Science.gov

Sample records for advanced nodal methods

  1. Advanced computational methods for nodal diffusion, Monte Carlo, and S{sub n} problems. Final Report

    SciTech Connect

    1994-12-31

    The work addresses basic computational difficulties that arise in the numerical simulation of neutral particle radiation transport: discretized radiation transport problems, iterative methods, selection of parameters, and extension of current algorithms.

  2. Arbitrarily high order nodal and characteristic methods

    SciTech Connect

    Azmy, Y.Y.

    1994-09-01

    The quest for higher computational efficiency initially led researchers in the neutron transport area to develop and implement high-order approximations for solving the linear Boltzmann equational. This drive aimed at achieving higher accuracy on coarse meshes, thereby resulting in a net savings of computational resources represented by execution time and memory. Many endeavors succeeded in reaching this goal, producing a variety of elegent, albeit complicated, formalisms, that proved extremely accurate and efficient in solving test, as well as practical applications, problems. The two main classes of high order transport methods that recieved the most attention are the Nodal and Characteristic methods. A de facto linear order standard for the spatial approximation (even though Quadratic Nodal Methods were also considered) was dictated by the algebraic complexity of the derivation of the discrete variable equations, the programming complexity of implementing and verifying them in codes, and limitations on computational resources available to run such codes. The significant advances in computational resources in terms of hardware capacity and speed, as well as architectural innovations such as vector and parallel processing, all but eliminated the third (above) obstacle towards the development and implementation of even higher order methods. The algebraic and programming complexities, on the other hand, were alleviated to some extent by the development of Arbitrarily High Order Transport methods of the Nodal and the Characteristic types, which are discussed in this report.

  3. Heterogeneous treatment in the variational nodal method

    SciTech Connect

    Fanning, T.H.; Palmiotti, G.

    1995-06-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations.

  4. Experience with advanced nodal codes at YAEC

    SciTech Connect

    Cacciapouti, R.J.

    1990-01-01

    Yankee Atomic Electric Company (YAEC) has been performing reload licensing analysis since 1969. The basic pressurized water reactor (PWR) methodology involves the use of LEOPARD for cross-section generation, PDQ for radial power distributions and integral control rod worth, and SIMULATE for axial power distributions and differential control rod worth. In 1980, YAEC began performing reload licensing analysis for the Vermont Yankee boiling water reactor (BWR). The basic BWR methodology involves the use of CASMO for cross-section generation and SIMULATE for three-dimensional power distributions. In 1986, YAEC began investigating the use of CASMO-3 for cross-section generation and the advanced nodal code SIMULATE-3 for power distribution analysis. Based on the evaluation, the CASMO-3/SIMULATE-3 methodology satisfied all requirements. After careful consideration, the cost of implementing the new methodology is expected to be offset by reduced computing costs, improved engineering productivity, and fuel-cycle performance gains.

  5. Improving the Accuracy of High-Order Nodal Transport Methods

    SciTech Connect

    Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.

    1999-09-27

    This paper outlines some recent advances towards improving the accuracy of neutron transport calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering adverse effects from round-off error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one ordeq (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively refining the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.

  6. Improving the Accuracy of High-Order Nodal Transport Methods

    SciTech Connect

    Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.

    1999-09-27

    This paper outlines some recent advances towards improving the accuracy of neutron calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These transport advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering from pollution from round-off, error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one order; (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively reftig the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.

  7. Static benchmarking of the NESTLE advanced nodal code

    SciTech Connect

    Mosteller, R.D.

    1997-05-01

    Results from the NESTLE advanced nodal code are presented for multidimensional numerical benchmarks representing four different types of reactors, and predictions from NESTLE are compared with measured data from pressurized water reactors (PWRs). The numerical benchmarks include cases representative of PWRs, boiling water reactors (BWRs), CANDU heavy water reactors (HWRs), and high-temperature gas-cooled reactors (HTGRs). The measured PWR data include critical soluble boron concentrations and isothermal temperature coefficients of reactivity. The results demonstrate that NESTLE correctly solves the multigroup diffusion equations for both Cartesian and hexagonal geometries, that it reliably calculates k{sub eff} and reactivity coefficients for PWRs, and that--subsequent to the incorporation of additional thermal-hydraulic models--it will be able to perform accurate calculations for the corresponding parameters in BWRs, HWRs, and HTGRs as well.

  8. On-line application of the PANTHER advanced nodal code

    SciTech Connect

    Hutt, P.K.; Knight, M.P. )

    1992-01-01

    Over the last few years, Nuclear Electric has developed an integrated core performance code package for both light water reactors (LWRs) and advanced gas-cooled reactors (AGRs) that can perform a comprehensive range of calculations for fuel cycle design, safety analysis, and on-line operational support for such plants. The package consists of the following codes: WIMS for lattice physics, PANTHER whole reactor nodal flux and AGR thermal hydraulics, VIPRE for LWR thermal hydraulics, and ENIGMA for fuel performance. These codes are integrated within a UNIX-based interactive system called the Reactor Physics Workbench (RPW), which provides an interactive graphic user interface and quality assurance records/data management. The RPW can also control calculational sequences and data flows. The package has been designed to run both off-line and on-line accessing plant data through the RPW.

  9. A transient, quadratic nodal method for triangular-Z geometry

    SciTech Connect

    DeLorey, T.F.

    1993-06-01

    Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.

  10. Impact of Incidental Irradiation on Clinically Uninvolved Nodal Regions in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Involved-Field Radiation Therapy: Does Incidental Irradiation Contribute to the Low Incidence of Elective Nodal Failure?

    SciTech Connect

    Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi

    2010-06-01

    Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.

  11. Polymorphic nodal elements and their application in discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Gassner, Gregor J.; Lörcher, Frieder; Munz, Claus-Dieter; Hesthaven, Jan S.

    2009-03-01

    In this work, we discuss two different but related aspects of the development of efficient discontinuous Galerkin methods on hybrid element grids for the computational modeling of gas dynamics in complex geometries or with adapted grids. In the first part, a recursive construction of different nodal sets for hp finite elements is presented. They share the property that the nodes along the sides of the two-dimensional elements and along the edges of the three-dimensional elements are the Legendre-Gauss-Lobatto points. The different nodal elements are evaluated by computing the Lebesgue constants of the corresponding Vandermonde matrix. In the second part, these nodal elements are applied within the modal discontinuous Galerkin framework. We still use a modal based formulation, but introduce a nodal based integration technique to reduce computational cost in the spirit of pseudospectral methods. We illustrate the performance of the scheme on several large scale applications and discuss its use in a recently developed space-time expansion discontinuous Galerkin scheme.

