with reduced oxidation resistance and premature spallation of protective coatings. A hydrogen annealing process has been developed by NAWCADWAR which effectively reduces the sulfur content of superalloys. The conditions which allow effective desulfurization are delineated. Diffusion of sulfur through the superalloy is found to be the rate controlling step for the process.

  7. Fabrication of coatings and bulk products made of a nickel-based material by additive technology laser metal deposition

    NASA Astrophysics Data System (ADS)

    Gorunov, A. I.

    2016-01-01

    It is shown that products made of a nickel-based material can be formed by direct additive laser deposition. Ring samples with good antifriction properties are formed. The material after direct laser deposition is characterized by a heterogeneous structure: coarse inclusions with a high hardness are distributed in a softer matrix. Final laser treatment leads to the formation of a homogeneous microstructure and the refinement of second phases.

  8. The Effects of Stress Triaxiality, Temperature and Strain Rate on the Fracture Characteristics of a Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Guo, Weiguo; Guo, Jin; Wang, Ziang; Lu, Shengli

    2016-05-01

    In this work, to study the effects of stress triaxiality, temperature, and strain rate on the fracture behaviors of a single-crystal Nickel-base superalloy, a series of experiments over a temperature range of 293 to 1373 K, strain rate range of 0.001 to 4000/s, and stress triaxiality range of -0.6 to 1.1 are conducted. Anomalous peak of stress is noticed in the yield stress versus temperature curves, and strain rate effect on the anomalous peak of yield stress is analyzed. The anomalous peak shifts to higher temperature as the strain rate increases. Then the effects of stress triaxiality, temperature, and strain rate on its fracture behaviors, including strain to fracture, path of crack propagation, and fracture surface, are observed and analyzed. A valley of the fracture strain is formed in the fracture strain versus temperature curve over the selected temperature range. The micrograph of fracture surface is largely dependent on the temperature, stress triaxiality, and strain rate. Finally, the original Johnson-Cook (J-C) fracture criterion cannot describe the effect of stress triaxiality and temperature on the fracture behaviors of single-crystal Nickel-base superalloy. A modified J-C fracture criterion is developed, which takes the anomalous stress triaxiality and temperature effects on the fracture behaviors of single-crystal Nickel-base superalloy into account.

  9. Very high cycle fatigue behavior of nickel-based superalloy Rene 88 DT

    NASA Astrophysics Data System (ADS)

    Miao, Jiashi

    The fatigue behavior of the polycrystalline nickel-based superalloy Rene 88 DT has been investigated at 593°C up to the very high cycle fatigue regime using ultrasonic fatigue techniques. Conventional damage tolerant methods failed to predict the fatigue life nor the large fatigue life viability of two orders of magnitude observed in the very high cycle regime. Fatigue crack initiation rather than fatigue crack growth is the life determining process in this alloy in the very high cycle regime. At 593°C, all fatigue failures have subsurface origins. Most fatigue crack initiation sites consist of a large crystallographic facet or a cluster of several large crystallographic facets. By combining electron backscatter diffraction, metallographic serial sectioning and SEM-stereo-image-based quantitative fractographic analysis, critical microstructure features associated with subsurface crystallographic fatigue crack initiation were identified. Subsurface fatigue cracks formed by the localization of cyclic plastic deformation on {111} slip planes in the region close to and parallel to twin boundaries in favorably oriented large grains. The facet plane in the crack initiation grain is parallel to the slip plane with the highest resolved shear stresses. Analytical calculations show that twin boundary elastic incompatibility stresses contribute to the onset of cyclic plastic strain localization in the fatigue crack initiation grains. Favorably oriented neighbor grains also can assist with fatigue crack initiation and especially early small crack propagation. Environment may play an important role in the shift of fatigue crack initiation sites from surface to subsurface at elevated temperature. The fatigue behavior of Rene 88 DT was also investigated under fully reversed loading at room temperature using ultrasonic fatigue techniques. Cyclic plastic strain localization and microcrack formation on specimen surfaces were quantitatively studied by EBSD. All microcracks examined

  10. The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Walston, W. S.; Thompson, A. W.; Bernstein, I. M.

    1989-01-01

    The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of

  11. Corrosion behavior of stainless steel and nickel-base alloys in molten carbonate

    SciTech Connect

    Vossen, J.P.T.; Plomp, L.; Rietveld, G.; Wit, J.H.W. de

    1995-10-01

    The corrosion behavior of five commercially available alloys (AISI 316L, AISI 310S, Inconel 601, Thermax 4762, and Kanthal A1) in molten carbonate under reducing gas atmospheres was investigated with cyclic voltammetry and quasi-stationary polarization curve measurements. The reactions that proceed on these materials at distinct potentials could be deduced by comparison of the cyclic voltammograms and polarization curves with those of pure metals and model alloys. The shape of the polarization curves of all materials strongly depends on the preceding electrochemical treatment. A polarization curve recorded immediately after immersion of a sample resulted in a high anodic current. This implies that the passivation of the materials is poor. When a specimen was conditioned at {minus}1,060 mV for 10 h before recording the polarization curve, the anodic current diminished, which indicates passivation. This occurred for all materials except AISI 316L. A ranking of the corrosion properties was determined from polarization curves of samples that had been conditioned assuming the current densities to be representative. The resistance against corrosion of the alloys increases in the order: AISI 316Lnickel-base alloys.

  12. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  13. Influence of composition on microstructural parameters of single crystal nickel-base superalloys

    SciTech Connect

    MacKay, R.A.; Gabb, T.P.; Garg, A.; Rogers, R.B.; Nathal, M.V.

    2012-08-15

    Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including {gamma} Prime solvus, {gamma} Prime volume fraction, topologically close-packed (TCP) phases, {gamma} and {gamma} Prime phase chemistries, and {gamma}-{gamma} Prime lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in {gamma} Prime solvus over the wide compositional range explored and Mo produced the biggest effect on the {gamma} lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the {gamma} matrix and to a smaller extent in the {gamma} Prime phase. The software tool under-predicted {gamma} Prime solvus temperatures and {gamma} Prime volume fractions, and over-predicted TCP phase volume fractions at 982 Degree-Sign C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: Black-Right-Pointing-Pointer Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys Black-Right-Pointing-Pointer Co produced a large change in {gamma} Prime solvus; Mo had a large effect on lattice mismatch. Black-Right-Pointing-Pointer Re exhibited very potent influence on all microstructural parameters was investigated. Black-Right-Pointing-Pointer {gamma} and {gamma} Prime phase chemistries both varied with temperature and alloy composition. Black

  14. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  15. Development of an extra-high strength powder metallurgy nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Kent, W. B.

    1977-01-01

    A program was conducted to optimize the composition of NASA IIb-11, an alloy originally developed as a wrought material, for thermal stability and to determine the feasibility for producing the alloy using powder metallurgy techniques. Seven compositions were melted and atomized, hot isostatically pressed, cross rolled to disks and heat treated. Tensile and stress rupture properties from room temperature to 870 C (1600 F) were determined in addition to thermal stability characteristics. Processing variables included hot isostatic pressing parameters and handling, cross rolling procedures and heat treatment cycles. NASA IIb-11E displayed the best combination of overall properties for service as a 760 C (1400 F) disk material. Its composition is 0.06 C, 8.5 Cr, 9.0 Co, 2.0 Mo, 7.1 W, 6.6 Ta, 4.5 Al, 0.75 Ti, 0.5 V, 0.7 Hf, 0.01 B, 0.05 Zr and balance Ni. While the alloy exhibits the highest 760 C (1400 F) rupture strength reported for any powder metallurgy disk alloy to date, additional studies to further evaluate the effects of heat treatment may be required. The alloy is not susceptible to topologically close-packed phase formation during thermal exposure at 870 C (1600 F) for 1,500 hours, but its mechanical property levels are lowered due to grain boundary carbide formation.

  16. Competing fatigue mechanisms in Nickel-base superalloy Rene 88DT

    NASA Astrophysics Data System (ADS)

    Chang, Paul N.

    Nickel base superalloys exhibit superior high temperature mechanical properties required for aircraft engine components. It has been known that the processing of these alloys by the powder metallurgy route introduces inclusions inside the material. The presence of such inclusions often leads to competing failure modes in fatigue that is described by a step-wise or two distinct S-N curves involving both the surface and internally-initiated cracks, resulting in large uncertainties of fatigue life. A clear understanding of such behavior is yet to be established. The principal objective of this research is to examine the effect of inclusions on the extent of fatigue failure competition from surface and internal initiators at two different specimen test volumes. Experimental fatigue testing has been performed to explore how the presence of inclusions affects the competing fatigue failure modes. In addition, how the competing failure modes will behave with changes in the specimen size was also studied. Two groups of material each with two different specimen sizes were used in this study. It has been shown that the two crack initiation mechanisms occurred in the small unseeded Rene 88DT specimens tested at 650ºC over the stress range tested. Additionally, the fatigue lives were reduced with increase in specimen volume. All fatigue failures in seeded material occurred due to crack initiations from the seeded inclusions. In the fatigue life of seeded material, two competing and separate S-N curves were found in small test volume, whereas, in the large test volume, the regions were separated by a "step" in S-N curve. It has been found that the largest inclusion size observed in metallographic surfaces was smaller than the size determined from the fatigue failure origin. An analysis method based on extreme value statistics developed by Murakami was used to predict the largest size of inclusion in the test volume. The results of this study clearly show that competition for

  17. Creep-rupture in powder metallurgical nickel-base superalloys at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Law, C. C.; Blackburn, M. J.

    1980-03-01

    To gain insight into the factors which control the creep-rupture properties of powder metallurgical nickel-base superalloys at intermediate temperatures (650 to 775°C), a comparative study was conducted on the alloys AF115, modified MAR-M432 (B6) and modified IN100 (MERL76). Creep-rupture properties in these alloys were characterized in terms of the stress and temperature dependence of the secondary creep rate, ɛS, andrupture time, t R . Within the limited stress ranges used, the stress dependence of both ɛS and t R at 704°C can be represented by power laws ɛS and C n and t R = Mσ -p ; where C, M, n, and p are constants. The stress exponents n and p are approximately equal for both AF115 and B6 with values of 16 and 7, respectively. In the case of MERL76, n and p are different, with values of 15 and 5, respectively. The apparent activation energies, Q, are 700, 370 and 520 KJ mol-1 for AF115, B6 and MERL76, respectively. For these alloys, long creep-rupture lives are associated with large values of n and Q. The sig-nificant differences in n and Q values between AF115 and B6 were related to creep re-covery processes for which the lattice misfit between the gamma and the gamma prime was identified to be an important parameter. However, the unequal n and p values in MERL76 compared with those in AF115 and B6, were traced to differences in fracture mode. Failures in AF115 and B6 were initiated at carbide particles at grain boundaries. In contrast, fracture in MERL76 was initiated at grain boundary triple junctions. The rupture lives of AF115 and B6 can be modeled reasonably well by the growth of cavities during secondary creep and propagation of a surface-nucleated crack during the tertiary creep.

  18. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    NASA Astrophysics Data System (ADS)

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.; Negri, R. Martín

    2013-12-01

    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ˜ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain

  19. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    SciTech Connect

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Negri, R. Martín; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.

    2013-12-07

    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ∼ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is

  20. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia

    2014-04-01

    In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.

  1. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    NASA Astrophysics Data System (ADS)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion

  2. Analysis of the Influence of Laser Welding on Fatigue Crack Growth Behavior in a Newly Developed Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Buckson, R. A.; Ojo, O. A.

    2015-01-01

    The influence of laser welding on fatigue crack growth (FCG) behavior of a newly developed nickel-base superalloy, Haynes 282 was studied. Laser welding resulted in cracking in the heat affected zone (HAZ) of the alloy during welding and FCG test results show that this produces deleterious effect on the fatigue crack growth behavior of Haynes 282. However, two post weld heat treatments, including a new thermal treatment schedule developed in this work, are used to significantly improve the resistance of the Haynes 282 fatigue crack growth after laser welding. The effects of laser welding and thermal treatments are discussed in terms of HAZ cracking and heterogeneity of slip, respectively.

  3. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Chung-seok, Kim; Cliff, Lissenden J.

    2009-08-01

    The influence of γ' precipitate on the acoustic nonlinearity is investigated for a nickel-based superalloy, which is subjected to creep deformation. During creep deformation, the cuboidal γ' precipitate is preferentially coarsened in a direction perpendicular to the applied stress axis. The length and shape factor of the γ' precipitate increase with creep time. The increase of relative acoustic nonlinearity with increasing fraction of creep life is discussed in relation to the rafting of γ' precipitate, which is closely related to the scattering and distortion of the acoustic wave.

  4. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    NASA Technical Reports Server (NTRS)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  5. Effect of fast neutron irradiation on fatigue-crack growth behavior of three nickel-base alloys

    SciTech Connect

    James, L.A.

    1981-04-01

    Nickel-base alloys are often employed in reactor structural applications where high strength, resistance to corrosion, or swelling resistance are important considerations. In this study, fatigue-crack growth rate tests were conducted at 427/degree/C on Inconel 600, Inconel X-750, and Incoloy 800 irradiated in the Experimental Breeder Reactor II to total fluences ranging between 2.5 and 6.0*10/sup 22/ n/cm/sup 2/. Following irradiation, minor increases were noted in the crack growth rates of Inconel 600, minor decreases in the growth rates of Inconel X-750, and no irradiation effect in the cracking behavior of Incoloy 800. 14 refs.

  6. Extraordinary plastic behaviour of the γ‧ precipitate in a directionally solidified nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ma, Lifeng; Yang, Gongxian; Song, Xiaolong

    2016-01-01

    The deformation behaviour of the γ‧ precipitate in a directionally solidified nickel-based superalloy is investigated using microscopic observations after tensile testing at room temperature. It is found that coarse γ‧ precipitates (604 nm) are sheared by strongly coupled dislocations, and some γ‧ precipitates are elongated to approximately 3-6 times of their original lengths. It reveals that, at room temperature, the γ‧ precipitate within the experimental superalloy has a significant plastic deformation capacity in comparison with Ni3Al bulk alloys. Based on the experimental observations, the extraordinary plastic behaviour of the γ‧ precipitate is analysed.

  7. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    -2 is the selected image compression format, with full ITU Rec. 601 video resolution (72Ox480). MPEG-2 and AC-3 are also part of the U.S. high definition Advance Television standard (ATV). DVD has an average video bit rate of 3.5 Mbits/sec or 4.69Mbits/sec for image and sound. Unlike digital television transmission, which will use fixed length packets for audio and video, DVD will use variable length packets with a maximum throughput of more than 1OMbits/sec. The higher bit rate allows for less compression of difficult to encode material. Even with all the compression, narrow-beam red light lasers are required to significantly increase the physical data density of a platter by decreasing the size of the pits. This allows 4.7 gigabytes of data on a single sided, single layer DVD. The maximum 17 gigabyte capacity is achieved by employing two reflective layers on both sides of the disk. To read the imbedded layer of data, the laser`s focal length is altered so that the top layer pits are not picked up by the reader. It will be a couple of years before we have dual-layer, double-sided DVDS, and it will be achieved in four stages. The first format to appear will be the single sided, single layer disk (4.7 gigabytes). That will allow Hollywood to begin releasing DVD movie titles. DVD-ROM will be the next phase, allowing 4.7 gigabytes of CD-ROM-like content. The third stage will be write-once disks, and stage four will be rewritable disks. These last stages presents some issues which have yet to be resolved. For one, copyrighted materials may have some form of payment system, and there is the issue that erasable disks reflect less light than today`s DVDS. The problem here is that their data most likely will not be readable on earlier built players.

  8. Improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Alver, A. S.; Wong, J. K.

    1975-01-01

    An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk.

  9. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  10. UNDERSTANDING THE MECHANISMS CONTROLLING ENVIRONMENTALLY-ASSISTED INTERGRANULAR CRACKING OF NICKEL-BASE ALLOYS

    SciTech Connect

    Gary S. Was

    2004-02-13

    Creep and IG cracking of nickel-base alloys depend principally on two factors--the deformation behavior and the effect of the environment. We have shown that both contribute to the observed degradation in primary water. The understanding of cracking does not lie wholly within the environmental effects arena, nor can it be explained only by intrinsic mechanical behavior. Rather, both processes contribute to the observed behavior in primary water. In this project, we had three objectives: (1) to verify that grain boundaries control deformation in Ni-16Cr-9Fe at 360 C, (2) to identify the environmental effect on IGSCC, and (3) to combine CSLBs and GBCs to maximize IGSCC resistance in Ni-Cr-Fe in 360 C primary water. Experiments performed in hydrogen gas at 360 C confirm an increase in the primary creep rate in Ni-16Cr-9Fe at 360 C due to hydrogen. The creep strain transients caused by hydrogen are proposed to be due to the collapse of dislocation pile-ups, as confirmed by observations in HVEM. The observations only partially support the hydrogen-enhanced plasticity model, but also suggest a potential role of vacancies in the accelerate creep behavior in primary water. In high temperature oxidation experiments designed to examine the potential for selective internal oxidation in the IGSCC process, cracking is greatest in the more oxidizing environments compared to the low oxygen potential environments where nickel metal is stable. In Ni-Cr-Fe alloys, chromium oxides form preferentially along the grain boundaries, even at low oxygen potential, supporting a potential role in grain boundary embrittlement due to preferential oxidation. Experiments designed to determine the role of grain boundary deformation on intergranular cracking have established, for the first time, a cause-and-effect relationship between grain boundary deformation and IGSCC. That is, grain boundary deformation in Ni-16Cr-9Fe in 360 C primary water leads to IGSCC of the deformed boundaries. As well

  11. Elevated temperature creep-fatigue crack propagation in nickel-base alloys and 1 Cr-Mo-V steel

    NASA Astrophysics Data System (ADS)

    Nazmy, M.; Hoffelner, W.; Wüthrich, C.

    1988-04-01

    The crack growth behavior of several high temperature nickel-base alloys, under cyclic and static loading, is studied and reviewed. In the oxide dispersion strengthened (ODS) MA 6000 and MA 754 alloys, the high temperature crack propagation exhibited orientation dependence under cyclic as well as under static loading. The creep crack growth (CCG) behavior of cast nickel-base IN-738 and IN-939* superalloys at 850 °C could be characterized by the stress intensity factor, K 1. In the case of the alloy IN-901 at 500 °C and 600 °C, K 1 was found to be the relevant parameter to characterize the creep crack growth behavior. The energy rate line integral, C*, may be the appropriate loading parameter to describe the creep crack growth behavior of the nickel-iron base IN-800H alloy at 800 °C. The creep crack growth data of 1 Cr-Mo-V steel, with bainitic microstructure, at 550 °C could be correlated better by C * than by K 1.

  12. Platinum-modified diffusion aluminide coatings on nickel-base superalloys. Final report, June 1985-June 1988

    SciTech Connect

    Kim, G.M.; Meier, G.H.; Pettit, F.S.

    1993-03-01

    Conventional and platinum modified diffusion aluminide coatings on some state-of-the art single crystal and polycrystalline nickel-base superalloys have been compared in tests designed to establish conditions representative of those existing in gas turbines operating over a range of applications. Resistance of these coatings to oxidation, high temperature hot corrosion, and low temperature hot corrosion have been compared. Platinum has been found to significantly improve the resistance of diffusion aluminides to all of these forms of degradation but the improvement with regard to low temperature hot corrosion is not as great as in the case of the other two forms of attack. Substrate composition has been found to exert a very significant effect on the lives of coatings in the high temperature tests. In the case of high temperature oxidation, elements such as Hf are important in that they extend coating lives whereas for high temperature hot corrosion the type and concentration of refractory elements are significant factors affecting coating lives. A limited number of experiments have indicated intermittent hot corrosion exposures degrade the subsequent cyclic oxidation resistance of Pt-aluminide coatings.... Superalloys, Nickel-base superalloys, Oxidation resistance, Platinum coatings, Single crystals.

  13. Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: a comparative study.

    PubMed

    Amouyal, Yaron; Seidman, David N

    2012-10-01

    Recent developments in the technology of laser-pulsed local-electrode atom-probe (LEAP) tomography include a picosecond ultraviolet (UV) laser system having a 355 nm wavelength and both external and in-vacuum optics. This approach ensures focusing of the laser beam to a smaller spot diameter than has heretofore been obtained using a green (532 nm wavelength) picosecond laser. We compare the mass spectra acquired, using either green or UV laser pulsing, from nickel-based superalloy specimens prepared either electrochemically or by lifting-out from bulk material using ion-beam milling in a dual-beam focused ion beam microscope. The utilization of picosecond UV laser pulsing yields improved mass spectra, which manifests itself in higher signal-to-noise ratios and mass-resolving power (m/Δm) in comparison to green laser pulsing. We employ LEAP tomography to investigate the formation of misoriented defects in nickel-based superalloys and demonstrate that UV laser pulsing yields better accuracy in compositional quantification than does green laser pulsing. Furthermore, we show that using a green laser the quality of mass spectra collected from specimens that were lifted-out by ion milling is usually poorer than for electrochemically-sharpened specimens. Employing UV laser pulsing yields, however, improved mass spectra in comparison to green laser pulsing even for ion-milled microtips. PMID:23046701

  14. Influence of cooling rate on the development of multiple generations of {gamma}' precipitates in a commercial nickel base superalloy

    SciTech Connect

    Singh, A.R.P.; Nag, S.; Hwang, J.Y.; Viswanathan, G.B.; Tiley, J.; Srinivasan, R.; Fraser, H.L.; Banerjee, R.

    2011-09-15

    The compositional and microstructural evolution of different generations of {gamma}' precipitates during the continuous cooling of a commercial nickel base superalloy, Rene88DT, has been characterized by three dimensional atom probe tomography coupled with energy-filtered transmission electron microscopy studies. After solutionizing in the single {gamma} phase field, continuous cooling at a very high rate results in a monomodal size distribution of {gamma}' precipitates with a high nucleation density and non-equilibrium compositions. In contrast, a relatively slower cooling rate ({approx} 24 deg. C/min) results in a multi-modal size distribution of {gamma}' precipitates with the larger first generation primary precipitates exhibiting close to equilibrium composition, along with the smaller scale secondary {gamma}' precipitates, exhibiting non-equilibrium composition (excess of Co and Cr, depleted in Al and Ti). The composition of the {gamma} matrix near these precipitates also exhibits similar trends with the composition being closer to equilibrium near the primary precipitates as compared to the secondary precipitates. - Highlights: {yields} Effect of cooling rate on the precipitation of {gamma}' particles in commercial nickel base superalloy. {yields} Couples EFTEM and 3DAP studies to determine the composition and morphology of {gamma}' precipitates. {yields} Determination of near and far field compositional variations within the gamma matrix leading to subsequent precipitation.

  15. Microstructure Evolution and Analysis of A [011] Orientation, Single-Crystal, Nickel-Based Superalloy During Tensile Creep

    NASA Astrophysics Data System (ADS)

    Tian, Sugui; Zhang, Shu; Li, Chenxi; Yu, Huichen; Su, Yong; Yu, Xingfu; Yu, Lili

    2012-10-01

    By means of the elastic-plastic finite-element method (FEM) for calculating the distribution features of the von Mises stress and strain energy density, the influences of the applied stress on the von Mises stress of the γ'/ γ phases and the rafting of the γ' phase for the [011] orientation, single-crystal, nickel-based superalloy are investigated. The results show that, after being fully heat treated, the microstructure of the [011] orientation, single-crystal, nickel-based superalloy consists of the cuboidal γ' phase embedded coherently in the γ matrix, and the cuboidal γ' phase on (100) plane is regularly arranged along a 45 deg angle relative to the [011] orientation. Compared with the matrix channel of [010] orientation, the bigger von Mises stress is produced within the [001] matrix channel when the tensile stress is applied along the [011] orientation. Under the action of the larger principal stress component, the bigger expanding lattice strain occurs on the (001) plane of the cuboidal γ' phase along the [010] direction, which may trap the Al, Ti atoms with a bigger atomic radius for promoting the directional growth of the γ' phase into the stripe-like rafted structure along the [001] orientation. The changes of the interatomic potential energy, misfit stress, and interfacial energy during the tensile creep are thought to be the driving forces of promoting the elements' diffusion and directional growth of the γ' phase.

  16. Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: a comparative study.