  12. Nodal discontinuous Galerkin methods on graphics processors

    NASA Astrophysics Data System (ADS)

    Klöckner, A.; Warburton, T.; Bridge, J.; Hesthaven, J. S.

    2009-11-01

    Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in an element-local way, with weak penalty-based element-to-element coupling. The resulting locality in memory access is one of the factors that enables DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG's high-order nature lets it require fewer data points per represented wavelength and hence fewer memory accesses, in exchange for higher arithmetic intensity. Both of these factors work significantly in favor of a GPU implementation of DG. Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell's equations on a general 3D unstructured grid by a factor of around 50 relative to a serial computation on a current-generation CPU. In many cases, our algorithms exhibit full use of the device's available memory bandwidth. Example computations achieve and surpass 200 gigaflops/s of net application-level floating point work. In this article, we describe and derive the techniques used to reach this level of performance. In addition, we present comprehensive data on the accuracy and runtime behavior of the method.

  13. Clinically Apparent Internal Mammary Nodal Metastasis in Patients With Advanced Breast Cancer: Incidence and Local Control

    SciTech Connect

    Zhang Yujing; Oh, Julia L.; Whitman, Gary J.

    2010-07-15

    Purpose: To investigate the incidence and local control of internal mammary lymph node metastases (IMN+) in patients with clinical N2 or N3 locally advanced breast cancer. Methods and Materials: We retrospectively reviewed the records of 809 breast cancer patients diagnosed with advanced nodal disease (clinical N2-3) who received radiation treatment at our institution from January 2000 December 2006. Patients were considered IMN+ on the basis of imaging studies. Results: We identified 112 of 809 patients who presented with IMN+ disease (13.8%) detected on ultrasound, computed tomography (CT), positron emission tomography/CT (PET/CT), and/or magnetic resonance imaging (MRI) studies. All 112 patients with IMN+ disease received anthracycline and taxane-based chemotherapy. Neoadjuvant chemotherapy (NCT) resulted in a complete response (CR) on imaging studies of IMN disease in 72.1% of patients. Excluding 16 patients with progressive disease, 96 patients received adjuvant radiation to the breast or the chest wall and the regional lymphatics including the IMN chain with a median dose of 60 Gy if the internal mammary lymph nodes normalized after chemotherapy and 66 Gy if they did not. The median follow-up of surviving patients was 41 months (8-118 months). For the 96 patients able to complete curative therapy, the actuarial 5-year IMN control rate, locoregional control, overall survival, and disease-free survival were 89%, 80%, 76%, and 56%. Conclusion: Over ten percent of patients with advanced nodal disease will have IMN metastases on imaging studies. Multimodality therapy including IMN irradiation achieves excellent rates of control in the IMN region and a DFS of more than 50% after curative treatment.

  14. Relation between finite element methods and nodal methods in transport theory

    SciTech Connect

    Walters, W.F.

    1985-01-01

    This paper examines the relationship between nodal methods and finite-element methods for solving the discrete-ordinates form of the transport equation in x-y geometry. Specifically, we will examine the relation of three finite-element schemes to the linear-linear (LL) and linear-nodal (LN) nodal schemes. The three finite-element schemes are the linear-continuous-diamond-difference (DD) scheme, the linear-discontinuous (LD) scheme, and the quadratic-discontinuous (QD) scheme. A brief derivation of the (LL) and (LN) nodal schemes is given in the third section of this paper. The approximations that cause the LL scheme to reduce to the DD, LD, and QD schemes are then indicated. An extremely simple method of deriving the finite-element schemes is then introduced.

  15. Numerical divergence effects of equivalence theory in the nodal expansion method

    SciTech Connect

    Zika, M.R.; Downar, T.J. )

    1993-11-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.

  16. Evaluation of the use of nodal methods for MTR neutronic analysis

    SciTech Connect

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.

  17. A quasi-static polynomial nodal method for nuclear reactor analysis

    SciTech Connect

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  18. A coarse-mesh nodal method-diffusive-mesh finite difference method

    SciTech Connect

    Joo, H.; Nichols, W.R.

    1994-05-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  19. Nodal Analysis Optimization Based on the Use of Virtual Current Sources: A Powerful New Pedagogical Method

    ERIC Educational Resources Information Center

    Chatzarakis, G. E.

    2009-01-01

    This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…

  20. A Monte Carlo based nodal diffusion model for criticality analysis, and, Application of high-order cross section homogenization method to two-group nodal diffusion

    NASA Astrophysics Data System (ADS)

    Ilas, Germina

    In the first part, an accurate and fast computational method is presented as an alternative to the Monte Carlo or deterministic transport theory codes currently used to determine the subcriticality of spent fuel storage lattices. The method is capable of analyzing storage configurations with simple or complex lattice cell geometry. It is developed based on two-group nodal diffusion theory, with the nodal cross sections and discontinuity factors determined from continuous-energy Monte Carlo simulations of each unique node (spent fuel assembly type). Three different approaches are developed to estimate the node-averaged diffusion coefficient. The applicability and the accuracy of the nodal method are assessed in two-dimensional geometry through several benchmark configurations typical at Savannah River Site. It is shown that the multiplication constant of the analyzed configurations is within 1% of the MCNP results. In the second part, the high-order cross section homogenization method, recently developed by McKinley and Rahnema, is implemented in the context of two-group nodal diffusion theory. The method corrects the generalized equivalence theory homogenization parameters for the effect of the core environment. The reconstructed fine-mesh (fuel pin) flux and power distributions are a natural byproduct of this method. The method was not tested for multigroup problems, where it was assumed that the multigroup flux expansion in terms of the perturbation parameter is a convergent series. Here the applicability of the method to two-group problems is studied, and it is shown that the perturbation expansion series converges for the multigroup case. A two-group nodal diffusion code with a bilinear intra-nodal flux shape is developed for the implementation of the high-order homogenization method in the context of the generalized equivalence theory. The method is tested by using as a benchmark a core configuration typical of a BWR in slab geometry, which has large

  1. NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method

    NASA Astrophysics Data System (ADS)

    Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto

    2014-06-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.

  2. A nodal triangle-based spectral element method for the shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Giraldo, F. X.; Warburton, T.