    PubMed

    Amouyal, Yaron; Seidman, David N

    2012-10-01

    Recent developments in the technology of laser-pulsed local-electrode atom-probe (LEAP) tomography include a picosecond ultraviolet (UV) laser system having a 355 nm wavelength and both external and in-vacuum optics. This approach ensures focusing of the laser beam to a smaller spot diameter than has heretofore been obtained using a green (532 nm wavelength) picosecond laser. We compare the mass spectra acquired, using either green or UV laser pulsing, from nickel-based superalloy specimens prepared either electrochemically or by lifting-out from bulk material using ion-beam milling in a dual-beam focused ion beam microscope. The utilization of picosecond UV laser pulsing yields improved mass spectra, which manifests itself in higher signal-to-noise ratios and mass-resolving power (m/Δm) in comparison to green laser pulsing. We employ LEAP tomography to investigate the formation of misoriented defects in nickel-based superalloys and demonstrate that UV laser pulsing yields better accuracy in compositional quantification than does green laser pulsing. Furthermore, we show that using a green laser the quality of mass spectra collected from specimens that were lifted-out by ion milling is usually poorer than for electrochemically-sharpened specimens. Employing UV laser pulsing yields, however, improved mass spectra in comparison to green laser pulsing even for ion-milled microtips.

  17. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys

    SciTech Connect

    Krupp, U.; Christ, H.J.

    2000-01-01

    The process of internal nitridation of the three commercial single-crystalline nickel-base superalloys CMSX-2, CMSX-6, and SRR99 has been studied in air and oxygen-free nitrogen atmospheres at 800 C to 1,100 C using thermogravimetric techniques supplemented by extensive microstructural examinations. Non-protective oxide formation, particularly cracking and spalling at edges or curved surfaces, enables nitrogen to penetrate into the alloy leading to the precipitation of stable Ti and Al nitrides. The high-temperature corrosion behavior of the superalloys studied is strongly affected by composition differences between dendritic and interdendritic areas due to segregation resulting in an inhomogeneous internal precipitation zone. Furthermore, the stability of the strengthening {radical} phase (N3i(Al, Ti, Ta)) in front of the growing internal-nitridation zone was observed to depend clearly on the alloy composition. Therefore, the near-surface area of the alloys can be weakened by {radical} depletion and by embrittlement resulting from internal-nitride precipitation. The results obtained on the nickel-base superalloys are discussed, taking into account the results of a computer-based simulation of internal-corrosion processes. Furthermore, results on Ni-base model alloys of the system Ni-Cr-Al-Ti provided information on the role of the alloy composition. It was found that a higher Cr concentration seems to increase the nitrogen solubility and diffusion in Ni-base alloys.

  18. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  19. Measurement of size-dependent composition variations for gamma prime (γ') precipitates in an advanced nickel-based superalloy.

    PubMed

    Chen, Y Q; Slater, T J A; Lewis, E A; Francis, E M; Burke, M G; Preuss, M; Haigh, S J

    2014-09-01

    Energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope (STEM) has been used to demonstrate the presence of size-dependent compositional variation for L12-structured Ni3Al-type gamma-prime (γ') precipitates within a commercial RR1000 Ni-based superalloy. This semi-quantitative elemental analysis has been achieved using electrochemical extraction of the γ' precipitates from the γ matrix. The applicability of this approach to size-dependent compositional analysis of precipitates was confirmed by a comparison of the size distribution for the extracted precipitates with those present in traditional electropolished foil specimens in the size range 20-250nm. By applying suitable thickness-dependent absorption-corrections we have demonstrated that the composition of γ' precipitates in our material depends on the size of the precipitate in the range of 5nm to 3μm. In particular, the Al content was observed to increase in smaller γ' precipitates while Ti and Ta contents are constant for all sizes of precipitate. Hf was observed to be present only in the largest precipitates. This type of local compositional information provides invaluable input to assess the accuracy of microstructural modelling for these complex alloys and provides new evidence supporting the importance of anti-site diffusion. PMID:24814008

  20. Measurement of size-dependent composition variations for gamma prime (γ') precipitates in an advanced nickel-based superalloy.

    PubMed

    Chen, Y Q; Slater, T J A; Lewis, E A; Francis, E M; Burke, M G; Preuss, M; Haigh, S J

    2014-09-01

    Energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope (STEM) has been used to demonstrate the presence of size-dependent compositional variation for L12-structured Ni3Al-type gamma-prime (γ') precipitates within a commercial RR1000 Ni-based superalloy. This semi-quantitative elemental analysis has been achieved using electrochemical extraction of the γ' precipitates from the γ matrix. The applicability of this approach to size-dependent compositional analysis of precipitates was confirmed by a comparison of the size distribution for the extracted precipitates with those present in traditional electropolished foil specimens in the size range 20-250nm. By applying suitable thickness-dependent absorption-corrections we have demonstrated that the composition of γ' precipitates in our material depends on the size of the precipitate in the range of 5nm to 3μm. In particular, the Al content was observed to increase in smaller γ' precipitates while Ti and Ta contents are constant for all sizes of precipitate. Hf was observed to be present only in the largest precipitates. This type of local compositional information provides invaluable input to assess the accuracy of microstructural modelling for these complex alloys and provides new evidence supporting the importance of anti-site diffusion.

  1. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  2. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  3. Understanding Floppy Disks.

    ERIC Educational Resources Information Center

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  4. Microstructure-mechanical property relationships in transient liquid phase bonded nickel-based superalloys and iron-based ODS alloys

    NASA Astrophysics Data System (ADS)

    Aluru, Sreenivasa Charan Rajeev

    The research work presented here discusses the microstructure-mechanical property relationships in wide gap transient liquid phase (TLP) bonds, between the single crystal nickel-base superalloy CMSX-4 and two polycrystalline superalloys, IN 738 and IN 939, using wide-gap style composite interlayers. Fabrication of complicated geometries and successful repair development of gas turbine engine components made of superalloys requires a high performance metallurgical joining technique and a complete understanding of microstructure-mechanical property relationships. A number of joining processes have been investigated, but all of them have significant disadvantages that limit their ability to produce sound joints. TLP bonding has proved to be a successful method and is the most preferred joining method for nickel-based superalloys, with microstructures and compositions of the joint similar to that of the bulk substrates resulting in mechanical properties close to that of the parent metal. The current joining process used two proprietary wide-gap style composite interlayers, Niflex-110 and Niflex-115, consisting of a nickel-based core with boron-rich surfaces, and a conventional rapidly solidified metallic glass foil interlayer BNi-3 was chosen for comparison. When composite interlayers were employed, competition between wetting of the faying surfaces and formation of the eutectic along the grain boundaries was observed to lead to non-bonded regions at the faying surfaces, unless a boron-rich interlayer was employed. Composite interlayers resulted in the suppression of bondline boride formation. With the exception of this competition, adequate wetting of the substrates occurred for all interlayers. Two factors dominated the room temperature mechanical properties of the wide-gap bonds. The first was the extent of gamma-prime formation at the bondline. Results from shear testing and fractography of the bonds indicated ductile shear failure at the bondline. This was due to

  5. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This

  6. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This

  7. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  8. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  9. HNC IN PROTOPLANETARY DISKS

    SciTech Connect

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  10. Creep-Environment Interactions in Dwell-Fatigue Crack Growth of Nickel Based Superalloys

    NASA Astrophysics Data System (ADS)

    Maciejewski, Kimberly; Dahal, Jinesh; Sun, Yaofeng; Ghonem, Hamouda

    2014-05-01

    A multi-scale, mechanistic model is developed to describe and predict the dwell-fatigue crack growth rate in the P/M disk superalloy, ME3, as a function of creep-environment interactions. In this model, the time-dependent cracking mechanisms involve grain boundary sliding and dynamic embrittlement, which are identified by the grain boundary activation energy, as well as, the slip/grain boundary interactions in both air and vacuum. Modeling of the damage events is achieved by adapting a cohesive zone (CZ) approach which considers the deformation behavior of the grain boundary element at the crack tip. The deformation response of this element is controlled by the surrounding continuum in both far field (internal state variable model) and near field (crystal plasticity model) regions and the intrinsic grain boundary viscosity which defines the mobility of the element by scaling up the motion of dislocations into a mesoscopic scale. This intergranular cracking process is characterized by the rate at which the grain boundary sliding reaches a critical displacement. A damage criterion is introduced by considering the grain boundary mobility limit in the tangential direction leading to strain incompatibility and failure. Results of simulated intergranular crack growth rate using the CZ model are generated for temperatures ranging from 923 K to 1073 K (650 °C to 800 °C), in both air and vacuum. These results are compared with those experimentally obtained and analysis of the model sensitivity to loading conditions, particularly temperature and oxygen partial pressure, are presented.

  11. Effects of silicon on the oxidation, hot-corrosion, and mechanical behavior of two cast nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    Cast specimens of nickel-base superalloys 713C and Mar-M200 with nominal additions of 0, 0.5, and 1 wt% Si were evaluated for oxidation and corrosion resistance, tensile and stress-rupture properties, microstructure, and phase relations. Results are compared with those of an earlier study of the effects of Si in B-1900. Si had similar effects on all three superalloys. It improves oxidation resistance but the improvement in 713C and Mar-M200 was considerably less than in B-1900. Hot-corrosion resistance is also improved somewhat. Si is, however, detrimental to mechanical properties, in particular, rupture strength and tensile ductility. Si has two obvious microstructural effects. It increases the amount of gamma-prime precipitated in eutectic nodules and promotes a Mo(Ni,Si)2 Laves phase in the alloys containing Mo. These microstructural effects do not appear responsible for the degradation of mechanical properties, however.

  12. Hot corrosion studies of four nickel-base superalloys: B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel base superalloys has been studied at 900 deg and 1000 deg C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of NaSO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In general, the order of susceptibility found was: B-1900 is greater than 713C is greater than NASA-TRW VIA and is greater than IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  13. Hot corrosion studies of four nickel-base superalloys - B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel-base superalloys has been studied at 900 and 1000 C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of Na2SO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In order of decending susceptibility to hot corrosion, these alloys were ranked: B-1900, 713C, NASA-TRW VIA, IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  14. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  15. Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Oskay, Caglar

    2016-06-01

    A crystal plasticity finite element (CPFE) model considering isothermal, large deformation and cyclic loading conditions has been formulated and employed to investigate the mechanical response of a nickel-based alloy at high temperature. The investigations focus on fatigue and creep-fatigue hysteresis response of IN 617 subjected to fatigue and creep-fatigue cycles. A new slip resistance evolution equation is proposed to account for cyclic transient features induced by solute drag creep that occur in IN 617 at 950 °C. The crystal plasticity model parameters are calibrated against the experimental fatigue and creep-fatigue data based on an optimization procedure that relies on a surrogate modeling (i.e. Gaussian process) technique to accelerate multi-parameter optimizations. The model predictions are validated against experimental data, which demonstrates the capability of the proposed model in capturing the hysteresis behavior for various hold times and strain ranges in the context of fatigue and creep-fatigue loading.

  16. Fatigue Crack Growth Behavior of Nickel-base Superalloy Haynes 282 at 550-750 °C

    NASA Astrophysics Data System (ADS)

    Rozman, K. A.; Kruzic, J. J.; Hawk, J. A.

    2015-08-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at temperatures of 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 Hz and 0.25 Hz. Increasing the temperature from 550 to 750 °C caused the fatigue crack growth rates to increase from ~20 to 60% depending upon the applied stress intensity level. The effect of reducing the applied loading frequency increased the fatigue crack growth rates from ~20 to 70%, also depending upon the applied stress intensity range. The crack path was observed to be transgranular for the temperatures and frequencies used during fatigue crack growth rate testing. At 750 °C, there were some indications of limited intergranular cracking excursions at both loading frequencies; however, the extent of intergranular crack growth was limited and the cause is not understood at this time.

  17. Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy

    SciTech Connect

    Kawagoishi, N.; Chen, Q.; Kondo, E.; Goto, M.; Nisitani, H.

    1999-04-01

    The influence of cubic boron nitride (CBN) grinding on fatigue strength was investigated on an annealed carbon steel, a quenched and tempered carbon steel at room temperature, and a nickel-base superalloy, Inconel 718, at room temperature and 500 C. The results were discussed from several viewpoints, including surface roughness, residual stress, and work hardening or softening due to CBN grinding. The fatigue strength increased upon CBN grinding at room temperature, primarily because of the generation of compressive residual stress in the surface region. However, in the case of Inconel 718, this marked increase in the fatigue strength tended to disappear at the elevated temperature due to the release of compressive residual stress and the decrease of crack growth resistance at an elevated temperature.

  18. Fracture of single crystals of the nickel-base superalloy PWA 1480E in hydrogen at 22 C

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Wilcox, R. C.

    1991-01-01

    The present study investigates the hydrogen-induced fracture behavior of notched single crystals of the PWA 1480E nickel-based superalloy. Notched single crystals with seven different crystal orientations were tensile tested at 22 C in a hydrogen atmosphere at 34 MPa. Hydrogen-enhanced cleavage along 100-line planes in the notched region was found to be due to cracking along the gamma/gamma-prime interfaces. Cleavage on 111-line-type planes was observed only outside the notch region. The occurrence of 100- and 111-line-types of cleavage was independent of the single-crystal orientation. Outside the notch region, the fracture surfaces of specimens tested in hydrogen appeared very similar to those tested in helium. Differences in the fracture surfaces were located primarily near the notch region.

  19. Confidence bounds for the estimation of the volume phase fraction from a single image in a nickel base superalloy.

    PubMed

    Blanc, Rémi; Baylou, Pierre; Germain, Christian; Da Costa, Jean-Pierre

    2010-06-01

    We propose an image-based framework to evaluate the uncertainty in the estimation of the volume fraction of specific microstructures based on the observation of a single section. These microstructures consist of cubes organized on a cubic mesh, such as monocrystalline nickel base superalloys. The framework is twofold: a model-based stereological analysis allows relating two-dimensional image observations to three-dimensional microstructure features, and a spatial statistical analysis allows computing approximate confidence bounds while assessing the representativeness of the image. The reliability of the method is assessed on synthetic models. Volume fraction estimation variances and approximate confidence intervals are computed on real superalloy images in the context of material characterization. PMID:20350338

  20. Effect of crystallographic orientation on subcritical grain boundary cracking in a conventionally cast polycrystalline nickel-based superalloy.

    PubMed

    Swaminathan, Kameshwaran; Blendell, John E; Trumble, Kevin P

    2013-08-01

    The role of grain orientation and grain boundary misorientation on the formation of subcritical grain boundary cracks in creep of a conventionally cast nickel-based superalloy has been studied. The crystallographic orientations of the grains adjacent to grain boundaries normal to the tensile axis were measured using electron backscattered diffraction. The difference in the Schmid factor for the {111} <112> slip system between the grains was compared to the occurrence of grain boundary cracking. In addition, the difference in the amount of potential primary creep was calculated. The cracked grain boundaries were found to have a larger difference in Schmid factor, as well as a larger difference in potential primary creep, compared with uncracked grain boundaries. PMID:23718929

  1. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy

    SciTech Connect

    Li, Zhigang; Zhang, Lanting; Sun, Nairong; Sun, Yanle; Shan, Aidang

    2014-09-15

    The nickel based alloys with different Σ3 boundary density were achieved by cold-rolling and subsequent annealing treatment. Electron backscattered diffraction analysis showed that the grain size distribution changed with the processing parameters, and the discontinuous Σ3 boundary became continuous with the increase of prior deformation level. Furthermore, the Σ3 boundary density was found to be manipulated by both grain size distribution and Σ3 boundary density per grain which showed an increasing trend with prior deformation level and annealing temperature. - Highlights: • The prior deformation amount influenced the morphology of Σ3 boundary. • The grain size was not the only factor influencing Σ3 boundary density. • The fact that grain size distribution had an important effect on Σ3 boundary density was confirmed. • The nature of grain size distribution on Σ3 boundary density was revealed. • There was a great deviation in Σ3 boundary density between experimental results and predictions.

  2. High temperature low-cycle fatigue mechanisms in single crystals of nickel-based superalloy Mar-M 200

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.

    1984-01-01

    Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.

  3. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    NASA Astrophysics Data System (ADS)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  4. Influence of an aluminide coating on the TMF life of a single crystal nickel-base superalloy

    SciTech Connect

    Affeldt, E.E.

    1999-10-01

    TMF tests were conducted with bare and aluminide coated single crystal nickel-based superalloy specimens. Temperature cycling was between 400 C and 1,100 C with a phase shift (135 deg) that is typical for damaged locations on turbine blades. Stress response is characterized by a constant range and the formation of a tensile mean stress as a result of relaxation in the high temperature part of the cycle which is in compression. Bare specimens showed crack initiation from typical oxide hillocks. Coated specimens showed life reduction with respect to the bare ones caused by brittle cracking of the coating in the low temperature part of the cycle. Isothermal bending tests of coated specimens confirmed the low ductility of the coating at temperatures below 600 C but quantitative correlation with the TMF test results failed.

  5. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Wang, Yandong; Clausen, Bjorn; Li, Li; Liaw, Peter K; Ice, Gene E; Yang, Dr Ren; Choo, Hahn; Pike, Lee M; Klarstrom, Dwaine L

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  6. Creep data analyses of a columnar-grained nickel-base superalloy by conventional and {beta}-envelope methods

    SciTech Connect

    Krishna, M.S.G.; Sriramamurthy, A.M.; Radhakrishnan, V.M.

    1998-08-01

    Creep-rupture properties of a columnar-grained nickel-base superalloy have been evaluated over a wide temperature range (1,033 to 1,311 K) and stress levels (80 to 850 MPa). Creep data analyses based on the conventional approach as well as on a new graphical method--the {beta}-envelope method--have been carried out for creep strain and life estimation purposes. The relation between minimum creep rate of the alloy with the applied stress obeys simple power law, whereas the rupture data of the alloy fits well to the Larson-Miller parameter. Also, the Monkman-Grant relation between the minimum creep rate and the rupture life produces a trend with some degree of scatter in the data. The latter relation in its generalized form by the {beta}-envelope method exhibited the best correlation with significantly reduced scatter in the data.

  7. Confidence bounds for the estimation of the volume phase fraction from a single image in a nickel base superalloy.

    PubMed

    Blanc, Rémi; Baylou, Pierre; Germain, Christian; Da Costa, Jean-Pierre

    2010-06-01

    We propose an image-based framework to evaluate the uncertainty in the estimation of the volume fraction of specific microstructures based on the observation of a single section. These microstructures consist of cubes organized on a cubic mesh, such as monocrystalline nickel base superalloys. The framework is twofold: a model-based stereological analysis allows relating two-dimensional image observations to three-dimensional microstructure features, and a spatial statistical analysis allows computing approximate confidence bounds while assessing the representativeness of the image. The reliability of the method is assessed on synthetic models. Volume fraction estimation variances and approximate confidence intervals are computed on real superalloy images in the context of material characterization.

  8. Effect of crystallographic orientation on subcritical grain boundary cracking in a conventionally cast polycrystalline nickel-based superalloy.

    PubMed

    Swaminathan, Kameshwaran; Blendell, John E; Trumble, Kevin P

    2013-08-01

    The role of grain orientation and grain boundary misorientation on the formation of subcritical grain boundary cracks in creep of a conventionally cast nickel-based superalloy has been studied. The crystallographic orientations of the grains adjacent to grain boundaries normal to the tensile axis were measured using electron backscattered diffraction. The difference in the Schmid factor for the {111} <112> slip system between the grains was compared to the occurrence of grain boundary cracking. In addition, the difference in the amount of potential primary creep was calculated. The cracked grain boundaries were found to have a larger difference in Schmid factor, as well as a larger difference in potential primary creep, compared with uncracked grain boundaries.

  9. The influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Maier, R. D.; Ebert, L. J.

    1982-01-01

    Nickel was substituted for Co to produce 0, 5, and the standard 10% versions of MAR-M247, a cast nickel-base superalloy. The microstructures of the alloys were examined in as-cast, heat treated, aged, and stress-rupture tested conditions using a variety of metallographic techniques and differential thermal analysis. As cobalt concentration was reduced from 10 to 0 wt %, the gamma-prime weight fraction decreased from 59 to 41%; W and Ti concentrations in the gamma-prime phase increased from 5 to 8 and 2 to 3 at.%, respectively; the mean gamma-prime particle size increased from 0.6 to 0.8 micron; Cr and Al concentrations in the gamma matrix decreased from 17 to 13 and 15 to 12 at.%, respectively; and the weight fraction of carbides increased by approximately 1%.

  10. Computational Thermodynamic Study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.

    2001-01-01

    A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.

  11. ON THE INFLUENCE OF COLD WORK ON RESISTIVITY VARIATIONS WITH THERMAL EXPOSURE IN IN-718 NICKEL-BASE SUPERALLOY

    SciTech Connect

    Madhi, Elhoucine; Nagy, Peter B.

    2010-02-22

    In nickel-base superalloys, irreversible electrical conductivity changes occur above a transition temperature where thermally-activated microstructural evolution initiates. The electrical conductivity first decreases above about 450 deg. C then increases above 600 deg. C. However, the presence of plastic deformation results in accelerated microstructure evolution at an earlier transition temperature. It was recently suggested that this well-known phenomenon might explain the notable conductivity difference between the peened near-surface part and the intact part at sufficiently large depth in surface-treated specimens. The influence of cold work on the electrical conductivity change with thermal exposure offers a probable answer to one of the main remaining questions in eddy current residual stress assessment, namely unusually fast and occasionally even non-monotonic decay of the apparent eddy current conductivity (AECC) change that was observed at temperatures as low as 400 deg. C. To validate this explanation, the present study investigates the influence of cold work on low-frequency Alternating Current Potential Drop (ACPD) resistivity variations with thermal exposure. In-situ resistivity monitoring was conducted throughout various heating cycles using the ACPD technique. IN-718 nickel-base superalloy specimens with different levels of cold work were exposed to gradually increasing peak temperatures from 400 deg. C to 800 deg. C. The results indicate that the initial irreversible rise in resistivity is approximately one order of magnitude higher and occurs at about 50 deg. C lower temperature in cold-worked samples of 30% plastic strain than in the intact material.

  12. Spin Testing of Superalloy Disks With Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Hefferman, Tab M.

    2006-01-01

    This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.

  13. Stereological characterization of the {gamma}' particles in a nickel base superalloy: Comparison between transmission electron microscopy and atomic force microscopy techniques

    SciTech Connect

    Risbet, M. Feaugas, X.; Guillemer-Neel, C.; Clavel, M.

    2008-09-15

    Critical comparison of transmission electron microscopy and atomic force microscopy techniques was provided concerning size measurements of {gamma}' precipitates in a nickel-base superalloy. The divergence between results is explained in terms of the resolution limit for atomic force microscopy, linked both to the tip dimension and the diameter of the investigated particles.

  14. New Scattered Disk Object and Centaur Colors

    NASA Astrophysics Data System (ADS)

    Brucker, Melissa; Wilcox, P.; Stansberry, J.

    2013-10-01

    We report B, V, and R magnitudes for scattered disk objects and centaurs from observations taken in December 2011 and August 2013 using the Lowell Observatory Perkins Telescope with PRISM and observations taken in March 2012 at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona. Targeted scattered disk objects include 2002 CY224, 2003 UY117, 2006 QJ181, 2008 CT190, 2009 YG19, 2010 FD49, 2010 VZ98. Targeted centaurs include 2002 QX47, 2005 UJ438, 2006 UX184, and 2007 RH283. We will determine if the resultant centaur colors follow the bimodal distribution (B-R either red or gray) previously detected. We will also compare the resultant scattered disk object colors to those published for other scattered disk objects. This work is based on observations with the Perkins Telescope at Lowell Observatory, and with the VATT: The Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  15. Multi-wavelength modeling of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Pinte, C.; Ménard, F.; Duchêne, G.; Augereau, J.-C.

    2006-06-01

    The on-going revolution of high angular resolution observations and increasing wavelength coverage promises to unlock tightly-kept secrets of circumstellar disks. Thanks to these advances, many issues have already been addressed : large scale geometry of disks, evidence of grain growth, of dust settling, ldots Most of these results are based on models that emphasize on fitting either SEDs or scattered light images or, more recently, interferometric visibilities. In this contribution, we present a global approach which aims at interpreting the increasing amount of observational data coherently, in the framework of a single model, in order to get a more global picture and to better characterize both the dust population and the disk properties. Results of such a modeling approach, applied to a few disks for which large observational data-sets are available, are presented.

  16. Hydrogen environment embrittlement of turbine disk alloys. [for space shuttle auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Joyce, J. P.