    2005-07-01

    A nodal triangle-based spectral element (SE) method for the shallow water equations on the sphere is presented. The original SE method uses quadrilateral elements and high-order nodal Lagrange polynomials, constructed from a tensor-product of the Legendre-Gauss-Lobatto points. In this work, we construct the high-order Lagrange polynomials directly on the triangle using nodal sets obtained from the electrostatics principle [J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM Journal on Numerical Analysis 35 (1998) 655-676] and Fekete points [M.A. Taylor, B.A. Wingate, R.E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM Journal on Numerical Analysis 38 (2000) 1707-1720]. These points have good approximation properties and far better Lebesgue constants than any other nodal set derived for the triangle. By employing triangular elements as the basic building-blocks of the SE method and the Cartesian coordinate form of the equations, we can use any grid imaginable including adaptive unstructured grids. Results for six test cases are presented to confirm the accuracy and stability of the method. The results show that the triangle-based SE method yields the expected exponential convergence and that it can be more accurate than the quadrilateral-based SE method even while using 30-60% fewer grid points especially when adaptive grids are used to align the grid with the flow direction. However, at the moment, the quadrilateral-based SE method is twice as fast as the triangle-based SE method because the latter does not yield a diagonal mass matrix.

  3. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    SciTech Connect

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry and cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.

  4. Nodal line-scanning method for maskless optical lithography.

    PubMed

    Johnson, Kenneth C

    2014-12-01

    Maskless optical lithography can improve the economics and performance of multi-patterning by eliminating photomasks and by simplifying the lithography exposure technology. It could also potentially eliminate the need for multi-patterning by enabling dual-wavelength, nonlinear optical recording methods. High-resolution, maskless patterning can be achieved with a scanned-spot-array system in which modulated, diffraction-limited focus spots write the exposure pattern. Each spot has a central zero-intensity interference null along a line parallel to the scan direction for printing sub-resolution line patterns. High throughput can be achieved at the comparatively low repetition rate of excimer lasers (e.g., 6 kHz). The low repetition rate simplifies the optical modulation technology, enabling the use of supplemental modulation controls including dynamic gray-level and beam-centration controls for resolution enhancement.

  5. Nodal tumor response according to the count of peripheral blood lymphocyte subpopulations during preoperative chemoradiotherapy in locally advanced rectal cancer

    PubMed Central

    Heo, Jaesung; Oh, Young-Taek; Noh, O Kyu; Chun, Mison; Park, Jun-Eun; Cho, Sung-Ran

    2016-01-01

    Purpose The objective of this prospective study was to evaluate the relationship between the circulating lymphocyte subpopulation counts during preoperative chemoradiotherapy (CRT) and tumor response in locally advanced rectal cancer. Materials and Methods From August 2015 to June 2016, 10 patients treated with preoperative CRT followed by surgery were enrolled. Patients received conventional fractionated radiotherapy (50.4 Gy) with fluorouracil-based chemotherapy. Surgical resection was performed at 4 to 8 weeks after the completion of preoperative CRT. The absolute blood lymphocyte subpopulation was obtained prior to and after 4 weeks of CRT. We analyzed the association between a tumor response and change in the lymphocyte subpopulation during CRT. Results Among 10 patients, 2 (20%) had evidence of pathologic complete response. In 8 patients with clinically node positive, 4 (50%) had nodal tumor response. All lymphocyte subpopulation counts at 4 weeks after CRT were significantly lower than those observed during pretreatment (p < 0.01). A high decrease in natural killer (NK) cell, count during CRT (baseline cell count − cell count at 4 weeks) was associated with node down staging (p = 0.034). Conclusion Our results suggest that the change of lymphocyte subset to preoperative CRT may be a predictive factor for tumor response in rectal cancer. PMID:27927012

  6. Advanced Nodal P3/SP3 Axial Transport Solvers for the MPACT 2D/1D Scheme

    SciTech Connect

    Stimpson, Shane G; Collins, Benjamin S

    2015-01-01

    As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P3/SP3 solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P3/SP3 approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP3 solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP3 solver is still under development, it is intended to resolve the issues with HY-NEM-SP3 but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P3 solver to generate the second moment cell-averaged scalar flux.

  7. A study of the radiative transfer equation using a spherical harmonics-nodal collocation method

    NASA Astrophysics Data System (ADS)

    Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.

    2017-03-01

    Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.

  8. Numerical Solution of Poroelastic Wave Equation Using Nodal Discontinuous Galerkin Finite Element Method

    NASA Astrophysics Data System (ADS)

    Shukla, K.; Wang, Y.; Jaiswal, P.

    2014-12-01

    In a porous medium the seismic energy not only propagates through matrix but also through pore-fluids. The differential movement between sediment grains of the matrix and interstitial fluid generates a diffusive wave which is commonly referred to as the slow P-wave. A combined system of equation which includes both elastic and diffusive phases is known as the poroelasticity. Analyzing seismic data through poroelastic modeling results in accurate interpretation of amplitude and separation of wave modes, leading to more accurate estimation of geomehanical properties of rocks. Despite its obvious multi-scale application, from sedimentary reservoir characterization to deep-earth fractured crust, poroelasticity remains under-developed primarily due to the complex nature of its constituent equations. We present a detail formulation of poroleastic wave equations for isotropic media by combining the Biot's and Newtonian mechanics. System of poroelastic wave equation constitutes for eight time dependent hyperbolic PDEs in 2D whereas in case of 3D number goes up to thirteen. Eigen decomposition of Jacobian of these systems confirms the presence of an additional slow-P wave phase with velocity lower than shear wave, posing stability issues on numerical scheme. To circumvent the issue, we derived a numerical scheme using nodal discontinuous Galerkin approach by adopting the triangular meshes in 2D which is extended to tetrahedral for 3D problems. In our nodal DG approach the basis function over a triangular element is interpolated using Legendre-Gauss-Lobatto (LGL) function leading to a more accurate local solutions than in the case of simple DG. We have tested the numerical scheme for poroelastic media in 1D and 2D case, and solution obtained for the systems offers high accuracy in results over other methods such as finite difference , finite volume and pseudo-spectral. The nodal nature of our approach makes it easy to convert the application into a multi-threaded algorithm

  9. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.

    PubMed

    Bou Matar, Olivier; Guerder, Pierre-Yves; Li, YiFeng; Vandewoestyne, Bart; Van Den Abeele, Koen

    2012-05-01

    A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb's problem and plane wave nonlinear propagation.

  10. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.

    PubMed

    Hesthaven, J S; Warburton, T

    2004-03-15

    The Maxwell eigenvalue problem is known to pose difficulties for standard numerical methods, predominantly due to its large null space. As an alternative to the widespread use of Galerkin finite-element methods based on curl-conforming elements, we propose to use high-order nodal elements in a discontinuous element scheme. We consider both two- and three-dimensional problems and show the former to be without problems in a wide range of cases. Numerical experiments suggest the validity of this for general problems. For the three-dimensional eigenproblem, we encounter difficulties with a naive formulation of the scheme and propose minor modifications, intimately related to the discontinuous nature of the formulation, to overcome these concerns. We conclude by connecting the findings to time domain solution of Maxwell's equations. The discussion, analysis, and numerous computational experiments suggest that using discontinuous element schemes for solving Maxwell's equation in the frequency- or time-domain present a high-order accurate, efficient and robust alternative to classical Galerkin finite-element methods.