    1976-01-01

    Astroloy and V-57, two candidate turbine disk alloys for the auxiliary power unit (APU) of the space shuttle propulsion and power system were tested for their resistance to embrittlement in hydrogen environments. Samples of both these nickel-base alloys were subjected to notch and smooth tensile testing and to creep testing in hydrogen. The high resistance exhibited by Astroloy forgings to embrittlement by hydrogen is attributed to the microstructure produced by forging and also to the special heat treatment schedule. V-57 turbine disks successfully completed short-time performance testing in the experimental APU. The use of the Astroloy, however, would permit increasing turbine inlet temperature and the rotational speed beyond those possible with V-57.

  17. Astounding Jumping Disk.

    ERIC Educational Resources Information Center

    Guzdziol, Edward S.

    1991-01-01

    Activities involving concave rubber disks are utilized to illustrate the scientific principles of kinetic and potential energy. Provides teacher instructions and questions related to the activity. (MDH)

  18. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  19. Reprocessing in Luminous Disks

    NASA Astrophysics Data System (ADS)

    Bell, K. R.

    1999-11-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, blackbody spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles that are not power-law at all radii but are consistently shallower than r-3/4. Including the disk as a radiation source (as in the case of active accretion) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance (``decreasing curvature'' disks) exhibit nearly power-law temperature profiles that result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally have this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the inner disk. Reprocessing throughout the disk depends sensitively on the inner disk shape and emitted temperature profile. We show that the thermal instability outburst models of Bell & Lin reproduce trends in the observed SEDs of FU Ori systems with T~r-3/4 in the inner disk (r<~0.25 AU corresponding to λ<~10 μm) and T~r-1/2 in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1-10 AU). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass flux, outer disk (Ṁ=10

  20. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    devices. Growth interruptions improvements were evident both by sharper PL peaks on multilayer structures and by narrow and more efficient electroluminescence emission on intersubband devices. By using these techniques, and using materials lattice matched to InP, we then developed the first II-VI based QC detector with high responsivity for 3.5 and 2.5mum IR wavelengths, explored the combination of several detector cores arrangements to make a broadband IR detectors, and achieved a QC broadband detector operating from 3.3 to 6 mum also with high responsivity and high detectivity. For the visible lasers, we have successfully combined distributed Bragg reflectors (DBRs) and resonant cavity MQW structures into a single device to achieve green semiconductor disk lasers (SDL). We also investigated novel strain engineered multiple quantum wells (MQWs) using CdSe and ZnSe strained layers. This last research provided materials with shorter wavelength activity in the IR, achieving absorption as low as 2.5 mum, and visible red emission lattice matched to InP, providing new building blocks for all of the above mentioned devices. Our results demonstrate the outstanding capabilities of the material system, and provide tools and techniques for further development.

  1. CO hydrogenation on nickel-based catalysts: Effects of copper addition

    SciTech Connect

    Agnelli, M.; Mirodatos, C.

    2000-05-15

    The effect of copper addition on the catalytic properties of silica-supported nickel catalysts for the reaction of CO hydrogenation in the temperature range of 200--500 C has been investigated. Different effects, positive or negative, depending on the temperature and the copper content, are described and explained. At low temperature (230 C), the addition of low copper content prevents the loss of the active surface by sintering without inhibiting the rate of CO hydrogenation too much. At high temperatures (450 C), high copper content is necessary to limit the accumulation of poisonous carbon products, but at the expense of CO conversion. On the basis of the various kinetic and morphologic effects of copper addition, an advanced description of the CO hydrogenation mechanism is also provided, assuming an active site formed by 2--3 adjacent Ni atoms, whatever the temperature or the copper content may be.

  2. The effect of chromium, carbon, and yttrium on the oxidation of nickel-base alloys in high temperature water

    SciTech Connect

    Angeliu, T.M. . Dept. of Materials Science and Engineering); Was, G.S. . Dept. of Nuclear Engineering Univ. of Michigan, Ann Arbor, MI . Dept. of Materials Science and Engineering)

    1993-07-01

    Since the surface film has been implicated in several models of intergranular stress corrosion cracking (IGSCC) of nickel-base alloys, this study was initiated to provide a foundation for the future study of a possible link between the nature of the surface film and IG crack susceptibility. The influence of chromium, carbon, and yttrium on the nature of the surface film formed on nickel-base alloys was investigated after 100 h of exposure in high purity, deaerated, hydrogenated water at 360 C. XPS and SEM provided information on the chemical composition, structure, morphology, and thickness of the surface film. Increasing the content from 5 to 17 weight percent (w/o) of a Ni-xCr-9Fe-low C alloy dramatically changes the surface film from predominantly Ni(OH)[sub 2] to Cr[sub 2]O[sub 3]. An additional increase in Cr from 17 to 30 w/o does not significantly alter the type, distribution, or thickness of the oxide phases formed. This suggests that there is a critical chromium concentration that controls the formation of Cr[sub 2]O[sub 3] under the test conditions. The presence of Cr[sub 2]O[sub 3] in these alloys is attributed to the high affinity of Cr for oxygen, and the increased stability of Cr[sub 2]O[sub 3] over many other oxides in reducing environments. The addition of 300 wppm carbon to a Ni-17Cr-9Fe-0.0030 C alloy increases the film thickness without changing Cr[sub 2]O[sub 3] as the dominant surface species. Yttrium implantation to 2.4 atom percent at a depth of 70 nm in Ni-17Cr-9Fe-0.0030 and 0.030 C alloys produces a similar film thickness and similar composition profiles containing slightly more Ni(OH)[sub 2] than Cr[sub 2]O[sub 3]. Yttrium is known for forming Y[sub 2]O[sub 3] which most likely promotes the formations of Cr[sub 2]O[sub 3] by acting as nucleations sites for the similarly structured chromia.

  3. Fabrication of Turbine Disk Materials by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  4. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  5. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack

  6. Prospect of the Theory of Black Hole Accretion Disks

    NASA Astrophysics Data System (ADS)

    Ju, Q.; Wang, W.

    2011-12-01

    The theory of black hole accretion disks is one of the most important basic theories and advanced topics in astrophysics. There are four known models of black hole accretion disks: standard thin disk (SSD), Shapiro-Lightman-Eardley (SLE) disk, optically thick advection dominated accretion flows (ADAF) theory (slim disk) and optically thin ADAF theory. During the past decades, they have made great contributions to the development of astrophysics. Despite their great successes in both theory and application, there are still many open questions. First of all, this paper will briefly introduce these four models. Then it will discuss several limitations of these models and review present possible solutions to address these problems. Our review work will contribute to further research of black hole accretion disks to a certain extent.

  7. Effect of B, Zr, and C on Hot Tearing of a Directionally Solidified Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Grodzki, J.; Hartmann, N.; Rettig, R.; Affeldt, E.; Singer, R. F.

    2016-06-01

    The effect of the minor elements B, Zr, and C on the castability of a Nickel-based γ'-strengthened superalloy has been investigated. Tube-like specimens were prepared by directional solidification where the rigid ceramic core leads to hoop stresses and grain boundary cracking. It was found that an important improvement in castability can be achieved by adjusting the minor elemental composition. Too low C (≤0.15 pct) and too high B and Zr contents (≥0.05 pct) lead to material that is very prone to solidification cracking and should be avoided. The results cannot be rationalized on the basis of the current models for solidification cracking. Instead, pronounced hot tearing is observed to occur at high amounts of γ/ γ'-eutectic and high Zr contents. The critical film stage where dendrites at the end of solidification do not touch and are separated by thin liquid films must be avoided. How Zr promotes the film stage will be discussed in the paper.

  8. Effects of processing and microstructure on the fatigue behaviour of the nickel-base superalloy Rene95

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.

    1984-01-01

    Forms of the nickel-base superalloy Rene95 produced by three processing methods were evaluated in tensile, low cycle fatigue and fatigue crack propagation tests at 540 and 650 C. Two powder-metallurgy (PM) forms, hot-isostatically-pressed and extruded-and-forged, and a conventionally cast-and-wrought form were all given the same heat treatment. The extruded-and-forged form showed superior fatigue life in low strain range tests though the two PM forms exhibited nearly identical mechanical behavior in all other respects. Further, this life difference could not be explained by significant differences in the types, sizes or shapes of the defects initiating failure. The cast-and-wrought Rene95, however, had lower strength, ductility and fatigue life, but higher fatigue crack propagation resistance because of a larger grain size. It did not exhibit the environmentally-assisted intergranular mode of propagation which occurs in PM Rene95 and other fine-grained superalloys at these test temperatures and frequencies.

  9. Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, F.; Cheng, J. J.; Zuo, Q.; Chen, C. F.

    2016-04-01

    Hot deformation behavior of Nickel-based corrosion-resistant alloy (N08028) was studied in compression tests conducted in the temperature range of 1050-1200 °C and the strain rate range of 0.001-1 s-1. The flow stress behavior and microstructural evolution were observed during the hot deformation process. The results show that the flow stress increases with deformation temperature decreasing and strain rate increasing, and that the deformation activation energy ( Q) is not a constant but increases with strain rate increasing at a given strain, which is closely related with dislocation movement. On this basis, a revised strain-dependent hyperbolic sine constitutive model was established, which considered that the "material constants" in the original model vary as functions of the strain and strain rate. The flow curves of N08028 alloy predicted by the proposed model are in good agreement with the experimental results, which indicates that the revised constitutive model can estimate precisely the flow curves of N08028 alloy.

  10. Effects of Solutioning on the Dissolution and Coarsening of γ' Precipitates in a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Zhou, Yu; Zhao, Zihua; Zhang, Zheng

    2015-04-01

    The dissolution and the coarsening of the γ' precipitates in a nickel-based superalloy GTD-111 solutionized under various solution heat treatment conditions were investigated. The γ' solvus temperature for the GTD-111 superalloy was about 1180.79 °C obtained by differential scanning calorimetry test. The dissolution and the coarsening of γ' in the dendrite core were simultaneously observed, but the γ' precipitates in the interdendritics only occurred to coarsen under the condition of 1125 °C/2 h. The γ' dissolution, including dendrite core and interdendritics, gradually played a dominant role in the competition between the dissolution and the coarsening of γ' during the solutioning with the increase of solution temperature and holding time, indicating that the elastic strain field of the alloy gradually reduced. The solution condition of 1225 °C/6 h or 1250 °C/2 h was the optimal solutioning schedule than the other schedules. For a lower solution temperature, the volume fraction of primary γ' precipitates can faster reach its equilibrium value which is larger than that for a higher solution temperature. With the increase of holding time, the γ' dissolution rate continuously decreased, and the dissolution activation energy of γ' gradually increased.

  11. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  12. The fracture morphology of nickel-base superalloys tested in fatigue and creep-fatigue at 650 C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Miner, R. V.

    1981-01-01

    The fracture surfaces of compact tension specimens from seven nickel-base superalloys fatigue tested at 650 C were studied by scanning electron microscopy and optical metallography to determine the nature and morphology of the crack surface in the region of stable growth. Crack propagation testing was performed as part of an earlier study at 650 C in air using a 0.33 Hz fatigue cycle and a creep-fatigue cycle incorporating a 900 second dwell at maximum load. In fatigue, alloys with a grain size greater than 20 micrometers, HIP Astroloy, Waspaloy, and MERL 76, exhibited transgranular fracture. MERL 76 also displayed numerous fracture sites which were associated with boundaries of prior powder particles. The two high strength, fine grain alloys, IN 100 and NASA IIB-7, exhibited intergranular fracture. Rene 95 and HIP plus forged Astroloy displayed a mixed failure mode that was transgranular in the coarse grains and intergranular in the fine grains. Under creep-fatigue conditions, fracture was found to be predominantly intergranular in all seven alloys.

  13. Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms

    NASA Astrophysics Data System (ADS)

    Menou, Edern; Ramstein, Gérard; Bertrand, Emmanuel; Tancret, Franck

    2016-06-01

    A new computational framework for systematic and optimal alloy design is introduced. It is based on a multi-objective genetic algorithm which allows (i) the screening of vast compositional ranges and (ii) the optimisation of the performance of novel alloys. Alloys performance is evaluated on the basis of their predicted constitutional and thermomechanical properties. To this end, the CALPHAD method is used for assessing equilibrium characteristics (such as constitution, stability or processability) while Gaussian processes provide an estimate of thermomechanical properties (such as tensile strength or creep resistance), based on a multi-variable non-linear regression of existing data. These three independently well-assessed tools were unified within a single C++ routine. The method was applied to the design of affordable nickel-base superalloys for service in power plants, providing numerous candidates with superior expected microstructural stability and strength. An overview of the metallurgy of optimised alloys, as well as two detailed examples of optimal alloys, suggest that improvements over current commercial alloys are achievable at lower costs.

  14. Description of a high temperature quenching furnace for the study of the directional solidification of nickel-base superalloys

    SciTech Connect

    Schmale, D.T.; Kelley, J.B.; Damkroger, B.K.

    1994-06-01

    A high temperature resistance furnace has been modified for the study of directional solidification of nickel-base superalloys such as alloys 718 and 625. The furnace will be used to study segregation and solidification phenomena that occur in consumable-electrode melting processes such as vacuum arc remelting and electro-slag remelting. The system consists of a water cooled high temperature furnace (maximum temperature {approximately}2900 C), roughing vacuum,system, cooling system, cooled hearth, molten metal quenching bath, and a mechanism to lower the hearth from the furnace into the molten metal bath. The lowering mechanism is actuated by a digital stopping motor with a programmable controller. The specimen (1.9 cm dia {times} 14 cm long) is melted and contained within an alumina tube (2.54 cm dia {times} 15.24 cm long) which is seated on a copper hearth cooled with {approximately}13 C water. Directional solidification can then be accomplished by decreasing the furnace temperature while holding the specimen in position, maintaining the temperature gradient in the furnace and lowering the specimen at a controlled rate or a combination of both. At any point the specimen can be lowered rapidly into the 70 C molten metal bath to quench the specimen, preserve the solidification structure, and minimize solid state diffusion, enhancing the ability to study the localized solidification conditions.

  15. Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C

    NASA Astrophysics Data System (ADS)

    Rozman, Kyle A.; Kruzic, Jamie J.; Sears, John S.; Hawk, Jeffrey A.

    2015-10-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 and 0.25 Hz. The crack path was observed to be primarily transgranular for all temperatures, and the observed effect of increasing temperature was to increase the fatigue crack growth rates. The activation energy associated with the increasing crack growth rates over these three temperatures was calculated less than 60 kJ/mol, which is significantly lower than typical creep or oxidation mechanisms; therefore, creep and oxidation cannot explain the increase in fatigue crack growth rates. Transmission electron microscopy was done on selected samples removed from the cyclic plastic zone, and a trend of decreasing dislocation density was observed with increasing temperature. Accordingly, the trend of increasing crack growth rates with increasing temperature was attributed to softening associated with thermally assisted cross slip and dislocation annihilation.

  16. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

    NASA Astrophysics Data System (ADS)

    Sidhu, T. S.; Prakash, S.; Agrawal, R. D.

    2006-09-01

    No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni-20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

  17. Local x-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys

    SciTech Connect

    Brueckner, U.; Epishin, A.; Link, T.

    1997-12-01

    The structure of the dendrites in the single-crystal nickel-base superalloys SC16, SRR99 and CMSX4 with different refractory element levels (Mo + Ta + W + Re) has been investigated by local X-ray diffraction. A special technique was used to improve the spatial resolution of the X-ray diffraction and to enable the precise control of the X-ray spot position within the dendritic structure. A significant change of the {gamma}/{gamma}{prime}-lattice misfit was found within the dendrite in the superalloys with higher refractory element levels SRR99 and CMSX4. The observed misfit change is based on the change of the {gamma}-lattice parameter due to segregation of W and Re. The intensity of the X-ray beam reflected from the dendrite periphery was found to be weaker than that from the dendrite centre because of the mosaicity. Therefore misfit measurements without knowledge of the X-ray spot position in the dendritic structure lead to values that correspond more to the dendrite core.

  18. The effect of hydrogen on deformation substructure, flow and fracture in a nickel-base single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Dollar, M.; Bernstein, I. M.

    1988-01-01

    The room temperature flow and fracture of a nickel-base single crystal gamma/gamma-/prime superalloy in the presence and absence of hydrogen is explored. The procedure of hydrogen-charging employed in this study provides a very high and uniform hydrogen concentration of the order of 5000 at.-ppm in the material. It is shown that the most compelling hydrogen-induced changes in deformation behavior are enhanced dislocation accumulation in the gamma matrix and extensive cross-slip of super-dislocations. The explanation of these changes is proposed. Both effects contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture. Hydrogen enhanced strain localization in the gamma matrix leads to the dramatic loss of ductility and premature cracking, which manifests as failure macroscopically parallel to the 100-plane-oriented faces of gamma-prime precipitates. On the microscale, cracking, while limited to the gamma matrix, occurs parallel to multiple 111-plane-oriented slip systems.

  19. High-temperature measurements of lattice parameters and internal stresses of a creep-deformed monocrystalline nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Strehler, Marcus; Mughrabi, Haël

    1996-04-01

    High-temperature X-ray line profile measurements were performed to maximal temperatures of 1050 °C on samples of the nickel-base superalloy SRR 99. The samples with rod axes near the [001] direction were investigated in the initially undeformed state and after creep deformation at different temperatures and stresses. For the measurements of the (002) and (020) line profiles, a special X-ray double crystal diffractometer with negligible line broadening was used which was equipped with a high-temperature vacuum chamber. The line profiles were evaluated for the lattice parameters of the matrix phase γ and the precipitated γ' phase and for values of the lattice mismatch parallel and perpendicular to the stress axis, respectively, which were found to be different. Elastic, tetragonal distortions of the phases γ and γ' could be determined between room temperature and about 900 °C. These distortions are thermally induced due to the different thermal expansion coefficients of the two phases and deformation induced due to interfacial dislocation networks which were built up during deformation. At the high temperatures of the X-ray measurements, at least partial recovery of the deformation-induced internal stresses occurred, depending on the temperature of the X-ray measurements. The results are discussed and compared with data obtained by complementary techniques.

  20. The Cyclic Stress-Strain Behavior of a Single Crystal Nickel-Base Superalloy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1988-01-01

    The cyclic stress-strain response and similar deformation structures of the single crystal nickel based superalloy was described under a specific set of conditions. The isothermal low cycle fatigue response and deformation structures were described at a typical intermediate temperature and at high temperature. Specimens oriented near the (001) and (111) crystallographic orientations were tested at 1050 C, where more moderate orientation effects were expected. This enabled the description of the deformation structures at each of the 2 temperatures and their relationship to the observed cyclic stress-strain behavior. The initial yield strength of all specimens tested at 650 C was controlled by the shearing of the gamma prime precipitates by dislocation pairs. Low cycle fatigue tests at 650 C had cyclic hardening, which was associated with dislocation interactions in the gamma matrix. The initial yield strength of specimens tested at 1050 C was associated with dislocation bypassing of the gamma prime precipitates. Low cycle fatigue tests at 1050 C had cyclic softening, associated with extensive dislocation recovery at the gamma-gamma prime interfaces along with some gamma prime precipitate coarsening.

  1. Low-cycle fatigue behavior of a nickel-based alloy under combined bending/tension loading

    SciTech Connect

    Julien, D.; Bui-Quoc, T.; Bernard, M.; Saad, N.R.; Nguyen, H.L.

    1999-02-01

    In this paper, the effect of a combined bending/tension loading on the fatigue resistance and on the fatigue crack growth characteristics of a nickel-based alloy at room temperature is studied. For this purpose, a device was specifically designed so that it can be mounted onto a servohydraulic push-pull testing machine. With the device, a simultaneous displacement and rotation of the specimen extremities generate a combined bending/axial stress; the ratio between the bending stress and the axial stress may be specified by adjusting the eccentricity between the specimen axis and the load axis. Stress-controlled fatigue tests were carried out on plate specimens under bending/tension loading with a surface stress ratio of {minus}0.52 (ratio between the maximum cyclic stress on the back face and that on the front face of the specimen). During each test, the fatigue crack length was monitored using two traveling video cameras. The experimental results obtained under bending/tension loading have been analyzed in connection with the data obtained under pure tension loading. In particular, the fatigue crack propagation rate expressed in terms of the stress intensity factor of a crack under combined loading was examined.

  2. Microstructure evolution and FEM analysis of a [111] oriented single crystal nickel-based superalloy during tensile creep

    NASA Astrophysics Data System (ADS)

    Tian, Sugui; Li, Qiuyang; Su, Yong; Yu, Huichen; Xie, Jun; Zhang, Shu

    2015-03-01

    By means of the elastic-plastic stress-strain finite element method (FEM), the distribution of the von Mises stress and strain energy density in the regions near the interfaces of the cuboidal γ/ γ' phases is calculated to investigate the rafted behaviors of γ' phase in a [111] oriented single crystal (SC) nickel-based superalloy. Results show that, after fully heat treated, the microstructure of the superalloy consists of the cuboidal γ' phase embedded coherently in the γ matrix and arranged regularly along the <100> orientation. And the parameters and misfits of γ'/ γ phases in the alloy increase with the temperature. After crept for 50 h, the γ' phase in alloy has transformed into the mesh-like rafted structure on (010) plane along [001] and [100] orientations. When the tensile stress is applied along [111] direction, the change of the strain energy on the planes of the cuboidal γ' phase results in the directional diffusion of the elements. Thereinto, compared with (010) plane, the bigger expanding strain occurs on (100) and (001) planes along the [010], [001] and [010], [100] directions, which may trap the Al and Ti atoms with bigger radius to promote the directional growth of γ' phase on (010) plane along [100] and [001] directions. This is thought to be the main reason for the γ' phase directionally growing into the mesh-like rafted structure on (010) plane.

  3. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    SciTech Connect

    Blodgett, Mark P.; Nagy, Peter B.

    2004-02-26

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small ({approx}1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.

  4. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    NASA Astrophysics Data System (ADS)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  5. Microstructural Changes of a Creep-Damaged Nickel-Based K002 Superalloy Containing Hf Element under Different HIP Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Zhou, Yu; Dong, Jian; Wang, Tianyou; Zhao, Zihua; Zhang, Zheng

    2016-02-01

    Effects of hot isostatic pressing (HIP) temperature on the microstructural evolution of a nickel-based K002 superalloy containing Hf element after long-term service were investigated using three different soaking temperatures during HIP. The degraded γ' precipitates represented coarse and irregular morphology after long-term service. These γ' precipitates still were of coarse and irregular shape, but the size and volume fraction of γ' precipitates were markedly reduced under HIP condition of 1,190°C/200 MPa/4 h, indicating that the γ' precipitates were experiencing a dissolution process. Meanwhile, the concentrically oriented N-type γ' rafting structure around the cavities was formed. With HIP temperature increase to 1,220°C and 1,250°C, the small-sized, cubic and regular γ' precipitates were re-precipitated, and the concentrically oriented γ' structure vanished. The unstable morphology induced by the nucleation and growth of γ matrix was found near the creep cavities, indicating that the solute atoms diffused inward the creep-induced cavities during HIP. However, at HIP temperature of 1,220°C and 1,250°C, a large number of blocky MC(2)-type carbides containing amounts of Hf elements were precipitated, demonstrating that HIP treatment at higher temperatures can result in the formation of a large number of blocky MC(2)-type carbides.

  6. The influence of primary and secondary orientations on the elastic response of a nickel-base single-crystal superalloy

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.

    1993-01-01

    The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.

  7. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  8. The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the microstructure of single crystal nickel-base superalloys was investigated. Co was replaced by Ni, and Ta was replaced by either Ni or W, according to a matrix of compositions based on MAR-M247. Substitution of Ni for Co caused an increase in gamma-prime solvus temperature, an increase in gamma-gamma-prime lattice mismatch, and the precipitation of W-rich phases in the alloys with high refractory metal levels. Substitution of Ni for Ta caused large decreases in gamma-prime solvus temperature, gamma-prime volume fraction, and gamma-gamma-prime lattice mismatch, whereas substitution of W for Ta resulted in smaller decreases in these features. For the alloys with gamma-prime particles that remained coherent, substitution of Ni for Co caused an increase in gamma-prime coarsening rate. The two alloys with the largest magnitude of lattice mismatch possessed gamma-prime particles which lost coherency during unstressed aging and exhibited anomalously low coarsening rates. Creep exposure at 1000 C resulted in the formation of gamma-prime lamellae oriented perpendicular to the applied stress axis in all alloys.

  9. Microstructural Characterization of a Polycrystalline Nickel-Based Superalloy Processed via Tungsten-Intert-Gas-Shaped Metal Deposition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.

    2010-12-01

    Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.

  10. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  11. Effect of orientations on in situ tensile deformation and fracture behaviours of nickel-base single-crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhou, B. M.; Zhou, Y. Z.; Li, J. G.; Jin, T.; Sun, X. F.; Zhang, Z. F.

    2014-07-01

    After systematically investigating in situ tensile deformation and fracture behaviours of nickel-base single-crystal superalloys with four different orientations, their slip and fracture modes in relation to the orientations are obtained and shown as follows. In [0 0 1] oriented specimen, four slip systems were activated and the crack initiated along the interactive location between the third slip bands (SBs) and deformation bands in priority. The crack propagation involves all three crack opening types of I, II and III. [0 1 1] oriented specimens exhibited obvious low strain hardening rate and high ductility, which can be attributed to the balance between the softening caused by the propagation of SBs and the latent hardening caused by the propagation of deformation bands. Except for ? case, the critical resolved shear stress (CRSS) of the other oriented superalloys at room temperature is approximate, which is due to non-Schmid behaviour in superalloys. Lall-Chin-Pope model is used to explain the orientation dependence of CRSS. Furthermore, the fracture modes of different oriented specimens depend on the intensity of intrusion and extrusion and the degree of match between normal stress and shear stress. The shear stress is beneficial to the crack initiation and the normal stress contributes to the crack propagation.

  12. Quantification of precipitates and their effects on the response of nickel-base superalloy to shot peening

    NASA Astrophysics Data System (ADS)

    Chandrasekar, R.; Lo, C. C. H.; Frishman, A. M.; Larson, B. F.; Nakagawa, N.

    2012-05-01

    This paper reports on a microstructural study of a nickel-base superalloy, Inconel 718, with a focus on quantifying precipitate density and their effects on conductivity variations. The study is motivated by eddy current (EC) characterization of residual stresses, where observed EC signals are attempted to correlate with stress profiles of shot peened superalloy surfaces. It has been observed that the correlation is less universal than anticipated, and in fact strongly influenced by the material hardness, or the aging conditions. For example, the soft sample surface exhibits significantly stronger EC signals than the fully hardened sample when both are shot peened at the same Almen intensity. Thus, the objective of the present study is to examine this complex material response against aging and shot peening treatments at the microstructure scale, by the use of techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM). We will describe preparations of a series of Inconel 718 samples that was aged and shot peened at various conditions, and present microstructural data obtained from SEM and TEM images such as precipitate densities, correlated with bulk properties such as the hardness and conductivity.

  13. Nickel-based Gadolinium Alloy for Neutron Adsorption Application in Ram Packages

    SciTech Connect

    Gregg Wachs; James Sterbentz; William Hurt; P. E. McConnell; C. V. Robino; F. Tovesson; T. S. Hill

    2007-10-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy and chromium-nickel (Cr-Ni) stainless steel, modified by the addition of boron. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the materials at specific gadolinium and boron dopant levels. The Ni-Cr-Mo-Gd alloy is envisioned to be deployed for criticality control of highly enriched U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). For these transmission experiments, test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy and 1.16 wt% boron in stainless steel. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using total neutron cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium and boron elements and in addition, verified the measured elemental composition of the Ni-Cr-Mo-Gd alloy and borated stainless steel test samples. The good agreement also indirectly confirmed that the size and distribution of the gadolinium in both the hot-top (as-cast) and Ni-Cr-Mo-Gd converted to plate was not a discriminator related to neutron absorption. Moreover, the Evaluated Nuclear Data File (ENDF VII) total neutron cross section data were accurate.

  14. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  15. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  16. The Influence of Dynamic Strain Aging on Fatigue and Creep-Fatigue Characterization of Nickel-Base Solid Solution Strengthened Alloys

    SciTech Connect

    L.J. Carroll; W.R. Lloyd; J.A. Simpson; R.N. Wright

    2010-12-01

    The nickel-base solid solution alloys, Alloy 617 and Alloy 230, have been observed to exhibit serrated yielding or dynamic strain aging (DSA) in a temperature/strain rate regime of interest for intermediate heat exchangers (IHX) of high temperature nuclear reactors. At 800°C, these nickel-base alloys are prone to large serrated yielding events at relatively low strains. The presence of DSA introduces challenges in characterizing the creep-fatigue and low cycle fatigue behavior. These challenges include inability to control the target strains as a result of DSA induced strain excursions and distorted hysteresis loops. Methods to eliminate or reduce the influence of DSA on creep-fatigue testing have been investigated, including varying the strain rate, stepping to the target strain, and adjusting servo-hydraulic tuning parameters. It has not been possible to eliminate the impact of serrated flow in the temperature range of interest for these alloys without compromising the desired test protocols.

  17. Determination of γ-γ' lattice misfit in a single-crystal nickel-based superalloy using convergent beam electron diffraction aided by finite element calculations.

    PubMed

    Brunetti, G; Settefrati, A; Hazotte, A; Denis, S; Fundenberger, J-J; Tidu, A; Bouzy, E

    2012-02-01

    In single-crystal nickel-based superalloys, the lattice mismatch associated with interface coherency between γ matrix and γ' precipitates has a strong influence on mechanical properties. The unconstrained lattice misfit in a single-crystal of the MC2 nickel-based superalloy is determined using convergent beam electron diffraction measurements and finite element calculations. The apparent lattice parameters of both constrained phases are obtained in thin foils, using a new multi-pattern approach, which allows for unambiguous determination of all the lattice parameters considering the real symmetry of the strained crystals. Finite element calculations are used to establish relations between the constrained and unconstrained lattice parameters, with the stress relaxation resulting from the thin foil geometry taken into account. PMID:22055767

  18. Determination of γ-γ' lattice misfit in a single-crystal nickel-based superalloy using convergent beam electron diffraction aided by finite element calculations.

    PubMed

    Brunetti, G; Settefrati, A; Hazotte, A; Denis, S; Fundenberger, J-J; Tidu, A; Bouzy, E

    2012-02-01

    In single-crystal nickel-based superalloys, the lattice mismatch associated with interface coherency between γ matrix and γ' precipitates has a strong influence on mechanical properties. The unconstrained lattice misfit in a single-crystal of the MC2 nickel-based superalloy is determined using convergent beam electron diffraction measurements and finite element calculations. The apparent lattice parameters of both constrained phases are obtained in thin foils, using a new multi-pattern approach, which allows for unambiguous determination of all the lattice parameters considering the real symmetry of the strained crystals. Finite element calculations are used to establish relations between the constrained and unconstrained lattice parameters, with the stress relaxation resulting from the thin foil geometry taken into account.

  19. Resistivity-Microstructure Relationships in Nickel Base Superalloys Used in Gas Turbine Engines for Power Generation and as Interconnects in Solid Oxide Fuel Cells

    SciTech Connect

    Gerhardt, Rosario A.

    2012-02-20

    This report summarizes the results accomplished during this 3-year with funds from this grant. The most important new contribution was the development of a microstructural model, based on analysis of the small angle scattering spectra that can relate the measured electrical resistivity to the precipitate population present in a nickel base superalloy in a quantitative way. A total of 24 research articles were published or were in press at the time the final report was written.

  20. Selection of etching methods of primary carbides in MAR-M247 nickel-base superalloy for computer-aided quantitative metallography

    SciTech Connect

    Szczotok, Agnieszka . E-mail: agnieszka.szczotok@polsl.pl; Szala, Janusz . E-mail: janusz.szala@polsl.pl; Cwajna, Jan . E-mail: jan.cwajna@polsl.pl; Hetmanczyk, Marek . E-mail: marek.hetmanczyk@polsl.pl

    2006-06-15

    The usefulness of various etching methods for revealing the structure of MAR-M247 nickel-base superalloy and image acquisition methods were analyzed from a desire to estimate primary carbides quantitatively. The analysis was carried out on images registered using light and scanning electron microscopes. The analyzed images contained a complete range of primary carbides occurring in the matrix and on the grain boundaries of MAR-M247 alloy.

  1. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  2. Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gibson, Garth Alan

    1990-01-01

    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.

  3. DUST DISTRIBUTION IN THE beta PICTORIS CIRCUMSTELLAR DISKS

    SciTech Connect

    Ahmic, Mirza; Croll, Bryce; Artymowicz, Pawel

    2009-11-01

    We present three-dimensional models of dust distribution around beta Pictoris that produce the best fits to the Hubble Space Telescope/Advanced Camera for Surveys' images obtained by Golimowski and coworkers. We allow for the presence of either one or two separate axisymmetric dust disks. The density models are analytical, radial two power laws joined smoothly at a crossover radius with density exponentially decreasing away from the midplane of the disks. Two-disk models match the data best, yielding a reduced chi{sup 2} of approx1.2. Our two-disk model reproduces many of the asymmetries reported in the literature and suggests that it is the secondary (tilted) disk which is largely responsible for them. Our model suggests that the secondary disk is not constrained to the inner regions of the system (extending out to at least 250 AU) and that it has a slightly larger total area of dust than the primary, as a result of slower falloff of density with radius and height. This surprising result raises many questions about the origin and dynamics of such a pair of disks. The disks overlap, but can coexist owing to their low optical depths and therefore long mean collision times. We find that the two disks have dust replenishment times on the order of 10{sup 4} yr at approx100 AU, hinting at the presence of planetesimals that are responsible for the production of second generation dust. A plausible conjecture, which needs to be confirmed by physical modeling of the collisional dynamics of bodies in the disks, is that the two observed disks are derived from underlying planetesimal disks; such disks would be anchored by the gravitational influence of planets located at less than 70 AU from beta Pic that are themselves in slightly inclined orbits.

  4. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  5. Hot Accretion Disks Revisited

    NASA Astrophysics Data System (ADS)

    Bjoernsson, Gunnlaugur; Abramowicz, Marek A.; Chen, Xingming; Lasota, Jean-Pierre

    1996-08-01

    All previous studies of hot (Tp 1010-1012 K), optically thin accretion disks have neglected either the presence of e+ e- pairs or advective cooling. Thus all hot disk models constructed previously have not been self-consistent. In this paper we calculate local disk models including pair physics, relevant radiative processes in the hot plasma, and the effect of advective cooling. We use a modification of the Björnsson & Svensson mapping method. We find that the role of e+ e- pairs in the structure of hot, optically thin accretion disks is far less significant than was previously thought. The improved description of the radiation-matter interactions provided in the present paper modify the previously obtained values of the critical parameters characterizing advectively dominated flows.

  6. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  7. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The lifetime of gas in a disk has far-reaching consequences, including limiting the time available for giant planet formation and controlling the migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from infrared studies with the Spitzer Space Telescope. Exciting upcoming opportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be performed using the Herschel Space Observatory, as part of the 'Gas in Protoplanetary Systems' (GASPS) Open Time Key Project.

  8. Organizing Your Hard Disk.

    ERIC Educational Resources Information Center

    Stocker, H. Robert; Hilton, Thomas S. E.

    1991-01-01

    Suggests strategies that make hard disk organization easy and efficient, such as making, changing, and removing directories; grouping files by subject; naming files effectively; backing up efficiently; and using PATH. (JOW)

  9. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  10. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  11. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  12. Optical disk uses in criminal identification systems

    NASA Astrophysics Data System (ADS)

    Sypherd, Allen D.

    1990-08-01

    A significant advancement in law enforcement tools has been made possible by the rapid and innovative development of electronic imaging for criminal identification systems. In particular, development of optical disks capable of high-capacity and random-access storage has provided a unique marriage of application and technology. Fast random access to any record, non-destructive reading of stored images, electronic sorting and transmission of images and an accepted legal basis for evidence are a few of the advantages derived from optical disk technology. This paper discusses the application of optical disk technology to both Automated Fingerprint Identification Systems (AFIS) and Automated Mugshot Retrieval Systems (AMRS). The following topics are addressed in light of AFIS and AMRS user requirements and system capabilities: Write once vs. rewritable, gray level and storage requirements, multi-volume library systems, data organization and capacity trends.

  13. On the thermodynamic efficiency of a nickel-based multiferroic thermomagnetic generator: From bulk to atomic scale

    SciTech Connect

    Sandoval, Samuel M. Sepulveda, Abdon E. Keller, Scott M.

    2015-04-28

    A model is developed to correlate the effects of size on the thermodynamic efficiency for a nickel-based multiferroic thermomagnetic generator device. Three existing models are combined in order to estimate this correlation, they are (1) thermodynamic efficiency relations, (2) a model of ferromagnetic transition behavior, and (3) the bond-order length strength correlation. At the smallest size considered, a monolayer of nickel atoms shows a reduction in Curie temperature from its bulk value of T{sub c,Bulk}=630 K to T{sub c,ML}=240 K. This difference is analytically shown to affect the thermodynamic efficiency values when compared to bulk. Various nickel nanofilms are considered as a working body, such that the combined model predicts relative efficiency values that are comparable to the bulk scale, but operating closer to room-temperature when compared to bulk form. This result is unexpected since the absolute efficiency is shown to increase as a function of decreasing size, this discrepancy is explained as a consequence of Curie point suppression. The combined model is also applied to a hypothetical composite made of separated layers of nickel with distinct thicknesses. This composite material is predicted to spread the ferromagnetic transition across a much larger temperature range as compared to bulk nickel, such that this material may be better suited for different applications; for example, as a sensor or thermal switch. Moreover, this combined model is also shown to give a lower-bound estimate for thermodynamic efficiency, since the actual performance depends on material characterizations that have yet to be determined.

  14. Novel Approach to Tar Removal from Biomass Producer Gas by Means of a Nickel-Based Catalyst

    NASA Astrophysics Data System (ADS)

    Vosecký, M.; Kameníková, P.; Pohořelý, M.; Skoblja, S.; Punčochář, M.

    The nickel-based catalyst was exposed to the raw gas from gasification of woody biomass with air in a fluidized-bed. After dust removal on a barrier filter and sulphur compounds capture, namely H2S, on an active sorbent made of CuO and ZnO, higher hydrocarbons as tar components were decomposed/reformed on aNi-catalyst. Steam reforming reactions led to decomposition of tar and all hydrocarbons higher than CH4 into mainly H2 and CO which further underwent reaction with steam via the water gas shift reaction to CO2. The reforming reactions caused approximately 10-20 % decrease in the lower heating values of the producer gas from the inlet values 5.0-6.5 MJ m-3. The gas yield increased fromvalues 2.4-2.6 m3 kg-1 to values 2.8-3.0 m3 kg-1 on dry biomass basis. The chosen tar removal concept based on combination of dolomite in the fluidized-bed with the secondary catalytic reactor was proved by 20 hours long experiment in which the finaltar content below 30 mg m-3 was attained corresponding to more than 97 % tar conversion. H2S content in producer gas was expected to be below 100 vol. ppm, bulk of which was captured on the sorbent. Only limited deactivation of thecatalyst by sulphur compounds was found in the front of the catalyst bed where sulphur content was determined as high as 173 wt. ppm compared to 22 wt. ppm in the fresh sample.

  15. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  16. Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Ojo, O. A.; Chaturvedi, M. C.

    2007-02-01

    The effect of preweld overaging heat treatment on the microstructural response in the heat-affected zone (HAZ) of a precipitation-hardened nickel-base superalloy INCONEL 738LC subjected to the welding thermal cycle ( i.e., rapid) was investigated. The overaging heat treatment resulted in the formation of an interfacial microconstituent containing M23X6 particles and coarsening of primary and secondary γ' precipitates. The HAZ microstructures around welds in the overaged alloy were simulated using the Gleeble thermomechanical simulation system. Microstructural examination of simulated HAZs and those present in tungsten inert gas (TIG) welded specimens showed the occurrence of extensive grain boundary liquation involving liquation reaction of the interfacial microconstituents containing M23X6 particles and MC-type carbides. In addition, the coarsened γ' precipitate particles present in the overaged alloy persisted well above their solvus temperature to temperatures where they constitutionally liquated and contributed to considerable liquation of grain boundaries, during continuous rapid heating. Intergranular HAZ microfissuring, with resolidified product formed mostly on one side of the microfissures, was observed in welded specimens. This suggested that the HAZ microfissuring generally occurred by decohesion across one of the solid-liquid interfaces during the grain boundary liquation stage of the weld thermal cycle. Correlation of simulated HAZ microstructures with hot ductility properties of the alloy revealed that the temperature at which the alloy exhibited zero ductility during heating was within the temperature range at which grain boundary liquation was observed. The on-cooling ductility of the alloy was significantly damaged by the on-heating liquation reaction, as reflected by the considerably low ductility recovery temperature (DRT). Important characteristics of the intergranular liquid that could influence HAZ microfissuring of the alloy in overaged

  17. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    SciTech Connect

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Mapelli, Carlo

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  18. Fast, Capacious Disk Memory Device

    NASA Technical Reports Server (NTRS)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  19. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  20. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  1. Nickel base coating alloy

    NASA Technical Reports Server (NTRS)

    Barrett, C. A. (Inventor); Lowell, C. E. (Inventor)

    1986-01-01

    Zirconium is added to a Ni-30 Al (beta) intermetallic alloy in the range of 0.05 w/o to 0.25 w/o. This addition is made during melting or by using metal powders. The addition of zirconium improves the cyclic oxidation resistance of the alloys at temperatures above 1100 C.

  2. Planetesimal Disk Microlensing

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Keeton, Charles R.

    2009-12-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  3. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  4. PLANETESIMAL DISK MICROLENSING

    SciTech Connect

    Heng, Kevin; Keeton, Charles R. E-mail: keeton@physics.rutgers.ed

    2009-12-10

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  5. The Chemistry of Nearby Disks

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.

    2016-01-01

    The gas and dust rich disks around young stars are the formation sites of planets. Observations of molecular trace species have great potential as probes of the disk structures and volatile compositions that together regulate planet formation. The disk around young star TW Hya has become a template for disk molecular studies due to a combination of proximity, a simple face-on geometry and richness in volatiles. It is unclear, however, how typical the chemistry of the TW disk is. In this proceeding, we review lessons learnt from exploring the TW Hya disk chemistry, focusing on the CO snowline, and on deuterium fractionation chemistry. We compare these results with new ALMA observations toward more distant, younger disks. We find that while all disks have some chemical structures in common, there are also substantial differences between the disks, which may be due to different initial conditions, structural or chemical evolutionary stages, or a combination of all three.

  6. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Pujari, B. S.; Becker, Peter A.

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsudawould radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  7. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Supersized Disk (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph

    This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed.

    The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks.

    The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units.

    Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed.

    The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star

  9. Slim accretion disks

    SciTech Connect

    Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E.

    1988-09-01

    A new branch of equilibrium solutions for stationary accretion disks around black holes is found. These solutions correspond to moderately super-Eddington accretion rates. The existence of the new branch is a consequence of an additional cooling due to general relativistic Roche lobe overflow and horizontal advection of heat. On an accretion rate versus surface density plane the new branch forms, together with the two standard branches (corresponding to the Shakura-Sunyaev accretion disk models) a characteristically S-shaped curve. This could imply a limit cycle-type behavior for black hole accretion flows with accretion rates close ot the Eddington one. 29 references.

  10. Hot stars with disks

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika D.

    The evolutionary paths of the massive O and B type stars are often defined by angular momentum transformations that involve circumstellar gas disks. This circumstellar gas is revealed in several kinds of observations, and here I describe a series of investigations of the hydrogen line emission from such disk using detailed studies of five massive binaries and a survey of 128 Be stars. By examining three sets of spectra of the active mass-transfer binary system RY Scuti, I determined masses of 7.1±1.2 [Special characters omitt ed.] for the bright supergiant and 30.0±2.1 [Special characters omitted.] for the massive companion that is hidden by an accretion torus. I also present a cartoon model of the complex mass flows in the system. Using optical spectroscopy and X-ray flux data, I investigated the mass transfer processes in four massive X-ray binaries (a massive B star with mass flowing onto a compact, neutron star companion). The B-supergiant system LS I +65 010 transfers mass via stellar winds. I find the X-ray flux modulates with the orbital period. In the other three X-ray binary systems (LS I +61 303, HDE 245770, and X Per), an outflowing circumstellar disk is responsible for the mass transfer, and in all three systems, the disk appears to be truncated by gravitational interactions with the compact companion. The disk in the microquasar system LS I +61 303 is limited in radius by the periastron separation and an increase in both Ha equivalent width and X-ray flux following periastron may be due to a density wave in the disk induced by tidal forces. Observations of HDE 245770 document what appears to be the regeneration of a circumstellar disk. The disk of X Per appears to have grown to near record proportions and the X-ray flux has dramatically increased. Tidal interaction may generate a spiral density wave in the disk and cause an increase in Ha equivalent width and mass transfer to the compact companion. During the course of the analysis of the X

  11. Giant Planet Formation by Disk Instability in Low Mass Disks?

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2010-12-01

    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043 M sun from 4 to 20 AU in orbit around a 1 M sun protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (To ) temperatures. Models with To = 20 K are able to form a single self-gravitating clump, whereas models with To = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least ~0.043 M sun inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer-disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.

  12. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: Effect of machine hammer peening

    SciTech Connect

    2013-12-01

    The effect of surface modifications induced by machine hammer peening on pitting corrosion behavior of nickel-base alloy 718 in a 3.5 wt.% NaCl solution is investigated. Severe work hardening and high compressive residual stress are generated with surface smoothing and microstructure evolution in terms of formation of nano-grains and nano-twins in the near surface region after machine hammer peening. Electrochemical tests results show that machine hammer peening has a beneficial influence on the corrosion resistance, indicated by a significant increase of the critical pitting potential (+134 mV) accompanied with lower corrosion current density and higher polarization resistance.

  13. Effect of volume fraction and size of fine-gamma prime particles on raising the creep strength of a DS nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Lin, D. L.; Yao, D. L.; Lin, X. J.; Sun, C. Q.

    1986-01-01

    The creep behavior of a directionally solidifified nickel-base superalloy, DKS3, has been investigated as a function of the volume fraction and size of the gamma-prime phase at 760 and 950 C. The dislocation structure and morphology of gamma-prime was examined by transmission electron microscopy at the primary, secondary and tertiary creep stages at 73.8 kgf/sq mm. Experimental results are described in terms of a high temperature creep model in the range of temperatures and applied stresses where shearing of the gamma-prime phase does not control the straining process.

  14. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  15. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  16. Herniated disk repair (image)

    MedlinePlus

    ... one of the most common causes of lower back pain. The mainstay of treatment for herniated disks is an initial period of rest with pain and anti-inflammatory medications followed by physical therapy. If pain and symptoms persist, surgery to remove ...

  17. Plasmofluidic Disk Resonators

    PubMed Central

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-01-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage. PMID:26979929

  18. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  19. The Effect of Stabilization Treatments on Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.; Ellis, David L.

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickelbase superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 or 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments can also decrease creep capability. In this study, a systematic variation of stabilization temperature and time was investigated to determine its effect on 1300 F tensile and, more importantly, creep behavior. Dwell crack growth rates were also measured for selected stabilization conditions. As these advanced disk alloys may be given a supersolvus solution or a subsolvus solution heat treatment for a given application, it was decided that both options would be studied.

  20. Effect of Surface Preparation on the 815°C Oxidation of Single-Crystal Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Sudbrack, Chantal K.; Beckett, Devon L.; MacKay, Rebecca A.

    2015-11-01

    A primary application for single-crystal superalloys has been jet engine turbine blades, where operation temperatures reach well above 1000°C. The NASA Glenn Research Center is considering use of single-crystal alloys for future, lower temperature application in the rims of jet engine turbine disks. Mechanical and environmental properties required for potential disk rim operation at 815°C are being examined, including the oxidation and corrosion behavior, where there is little documentation at intermediate temperatures. In this study, single-crystal superalloys, LDS-1101+Hf and CMSX-4+Y, were prepared with different surface finishes and compared after isothermal and cyclic oxidation exposures. Surface finish has a clear effect on oxide formation at 815°C. Machined low-stress ground surfaces after exposure for 440 h produce thin Al2O3 external scales, which is consistent with higher temperature oxidation, whereas polished surfaces with a mirror finish yield much thicker NiO external scales with subscale of Cr2O3-spinel-Al2O3, which may offer less reliable oxidation resistance. Additional experiments separate the roles of cold-work, localized deformation, and the extent of polishing and surface roughness on oxide formation.