  11. A stabilised nodal spectral element method for fully nonlinear water waves

    NASA Astrophysics Data System (ADS)

    Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.

    2016-08-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.

  12. Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer—a per lesion validation study

    PubMed Central

    Lambregts, Doenja M. J.; Maas, Monique; Riedl, Robert G.; Bakers, Frans C. H.; Verwoerd, Jan L.; Kessels, Alfons G. H.; Lammering, Guido; Boetes, Carla; Beets, Geerard L.

    2010-01-01

    Objectives To evaluate the performance of diffusion-weighted MRI (DWI) in addition to T2-weighted (T2W) MRI for nodal restaging after chemoradiation in rectal cancer. Methods Thirty patients underwent chemoradiation followed by MRI (1.5 T) and surgery. Imaging consisted of T2W-MRI and DWI (b0, 500, 1000). On T2W-MRI, nodes were scored as benign/malignant by two independent readers (R1, R2). Mean apparent diffusion coefficient (ADC) was measured for each node. Diagnostic performance was compared for T2W-MRI, ADC and T2W+ADC, using a per lesion histological validation. Results ADC was higher for the malignant nodes (1.43 ± 0.38 vs 1.19 ± 0.27 *10−3 mm2/s, p < 0.001). Area under the ROC curve/sensitivity/specificity were 0.88/65%/93% (R1) and 0.95/71%/91% (R2) using T2W-MRI; 0.66/53%/82% using ADC (mean of two readers); and 0.91/56%/98% (R1) and 0.96/56%/99% (R2) using T2W+ADC. There was no significant difference between T2W-MRI and T2W+ADC. Interobserver reproducibility was good for T2W-MRI (κ0.73) and ADC (intraclass correlation coefficient 0.77). Conclusions After chemoradiation, ADC measurements may have potential for nodal characterisation, but DWI on its own is not reliable. Addition of DWI to T2W-MRI does not improve accuracy and T2W-MRI is already sufficiently accurate. PMID:20730540

  13. EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP

    SciTech Connect

    B. D. Ganapol; D. W. Nigg

    2008-09-01

    In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.

  14. Advanced Usability Evaluation Methods

    DTIC Science & Technology

    2007-04-01

    tracking in usability evaluation : A practitioner’s guide. In J. Hyönä, R. Radach, & H. Deubel. (Eds.), The mind’s eye: Cognitive and applied...Advanced Usability Evaluation Methods Terence S. Andre, Lt Col, USAF Margaret Schurig, Human Factors Design Specialist, The Boeing Co...TITLE AND SUBTITLE Advanced Usability Evaluation Methods 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  15. Nodal metastasis and elective nodal level treatment in sinonasal small-cell and sinonasal undifferentiated carcinoma: a surveillance, epidemiology and end results analysis

    PubMed Central

    Mitra, Nandita; Alonso-Basanta, Michelle; Adappa, Nithin D; Palmer, James N; O'Malley, Bert W; Rassekh, Christopher H; Chalian, Ara; Cohen, Roger B; Lin, Alexander

    2016-01-01

    Objective: Risk of nodal involvement in patients with sinonasal small-cell carcinoma and sinonasal undifferentiated carcinoma (SNUC) has not been well defined because of their rarity. We describe a population-based assessment of specific nodal level involvement in this group of rare neuroectodermal tumours. Methods: The Surveillance, Epidemiology and End Results (SEER) database from 2004 to 2011 identified patients with SNUC and sinonasal small-cell carcinoma. Overall neck involvement and individual nodal level involvement at presentation were assessed, and comparison was made with a contemporaneous cohort of patients with a borderline clinically significant risk of nodal involvement and recurrence. Results: Of 141 patients, 31 (22%) had gross nodal involvement at presentation (range 14–33% by site and histology). Non-nasal, non-ethmoid site with SNUC histology has the highest rates of initial nodal involvement, whereas higher stage and size do not predict for higher nodal involvement rates. Bilateral Levels 2–3 for all sinonasal small cell; Levels 2–3 for nasal or ethmoid SNUC; and bilateral Levels 1–3 in non-nasal/non-ethmoid SNUC have the highest rates of involvement compared with a clinical reference standard. Conclusion: We found high rates of initial nodal involvement in all SNUC and sinonasal small-cell carcinoma. We found higher initial involvement of Levels 2 and 3 and in certain cases to the Level 1 nodal levels, hypothesizing benefit for elective treatment to those levels. Advances in knowledge: With small single-institution series reporting conflicting nodal involvement rates, our data support high rates of nodal presentation at diagnosis, hypothesizing benefit for elective nodal treatment in this cohort. PMID:26559439

  16. J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoyuki; Suzuki, Hirotaka; Sadamoto, Shota; Sannomaru, Shogo; Yu, Tiantang; Bui, Tinh Quoc

    2016-08-01

    Two-dimensional (2D) in-plane mixed-mode fracture mechanics problems are analyzed employing an efficient meshfree Galerkin method based on stabilized conforming nodal integration (SCNI). In this setting, the reproducing kernel function as meshfree interpolant is taken, while employing the SCNI for numerical integration of stiffness matrix in the Galerkin formulation. The strain components are smoothed and stabilized employing Gauss divergence theorem. The path-independent integral ( J-integral) is solved based on the nodal integration by summing the smoothed physical quantities and the segments of the contour integrals. In addition, mixed-mode stress intensity factors (SIFs) are extracted from the J-integral by decomposing the displacement and stress fields into symmetric and antisymmetric parts. The advantages and features of the present formulation and discretization in evaluation of the J-integral of in-plane 2D fracture problems are demonstrated through several representative numerical examples. The mixed-mode SIFs are evaluated and compared with reference solutions. The obtained results reveal high accuracy and good performance of the proposed meshfree method in the analysis of 2D fracture problems.

  17. The modified nodal analysis method applied to the modeling of the thermal circuit of an asynchronous machine

    NASA Astrophysics Data System (ADS)

    Nedelcu, O.; Salisteanu, C. I.; Popa, F.; Salisteanu, B.; Oprescu, C. V.; Dogaru, V.