  1. Multiphase wide gap braze alloys for the repair of nickel-base superalloy turbine components: Development and characterization

    NASA Astrophysics Data System (ADS)

    Nelson, Scott David

    Gas turbine components made of nickel-base superalloys experience cracking after service in extreme environments. As these cracks can be wide, brazing or fusion welding is typically used to repair them. Properly designed and applied, brazing filler metal will help extend the useful life of damaged turbine components. During repair of defective OEM parts, brazing is also considered, provided that proper filler metals with enhanced ductility and improved resistance to low-cycle fatigue are available. This research strives to develop the brazing technique and alloys to achieve a repair with acceptable mechanical properties. Additionally, the effects of silicon and boron, as fast diffusing and melting point suppressing elements on the braze microstructure and mechanical properties were examined in detail to help guide future alloy development. Three commercially available "low-temperature" brazing powders were mixed with an additive superalloy powder to prepare a series of filler metals for wide gap brazing used to repair OEM gas turbine components. BNi-2 (Ni-7Cr-4.2Si-3B-3Fe), BNi-5 (Ni-19Cr-10Si) and BNi-9 (Ni-15Cr-3.5B) were mixed with MARM247 (Ni-10W-10Co-8.25Cr-5.5Al-3Ta-1Ti-0.7Mo-0.5Fe-0.015B) at ratios of 40, 50, and 60 wt. pct. creating a total of nine experimental filler alloys. The brazes were applied to a 0.06 inch gap in a Rene 108(TM) substrate for mechanical and microstructural analysis. The wettability and flow of each of the experimental alloys were analyzed to determine the required brazing temperature through isothermal spreadability experiments. Bend testing was performed on brazed joints to determine their mechanical properties and maximum angular deflection. The metallurgical driving factors, such as solidification behavior and compositional effects, were analyzed to correlate the resulting microstructural constituents to the mechanical properties developed through experimentation. It was found that because of the solid solubility of silicon into

  2. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    SciTech Connect

    Hoadley, K.; France, K.; McJunkin, M.; Alexander, R. D.; Schneider, P. C.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.

  3. Design of an Eta-Phase Precipitation-Hardenable Nickel-Based Alloy with the Potential for Improved Creep Strength Above 1023 K (750 °C)

    NASA Astrophysics Data System (ADS)

    Wong, Matthew J.; Sanders, Paul G.; Shingledecker, John P.; White, Calvin L.

    2015-07-01

    In a number of nickel-based superalloy systems strengthened by gamma prime ( γ'), eta-phase (Ni3Ti, η) forms during prolonged high-temperature exposure, but its effect on mechanical properties is not well characterized. Using thermodynamic modeling and design-of-experiments techniques, three modifications of the nickel-based superalloy Nimonic (Nimonic® is a trademark of Special Metals Corporation group of companies.) 263 were identified that yield increased volume fractions of the eta-phase (Ni3Ti, η) at temperatures above 1023 K (750 °C). Volume fractions of η-phase were evaluated for each alloy and heat-treatment condition using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Compared to Nimonic 263, small additions of V and Ta were found to increase the volume fraction of η-phase above 1023 K (750 °C) from approximately 5 pct to above 15 pct, thus providing a route for future mechanical behavior experimental studies, which was not in the scope of this work.

  4. Major Effects of Nonmetallic Inclusions on the Fatigue Life of Disk Superalloy Demonstrated

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Bonacuse, Peter J.; Barrie, Robert L.

    2002-01-01

    The fatigue properties of modern powder metallurgy disk alloys can vary because of the different steps of materials and component processing and machining. Among these variables, the effects of nonmetallic inclusions introduced during the powder atomization and handling processes have been shown to significantly degrade low-cycle fatigue life. The levels of inclusion contamination have, therefore, been reduced to less than 1 part per million in state-of-the-art nickel disk powder-processing facilities. Yet the large quantities of compressor and turbine disks weighing from 100 to over 1000 lb have enough total volume and surface area for these rare inclusions to still be present and limit fatigue life. The objective of this study was to investigate the effects on fatigue life of these inclusions, as part of the Crack Resistant Disk Materials task within the Ultra Safe Propulsion Project. Inclusions were carefully introduced at elevated levels in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were then performed on extracted test specimens at 650 C. Analyses were performed to compare the low-cycle fatigue lives and failure initiation sites as functions of inclusion content and fatigue conditions. Powder of the nickel-base superalloy U720 was atomized in argon at Special Metals Corporation, Inc., using production-scale high-cleanliness powder-processing facilities and handling practices. The powder was then passed through a 270-mesh screen. One portion of this powder was set aside for subsequent consolidation without introduced inclusions. Two other portions of this powder were seeded with alumina inclusions. Small, polycrystalline soft (Type 2) inclusions of about 50 mm diameter were carefully prepared and blended into one powder lot, and larger hard (Type 1) inclusions of about 150 mm mean diameter were introduced into the other seeded portion of powder. All three portions of powder were

  5. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  6. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

  7. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas. PMID:23745856

  8. DISK-SATELLITE INTERACTION IN DISKS WITH DENSITY GAPS

    SciTech Connect

    Petrovich, Cristobal; Rafikov, Roman R.

    2012-10-10

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them that can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly non-uniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existing prescriptions: most of the torque is exerted in a rather narrow region near the gap edge where Lindblad resonances accumulate, followed by an exponential falloff with the distance from the perturber. Despite these differences, for a given gap profile, the full integrated torque exerted on the disk agrees with the conventional uniform disk theory prediction at the level of {approx}10%. The nonlinearity of the density wave excited by the perturber is shown to decrease as the wave travels out of the gap, slowing down its nonlinear evolution and damping. Our results suggest that gap opening in protoplanetary disks and gas clearing around SMBH binaries can be more efficient than the existing theories predict. They pave the way for self-consistent calculations of the gap structure and the orbital evolution of the perturber using accurate prescription for the torque density behavior.

  9. Advanced turbine study

    NASA Technical Reports Server (NTRS)

    Castro, J. H.

    1985-01-01

    The feasibility of an advanced convective cooling concept applied to rocket turbine airfoils which operate in a high pressure hydrogen and methane environment was investigated. The concept consists of a central structural member in which grooves are machined. The grooves are temporarily filled with a removable filler and the entire airfoil is covered with a layer of electroformed nickel, or nickel base alloy. After removal of the filler, the low thermal resistance of the nickel closure causes the wall temperature to be reduced by heat transfer to the coolant. The program is divided in the following tasks: (1) turbine performance appraisal; (2) coolant geometry evaluation; (3) test hardware design and analysis; and (4) test airfoil fabrication.

  10. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  11. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  12. Inversions for axisymmetric galactic disks

    NASA Astrophysics Data System (ADS)

    Hiotelis, N.; Patsis, P. A.

    1993-08-01

    We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.

  13. Upper lumbar disk herniations.

    PubMed

    Cedoz, M E; Larbre, J P; Lequin, C; Fischer, G; Llorca, G

    1996-06-01

    Specific features of upper lumbar disk herniations are reviewed based on data from the literature and from a retrospective study of 24 cases treated surgically between 1982 and 1994 (seven at L1-L2 and 17 at L2-L3). Clinical manifestations are polymorphic, misleading (abdominogenital pain suggestive of a visceral or psychogenic condition, meralgia paresthetica, isolated sciatica; femoral neuralgia is uncommon) and sometimes severe (five cases of cauda equina syndrome in our study group). The diagnostic usefulness of imaging studies (radiography, myelography, computed tomography, magnetic resonance imaging) and results of surgery are discussed. The risk of misdiagnosis and the encouraging results of surgery are emphasized. PMID:8817752

  14. PRE-TRANSITIONAL DISK NATURE OF THE AB Aur DISK

    SciTech Connect

    Honda, M.; Inoue, A. K.; Okamoto, Y. K.; Kataza, H.; Fujiwara, H.; Kamizuka, T.; Fukagawa, M.; Yamashita, T.; Tamura, M.; Hashimoto, J.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Sakon, I.; Onaka, T.

    2010-08-01

    The disk around AB Aur was imaged and resolved at 24.6 {mu}m using the Cooled Mid-infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The Gaussian full width at half-maximum of the source size is estimated to be 90 {+-} 6 AU, indicating that the disk extends further out at 24.6 {mu}m than at shorter wavelengths. In order to interpret the extended 24.6 {mu}m image, we consider a disk with a reduced surface density within a boundary radius R{sub c} , which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor f{sub c} for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6 {mu}m is achieved with R{sub c} = 88 AU and f{sub c} = 0.01. We suggest that the extended emission at 24.6 {mu}m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at R{sub c} . Such a reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.

  15. An improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Barack, W. N.; Domas, P. A.

    1976-01-01

    An analytical study was performed on a novel disk design to replace the existing high-pressure turbine, stage 1 disk on the CF6-50 turbofan engine. Preliminary studies were conducted on seven candidate disk design concepts. An integral multidisk design with bore entry of the turbine blade cooling air was selected as the improved disk design. This disk has the unique feature of being redundant such that if one portion of the disk would fail, the remaining portion would prevent the release of large disk fragments from the turbine system. Low cycle fatigue lives, initial defect propagation lives, burst speed, and the kinetic energies of probable disk fragment configurations were calculated, and comparisons were made with the existing disk, both in its current material, IN 718, and with the substitution of an advanced alloy, Rene 95. The design for redundancy approach which necessitated the addition of approximately 44.5 kg (98 lb) to the design disk substantially improved the life of the disk. The life to crack initiation was increased from 30,000 cycles to more than 100,000 cycles. The cycles to failure from initial defect propagation were increased from 380 cycles to 1564 cycles. Burst speed was increased from 126 percent overspeed to 149 percent overspeed. Additionally, the maximum fragment energies associated with a failure were decreased by an order of magnitude.

  16. Thermodynamical Structure of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N.

    2009-12-01

    The thermodynamics of protoplanetary disks determines chemical and physical evolution of dust and gas in the disks, and thus is relevant for understanding the origin and formation of planetary systems. In this paper, the thermodynamical structure of protoplanetary disks around low-mass stars is studied using three-dimensional radiation magnetohydrodynamic (MHD) simulations. Local patches of the disk are modeled using the shearing box approximation with vertical gravity. For simplicity, the dust and gas are well mixed and have the same temperature, and ideal MHD is assumed. The frequency-integrated radiation field is evolved using the flux-limited diffusion approximation, adopting thermally averaged opacities. The heating arises from the dissipation of MHD turbulence driven by magnetorotational instability due to differential rotation of the disk, and the cooling comes from infrared radiation losses. Irradiation by the central star is treated by injecting appropriate amount of thermal energy near the disk photosphere for visible lights. The results indicate the heating is more concentrated in the disk atmosphere than in the classical model. The single-point heating rate in the atmosphere fluctuates by orders of magnitude over time intervals comparable to the orbital period due to magnetic reconnection and shocks, while the patch of disk overall sustains dynamical and thermodynamical equilibrium over many cooling times. We will discuss implications of our numerical results for line and continuum emission from protoplanetary disks.

  17. Gravitational Instability in Planetesimal Disks

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Lithwick, Yoram; Pan, Margaret; Rein, Hanno; Wu, Yanqin

    2014-11-01

    Gravitational instability (GI) has been proposed as a method of forming giant gas planets enhanced by disk thermodynamics in a protoplanetary disk (Boss, 1997, Science 276; Durisen et al., 2007, Protostars and Planets V) and as a method of forming planetesimals through the focusing of boulders by the interaction between solids and gases in a turbulent circumstellar disk (Johansen et al., 2007, Nature 448; Youdin & Goodman, 2005, Astrophys. J. 620). GI is mediated through a gaseous circumstellar disk in each each of these scenarios. We explore the possibility of GI occurring in a planetesimal disk devoid of gas. In this regime, mutual collisions between planetesimals are required to dissipate their orbital shear and velocity dispersion enough for collapse to occur as described by the Toomre stability criterion (Toomre, 1964, Astrophys. J. 139; Toomre, 1981, Structure and Evolution of Normal Galaxies). How frequent must collisions be between planetesimals in a gravitationally stable planetesimal disk for GI to occur? Are there collisional rates where GI is postponed indefinitely in an equilibrium state between gravitational stirring and collisional cooling? We present 3D shearing sheet simulations using the REBOUND N-body code with the symplectic epicyclic integrator (Rein & Liu, 2011, A&A 537; Rein & Tremaine, 2011, MNRAS 415) in which the candidate collision rates are within a few orders of magnitude of the disk dynamical lifetime. Our simulations suggest that collisions rate directly controls disk cooling. The shape of the disk cooling curve is independent of the collision rate when scaled to the collision time.

  18. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  19. A study of reduced chromium content in a nickel-base superalloy via element substitution and rapid solidification processing. Ph.D. ThesisFinal Report

    NASA Technical Reports Server (NTRS)

    Powers, William O.

    1987-01-01

    A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.

  20. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Wen, Dong-Xu; Chen, Ming-Song; Chen, Xiao-Min

    2016-09-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy.

  1. NEUTRON-DIFFRACTION STUDY ON PLASTIC BEHAVIOR OF A NICKEL-BASED ALLOY UNDER THE MONOTONIC-TENSION AND THE LOW-CYCLE-FATIGUE EXPERIMENTS

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Wang, Yandong; Yang, Dr Ren; Li, Li; Choo, Hahn; Liaw, Peter K

    2007-01-01

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  2. Neutron Diffraction Study on Plastic behavior of a Nickel-Based Alloy Under the Monotonic-Tension and the Low-Cyclic-Fatigue Experiments

    SciTech Connect

    Huang, E.-W.; Barabash, R.; Clausen, B.; Wang, Y.; Yang, R.; Li, L.; Choo, H.; Liaw, P.K.

    2007-11-02

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  3. The effects of tantalum on the microstructure of two polycrystalline nickel-base superalloys - B-1900 + Hf and MAR-M247

    NASA Technical Reports Server (NTRS)

    Heckel, R. W.; Pletka, B. J.; Janowski, G. M.

    1986-01-01

    The effect of changing the content of Ta on the gamma/gamma-prime carbide microstructure was investigated in two crystalline nickel-base superalloys: conventionally cast B-1900 + Hf, and both conventionally cast and directionally solidified MAR-M247. The changes occurring in the microstructure effects were similar in both alloys. The gamma-prime and carbide volume fractions increased linearly with Ta additions, while the gamma-prime phase compositions did not change. Bulk Ta additions increased the levels of Cr and Co (in addition to that of Ta) of the gamma phase, a result of the approximately constant partitioning ratios for these two elements. The addition of Ta led to a partial replacement of Hf in the MC carbides. In addition, Cr-rich M(23)C(6) carbides formed as a result of MC carbide decomposition during heat treatment.

  4. Phase Stability of a Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita

    2006-01-01

    Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.

  5. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  6. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  7. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  8. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; Muto, T.; Kotani, T.; Kusakabe, N. B.; Follette, K.; Bonnefoy, M.; Feldt, M.; Sitko, M.; Takami, M.; Karr, J.; Tamura, M.

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  9. Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2005-01-01

    An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.

  10. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  11. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  12. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  13. Optical disk technology and information.

    PubMed

    Goldstein, C M

    1982-02-12

    The optical video disk, spawned by the home entertainment industry, and its counterpart, the optical digital disk, both hold great promise for information storage and retrieval and the scientific enterprise. Optical digital disks for computer mass storage are currently under development by many firms. In addition, efforts are under way to allow encoding of digital information on video disks. This is desirable as an inexpensive publication medium for machine-readable data as well as a means of obtaining both video and digital information on one disk. Potential applications of this technology include inexpensive on-line storage, random access graphics to complement on-line information systems, hybrid network architectures, office automation systems, and archival storage.

  14. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  15. Berkeley Disk Resource Manager

    2004-02-27

    The Berkeley Disk Resource Manager (B-DRM) is a middleware component whose function is to provide dynamic space allocation and file management of a shared disk system on the Grid. It provides space allocation and dynamic information on storage availability for the planning and execution of Grid jobs. The B-DRM manages two types of resources: space and files. Vi1en managing space, the B-DRM allocates space to the requesting client based on a default space quota, Thenmore » managing files, the B-DRM allocates space for files, invokes file transfer services to move files into the space, pins files for a certain lifetime, releases files upon the client’s request, and uses file replacement policies to optimize the use of the shared space. The B-DRM is designed to provide effective sharing of files, by monitoring the activity of shared files, and making dynamic decisions on which files to replace when space is needed. In addition, the B-DRM performs automatic garbage collection of unused files when space is needed by removing selected files that were released by the client or whose lifetime has expired. The BDRM supports requests to get multiple files in a single call, manages a queue of the requested files, brings in as many files as the space quota permits, and continues to reuse the space when files are released to stream files to the client until the entire request is satisfied. Similarly, the B-DRM supports requests to put multiple files into its space, streaming files into the allocated space and reusing the space if necessary.« less

  16. The Effect of Tungsten Additions on Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickelbase superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the disk is heated in the range of 1500 to 1600 F for several hours followed by a static air cool and age. The reduction in residual stress levels lessens distortion during machining of disks. Previous work on CH98 has indicated that stabilization treatments will decrease creep capability, however, tungsten additions appear to improve the creep capability of stabilized and aged CH98. In this study, a systematic variation of tungsten additions to CH98 was investigated. Specifically, the 1300 F tensile, creep, and fatigue crack growth properties of stabilized CH 98 were assessed with varying levels of tungsten additions.

  17. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    SciTech Connect

    Tanigawa, Takayuki; Maruta, Akito; Machida, Masahiro N.

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  18. Low-state disks and low-beta disks

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kusnose, Masaaki; Matsumoto, Ryoji

    1995-01-01

    Stellar black hole candidates (BHCs) exhibit bimodal spectral states. We calculate nonthermal disk spectra, demonstrating that a large photon index (alpha (sub x) approximately 2-3) observed in the soft (high) state is due to a copious soft photon supply, whereas soft photon starvation leads to a smaller index (alpha (sub x) approximately 1.5-2) in the hard (low) state. Thus, the absence of the soft component flux in the low state cannot be due to obscuration. A possible disk configuration during the low state is discussed. We proposed that a low-state disk may be a low-beta disk in which magnetic pressure may exceed gas pressure becuase of the suppression of field escape by a strong shear. As a result, disk material will take the form of blobs constricted by mainly toroidal magnetic fields. Fields are dissipated mainly by occasional reconnection events with a huge energy release. This will account for large-amplitude, aperiodic X-ray variations (flickering) and high-energy radiation with small alpha(sub x) from hard state BHCs and possibly from active galactic nuclei. Further, we propose a hysteretic relation between the mass-flow rate and plasma-beta, a ratio of gas pressure to magnetic pressure, for the spectral evolution of transient BHCs. The disk is in the low-beta state in quiescence and early rise. The low-beta disk is optically thin and affected by advection. A hard-to-soft transition occurs before the peak luminosity, since there is no advection-dominated branch at higher luminosities. An optically thick, high-beta disk appears at small radii. In the decay phase of the light curve, the standard-type disk becomes effectively optically thin, when a soft-hard transition is triggered. High-beta plasmas in the main body shrink to form minute blobs, and low-beta coronal plasma fills interblob space.

  19. NGC 3516: Disk Diagnostics from a Windy BLSy1 in a High-State

    NASA Astrophysics Data System (ADS)

    Turner, Tracey Jane

    2005-10-01

    Recent advances have shown X-ray flux to be simply correlated with reflection-signatures from the disk and an associated wind. It appears two things are essential to observe the disk/wind: 1) catch the Seyfert in a high-state where disk/wind features show up strongly and 2) separate out reprocessing from distant gas to allow isolation of disk/wind features. NGC 3516 provides the ideal source for further study in this regard. The source is currently in a very high state, which we predict will lead to observable features from the disk and its wind. We request 210 ks XMM exposure on NGC 3156 with supporting Chandra time to test our prediction of flux-linked disk reflection and wind.

  20. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  1. Photoevaporating Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

  2. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Yorke, Harold W.; Johnstone, Doug; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the, inner disk (r approx. less than A 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approximately greater than 10 AU. Disk dispersed timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question.

  3. Heating and Cooling Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Turner, Neal

    Many of the disks of gas and dust orbiting young Sun-like stars produce mid-infrared emission from water and other oxygen- and carbon-bearing molecules, as discovered in the last few years using the Spitzer Space Telescope. The emission reveals the temperatures, columns and chemical composition of the gas in the disk atmosphere within 2 AU of the star, directly overlying the region where the planets form. Better understanding of the processes governing the line emission is vital for converting this new class of measurements into information about the planets' raw ingredients. We propose to combine MHD models of the turbulence driving the disk accretion flows, with a thermal-chemical model of the disk atmospheres, to predict emergent spectra that will capture the dynamics, heating, and chemical composition. By comparing the predicted and observed spectra we can determine the strength of the turbulence that heats and mixes the gas, and test ideas about the conditions in the disk interior. We will investigate the coupling of the turbulence to the thermal and chemical evolution, seek to locate the line emission's power source, gauge the rate at which the atmosphere and interior exchange material, and obtain new independent measures of the disk mass accretion rates. These efforts will help infrared spectroscopy of protostellar disks reach its full potential as a diagnostic of the environments in which planets form.

  4. The role of microstructure on deformation and damage mechanisms in a Nickel-based superalloy at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Maciejewski, Kimberly E.

    The overall objective of this research work is the development and implementation of a mechanistic based time-dependent crack growth model which considers the role of creep, fatigue and environment interactions on both the bulk and the grain boundary phase in ME3 disk material. The model is established by considering a moving crack tip along a grain boundary path in which damage events are described in terms of the grain boundary deformation and related accommodation processes. Modeling of these events was achieved by adapting a cohesive zone approach (an interface with internal singular surfaces) in which the grain boundary dislocation network is smeared into a Newtonian fluid element. The deformation behavior of this element is controlled by the continuum in both far field (internal state variable model) and near field (crystal plasticity model) and the intrinsic grain boundary viscosity which is characterized by microstructural parameters, including grain boundary precipitates and morphology, and is able to define the mobility of the element by scaling the motion of dislocations into a mesoscopic scale. Within the cohesive zone element, the motion of gliding dislocations in the tangential direction relates to the observed grain boundary sliding displacement, the rate of which is limited by the climb of dislocations over grain boundary obstacles. Effects of microstructural variation and orientation of the surrounding continuum are embedded in the tangential stress developing in the grain boundary. The mobility of the element in the tangential direction (i.e. by grain boundary sliding) characterizes the accumulation of irreversible displacement while the vertical movement (migration), although present, is assumed to alter stress by relaxation and, thus, is not considered a contributing factor in the damage process. This process is controlled by the rate at which the time-dependent sliding reaches a critical displacement and as such, a damage criterion is

  5. Materials for Advanced Turbine Engines. Volume 1; Power Metallurgy Rene 95 Rotating Turbine Engine Parts

    NASA Technical Reports Server (NTRS)

    Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.

    1979-01-01

    An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.

  6. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  7. The role of microstructure on deformation and damage mechanisms in a Nickel-based superalloy at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Maciejewski, Kimberly E.

    The overall objective of this research work is the development and implementation of a mechanistic based time-dependent crack growth model which considers the role of creep, fatigue and environment interactions on both the bulk and the grain boundary phase in ME3 disk material. The model is established by considering a moving crack tip along a grain boundary path in which damage events are described in terms of the grain boundary deformation and related accommodation processes. Modeling of these events was achieved by adapting a cohesive zone approach (an interface with internal singular surfaces) in which the grain boundary dislocation network is smeared into a Newtonian fluid element. The deformation behavior of this element is controlled by the continuum in both far field (internal state variable model) and near field (crystal plasticity model) and the intrinsic grain boundary viscosity which is characterized by microstructural parameters, including grain boundary precipitates and morphology, and is able to define the mobility of the element by scaling the motion of dislocations into a mesoscopic scale. Within the cohesive zone element, the motion of gliding dislocations in the tangential direction relates to the observed grain boundary sliding displacement, the rate of which is limited by the climb of dislocations over grain boundary obstacles. Effects of microstructural variation and orientation of the surrounding continuum are embedded in the tangential stress developing in the grain boundary. The mobility of the element in the tangential direction (i.e. by grain boundary sliding) characterizes the accumulation of irreversible displacement while the vertical movement (migration), although present, is assumed to alter stress by relaxation and, thus, is not considered a contributing factor in the damage process. This process is controlled by the rate at which the time-dependent sliding reaches a critical displacement and as such, a damage criterion is

  8. Rewriteable optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1991-01-01

    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented.