    2017-01-01

    The complexity of electrical circuits or of equivalent thermal circuits that were considered to be analyzed and solved requires taking into account the method that is used for their solving. Choosing the method of solving determines the amount of calculation necessary for applying one of the methods. The heating and ventilation systems of electrical machines that have to be modeled result in complex equivalent electrical circuits of large dimensions, which requires the use of the most efficient methods of solving them. The purpose of the thermal calculation of electrical machines is to establish the heating, the overruns of temperatures or over-temperatures in some parts of the machine compared to the temperature of the ambient, in a given operating mode of the machine. The paper presents the application of the modified nodal analysis method for the modeling of the thermal circuit of an asynchronous machine.

  18. Systematic assembly homogenization and local flux reconstruction for nodal method calculations. Final report, January 1, 1990--September 30, 1992

    SciTech Connect

    Dorning, J.J.

    1993-05-01

    The report is divided into three parts. The main mathematical development of the new systematic simultaneous lattice-cell and fuel-assembly homogenization theory derived from the transport equation is summarized in Part I. Also included in Part I is the validation of this systematic homogenization theory and the resulting calculational procedures for coarse-mesh nodal diffusion methods that follow from it, in the form of their application to a simple one-dimensional test problem. The results of the application of this transport-equation-based systematic homogenization theory are summarized in Part II in which its superior accuracy over traditional flux and volume weighted homogenization procedures and over generalized equivalence theory is demonstrated for small and large practical two-dimensional PWR problems. The mathematical development of a second systematic homogenization theory -- this one derived starting from the diffusion equation -- is summarized in Part III where its application to a practical two-dimensional PWR model also is summarized and its superior accuracy over traditional homogenization methods and generalized equivalence theory is demonstrated for this problem.

  19. Development of a Nodal Method for the Solution of the Neutron Diffusion Equation in General Cylindrical Geometry

    SciTech Connect

    Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox

    2002-04-01

    The usual strategy for solving the neutron diffusion equation in two or three dimensions by nodal methods is to reduce the multidimensional partial differential equation to a set of ordinary differential equations (ODEs) in the separate spatial coordinates. This reduction is accomplished by “transverse integration” of the equation.1 For example, in three-dimensional Cartesian coordinates, the three-dimensional equation is first integrated over x and y to obtain an ODE in z, then over x and z to obtain an ODE in y, and finally over y and z to obtain an ODE in x. Then the ODEs are solved to obtain onedimensional solutions for the neutron fluxes averaged over the other two dimensions. These solutions are found in regions (“nodes”) small enough for the material properties and cross sections in them to be adequately represented by average values. Because the solution in each node is an exact analytical solution, the nodes can be much larger than the mesh elements used in finite-difference solutions. Then the solutions in the different nodes are coupled by applying interface conditions, ultimately fixing the solutions to the external boundary conditions.

  20. NEXD: A Software Package for High Order Simulation of Seismic Waves using the Nodal Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Lambrecht, L.; Friederich, W.

    2015-12-01

    In geophysics numerical simulations are a key tool to understand the processes of earth. For example, global simulations of seismic waves excited by earthquakes are essential to infer the velocity structure within the earth. Furthermore, numerical investigations can be helpful on local scales in order to find and characterize oil and gas reservoirs. Moreover, simulations enable a better understanding of wave propagation in borehole and tunnel seismic applications. Even on microscopic scales, numerical simulations of elastic waves can help to increase knowledge about the behaviour of materials, e.g. to understand the mechanism of crack propagation in rocks. To deal with highly complex heterogeneous models, here the Nodal Discontinuous Galerkin Method (NDG) is used to calculate synthetic seismograms. The advantage of this method is that complex mesh geometries can be computed by using triangular or tetrahedral elements for domain discretization together with a high order spatial approximation of the wave field. The simulation tool NEXD is presented which has the capability of simulating elastic and anelastic wave fields for seismic experiments for one-, two- and three- dimensional settings. The implementation of poroelasticity and simulation of slip interfaces are currently in progress and are working for the one dimensional part. External models provided by e.g. Trelis/Cubit can be used for parallelized computations on triangular or tetrahedral meshes. For absorbing boundary conditions either a fluxes based approach or a Nearly Perfectly Matched Layer (NPML) can be used. Examples are presented to validate the method and to show the capability of the software for complex models such as the simulation of a tunnel seismic experiment.

  1. A nodal discontinuous Galerkin method for reverse-time migration on GPU clusters

    NASA Astrophysics Data System (ADS)

    Modave, A.; St-Cyr, A.; Mulder, W. A.; Warburton, T.

    2015-11-01

    Improving both accuracy and computational performance of numerical tools is a major challenge for seismic imaging and generally requires specialized implementations to make full use of modern parallel architectures. We present a computational strategy for reverse-time migration (RTM) with accelerator-aided clusters. A new imaging condition computed from the pressure and velocity fields is introduced. The model solver is based on a high-order discontinuous Galerkin time-domain (DGTD) method for the pressure-velocity system with unstructured meshes and multirate local time stepping. We adopted the MPI+X approach for distributed programming where X is a threaded programming model. In this work we chose OCCA, a unified framework that makes use of major multithreading languages (e.g. CUDA and OpenCL) and offers the flexibility to run on several hardware architectures. DGTD schemes are suitable for efficient computations with accelerators thanks to localized element-to-element coupling and the dense algebraic operations required for each element. Moreover, compared to high-order finite-difference schemes, the thin halo inherent to DGTD method reduces the amount of data to be exchanged between MPI processes and storage requirements for RTM procedures. The amount of data to be recorded during simulation is reduced by storing only boundary values in memory rather than on disk and recreating the forward wavefields. Computational results are presented that indicate that these methods are strong scalable up to at least 32 GPUs for a three-dimensional RTM case.

  2. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    SciTech Connect

    Iaroshenko, Oleksandr; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  3. GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models

    NASA Astrophysics Data System (ADS)

    Modave, A.; St-Cyr, A.; Warburton, T.

    2016-06-01

    Finite element schemes based on discontinuous Galerkin methods possess features amenable to massively parallel computing accelerated with general purpose graphics processing units (GPUs). However, the computational performance of such schemes strongly depends on their implementation. In the past, several implementation strategies have been proposed. They are based exclusively on specialized compute kernels tuned for each operation, or they can leverage BLAS libraries that provide optimized routines for basic linear algebra operations. In this paper, we present and analyze up-to-date performance results for different implementations, tested in a unified framework on a single NVIDIA GTX980 GPU. We show that specialized kernels written with a one-node-per-thread strategy are competitive for polynomial bases up to the fifth and seventh degrees for acoustic and elastic models, respectively. For higher degrees, a strategy that makes use of the NVIDIA cuBLAS library provides better results, able to reach a net arithmetic throughput 35.7% of the theoretical peak value.