  9. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  10. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2010-10-20

    We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, {approx}140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H{sub 2}O and CO{sub 2}. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH{sub 3}OH, HCOOCH{sub 3}, and CH{sub 3}OCH{sub 3} to potentially observable values (i.e., a fractional abundance of {approx}>10{sup -11}).

  11. Centrally-Rupturing Squib-Closure Disks

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1986-01-01

    Rupture-disk design makes squib action more predictable. In new design, center of rupture disk contains cruciform indentation in which thickness reduced to about 0.5 mil (0.013 mm). Reduces strength of center of rupture disk in same manner as that of pull tabs on beverage cans; therefore, disk will fail predictably in center.

  12. Outflows from Accretion Disks around Compact Objects

    NASA Astrophysics Data System (ADS)

    Jiao, Cheng-Liang; Wu, Xue-Bing

    2013-02-01

    We solve the set of hydrodynamic equations for accretion disks in the spherical coordinates (rθφ) to obtain the explicit structure along the θ direction. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with previous popular analytical models, while an inflow region and an outflow region always exist, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and stronger in slim disks and ADAFs.

  13. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    NASA Astrophysics Data System (ADS)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  14. Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy

    SciTech Connect

    Liu, Tingguang; Xia, Shuang; Li, Hui; Zhou, Bangxin; Bai, Qin

    2014-05-01

    Grain boundary engineering was carried out on an aging-treated nickel based Alloy 690, which has precipitated carbides at grain boundaries. Electron backscatter diffraction technique was used to investigate the grain boundary networks. Results show that, compared with the solution-annealed samples, the aging-treated samples with pre-existing carbides at grain boundaries need longer duration or higher temperature during annealing after low-strain tensile deformation for forming high proportion of low-Σ coincidence site lattice grain boundaries (more than 75%). The reason is that the primary recrystallization is inhibited or retarded owing to that the pre-existing carbides are barriers to grain boundaries migration. - Highlights: • Study of GBE as function of pre-existing GB carbides, tensile strain and annealing • Recrystallization of GBE is inhibited or retarded by the pre-existing carbides. • Retained carbides after annealing show the original GB positions. • More than 80% of special GBs were formed after the modification of GBE processing. • Multiple twinning during recrystallization is the key process of GBE.

  15. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    SciTech Connect

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is more than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.

  16. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    DOE PAGES

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less

  17. Synthesis, characterization and electrochemical performance of high-density aluminum substituted α-nickel hydroxide cathode material for nickel-based rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Li, Jing; Shangguan, Enbo; Guo, Dan; Tian, Meng; Wang, Yanbin; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang

    2014-12-01

    Positive electrode active materials, Al-substituted α-Ni(OH)2, with a high tap-density and high performance for alkaline nickel-based rechargeable batteries have successfully been synthesized using a polyacrylamide (PAM) assisted two-step drying method and subsequent hydrothermal treatment at 140 °C for 2 h. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), laser particle size analysis, tap-density measurement, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test are used to characterize the physical and electrochemical properties of the synthesized material. The tap-density of the resulting powders reaches 1.84 g cm-3, which is significantly higher than that of α-Ni(OH)2 powders obtained by the conventional co-precipitation (CCP) and hydrothermal (HT) methods. Compared with commercial spherical β-Ni(OH)2, the resulting sample is electrochemically more active, providing discharge capacities of 315.0 and 255.2 mAh g-1, and volume capacities of 579.6 and 469.6 mAh cm-3 at rates of 0.2 C and 5 C, respectively. It is also found that although the hydrothermal treatment has a slight negative effect on the tap-density, it can improve the crystallinity of α-Ni(OH)2 and promote the anion exchange of NO3- by OH-, resulting in a much better electrochemical performance.

  18. Friction and wear of oxide-ceramic sliding against IN-718 nickel base alloy at 25 to 800 C in atmospheric air

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Deadmore, Daniel L.

    1989-01-01

    The friction and wear of oxide-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C were measured. The oxide materials tested were mullite (3Al2O3.2SiO2); lithium aluminum silicate (LiAlSi(x)O(y)); polycrystalline monolithic alpha alumina (alpha-Al2O3); single crystal alpha-Al2O3 (sapphire); zirconia (ZrO2); and silicon carbide (SiC) whisker-reinforced Al2O3 composites. At 25 C the mullite and zirconia had the lowest friction and the polycrystalline monolithic alumina had the lowest wear. At 800 C the Al2O3-8 vol/percent SiC whisker composite had the lowest friction and the Al2O3-25 vol/percent SiC composite had the lowest wear. The friction of the Al2O3-SiC whisker composites increased with increased whisker content while the wear decreased. In general, the wear-resistance of the ceramics improve with their hardness.

  19. The role of the gamma/gamma-prime eutectic and porosity on the tensile behavior of a single-crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Walston, W. S.; Bernstein, I. M.; Thompson, A. W.

    1991-01-01

    The microstructure of a single-crystal nickel-base superalloy, PWA 1480, has been varied by heat treatment and hot isostatic pressing in order to study the role of the gamma/gamma-prime eutectic and porosity on subsequent tensile behavior. The level of porosity was found not to affect any of the tensile properties, while the gamma/gamma-prime eutectic strongly influenced ductility. Eliminating the gamma/gamma-prime eutectic increased ductility which was attributed to the cleavage fracture of this constituent. It is proposed that such cleavage of the gamma/gamma-prime eutectic is initiated by the stress created from impinging slip bands, promoting shear localization, and final fracture along 111 slip planes. The precise nature of this fracture process is discussed, with emphasis on the role of the gamma/gamma-prime microstructure. The deformation structure of PWA 1480 was also studied, and while different in some respects from many other single-crystal superalloys, its fracture process appears to be similar.

  20. Surface Characterization and Mechanical Properties' Evaluation of Boride-Dispersed Nickel-Based Coatings Deposited on Copper Through Thermal Spray Routes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2012-09-01

    The present study concerns understanding the microstructures and wear resistance of nickel-based alloy (Ni 68.4, Cr 17, B 3.9, Si 4.9, and Fe 5.8) coatings on copper developed by flame spraying and high-velocity oxy-fuel (HVOF) coating techniques. The microstructure of flame spray deposition consists of predominantly equiaxed γ-Ni grains, refined Ni3B precipitates, and Ni2.9Cr0.7Fe0.36 phase. On the other hand, HVOF spray deposition reduces the porosity content significantly in the presence of very fine (with average precipitate size varying from μm to nm range) borides (chromium boride, Cr2B; and nickel boride, Ni3B) in γ-Ni matrix. The microhardness of the HVOF-sprayed and flame-sprayed surfaces were improved to 935 VHN and 251 VHN, respectively as compared with 82 VHN of the as-received substrate. Wear resistance property against WC indenter was also improved in deposited layers with a maximum improvement in HVOF spray deposition. The mechanism of wear was investigated.

  1. High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys

    SciTech Connect

    Abu-Nabah, Bassam A.; Nagy, Peter B.

    2007-03-21

    Recent research indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of subsurface residual stress in surface-treated components. This technique is based on the so-called piezoresistive effect, i.e., the stress-dependence of electric conductivity. Previous experimental studies were conducted on excessively peened (Almen 10-16A peening intensity levels) nickel-base superalloy specimens that exhibited harmful cold work in excess of 30% plastic strain. The main reason for choosing peening intensities above recommended normal levels was that the eddy current penetration depth could not be decreased below 0.2 mm without conducting accurate measurements above 10 MHz, which is beyond the operational range of most commercially available eddy current instruments. In this paper we report the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz with a single probe coil. In addition, the new system offers better reproducibility, accuracy, and measurement speed than the previously used conventional system.

  2. Alloy B-10, a new nickel-based alloy for strong chloride-containing, highly acidic and oxygen-deficient environments

    SciTech Connect

    Kohler, M.; Kirchheiner, R.; Stenner, F.

    1998-12-31

    Alloy B-10 is a Ni-Mo-Cr alloy, recently developed for highly acidic but oxygen-deficient environments in the chemical process and environmental protection industries. The new nickel-based alloy with nominally (wt. %) 62 Ni, 24 MO, 8 Cr and 6 Fe, exhibits excellent corrosion resistance in intermediate concentrations of sulfuric acid, as well as in hydrochloric acid, even with additions of small amounts of oxidizing agents. In a simulated Flue Gas Desulfurization (FGD) environment of sulfuric acid of pH 1 with additions of 7% chloride and 0.01% fluoride, and also containing 15% gypsum the new alloy demonstrated high crevice corrosion resistance at 100 C, whereas a common Ni-Cr-Mo alloy of the C-type suffers crevice corrosion under the same conditions. This new alloy can easily be welded without filler or using matching filler. Good practical experience has been gained with Alloy B-10 in a district heating power station as a tube sheet and bottom wall liner for a glass tube heat exchanger working at 130 C with condensing 70% sulfuric acid.

  3. Effects of alloy composition on cyclic flame hot-corrosion attack of cast nickel-base superalloys at 900 deg C

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1984-01-01

    The effects of Cr, Al, Ti, Mo, Ta, Nb, and W content on the hot corrosion of nickel base alloys were investigated. The alloys were tested in a Mach 0.3 flame with 0.5 ppmw sodium at a temperature of 900 C. One nondestructive and three destructive tests were conducted. The best corrosion resistance was achieved when the Cr content was 12 wt %. However, some lower-Cr-content alloys ( 10 wt%) exhibited reasonable resistance provided that the Al content alloys ( 10 wt %) exhibited reasonable resistance provided that the Al content was 2.5 wt % and the Ti content was Aa wt %. The effect of W, Ta, Mo, and Nb contents on the hot-corrosion resistance varied depending on the Al and Ti contents. Several commercial alloy compositions were also tested and the corrosion attack was measured. Predicted attack was calculated for these alloys from derived regression equations and was in reasonable agreement with that experimentally measured. The regression equations were derived from measurements made on alloys in a one-quarter replicate of a 2(7) statistical design alloy composition experiment. These regression equations represent a simple linear model and are only a very preliminary analysis of the data needed to provide insights into the experimental method.

  4. Development of improved low-strain creep strength in Cabot alloy R-41 sheet. [nickel base sheet alloy for reentry shielding

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.

    1984-01-01

    The feasibility of improving the low-strain creep properties of a thin gauge nickel base sheet alloy through modified heat treatment or through development of a preferred crystal-lographic texture was investigated. The basic approach taken to improve the creep strength of the material by heat treatment was to increase grain size by raising the solution treatment temperature for the alloy to the range of 1420 K to 1475 K (2100 F to 2200 F). The key technical issue involved was maintenance of adequate tensile ductility following the solutioning of M6C primary carbides during the higher temperature solution treatment. The approach to improve creep properties by developing a sheet texture involved varying both annealing temperatures and the amount of prior cold work. Results identified a heat treatment for alloy R-14 sheet which yields a substantial creep-life advantage at temperatures above 1090 K (1500 F) when compared with material given the standard heat treatment. At the same time, this treatment provides reasonable tensile ductility over the entire temperature range of interest. The mechanical properties of the material given the new heat treatment are compared with those for material given the standard heat treatment. Attempts to improve creep strength by developing a sheet texture were unsuccessful.

  5. Susceptibility to hot corrosion of four nickel-base superalloys, NASA-TRW VIA, B-1900, 713C and IN-738

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1977-01-01

    The susceptibility to hot corrosion of four nickel-base, cast superalloys has been studied at 900 and 1000 C. The test consisted of coating alloy samples with known amounts of Na2SO4 and oxidizing the coated samples isothermally in 1 atmosphere of slowly flowing oxygen, the weight-gain being monitored on a sensitive recording microbalance. Susceptibility to hot corrosion decreased in the order of decreasing molybdenum content of the alloys. Preoxidation of samples before hot-corrosion testing markedly increased the induction period observed prior to the inception of hot corrosion for all alloys tested. X-ray diffraction analyses of the oxide scales were made. All samples that underwent hot corrosion showed the presence of a (Ni,Co)MoO4 layer near the alloy-oxide interface. Several specimens displayed resistance to hot corrosion and these showed NaTaO3 as a prominent feature in their oxide scale. Our results may be interpreted as indicating that molybdenum in an alloy is detrimental, with respect to hot corrosion, while tantalum is beneficial.

  6. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  7. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  8. Practical and Secure Recovery of Disk Encryption Key Using Smart Cards

    NASA Astrophysics Data System (ADS)

    Omote, Kazumasa; Kato, Kazuhiko

    In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.

  9. Signatures of Gravitational Instability in Resolved Images of Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Vorobyov, Eduard; Pavlyuchenkov, Yaroslav; Chiang, Eugene; Liu, Hauyu Baobab

    2016-06-01

    Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore, arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ˜0.″1 resolution. Collapsed fragments having masses ≳1 M J can be detected by ALMA within ˜10 minutes.

  10. Understanding Protoplanetary Disk Structure through the Timescale of its Variability

    NASA Astrophysics Data System (ADS)

    Flaherty, Kevin; Muzerolle, James; Balog, Zoltan; Herbst, William; Megeath, S. Thomas; Furlan, Elise; Gutermuth, Robert

    2012-12-01

    While most of our knowledge of protoplanetary disks is based on single snapshots of many systems, their evolution is in fact highly dynamic on short timescales. Previous surveys have found that the majority of young stellar objects are variable in the infrared, due to large structural perturbations of the inner disk, over the course of weeks and months. These studies of large samples of objects over two month observing windows have not been able to completely constrain the physical source of these fluctuations. We propose to use the variability timescale as a novel method for understanding the underlying physics processes setting the protoplanetary disk structure. With roughly one observation per day for 200 days, a more intensive monitoring campaign than has been previously attempted, we can distinguish between variability on the stellar rotation period (related to variable heating by star spots), the dynamical timescale (related to MRI effects and perturbation by a companion) and the thermal timescale (related to thermal waves in the disk). By focusing on a small field within the 2 Myr Chameleon star-forming region, we will obtain detailed light curves for ~16 young stellar objects, including a 15 Jupiter mass brown dwarf with a disk. This type of intensive, long baseline monitoring has not been attempted in the past, is only feasible with the observing capabilities of Spitzer, and has the potential to greatly advance our understanding of young stellar object evolution.

  11. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  12. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  13. Ultrafast disk lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  14. DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2016-01-01

    The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!

  15. Imaging the inner regions of debris disks with near-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Augereau, J. C.; di Folco, E.; Coudé du Foresto, V.; Le Bouquin, J. B.; Mérand, A.; Mollier, B.

    2011-10-01

    Most debris disks resolved so far show extended structures located at tens to hundreds AU from the host star, and are more analogous to our solar system's dusty Kuiper belt than to the ˜AU-scale zodiacal disk inside our solar system's asteroid belt. Over the last few years however, a few hot debris disks have been detected around a handful of main sequence stars thanks to the advance of infrared interferometry. The grain populations derived from these observations are quite intriguing, as they point towards very high dust replenishment rates, high cometary activity or major collisional events. In this talk, we review the ongoing efforts to detect bright exozodiacal disks with precision near-infrared interferometry in both hemispheres with CHARA/FLUOR and VLTI/PIONIER. We discuss preliminary statistical trends on the occurrence of bright exozodi around nearby main sequence stars and show how this information could be used to constrain the global architecture and evolution of debris disks.

  16. Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1978-01-01

    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved.

  17. Melting of polydisperse hard disks.

    PubMed

    Pronk, Sander; Frenkel, Daan

    2004-06-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find that while there is pronounced fractionation in polydispersity, the apparent density-polydispersity gap does not increase in width, contrary to 3D polydisperse hard spheres. The point where the Young's modulus is low enough for the dislocation unbinding to occur moves with the apparent melting point, but stays within the density gap, just like for the monodisperse hard-disk system. Additionally, we find that throughout the accessible polydispersity range, the bound dislocation-pair concentration is high enough to affect the dislocation-unbinding melting as predicted by Kosterlitz, Thouless, Halperin, Nelson, and Young.

  18. Spaceborne optical disk controller development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Conway, Bruce A.

    1986-01-01

    The current status and potential applications of an optical-disk buffer (ODB) memory system being developed by an interagency consortium including NASA and the USAF are reviewed. The design goals for the ODB include usable capacity 1 Tb, maximum data rate 1.6 Gb/s, read error rate less than 10 to the -12th, time to initial access less than 100 ms, and unlimited read/write cycles. Present efforts focus on a brassboard ODB which employs 12 14-inch magnetooptic disks and 24 nine-diode read/write heads. A typical space application of an optical disk mass memory system (ODMMS) is discussed: as communications buffer, temporary storage, and/or multiuser I/O buffer for data management on the Space Station Earth Observing System. Environmental, operational, system-architecture, and functional-separation factors; critical design issues; and standardization questions for spaceborne ODMMSs are examined in detail.

  19. Laithwaite's Heavy Spinning Disk Demonstration

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2014-09-01

    In 1974, Professor Eric Laithwaite demonstrated an unusually heavy gyroscope at a Royal Institution lecture in London. The demonstration was televised and can be viewed on YouTube.1 A recent version of the same experiment, together with partial explanations, attracted two million YouTube views in the first few months.2 In both cases, the gyroscope consisted of a 40-lb (18-kg) spinning disk on the end of a 3-ft (0.91-m) long axle. The most remarkable feature of the demonstration was that Laithwaite was able to lift the disk over his head with one hand, holding onto the far end of the axle. The impression was given that the 40-lb disk was almost weightless, or "as light as a feather" according to Laithwaite.

  20. Asymmetric features in the protoplanetary disk MWC 758

    NASA Astrophysics Data System (ADS)

    Benisty, M.; Juhasz, A.; Boccaletti, A.; Avenhaus, H.; Milli, J.; Thalmann, C.; Dominik, C.; Pinilla, P.; Buenzli, E.; Pohl, A.; Beuzit, J.-L.; Birnstiel, T.; de Boer, J.; Bonnefoy, M.; Chauvin, G.; Christiaens, V.; Garufi, A.; Grady, C.; Henning, T.; Huelamo, N.; Isella, A.; Langlois, M.; Ménard, F.; Mouillet, D.; Olofsson, J.; Pantin, E.; Pinte, C.; Pueyo, L.

    2015-06-01

    Context. The study of dynamical processes in protoplanetary disks is essential to understand planet formation. In this context, transition disks are prime targets because they are at an advanced stage of disk clearing and may harbor direct signatures of disk evolution. Aims: We aim to derive new constraints on the structure of the transition disk MWC 758, to detect non-axisymmetric features and understand their origin. Methods: We obtained infrared polarized intensity observations of the protoplanetary disk MWC 758 with VLT/SPHERE at 1.04 μm to resolve scattered light at a smaller inner working angle (0.093'') and a higher angular resolution (0.027'') than previously achieved. Results: We observe polarized scattered light within 0.53'' (148 au) down to the inner working angle (26 au) and detect distinct non-axisymmetric features but no fully depleted cavity. The two small-scale spiral features that were previously detected with HiCIAO are resolved more clearly, and new features are identified, including two that are located at previously inaccessible radii close to the star. We present a model based on the spiral density wave theory with two planetary companions in circular orbits. The best model requires a high disk aspect ratio (H/r ~ 0.20 at the planet locations) to account for the large pitch angles which implies a very warm disk. Conclusions: Our observations reveal the complex morphology of the disk MWC 758. To understand the origin of the detected features, the combination of high-resolution observations in the submillimeter with ALMA and detailed modeling is needed. Based on observations performed with VLT/SPHERE under program ID 60-9389(A).Appendices are available in electronic form at http://www.aanda.orgESO data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/L6

  1. The effect of hydrogen and microstructure on the deformation and fracture behavior of a single crystal nickel-base superalloy. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walston, William S.

    1990-01-01

    A study was conducted on the effects of internal hydrogen and microstructure on the deformation and fracture of a single crystal nickel-base superalloy. In particular, room temperature plane strain fracture toughness and tensile tests were performed on hydrogen-free and hydrogen charged samples of PWA 1480. The role of microstructure was incorporated by varying the levels of porosity and eutectic gamma/gamma prime through hot isostatic pressing and heat treatment. The room temperature behavior of PWA 1480 was unusual because precipitate shearing was not the primary deformation mechanism at all strains. At strains over 1 percent, dislocations were trapped in the gamma matrix and an attempt was made to relate this behavior to compositional differences between PWA 1480 and other superalloys. Another unique feature of the tensile behavior was cleavage of the eutectic gamma/gamma prime, which is believed to initiate the failure process. Fracture occurred on (111) planes and is likely a result of shear localization along these planes. Elimination of the eutectic gamma/gamma prime greatly improved the tensile ductility, but pososity had no effect on tensile properties. Large quantities of hydrogen (1.74 at. percent) were gas-phase charged into the material, but surprisingly this was not a function of the amount of porosity or eutectic gamma/gamma prime present. Desorption experiments suggest that the vast majority of hydrogen is at reversible lattice trapping sites. This large, uniform concentration of hydrogen dramatically reduced the tensile strain to failure, but only slightly affected the reduction in area. Available hydrogen embrittlement models were examined in light of these results and it was found that the hydrogen enhanced localized plasticity model can explain much of the tensile behavior. K(IC) fracture toughness tests were conducted, but it was necessary to also perform J(IC) tests to provide valid data.

  2. Detailed Analysis of the Solution Heat Treatment of a Third-Generation Single-Crystal Nickel-Based Superalloy CMSX-10K®

    NASA Astrophysics Data System (ADS)

    Pang, Hon Tong; D'Souza, Neil; Dong, Hongbiao; Stone, Howard J.; Rae, Catherine M. F.

    2016-02-01

    A detailed analysis of the response of as-cast third-generation single-crystal nickel-based superalloy CMSX-10K® to solution heat treatment (SHT) has been carried out, alongside an SHT optimization exercise. The analysis was conducted through microstructural characterization, differential scanning calorimetry, and compositional homogeneity measurements, quantifying (i) the dissolution and microstructural evolution of the inter-dendritic constituents, (ii) the shift in thermo-physical characteristics of the material, and (iii) the change in compositional homogeneity across the microstructure, in order to gain further understanding of these phenomena during the progression of the SHT. During the early stages of SHT, the coarse cellular γ'/narrow γ channel inter-dendritic constituents which were the last areas to solidify during casting, progressively dissolve; homogenization between these inter-dendritic areas and adjacent dendritic areas leads to a rapid increase in the incipient melting temperature T IM. The fine γ/γ' morphology which were the first inter-dendritic constituents to solidify after primary γ dendrite solidification were found to progressively coarsen; however, subsequent dissolution of these coarsened γ/γ' inter-dendritic areas did not result in significant increases in the T IM until the near-complete dissolution of these inter-dendritic areas. After the final SHT step, residual compositional micro-segregation could still be detected across the microstructure despite the near-complete dissolution of these remnant inter-dendritic areas; even so the T IM of the material approached the solidus temperature of the alloy.

  3. Investigation on the Microstructure and Ductility-Dip Cracking Susceptibility of the Butt Weld Welded with ENiCrFe-7 Nickel-Base Alloy-Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Wang, Huang; He, Guo

    2015-03-01

    The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.

  4. Circumstellar Disks in Very Young Embedded Clusters

    NASA Astrophysics Data System (ADS)

    Mariñas, Naibí; Lada, Elizabeth A.; Teixeira, Paula S.; Lada, Charles J.

    2014-01-01

    We used FLAMINGOS near-IR photometry and spectroscopy and Spitzer mid-IR photometry to study disk fractions in the 1 to 2 Myr old NGC2264 clusters. We find that stars with masses < 0.3 solar masses have lower disk fractions than stars of solar mass or higher at these early ages. We also find that most disks disappear within the first 4 Myr, which is consistent with previous studies of disk lifetimes. Our study suggests that either some very low mass stars form without disks or that their disks are less massive and/or colder than predicted from models and not detected with Spitzer/Flamingos sensitivities.