  4. Development of a new two-dimensional Cartesian geometry nodal multigroup discrete-ordinates method

    SciTech Connect

    Pevey, R.E.

    1982-07-01

    The purpose of this work is the development and testing of a new family of methods for calculating the spatial dependence of the neutron density in nuclear systems described in two-dimensional Cartesian geometry. The energy and angular dependence of the neutron density is approximated using the multigroup and discrete ordinates techniques, respectively. The resulting FORTRAN computer code is designed to handle an arbitrary number of spatial, energy, and angle subdivisions. Any degree of scattering anisotropy can be handled by the code for either external source or fission systems. The basic approach is to (1) approximate the spatial variation of the neutron source across each spatial subdivision as an expansion in terms of a user-supplied set of exponential basis functions; (2) solve analytically for the resulting neutron density inside each region; and (3) approximate this density in the basis function space in order to calculate the next iteration flux-dependent source terms. In the general case the calculation is iterative due to neutron sources which depend on the neutron density itself, such as scattering interactions.

  5. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    SciTech Connect

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.

  6. Relationship of Clinical and Pathologic Nodal Staging in Locally Advanced Breast Cancer: Current Controversies in Daily Practice?

    PubMed Central

    De Felice, Francesca; Musio, Daniela; Bulzonetti, Nadia; Raffetto, Nicola; Tombolini, Vincenzo

    2014-01-01

    Systemic neo-adjuvant therapy plays a primary role in the management of locally advanced breast cancer. Without having any negative effect in overall survival, induction chemotherapy potentially assures a surgery approach in unresectable disease or a conservative treatment in technically resectable disease and acts on a well-vascularized tumor bed, without the modifications induced by surgery. A specific issue has a central function in the neo-adjuvant setting: lymph nodes status. It still represents one of the strongest predictors of long-term prognosis in breast cancer. The discussion of regional radiation therapy should be a matter of debate, especially in a pathological complete response. Currently, the indication for radiotherapy is based on the clinical stage before the surgery, even for the irradiation of the loco-regional lymph nodes. Regardless of pathological down-staging, radiation therapy is accepted as standard adjuvant treatment in locally advanced breast cancer. PMID:25247013

  7. Small renal tumor with lymph nodal enlargement: A histopathological surprise

    PubMed Central

    Thottathil, Mujeeburahiman; Verma, Ashish; D’souza, Nischith; Khan, Altaf

    2016-01-01

    Renal cancer with lymph nodal mass on the investigation is clinically suggestive of an advanced tumor. Small renal cancers are not commonly associated with lymph nodal metastasis. Association of renal cell carcinoma with renal tuberculosis (TB) in the same kidney is also rare. We report here a case of small renal cancer with multiple hilar and paraaortic lymph nodes who underwent radical nephrectomy, and histopathology report showed renal and lymph nodal TB too. PMID:27453671

  8. Nodal equivalence theory for hexagonal geometry, thermal reactor analysis

    SciTech Connect

    Zika, M.; Downar, T. )

    1992-01-01

    An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.

  9. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    SciTech Connect

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  10. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    SciTech Connect

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  11. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  12. Editorial: biotech methods and advances.

    PubMed

    Jungbauer, Alois

    2013-01-01

    This annual Methods and Advances Special Issue of Biotechnology Journal contains a selection of cutting-edge research and review articles with a particular emphasis on vertical process understanding – read more in this editorial by Prof. Alois Jungbauer, BTJ co-Editor-in-Chief.

  13. Nodal-chain metals

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.

    2016-10-01

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  14. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  15. NODAL PATHWAY GENES ARE DOWNREGULATED IN FACIAL ASYMMETRY

    PubMed Central

    Nicot, Romain; Hottenstein, Molly; Raoul, Gwenael; Ferri, Joel; Horton, Michael; Tobias, John W.; Barton, Elisabeth; Gelé, Patrick; Sciote, James J.

    2014-01-01

    Purpose Facial asymmetry is a common comorbid condition in patients with jaw deformation malocclusion. Heritability of malocclusion is advancing rapidly, but very little is known regarding genetic contributions to asymmetry. This study identifies differences in expression of key asymmetry-producing genes which are down regulated in facial asymmetry patients. Material and Methods Masseter muscle samples were collected during BSSO orthognathic surgery to correct skeletal-based malocclusion. Patients were classified as Class II or III and open or deep bite malocclusion with or without facial asymmetry. Muscle samples were analyzed for gene expression differences on Affymetrix HT2.0 microarray global expression chips. Results Overall gene expression was different for asymmetric patients compared to other malocclusion classifications by principal component analysis (P<0.05). We identified differences in the nodal signaling pathway (NSP) which promotes development of mesoderm and endoderm and left-right patterning during embryogenesis. Nodal and Lefty expression was 1.39–1.84 fold greater (P<3.41×10−5) whereas integral membrane Nodal-modulators Nomo1,2,3 were −5.63 to −5.81 (P<3.05×10−4) less in asymmetry subjects. Fold differences among intracellular pathway members were negative in the range of −7.02 to −2.47 (P<0.003). Finally Pitx2, a upstream effector of Nodal known to influence the size of type II skeletal muscle fibers was also significantly decreased in facial asymmetry (P<0.05). Conclusions When facial asymmetry is part of skeletal malocclusion there are decreases of NSP genes in masseter muscle. This data suggests that the NSP is down regulated to help promote development of asymmetry. Pitx2 expression differences also contributed to both skeletal and muscle development in this condition. PMID:25364968

  16. Topological nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Weng, Hongming; Dai, Xi; Fang, Zhong

    2016-11-01

    We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone, and any perturbation that preserves a certain symmetry group (generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands. The nodal line(s) is hence topologically protected by the symmetry group, and can be associated with a topological invariant. In this review, (i) we enumerate the symmetry groups that may protect a topological nodal line; (ii) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface, establishing a topological classification; (iii) for certain classes, we review the proposals for the realization of these semimetals in real materials; (iv) we discuss different scenarios that when the protecting symmetry is broken, how a topological nodal line semimetal becomes Weyl semimetals, Dirac semimetals, and other topological phases; and (v) we discuss the possible physical effects accessible to experimental probes in these materials. Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400 and 2016YFA0300604), partially by the National Natural Science Foundation of China (Grant Nos. 11274359 and 11422428), the National Basic Research Program of China (Grant No. 2013CB921700), and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB07020100).