  5. ALMA observations of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2015-08-01

    The Universe is filled with planetary systems, as recent detections of exo-planets have shown. Such systems grow out of disks of gas and dust that surround newly formed stars. The ground work for our understanding of the structure, composition, and evolution of such disks has been laid with infrared telescopes in the 1980's, 1990's, and 2000's, as well as with millimeter interferometers operating in the United States, France, and Japan. With the construction of the Atacama Large Millimeter / submillimeter Array, a new era of studying planet-forming disks has started. The unprecedented leap in sensitivity and angular resolution that ALMA offers, has truely revolutionized our understanding of disks. No longer featureless objects consisting of gas and smalll dust, they are now seen to harbor a rich structure and chemistry. The ongoing planet-formation process sculpts many disks into systems of rings and arcs; grains grown to millimeter-sizes collect in high-pressure areas where they could grow out to asteroids or comets or further generations of planets. This wealth of new information directly addresses bottlenecks in our theoretical understanding of planet formation, such as the question how grains can grow past the 'meter-sized' barrier or overcome the 'drift barrier', and how gas and ice evolve together and ultimately determine the elemental compositions of both giant and terrestrial planets. I will review the recent ALMA results on protoplanetary disks, presenting results on individual objects and from the first populations studies. I will conclude with a forward look, on what we might expect from ALMA in this area for the years and decades to come.

  6. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  7. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  8. The Kozai–Lidov Mechanism in Hydrodynamical Disks. II. Effects of Binary and Disk Parameters

    NASA Astrophysics Data System (ADS)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  9. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    SciTech Connect

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios E-mail: ahelmi@astro.rug.n E-mail: villalobos@oats.inaf.i

    2010-07-20

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  10. Herniated Disk in the Lower Back

    MedlinePlus

    ... lives. A high percentage of people will have low back and leg pain caused by a herniated disk. Although a herniated ... pressure against the outer ring may cause lower back pain. If the disk is very worn or injured, ...

  11. Electronic Teaching: Hard Disks and Networks.

    ERIC Educational Resources Information Center

    Howe, Samuel F.

    1984-01-01

    Describes floppy-disk and hard-disk based networks, electronic systems linking microcomputers together for the purpose of sharing peripheral devices, and presents points to remember when shopping for a network. (MBR)

  12. Spaceflight optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Jurczyk, Stephen G.; Hines, Glenn D.; Shull, Thomas A.

    1992-01-01

    Mass memory systems based on rewriteable optical disk media are expected to play an important role in meeting the data system requirements for future NASA spaceflight missions. NASA has established a program to develop a high performance (high rate, large capacity) optical disk recorder focused on use aboard unmanned Earth orbiting platforms. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 gigabyte capacity, 300 megabit/s transfer rate, 10 exp -12 corrected bit error rate, and 150 millisec access time. This performance is achieved by writing eight data tracks in parallel on both sides of a 14 in. optical disk using two independent heads. System goals are 160 gigabyte capacity, 1.2 gigabits/s data rate with concurrent I/O, 250 millisec access time, and two to five year operating life on orbit. The system can be configured to meet various applications. This versatility is provided by the controller. The controller provides command processing, multiple drive synchronization, data buffering, basic file management, error processing, and status reporting. Technology developments, design concepts, current status including a computer model of the system and a Controller breadboard, and future plans for the Drive and Controller are presented.

  13. Circumnuclear Keplerian Disks in Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco; Cappellari, Michele; Funes, S. J., José G.; Corsini, Enrico M.; Pizzella, Alessandro; Beltrán, Juan C. Vega

    1998-12-01

    In this Letter, we demonstrate the possibility of inferring the presence of Keplerian gaseous disks using properly equipped optical ground-based telescopes. We have modeled the peculiar bidimensional shape of the emission lines in a sample of five early-type disk galaxies as due to the motion of a gaseous disk rotating in the combined potential of a central pointlike mass and of an extended stellar disk. The value of the central mass concentration estimated for four galaxies of the sample (NGC 2179, NGC 4343, NGC 4435, and NGC 4459) is ~109 Msolar. This value, according to the assumptions made in our model, is overestimated. However, we have calculated that the effect is well within the errors. For the remaining galaxy, NGC 5064, an upper limit of 5×107 Msolar is estimated. Based on observations carried out at ESO, La Silla, (Chile) (ESO N. 58, A-0564) and at the Mount Graham International Observatory (AZ) with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  14. TREC Document Database: Disk 4

    National Institute of Standards and Technology Data Gateway

    NIST TREC Document Database: Disk 4 (PC database for purchase)   NIST TREC Document Databases (Special Database 22) are distributed for the development and testing of information retrieval (IR) systems and related natural language processing research. The document collections consist of the full text of various newspaper and newswire articles plus government proceedings.

  15. TREC Document Database: Disk 5

    National Institute of Standards and Technology Data Gateway

    NIST TREC Document Database: Disk 5 (PC database for purchase)   NIST TREC Document Databases (Special Database 23) are distributed for the development and testing of information retrieval (IR) systems and related natural language processing research. The document collections consist of the full text of various newspaper and newswire articles plus government proceedings.

  16. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  17. Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1996-09-09

    This report covers the period April--June, 1996 for the utility advanced turbine systems (ATS) technical readiness testing and pre-commercial demonstration program. The topics of the report include NEPA information, ATS engine design, integrated program plan, closed loop cooling, thin wall casting development, rotor air sealing development, compressor aerodynamic development, turbine aerodynamic development, phase 3 advanced air sealing development, active tip clearance control, combustion system development, ceramic ring segment, advanced thermal barrier coating development, steam cooling effects, directionally solidified blade development, single crystal blade development program, advanced vane alloy development, blade and vane life prediction, nickel based alloy rotor, and plans for the next reporting period.

  18. Planet Masses from Disk Spirals

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Young, forming planets can generate immense spiral structures within their protoplanetary disks. A recent study has shown that observations of these spiral structures may allow astronomers to measure the mass of the planets that create them.Spirals From WavesSnapshots of the surface density of a protoplanetary disk in a 2D simulation, 3D simulation, and synthesized scattered-light image. Click for a closer look! [Fung Dong, 2015]Recent studies have shown that a single planet, if it is massive enough, can excite multiple density waves within a protoplanetary disk as it orbits. These density waves can then interfere to produce a multiple-armed spiral structure in the disk inside of the planets orbit a structure which can potentially be observed in scattered-light images of the disk.But what do these arms look like, and what factors determine their structure? In a recently published study, Jeffrey Fung and Ruobing Dong, two researchers at the University of California at Berkeley, have modeled the spiral arms in an effort to answer these questions.Arms Provide AnswersA useful parameter for describing the structure is the azimuthal separation (sep) between the primary and secondary spiral arms. If you draw a circle within the disk and measure the angle between the two points where the primary and secondary arms cross it, thats sep.Azimuthal separation of the primary and secondary spiral arms, as a function of the planet-to-star mass ratio q. The different curves represent different disk aspect ratios. [Fung Dong, 2015]The authors find thatsep stays roughly constant for different radii, but its strongly dependent on the planets mass: for larger planets, sep increases. They discover that sep scales as a power of the planet mass for companions between Neptune mass and 16 Jupiter masses, orbiting around a solar-mass star. For larger, brown-dwarf-size companions, sep is a constant 180.If this new theory is confirmed, it could have very interesting implications for

  19. HYPERACCRETING NEUTRON STAR DISKS AND NEUTRINO ANNIHILATION

    SciTech Connect

    Zhang Dong; Dai, Z. G. E-mail: dzg@nju.edu.c

    2009-09-20

    Newborn neutron stars surrounded by hyperaccreting and neutrino-cooled disks may exist in some gamma-ray bursts and/or supernovae. In this paper, we further study the structure of such a neutron star disk based on the two-region (i.e., inner and outer) disk scenario following our previous work, and calculate the neutrino annihilation luminosity from the disk in various cases. We investigate the effects of the viscosity parameter {alpha}, energy parameter {epsilon} (measuring the neutrino cooling efficiency of the inner disk), and outflow strength on the structure of the entire disk as well as the effect of emission from the neutron star surface boundary emission on the total neutrino annihilation rate. The inner disk satisfies the entropy-conservation self-similar structure for the energy parameter {epsilon} {approx_equal} 1 and the advection-dominated structure for {epsilon} < 1. An outflow from the disk decreases the density and pressure but increases the thickness of the disk. Moreover, compared with the black hole disk, the neutrino annihilation luminosity above the neutron star disk is higher, and the neutrino emission from the boundary layer could increase the neutrino annihilation luminosity by about one order of magnitude higher than the disk without boundary emission. The neutron star disk with the advection-dominated inner disk could produce the highest neutrino luminosity while the disk with an outflow has the lowest. Although a heavily mass-loaded outflow from the neutron star surface at early times of neutron star formation prevents the outflow material from being accelerated to a high bulk Lorentz factor, an energetic ultrarelativistic jet via neutrino annihilation can be produced above the stellar polar region at late times if the disk accretion rate and the neutrino emission luminosity from the surface boundary layer are sufficiently high.

  20. Optimization of the Processing of Mo Disks

    SciTech Connect

    Tkac, Peter; Rotsch, David A.; Stepinski, Dominique; Makarashvili, Vakhtang; Harvey, James; Vandegrift, George F.

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  1. NASA Lewis Helps Develop Advanced Saw Blades for the Lumber Industry

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Lewis Research Center's Structures and Material Divisions are centers of excellence in high-temperature alloys for aerospace applications such as advanced aircraft and rocket engines. Lewis' expertise in these fields was enlisted in the development of a new generation of circular sawblades for the lumber industry to use in cutting logs into boards. The U.S. Department of Agriculture's (USDA) Forest Products Laboratory and their supplier had succeeded in developing a thinner sawblade by using a nickel-based alloy, but they needed to reduce excessive warping due to residual stresses. They requested assistance from Lewis' experts, who successfully eliminated the residual stress problem and increased blade strength by over 12 percent. They achieved this by developing an innovative heat treatment based on their knowledge of nickel-based superalloys used in aeropropulsion applications.

  2. PSOCT studies of intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  3. Poynting Jets from Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Li, H.; Koldoba, A. V.; Ustyugova, G. V.; Romanova, M. M.

    2002-06-01

    We give further consideration to the problem of the evolution of a coronal, force-free magnetic field that threads a differentially rotating, conducting Keplerian disk, extending the recent work of Li and coworkers. This situation is described by the force-free Grad-Shafranov (GS) equation for the flux function Ψ(r, z) that labels the poloidal field lines (in cylindrical coordinates). The GS equation involves a function H(Ψ) describing the distribution of the poloidal current, which is determined by the differential rotation or ``twist'' of the disk that increases linearly with time. We numerically solve the GS equation in a sequence of volumes of increasing size corresponding to the expansion of the outer perfectly conducting boundaries at (Rm, Zm). The outer boundaries model the influence of an external nonmagnetized plasma. The sequence of GS solutions provides a model for the dynamical evolution of the magnetic field in response to (1) the increasing twist of the disk and (2) the pressure of external plasma. We find solutions with magnetically collimated Poynting jets in which there is a continuous outflow of energy, angular momentum, and toroidal magnetic flux from the disk into the external space. This behavior contradicts the commonly accepted ``theorem'' of solar plasma physics that the motion of the footpoints of a magnetic loop structure leads to a stationary magnetic field configuration with zero power, angular momentum, and flux outflows. In addition, we discuss magnetohydrodynamic simulations that show quasi-stationary collimated Poynting jets similar to our GS solutions. In contrast with the GS solutions, the simulations show a steady uncollimated hydromagnetic (nonforce-free) outflow from the outer part of the disk. The Poynting jets are of interest for the understanding of the jets from active galactic nuclei, microquasars, and possibly gamma-ray burst sources.

  4. Accretion disk viscosity and internal waves in disks

    NASA Astrophysics Data System (ADS)

    Huang, Min

    1992-01-01

    Recently, Vishniac, Jin and Diamond suggested that internal waves in accretion disks play a critical role in generating magnetic fields, and consequently are indirectly responsible for angular momentum transfer in thin, conducting, and non-self-gravitational disk systems. A project in which we will construct a quantitative model of the internal wave spectrum in accretion disks is started. It includes two aspects of work. The physical properties of the waves in a thin, non-self-gravitational, and non-magnetized accretion disk with realistic vertical structure is cataloged and examined. Besides the low frequency internal waves discovered by Vishniac and Diamond, it was found that sound waves with low frequency and low axisymmetry (with small absolute value of m) are capable of a driving dynamo because they are (1) well confined in a layer with thickness 2(absolute value of m)H where H is the disk scale height; (2) highly dispersive so they may survive the strong dissipation caused by the coherent nonlinear interaction their high frequency partners experience; and (3) elliptically polarized because they are confined in the z-direction. As a first step towards constructing a quantitative theory of this dynamo effect, a framework of calculating resonant nonlinear interaction among waves in disk is established. We are developing a numerical code which will compute the steady spectrum of the wave field in this framework. For simplicity, we only include the low frequency internal waves suggested by Vishniac and Diamond in the present stage. In the vicinity of the static state, the time step whose length is determined by the evolution of the modes with the largest amplitudes is too large for the modes with smaller amplitudes and overshooting occurs. Through nonlinear coupling, this overshooting is amplified and appears as a numerical instability affecting the evolution of the large amplitude modes. Shorter time steps may delay the appearance of the instability but not cure

  5. A SPITZER CENSUS OF TRANSITIONAL PROTOPLANETARY DISKS WITH AU-SCALE INNER HOLES

    SciTech Connect

    Muzerolle, James; Allen, Lori E.; Megeath, S. Thomas; Hernandez, Jesus; Gutermuth, Robert A.

    2010-01-10

    Protoplanetary disks with AU-scale inner clearings, often referred to as transitional disks, provide a unique sample for understanding disk dissipation mechanisms and possible connections to planet formation. Observations of young stellar clusters with the Spitzer Space Telescope have amassed mid-infrared (IR) spectral energy distributions (SEDs) for thousands of star-disk systems from which transition disks can be identified. From a sample of eight relatively nearby young regions (d approx< 400 pc), we have identified about 20 such objects, which we term 'classical' transition disks, spanning a wide range of stellar age and mass. We employed strict IR continuum criteria to limit ambiguity: an 8-24 mum spectral slope limit (alpha>0) to select for robust optically thick outer disks, and 3.6-5.8 mum spectral slope and 5.8 mum continuum excess limits to select for optically thin or zero continuum excess from the inner few AU of the disks. We also identified two additional categories representing more ambiguous cases: 'warm excess' objects with transition-like SEDs but moderate excess at 5.8 mum, and 'weak excess' objects with smaller 24 mum excess that may be optically thin or exhibit advanced dust grain growth and settling. From existing Halpha emission measurements, we find evidence for different accretion activity among the three categories, with a majority of the classical and warm excess transition objects still accreting gas through their inner holes and onto the central stars, while a smaller fraction of the weak transition objects are accreting at detectable rates. We find a possible age dependence on the frequency of classical transition objects, with fractions relative to the total population of disks in a given region of a few percent at 1-2 Myr rising to 10%-20% at 3-10 Myr. The trend is even stronger if the weak and warm excess objects are included. This relationship may be due to a dependence of the outer disk clearing timescale with stellar age

  6. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  7. Methods of Stress Calculation in Rotating Disks

    NASA Technical Reports Server (NTRS)

    Tumarkin, S.

    1944-01-01

    The paper describes nethods of computing the stresses in disks of a given profile as well as methods of choosing the disk profiles for a given stress distribution for turhines, turbo blowers, and so forth. A new method of in tegrating the differential equations of Stodola leads to a simplification of the computation for disks of hyperbolic profile.

  8. PROTOPLANETARY DISK RESONANCES AND TYPE I MIGRATION

    SciTech Connect

    Tsang, David

    2011-11-10

    Waves reflected by the inner edge of a protoplanetary disk are shown to significantly modify Type I migration, even allowing the trapping of planets near the inner disk edge for small planets in a range of disk parameters. This may inform the distribution of planets close to their central stars, as observed recently by the Kepler mission.

  9. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  10. Microporous Carbon Disks For Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Munukutla, Lakshmi V.; Moore, Mark R.

    1993-01-01

    Slow, carefully controlled pyrolysis found to turn polyvinylidene chloride disks into carbon disks having small pores and large surface areas. Disks exhibit high adsorptivities making them useful in krypton-sorption refrigerators. Carbons made from polyvinylidene chloride have greater adsorptive capacities. Thermal instability controlled and variability of product reduced by careful control of rates of heating, heating times, and rate of final cooling.

  11. A COMMON SOURCE OF ACCRETION DISK TILT

    SciTech Connect

    Montgomery, M. M.; Martin, E. L.

    2010-10-20

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10{sup -11} M{sub sun} disk around a 0.8 M{sub sun} compact central object requires a mass transfer rate greater than {approx} 8 x 10{sup -11} M{sub sun} yr{sup -1}, a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  12. Optical Disk Formats: A Briefing. ERIC Digest.

    ERIC Educational Resources Information Center

    Schamber, Linda

    This digest begins with a brief description and review of the development of optical disks. Optical disk formats are then described by capability: Read Only Memory (ROM), Write Once, Read Many (WORM), Interactive (I), and Erasable (E); forms of information (audio, text or data, video or graphics, or a combination); and disk size (most often 12 or…

  13. Shock Response of the Clamped Disk in Small Form Factor Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Shu, Dongwei; Shi, Baojun; Lu, Guoxing

    As small form factor (one-inch and smaller) hard disk drives are widely used in portable consumer appliances and gadgets, their mechanical robustness is of greater concern. In the previous work, it is found that when the disk is more tightly clamped, it helps to decrease the shock response of the disk and then avoid the head slap. In this paper, the real boundary condition of the disk for a small form factor hard disk drive from Seagate is investigated numerically. The disk is clamped between the clamp and the hub. The shock response of the disk under a half-sine acceleration pulse is simulated by using the finite element method. In the finite element model, both contact between disk and clamp and contact between disk and hub are considered. According to the simulation results, how to decrease the shock response of the disk is suggested.

  14. Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Warren, J. R.

    1980-01-01

    Several nickel-base aircraft turbine disk superalloys were evaluated at 650 C for resistance to fatigue crack initiation and propagation under cyclic and cyclic/dwell conditions. Controlled strain low cycle fatigue (LCF) and controlled load crack propagation tests were performed and results utilized to provide a direct comparison among the alloys. Tests were performed on selected alloys to evaluate the effects of hold times, mean stresses, stress-dwell cycle types, inert environment, and contractor test methods. At the lower total strain ranges of interest, the alloys exhibited generally increasing initiation life with increasing tensile strength for both cyclic (0.33 Hz) and cyclic/dwell (900-sec hold per cycle) conditions. Rank order of the alloys by LCF initiation life changed substantially at higher strain ranges, approaching the rank order expected from monotonic tensile ductilities. The effect of the 900 sec (15 min) hold time fatigue life varied significantly from alloy to alloy. Generally, the higher-strength, finer-grained alloys exhibited more significant reductions in fatigue life due to the dwell. The effects of mean strain were found to be negligible and the effects of mean stress were pronounced. At high strain ranges the mean stress was near zero and did not contribute to reduction in life. At low strain ranges, however, mean stresses were large and significant reductions in LCF lives occurred.

  15. Warm to Cold HI Phase Transition in Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Radai, Yaron

    2012-10-01

    A well known feature of galaxy disks is the radial cutoff in star formation rate (SFR) and surface brightness while the HI component stretches far onwards. This suggests towards the existence of a star formation threshold (SFT) in the form of a critical gas column density, below which the SFR diminishes. This work advances our understanding of the SFT by studying the warm (~10,000K) to cold (~100K) HI phase transition in self-gravitating galactic gas disks. Assuming them thin, starless, isothermal, and warm, I construct a semi-analytic model for computing their physical properties under hydrostatic equilibrium and ionization-recombination balance. The disks are coupled via photoionizations to the metagalactic radiation background, and are confined by the pressure of a hot, ambient galactic corona. As a result, I find the critical columns under which the phase transition may and must occur at the mid-plane, thus bounding the critical column for cold gas formation between lower and upper limits and setting a lower limit upon the SFT. In the process I gain insight into the properties of warm gas galaxy disks, exposing a nice interplay between pressure, gravity, radiation and opacity.

  16. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  17. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  18. THE STRUCTURE OF THE ACCRETION DISK IN THE ACCRETION DISK CORONA X-RAY BINARY 4U 1822-371 AT OPTICAL AND ULTRAVIOLET WAVELENGTHS

    SciTech Connect

    Bayless, Amanda J.; Robinson, Edward L.; Cornell, Mark E.; Hynes, Robert I.; Ashcraft, Teresa A.

    2010-01-20

    The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel on the Hubble Space Telescope and new V- and J-band photometry with the 1.3 m SMARTS telescope at Cerro Tololo Inter-American Observatory. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system, and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km s{sup -1}. We show that the disk has a vertically extended, optically thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to approx0.5 of the disk radius. As it has a low brightness temperature, we identify it as the optically thick base of a disk wind, not as the optical counterpart of the ADC. Like previous models of 4U 1822-371, ours needs a tall obscuring wall near the edge of the accretion disk, but we interpret the wall as a layer of cooler material at the base of the disk wind, not as a tall, luminous disk rim.

  19. Brushing-Induced Surface Roughness of Two Nickel Based Alloys and a Titanium Based Alloy: A Comparative Study - In Vitro Study

    PubMed Central

    Acharya, B L Guruprasanna; Nadiger, Ramesh; Shetty, Bharathraj; Gururaj, G; Kumar, K Naveen; Darshan, D D

    2014-01-01

    be given to the selection of the toothbrushes and toothpastes with the medium abrasives in patients with these restorations. How to cite the article: Acharya BL, Nadiger R, Shetty B, Gururaj G, Kumar KN, Darshan DD. Brushing induced surface roughness of two nickel based alloys and a titanium based alloy: A comparative study - In vitro study. J Int Oral Health 2014;6(3):36-49. PMID:25083031

  20. Investigation of sulfur interactions on a conventional nickel-based solid oxide fuel cell anode during methane steam and dry reforming

    NASA Astrophysics Data System (ADS)

    Jablonski, Whitney S.

    Solid oxide fuel cells (SOFC) are an attractive energy source because they do not have undesirable emissions, are scalable, and are feedstock flexible, which means they can operate using a variety of fuel mixtures containing H2 and hydrocarbons. In terms of fuel flexibility, most potential fuel sources contain sulfur species, which severely poison the nickel-based anode. The main objective of this thesis is to systematically evaluate sulfur interactions on a conventional Ni/YSZ anode and compare sulfur poisoning during methane steam and dry reforming (SMR and DMR) to a conventional catalyst (Sud Chemie, Ni/K2O-CaAl2O4). Reforming experiments (SMR and DMR) were carried out in a packed bed reactor (PBR), and it was demonstrated that Ni/YSZ is much more sensitive to sulfur poisoning than Ni/K2O-CaAl2O4 as evidenced by the decline in activity to zero in under an hour for both SMR and DMR. Adsorption and desorption of H2S and SO2 on both catalysts was evaluated, and despite the low amount of accessible nickel on Ni/YSZ (14 times lower than Ni/K2O-CaAl2O4), it adsorbs 20 times more H2S and 50 times more SO2 than Ni/K 2O-CaAl2O4. A one-dimensional, steady state PBR model (DetchemPBED) was used to evaluate SMR and DMR under poisoning conditions using the Deutschmann mechanism and a recently published sulfur sub-mechanism. To fit the observed deactivation in the presence of 1 ppm H2S, the adsorption/desorption equilibrium constant was increased by a factor 16,000 for Ni/YSZ and 96 for Ni/K2O-CaAl2O4. A tubular SAE reactor was designed and fabricated for evaluating DMR in a reactor that mimics an SOFC. Evidence of hydrogen diffusion through a supposedly impermeable layer indicated that the tubular SAE reactor has a major flaw in which gases diffuse to unintended parts of the tube. It was also found to be extremely susceptible to coking which leads to cell failure even in operating regions that mimic real biogas. These problems made it impossible to validate the tubular SAE

  1. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  2. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  3. On the role of pseudodisk warping and reconnection in protostellar disk formation in turbulent magnetized cores

    SciTech Connect

    Li, Zhi-Yun; Zhao, Bo; Krasnopolsky, Ruben; Shang, Hsien

    2014-10-01

    The formation of rotationally supported protostellar disks is suppressed in ideal MHD in non-turbulent cores with aligned magnetic fields and rotation axes. A promising way to resolve this so-called 'magnetic braking catastrophe' is through turbulence. The reason for the turbulence-enabled disk formation is usually attributed to the turbulence-induced magnetic reconnection, which is thought to reduce the magnetic flux accumulated in the disk-forming region. We advance an alternative interpretation, based on magnetic decoupling-triggered reconnection of severely pinched field lines close to the central protostar and turbulence-induced warping of the pseudodisk of Galli and Shu. Such reconnection weakens the central split magnetic monopole that lies at the heart of the magnetic braking catastrophe under flux freezing. We show, through idealized numerical experiments, that the pseudodisk can be strongly warped, but not completely destroyed, by a subsonic or sonic turbulence. The warping decreases the rates of angular momentum removal from the pseudodisk by both magnetic torque and outflow, making it easier to form a rotationally supported disk. More importantly, the warping of the pseudodisk out of the disk-forming, equatorial plane greatly reduces the amount of magnetic flux threading the circumstellar, disk-forming region, further promoting disk formation. The beneficial effects of pseudodisk warping can also be achieved by a misalignment between the magnetic field and rotation axis. These two mechanisms of disk formation, enabled by turbulence and field-rotation misalignment respectively, are thus unified. We find that the disks formed in turbulent magnetized cores are rather thick and significantly magnetized. Implications of these findings, particularly for the thick young disk inferred in L1527, are briefly discussed.