  17. The Penn State Nodal Expansion Transient Analysis Technique with thermal-hydraulic feedback

    SciTech Connect

    Borkowski, J.; Bandini, B.; Baratta, A. )

    1989-11-01

    The nuclear engineering department of the Pennsylvania State University has under development a nodal neutron kinetics code. The PEnn State Nodal Expansion TRansient Analysis TEchnique (PENETRATE) performs two-group, three-dimensional nodal kinetics calculations using the nodal expansion method (NEM). The focus of this discussion is its performance in the solution of the Langenbuch-Maurer-Werner light water rector (LMW LWR) problem. This transient requires an accurate model of both control rod motion and coupled thermal-hydraulic feedback.

  18. A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media—verification and validation in the Nice basin

    NASA Astrophysics Data System (ADS)

    Peyrusse, Fabien; Glinsky, Nathalie; Gélis, Céline; Lanteri, Stéphane

    2014-10-01

    We present a discontinuous Galerkin method for site effects assessment. The P-SV seismic wave propagation is studied in 2-D space heterogeneous media. The first-order velocity-stress system is obtained by assuming that the medium is linear, isotropic and viscoelastic, thus considering intrinsic attenuation. The associated stress-strain relation in the time domain being a convolution, which is numerically intractable, we consider the rheology of a generalized Maxwell body replacing the convolution by a set of differential equations. This results in a velocity-stress system which contains additional equations for the anelastic functions expressing the strain history of the material. Our numerical method, suitable for complex triangular unstructured meshes, is based on centred numerical fluxes and a leap-frog time-discretization. The method is validated through numerical simulations including comparisons with a finite-difference scheme. We study the influence of the geological structures of the Nice basin on the surface ground motion through the comparison of 1-D and 2-D soil response in homogeneous and heterogeneous soil. At last, we compare numerical results with real recordings data. The computed multiple-sediment basin response allows to reproduce the shape of the recorded amplification in the basin. This highlights the importance of knowing the lithological structures of a basin, layers properties and interface geometry.

  19. Advanced method for oligonucleotide deprotection

    PubMed Central

    Surzhikov, Sergey A.; Timofeev, Edward N.; Chernov, Boris K.; Golova, Julia B.; Mirzabekov, Andrei D.

    2000-01-01

    A new procedure for rapid deprotection of synthetic oligodeoxynucleotides has been developed. While all known deprotection methods require purification to remove the residual protective groups (e.g. benzamide) and insoluble silicates, the new procedure based on the use of an ammonia-free reagent mixture allows one to avoid the additional purification steps. The method can be applied to deprotect the oligodeoxynucleotides synthesized by using the standard protected nucleoside phosphoramidites dGiBu, dCBz and dABz. PMID:10734206

  20. Combined-modality therapy for patients with regional nodal metastases from melanoma

    SciTech Connect

    Ballo, Matthew T. . E-mail: mballo@mdanderson.org; Ross, Merrick I.; Cormier, Janice N.; Myers, Jeffrey N.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Hwu, Patrick; Zagars, Gunar K.

    2006-01-01

    Purpose: To evaluate the outcome and patterns of failure for patients with nodal metastases from melanoma treated with combined-modality therapy. Methods and Materials: Between 1983 and 2003, 466 patients with nodal metastases from melanoma were managed with lymphadenectomy and radiation, with or without systemic therapy. Surgery was a therapeutic procedure for clinically apparent nodal disease in 434 patients (regionally advanced nodal disease). Adjuvant radiation was generally delivered with a hypofractionated regimen. Adjuvant systemic therapy was delivered to 154 patients. Results: With a median follow-up of 4.2 years, 252 patients relapsed and 203 patients died of progressive disease. The actuarial 5-year disease-specific, disease-free, and distant metastasis-free survival rates were 49%, 42%, and 44%, respectively. By multivariate analysis, increasing number of involved lymph nodes and primary ulceration were associated with an inferior 5-year actuarial disease-specific and distant metastasis-free survival. Also, the number of involved lymph nodes was associated with the development of brain metastases, whereas thickness was associated with lung metastases, and primary ulceration was associated with liver metastases. The actuarial 5-year regional (in-basin) control rate for all patients was 89%, and on multivariate analysis there were no patient or disease characteristics associated with inferior regional control. The risk of lymphedema was highest for those patients with groin lymph node metastases. Conclusions: Although regional nodal disease can be satisfactorily controlled with lymphadenectomy and radiation, the risk of distant metastases and melanoma death remains high. A management approach to these patients that accounts for the competing risks of distant metastases, regional failure, and long-term toxicity is needed.

  1. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  2. Recent advances in lattice Boltzmann methods

    SciTech Connect

    Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.

    1998-12-31

    In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.

  3. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by routing through transporter nodes

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-11-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.

  4. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by employing bandwidth shells at areas of overutilization

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-04-27

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a final destination. The default routing strategy is altered responsive to detection of overutilization of a particular path of one or more links, and at least some traffic is re-routed by distributing the traffic among multiple paths (which may include the default path). An alternative path may require a greater number of link traversals to reach the destination node.

  5. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by dynamic global mapping of contended links

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2011-10-04

    A massively parallel nodal computer system periodically collects and broadcasts usage data for an internal communications network. A node sending data over the network makes a global routing determination using the network usage data. Preferably, network usage data comprises an N-bit usage value for each output buffer associated with a network link. An optimum routing is determined by summing the N-bit values associated with each link through which a data packet must pass, and comparing the sums associated with different possible routes.

  6. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by dynamically adjusting local routing strategies

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-03-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Each node implements a respective routing strategy for routing data through the network, the routing strategies not necessarily being the same in every node. The routing strategies implemented in the nodes are dynamically adjusted during application execution to shift network workload as required. Preferably, adjustment of routing policies in selective nodes is performed at synchronization points. The network may be dynamically monitored, and routing strategies adjusted according to detected network conditions.

  7. Advanced radioactive waste assay methods: Final report

    SciTech Connect

    Cline, J.E.; Robertson, D.E.; DeGroot, S.E.

    1987-11-01

    This report describes an evaluation of advanced methodologies for the radioassay of low power-plant low-level radioactive waste for compliance with the 10CFR61 classification rules. The project evaluated current assay practices in ten operating plants and identified areas where advanced methods would apply, studied two direct-assay methodologies, demonstrated these two techniques on radwaste in four operating plants and on irradiated components in two plants, and developed techniques for obtaining small representative aliquots from larger samples and for enhancing the /sup 144/Ce activity analysis in samples of waste. The study demonstrated the accuracy, practicality, and ALARA aspects of advanced methods and indicates that cost savings, resulting from the accuracy improvement and reduction in sampling requirements can be significant. 24 refs., 60 figs., 67 tabs.