  4. Accretion disks in Algols: Progenitors and evolution

    NASA Astrophysics Data System (ADS)

    Van Rensbergen, W.; De Greve, J. P.

    2016-08-01

    Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. Aims: We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. Methods: With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Results: Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. Conclusions: When Roche lobe overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  5. Herschel evidence for disk flattening or gas depletion in transitional disks

    SciTech Connect

    Keane, J. T.; Pascucci, I.; Espaillat, C.; Woitke, P.; Andrews, S.; Kamp, I.; Thi, W.-F.; Meeus, G.; Dent, W. R. F.

    2014-06-01

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.

  6. Solar disk sextant optical configuration

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Sofia, S.

    1984-01-01

    In this paper the performance of a plausible configuration for the solar disk sextant, an instrument to be used to monitor the solar diameter, is evaluated. Overall system requirements are evaluated, and tolerable uncertainties are obtained. It is concluded that by using a beam splitting wedge, a folded optics design can be used to measure the solar diameter to an accuracy of 10 to the -6th, despite the greater aberrations present in such optical systems.

  7. Development report for dual-burst disks

    SciTech Connect

    Fusco, A.M.

    1996-11-01

    Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.

  8. Multiscale study of the boron and carbon behavior in the fracture zone of the rapidly quenched nickel-based superalloy by the nuclear physics methods of the track and activation autoradiography

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2016-04-01

    The results of the study of the fracture zone of the rapidly quenched nickel-based superalloy after tensile tests are presented. The main attention was attended to the multiscale investigation of boron and carbon distribution in the area of the cracks propagation by the direct nuclear physics methods of the track and activation autoradiography. Tensile tests were performed at the temperatures up to 1150 °C. The nuclear reactor MEPhI IRT-2000 and cyclotron were applied for the autoradiography studies. Significant depleting of boron in the fracture zone which was revealed can be explained due to the intensive moving of the dislocation.

  9. Circumstellar Debris Disks and SIRTF

    NASA Astrophysics Data System (ADS)

    Backman, D. E.

    2000-05-01

    At least 15% of nearby main sequence stars are found to have far-IR excesses representing thermal emission from optically thin dust clouds. Famous prototypes of this class of objects include the Vega and beta Pictoris systems. Because destruction times for observed grains are much shorter than the system ages, the dust is known to be ``2nd generation" material released recently from hypothetical asteroid or comet parent bodies and not primordial grains persisting since system formation. The best local analogs to the main sequence debris disk systems are the inner solar system's zodiacal dust cloud and a presumed dust component of the Kuiper Belt. Planetary masses are probably required to drive planetesimals into shattering collisions and star-grazing orbits that produce dust, thus debris disks may allow inference of presence and location of planets. SIRTF will give us much-improved understanding of the frequency of debris disks around field main sequence stars, as well as the amount, size and composition of dust grains versus stellar age. This will help place our solar system into context of evolution of planetary material around normal stars.

  10. Digital droplet PCR on disk.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Geltman, Marcel; Schwemmer, Frank; Wadle, Simon; Domínguez-Garrido, Elena; López, María; Cervera-Acedo, Cristina; Santibáñez, Paula; von Stetten, Felix; Zengerle, Roland; Paust, Nils

    2016-01-01

    Existing systems for digital droplet PCR (ddPCR) either suffer from low integration or are difficult to introduce to mass fabrication. Here we present an integrated system that is compatible to mass fabrication and combines emulsification, PCR, and fluorescence readout in a single chamber within a disposable cartridge (disk). Droplets are generated by injecting the sample into fluorinated oil via centrifugal step emulsification. The resulting emulsion is aligned in the PCR and readout zone by capillary action. During thermocycling, gas bubbles generated by degassing are removed by capillary driven transport through tapered regions in the PCR chamber. Thereby, the positioning of the emulsion within the readout zone of the PCR chamber is ensured at any time and no bubbles are present during readout. Manual handling of the disk solely requires pipetting of oil and PCR mix into the inlet structures, placing the disk into the thermocycler and subsequently into a microarray scanner. The functionality of the ddPCR process chain is demonstrated by quantitative detection of the cystic fibrosis causing mutation p.Phe508del, which is of interest for non-invasive prenatal testing (NIPT). The mutation was detected in a concentration range spanning four orders of magnitude. We envision that this work will lay the base for the development of highly integrated sample-to-digital-answer PCR systems that can be employed in routine clinical diagnosis. PMID:26610263

  11. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  12. Fullerenes and disk-fullerenes

    NASA Astrophysics Data System (ADS)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  13. Thin disk lasers: history and prospects

    NASA Astrophysics Data System (ADS)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  14. Foundations of Black Hole Accretion Disk Theory

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Fragile, P. Chris

    2013-12-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  15. A cool disk in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Liu, B. F.; Meyer, F.; Meyer-Hofmeister, E.

    2004-07-01

    We study the possibility of a cool disk existing in the Galactic Center in the framework of the disk-corona evaporation/condensation model. Assuming an inactive disk near the gravitational capture distance left over from an earlier evolutionary stage, a hot corona should form above the disk since there is a continuous supply of hot gas from stellar winds of the close-by massive stars. We study the interaction between the disk and the corona. Whether the cool disk can survive depends on the mass exchange between disk and corona which is determined by the energy and pressure balance. If evaporation is the dominant process and the rate is larger than the Bondi accretion rate in the Galactic Center, the disk will be depleted within a certain time and no persistent disk will exist. On the other hand, if the interaction results in hot gas steadily condensing into the disk, an inactive cool disk with little gas accreting towards the central black hole might survive in the Galactic Center. For this case we further investigate the Bremsstrahlung radiation from the hot corona and compare it with the observed X-ray luminosity. Our model shows that, for standard viscosity in the corona (α=0.3), the mass evaporation rate is much higher than the Bondi accretion rate and the coronal density is much larger than that inferred from Chandra observations. An inactive disk can not survive such strong evaporation. For small viscosity (α ⪉ 0.07) we find condensation solutions. But detailed coronal structure computations show that in this case there is too much X-ray radiation from the corona to be in agreement with the observations. From this modeling we conclude that there should be no thin/inactive disk presently in the Galactic Center. However we do not exclude that the alternative non-radiative model of Nayakshin (\\cite{Nayakshin04}) might instead be realized in nature and shortly discuss this question.}

  16. Secular Planetary Perturbations in Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  17. Generalized Similarity for Accretion/Decretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  18. DUSTY DISKS AROUND WHITE DWARFS. I. ORIGIN OF DEBRIS DISKS

    SciTech Connect

    Dong Ruobing; Wang Yan; Lin, D. N. C.; Liu, X.-W. E-mail: yuw123@psu.ed E-mail: liuxw@bac.pku.edu.c

    2010-06-01

    A significant fraction of the mature FGK stars have cool dusty disks at least an order of magnitude brighter than the solar system's outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper-Belt objects. At least 10% of solar-type stars also bear gas giant planets. The fraction of stars with known gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense asymptotic giant branch mass-loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their migration paths, gas giant planets capture and sweep up sub-km-size planetesimals onto their mean-motion resonances. These planetesimals also acquire modest eccentricities which are determined by the mass of the perturbing planets, and the rate and speed of stellar mass loss. The swept-up planetesimals undergo disruptive collisions which lead to the production of grains with an extended size range. The radiation drag on these particles is ineffective against the planets' resonant barrier and they form 30-50 AU size rings which can effectively reprocess the stellar irradiation in the form of FIR continuum. We identify the recently discovered dust ring around the white dwarf WD 2226-210 at the center of the Helix nebula as a prototype of such disks and suggest such rings may be common.

  19. Investigation of the in-vitro loading on an artificial spinal disk prosthesis

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Pancholi, M. P.; Yeh, J.

    2009-07-01

    Spinal diseases imposes considerable burden to both patients and society. In recent years, much surgical efforts have been made in advancing the treatment of neck and back pain. Of particular prominence is the increasing clinical acceptance and use of intervertebral artificial disk prosthesis for the treatment of discogenic back pain. Despite this increased use of such disks, their in-vivo monitoring remains rudimentary. In an effort to develop an intelligent artificial spinal disk where the in-vivo loading of the spine can by studied for the first time an experimental set up has been created in order to initially study the in-vitro loading on an artificial disc prosthesis. Eight strain gauges and two piezoresistive sensors were used and placed suitably in the artificial disk prosthesis. The results from the in-vitro loading showed linear relationship between loading and the outputs from the sensors with good repeatability and less hysteresis.

  20. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  1. An Observational Perspective of Transitional Disks

    NASA Astrophysics Data System (ADS)

    Espaillat, C.; Muzerolle, J.; Najita, J.; Andrews, S.; Zhu, Z.; Calvet, N.; Kraus, S.; Hashimoto, J.; Kraus, A.; D'Alessio, P.

    Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about to undergo its next burst of growth as the Atacama Large Millimeter/submillimeter Array (ALMA) reaches its full potential. We discuss what we have learned about transitional disks from SEDs, color-color diagrams, and imaging in the (sub)millimeter and infrared. We note the limitations of these techniques, particularly with respect to the sizes of the clearings currently detectable, and highlight the need for pairing broadband SEDs with multi-wavelength images to paint a more detailed picture of transitional disk structure. We review the gas in transitional disks, keeping in mind that future observations with ALMA will give us unprecedented access to gas in disks, and also observed infrared variability pointing to variable transitional disk structure, which may have implications for disks in general. We then distill the observations into constraints for the main disk-clearing mechanisms proposed to date (i.e., photoevaporation, grain growth, and companions) and

  2. Relativistic slim disks with vertical structure

    NASA Astrophysics Data System (ADS)

    Sądowski, A.; Abramowicz, M.; Bursa, M.; Kluźniak, W.; Lasota, J.-P.; Różańska, A.

    2011-03-01

    We report on a scheme for incorporating vertical radiative energy transport into a fully relativistic, Kerr-metric model of optically thick, advective, transonic alpha disks. Our code couples the radial and vertical equations of the accretion disk. The flux was computed in the diffusion approximation, and convection is included in the mixing-length approximation. We present the detailed structure of this "two-dimensional" slim-disk model for α = 0.01. We then calculated the emergent spectra integrated over the disk surface. The values of surface density, radial velocity, and the photospheric height for these models differ by 20%-30% from those obtained in the polytropic, height-averaged slim disk model considered previously. However, the emission profiles and the resulting spectra are quite similar for both types of models. The effective optical depth of the slim disk becomes lower than unity for high values of the alpha parameter and for high accretion rates.

  3. Gas Rich Mergers in Disk Formation

    NASA Astrophysics Data System (ADS)

    Brook, C. B.; Veilleux, V.; Kawata, D.; Martel, H.; Gibson, B. K.

    In order to explain disk galaxy formation within the hierarchical structure formation, it seems that gas rich mergers must play an important role. We review here our previous studies which have shown the importance of mergers at high redshift being gas rich, in the formation of both the stellar halo and thick disk components of disk galaxies. Regulation of star formation in the building blocks of our galaxy is required to form a low mass low metallicity stellar halo. This regulation results in high redshift, gas rich mergers during which the thick disk forms. In these proceedings, we categorise stars from our simulated disk galaxy into thin and thick disk components by using the Toomre diagram. Rotation velocity, metallicity and age histograms of the two populations are presented, along with alpha element abundances (oxygen, silicone, magnesium), age-height above the plane, age-radius, metallicity-height, and metalicity-radius gradients.

  4. Vector diffraction analysis of optical disk readout.

    PubMed

    Cheng, X; Jia, H; Xu, D

    2000-12-01

    The optical disk readout signals from ROM disks are presented by use of a rigorous three-dimensional vector diffraction method. The optical disk is modeled as a crossed metal grating without restriction on the form of the information marks, and the permittivity of the metal is taken into account. The diffracted field from the disk is obtained by means of decomposing the focused incident beam into a spectrum of plane waves and then calculating the diffracted plane waves for each respective incident component. The readout signal is obtained by integration of the energy-flux density of the diffracted field according to the detection scheme of the optical disk system. A typical digital versatile disk (DVD) system is applied with this theory, and the result is far from that of scalar diffraction theory. PMID:18354657

  5. First Image of the disk

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2014-09-01

    In 1983 IRAS detected significant infrared excess around four relatively nearby stars: ! Lyrae, ! Piscis Austrini, " Eridani, and # Pictoris. Before the IRAS results had been officially released, Frank Low asked me if the LPL coronagraph (used in the 1980 Saturn ring-plane crossing) might be able to detect the source of the infrared excess. Of the four stars, all but # Pictoris were easily observable from Tucson. I told Frank I would give it a try. Ultimately, the coronagraphic observations failed to reveal anything around the three stars that were observable from Tucson. In April 1984 Rich Terrile and I had an observing run on the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We were using the LPL coronagraph and a Caltech CCD camera to examine the close environment around Uranus and Neptune in preparation for the upcoming Voyager 2 encounters with the two planets. I used this opportunity to observe the fourth IRAS star, # Pictoris. A small window was available for me to observe # Pictoris each night before our observations of the planets could begin. In those days image processing capability did not exist at Las Campanas, and so the circumstellar disk around the star was not seen until we returned home and processed the images at LPL and JPL. During follow-up observations the following year I was able to see the disk visually in the coronagraph's eyepiece. I've sometimes wondered how many astronomers have actually seen a circumstellar disk at the eyepiece of a telescope.

  6. Heating and Cooling Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N. J.

    2011-05-01

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  7. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  8. Forced response of mistuned bladed disk assemblies

    NASA Technical Reports Server (NTRS)

    Watson, Brian C.; Kamat, Manohar P.; Murthy, Durbha V.

    1993-01-01

    A complete analytic model of mistuned bladed disk assemblies, designed to simulate the dynamical behavior of these systems, is analyzed. The model incorporates a generalized method for describing the mistuning of the assembly through the introduction of specific mistuning modes. The model is used to develop a computational bladed disk assembly model for a series of parametric studies. Results are presented demonstrating that the response amplitudes of bladed disk assemblies depend both on the excitation mode and on the mistune mode.

  9. Do elliptical galaxies have thick disks?

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Wright, A. E.

    1990-01-01

    The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.

  10. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-10-10

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old ({approx}>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  11. ON THE FORMATION OF GALACTIC THICK DISKS

    SciTech Connect

    Minchev, I.; Streich, D.; Scannapieco, C.; De Jong, R. S.; Steinmetz, M.; Martig, M.

    2015-05-01

    Recent spectroscopic observations in the Milky Way suggest that the chemically defined thick disk (stars that have high [α/Fe] ratios and are thus old) has a significantly smaller scale-length than the thin disk. This is in apparent contradiction with observations of external edge-on galaxies, where the thin and thick components have comparable scale-lengths. Moreover, while observed disks do not flare (scale-height does not increase with radius), numerical simulations suggest that disk flaring is unavoidable, resulting from both environmental effects and secular evolution. Here we address these problems by studying two different suites of simulated galactic disks formed in the cosmological context. We show that the scale-heights of coeval populations always increase with radius. However, the total population can be decomposed morphologically into thin and thick disks, which do not flare. We relate this to the disk inside-out formation, where younger populations have increasingly larger scale-lengths and flare at progressively larger radii. In this new picture, thick disks are composed of the imbedded flares of mono-age stellar populations. Assuming that disks form inside out, we predict that morphologically defined thick disks must show a decrease in age (or [α/Fe] ratios) with radius and that coeval populations should always flare. This also explains the observed inversion in the metallicity and [α/Fe] gradients for stars away from the disk midplane in the Milky Way. The results of this work are directly linked to, and can be seen as evidence of, inside-out disk growth.

  12. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  13. Uncommon Manifestations of Intervertebral Disk Pathologic Conditions.

    PubMed

    Diehn, Felix E; Maus, Timothy P; Morris, Jonathan M; Carr, Carrie M; Kotsenas, Amy L; Luetmer, Patrick H; Lehman, Vance T; Thielen, Kent R; Nassr, Ahmad; Wald, John T

    2016-01-01

    Beyond the familiar disk herniations with typical clinical features, intervertebral disk pathologic conditions can have a wide spectrum of imaging and clinical manifestations. The goal of this review is to illustrate and discuss unusual manifestations of intervertebral disk pathologic conditions that radiologists may encounter, including disk herniations in unusual locations, those with atypical imaging features, and those with uncommon pathophysiologic findings. Examples of atypical disk herniations presented include dorsal epidural, intradural, symptomatic thoracic (including giant calcified), extreme lateral (retroperitoneal), fluorine 18 fluorodeoxyglucose-avid, acute intravertebral (Schmorl node), and massive lumbar disk herniations. Examples of atypical pathophysiologic conditions covered are discal cysts, fibrocartilaginous emboli to the spinal cord, tiny calcified disks or disk-level spiculated osteophytes causing spinal cerebrospinal fluid (CSF) leak and intracranial hypotension, and pediatric acute calcific discitis. This broad gamut of disease includes a variety of sizes of disk pathologic conditions, from the tiny (eg, the minuscule calcified disks causing high-flow CSF leaks) to the extremely large (eg, giant calcified thoracic intradural disk herniations causing myelopathy). A spectrum of clinical acuity is represented, from hyperacute fibrocartilaginous emboli causing spinal cord infarct, to acute Schmorl nodes, to chronic intradural herniations. The entities included are characterized by a range of clinical courses, from the typically devastating cord infarct caused by fibrocartilaginous emboli, to the usually spontaneously resolving pediatric acute calcific discitis. Several conditions have important differential diagnostic considerations, and others have relatively diagnostic imaging findings. The pathophysiologic findings are well understood for some of these entities and poorly defined for others. Radiologists' knowledge of this broad scope of

  14. Magnetic Forces in an Isopedic Disk

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Li, Zhi-Yun

    1997-01-01

    We consider the magnetic forces in electrically conducting thin disks threaded by magnetic fields originating in the external (interstellar) medium. We focus on disks that have dimensionless ratios λ of the mass to flux that are spatially constant, a condition that we term isopedic. For arbitrary distributions of the surface density Σ (which can be nonaxisymmetric and time dependent), we show that the magnetic tension exerts a force in the plane of the disk equal to -1/λ2 times the self-gravitational force. In addition, if the disk maintains magnetostatic equilibrium in the vertical direction, the magnetic pressure, integrated over the z-height of the disk, may be approximated as (1 + η2)/(λ2 + η2) times the gas pressure integrated over z, where η ≡ f||/2πGΣ and f|| is the component of the local gravitational field parallel to the plane of the disk. We apply these results to the problem of the stability of magnetized isothermal disks to gravitational fragmentation into subcondensations of a size comparable to the vertical scale height of the disk. Contrary to common belief, such dynamical fragmentation probably does not occur. In particular, the case of the magnetized singular isothermal disk undergoes not dynamical fragmentation into many subcondensations, but inside-out collapse into a single compact object, a self similar problem that is studied in a companion paper (Li & Shu 1997).

  15. Debris Disks Around Nearby Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Liu, Michael

    2006-07-01

    We propose to obtain HST/ACS F606W coronagraphic imaging of two young {10-50 Myr}, nearby {25-55 pc} M dwarfs to resolve their debris disks in scattered light. Little is known about debris disks around M dwarfs, as very few examples are known and only one, the AU Mic debris disk, has been spatially resolved thus far. IR/sub-mm photometry of our targets indicate large quantities of exceptionally cold dust, comparable to the prototype AU Mic system, and make them excellent candidates for resolved studies with physical resolutions of 1-2 AU. HST/ACS provides an excellent capability for detection of disks in scattered light. Modeling the disk images will allow us to quantify the radial and vertical structure and to search for disk sub-structure, a potential probe of the planet formation process in these young systems. Our program can expand the census of young resolved debris disks, of which very few are currently known. M dwarfs have been largely over-looked in myriad imaging searches: our program will complement the many current programs focusing on the higher-mass AFGK stars. Because our targets belong to nearby young moving groups with known resolved disks around higher mass stars, a key potential outcome of our program is comparative study of coeval debris disks over a range of stellar masses.

  16. Disk's Spiral Arms Point to Possible Planets

    NASA Video Gallery

    Simulations of young stellar systems suggest that planets embedded in a circumstellar disk can produce many distinctive structures, including rings, gaps and spiral arms. This video compares comput...

  17. Single-crystal superalloy drives turbine advances

    SciTech Connect

    Harris, K.

    1995-04-01

    In searching for ways to improve power-to-weight ratios and fuel efficiency, gas turbine engine manufacturers invest heavily in the development and testing of new alloys. Their goal is to find turbine airfoil materials that can handle the higher operating temperatures, increased component stresses, and faster rotational speeds that are needed to increase turbine performance. Major turbine engine manufacturers find they can achieve these objectives through ultra-high performance, single-crystal superalloys -- a group of nickel-base materials that exhibit outstanding strength and surface stability at temperatures up to 85{percent} of their melting points. One such superalloy is CMSX-4, co-engineered by ingot maker Cannon-Muskegon and turbine engine manufacturers Rolls-Royce and Allison Engine Company. It is currently being used in such applications as Allison`s advanced airfoil programs.

  18. On the simple actuator disk

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    2003-11-01

    The standard textbook model of a helicopter rotor in vertical translation, a disk loaded with a uniform pressure jump in inviscid fluid, is revisited in search of correct descriptions of the far-field velocity and of the vortex sheet, allowing a rigorous control-volume analysis. The translation rate is not required to be large compared with the induced velocity. The classical results for induced power are unchanged, and now have a strong foundation: they are exact within the steady inviscid problem statement, instead of depending on a quasi-one-dimensional approximation as in the literature. Conversely, even with a uniform pressure jump the induced velocity is far from uniform over the disk, again in conflict with common beliefs and with any quasi-one-dimensional argument: the flow is upwards near the rim, both inside and outside it. The cross-section of the vortex sheet probably begins with a 45° spiral, as opposed to the smooth funnel shape that has been sketched, in the literature and below. A viscous numerical solution supports this conjecture. Plausible boundaries between the translation rates that produce the two ‘clean’ streamtube flow types, namely climb/hover and rapid descent, and those in-between that produce the vortex-ring state are also discussed.

  19. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    SciTech Connect

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernandez, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J. E-mail: sandrews@cfa.harvard.edu E-mail: dwilner@cfa.harvard.edu E-mail: ncalvet@umich.edu E-mail: Elise.Furlan@jpl.nasa.gov E-mail: muzerol@stsci.edu

    2012-03-10

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  20. STELLAR-MASS-DEPENDENT DISK STRUCTURE IN COEVAL PLANET-FORMING DISKS

    SciTech Connect

    Szucs, Laszlo; Apai, Daniel; Pascucci, Ilaria; Dullemond, Cornelis P. E-mail: apai@stsci.ed E-mail: dullemon@mpia.d

    2010-09-10

    Previous studies suggest that the planet-forming disks around very low mass stars/brown dwarfs may be flatter than those around more massive stars, in contrast to model predictions of larger scale heights for gas-disks around lower-mass stars. We conducted a statistically robust study to determine whether there is evidence for stellar-mass-dependent disk structure in planet-forming disks. We find a statistically significant difference in the Spitzer/IRAC color distributions of disks around very low mass and low mass stars all belonging to the same star-forming region, the Chamaeleon I star-forming region. We show that self-consistently calculated flared disk models cannot fit the median spectral energy distributions (SEDs) of the two groups. These SEDs can only be explained by flatter disk models, consistent with the effect of dust settling in disks. We find that, relative to the disk structure predicted for flared disks, the required reduction in disk scale height is anti-correlated with the stellar mass; i.e., disks around lower-mass stars are flatter. Our results show that the initial and boundary conditions of planet formation are stellar-mass-dependent, an important finding that must be considered in planet formation models.