  8. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  10. Preoperative staging of nodal status in gastric cancer

    PubMed Central

    Berlth, Felix; Chon, Seung-Hun; Chevallay, Mickael; Jung, Minoa Karin

    2017-01-01

    An accurate preoperative staging of nodal status is crucial in gastric cancer, because it has a great impact on prognosis and therapeutic decision-making. Different staging methods have been evaluated for gastric cancer in order to predict nodal involvement. So far, no technique could meet the necessary requirements, which include a high detection rate of infiltrated lymph nodes and a low frequency of false-positive results. This article summarizes different staging methods used to assess lymph node status in patients with gastric cancer, evaluates the evidence, and proposes to establish new methods. PMID:28217758

  11. Editorial: Latest methods and advances in biotechnology.

    PubMed

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli.

  12. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  13. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  14. A composite nodal finite element for hexagons

    SciTech Connect

    Hennart, J.P.; Mund, E.H. |; Valle, E. Del

    1997-10-01

    A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.

  15. Diffusion-Weighted MRI for Nodal Staging of Head and Neck Squamous Cell Carcinoma: Impact on Radiotherapy Planning

    SciTech Connect

    Dirix, Piet; Vandecaveye, Vincent; De Keyzer, Frederik; Op de beeck, Katya; Poorten, Vincent Vander; Delaere, Pierre; Verbeken, Eric; Hermans, Robert; Nuyts, Sandra

    2010-03-01

    Purpose: To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. Methods and Materials: Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. Results: A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. Conclusions: These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.

  16. Effectiveness of prophylactic retropharyngeal lymph node irradiation in patients with locally advanced head and neck cancer

    PubMed Central

    2012-01-01

    Background The aim of the study is to assess the effectiveness of intensity-modulated radiotherapy (IMRT) or image-guided radiotherapy (IGRT) for the prevention of retropharyngeal nodal recurrences in locally advanced head and neck cancer. Methods A retrospective review of 76 patients with head and neck cancer undergoing concurrent chemoradiation or postoperative radiotherapy with IMRT or IGRT who were at risk for retropharyngeal nodal recurrences because of anatomic site (hypopharynx, nasopharynx, oropharynx) and/or the presence of nodal metastases was undertaken. The prevalence of retropharyngeal nodal recurrences was assessed on follow-up positron emission tomography (PET)-CT scans. Results At a median follow-up of 22 months (4–53 months), no patient developed retropharyngeal nodal recurrences. Conclusion Prophylactic irradiation of retropharyngeal lymph nodes with IMRT or IGRT provides effective regional control for individuals at risk for recurrence in these nodes. PMID:22708791

  17. Use advanced methods to treat wastewater

    SciTech Connect

    Davis, M. )

    1994-08-01

    Common sense guidelines offer plausible, progressive techniques to treat wastewater. Because current and pending local, state and federal regulations are ratcheting lower effluent discharge limits, familiar treatment methods, such as biological, don't meet new restrictions. Now operating facilities must combine traditional methods with advanced remedial options such as thermal, physical, electro and chemical treatments. these new techniques remove organics, metals, nonhazardous dissolved salts, etc., but carry higher operating and installation costs. Due to tighter effluent restrictions and pending zero-discharge initiatives, managers of operating facilities must know and understand the complexity, composition and contaminant concentration of their wastewaters. No one-size-fits-all solution exists. However, guidelines can simplify decision making and help operators nominate the most effective and economical strategy to handle their waste situation. The paper describes the common treatment and the importance of alternatives, then describes biological, electro, physical, thermal, and chemical treatments.

  18. Augmented weighted diamond form of the linear nodal scheme for Cartesian coordinate systems

    SciTech Connect

    Walters, W.F.

    1985-01-01

    The equations of the high order linear nodal numerical scheme are cast in an augmented weighted difference form for three-dimensional Cartesian nodes. The coupling exhibited by these equations indicate that this new algorithm is simpler and hence faster than previous nodal schemes of this degree of accuracy. A well-logging problem and a fast reactor problem are examined. The new scheme developed here is compared with the classical linear-linear nodal scheme and the diamond difference scheme. For the well-logging problem, it is found that the new scheme is both faster and simpler than the classical linear-linear nodal scheme while sacrificing little in accuracy. Even though the new scheme is more accurate than the diamond difference scheme for the reactor problem, the results indicate that state of the art acceleration methods are needed for nodal schemes.

  19. Advanced fault diagnosis methods in molecular networks.

    PubMed

    Habibi, Iman; Emamian, Effat S; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally.

  20. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  1. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  2. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  3. Computational and design methods for advanced imaging

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.

    This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.

  4. The spectral green's function nodal method for multigroup slab-geometry fixed-source S{sub N} problems with anisotropic scattering

    SciTech Connect

    Menezes, W. A.; Filho, H. A.; Barros, R. C.

    2013-07-01

    A generalization of the spectral Green's function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S{sub N}) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup slab-geometry S{sub N} problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, presented here is a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method's accuracy. (authors)

  5. ANOVA-HDMR structure of the higher order nodal diffusion solution

    SciTech Connect

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-07-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  6. Optical conductivity of nodal metals

    PubMed Central

    Homes, C. C.; Tu, J. J.; Li, J.; Gu, G. D.; Akrap, A.

    2013-01-01

    Fermi liquid theory is remarkably successful in describing the transport and optical properties of metals; at frequencies higher than the scattering rate, the optical conductivity adopts the well-known power law behavior σ1(ω) ∝ ω−2. We have observed an unusual non-Fermi liquid response σ1(ω) ∝ ω−1±0.2 in the ground states of several cuprate and iron-based materials which undergo electronic or magnetic phase transitions resulting in dramatically reduced or nodal Fermi surfaces. The identification of an inverse (or fractional) power-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing the direct transitions across the gap and allowing the nature of the electron-boson coupling to be probed. The non-Fermi liquid behavior in these systems may be the result of a common Fermi surface topology of Dirac cone-like features in the electronic dispersion. PMID:24336241

  7. Distributions of Nodal Prices in PJM Market

    NASA Astrophysics Data System (ADS)

    Kunio, Matsumoto; Yoshio, Ichida; Michiko, Makino; Hiroaki, Tanaka

    As the deregulation of electric business proceeds, it is important to analyze the distributions of prices in the power market. In this paper, we analyze the nodal prices of the PJM market, which is representative of power markets in the US. First, we verify Weibull’s property of the distribution of nodal prices. Then we verify Poisson’s property of the interval of loss process.

  8. Nodal network generator for CAVE3

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1982-01-01

    A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.

  9. Advanced Source Deconvolution Methods for Compton Telescopes

    NASA Astrophysics Data System (ADS)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  10. [The Study of Advanced Fundamental Parameter Method in EDXRFA].

    PubMed

    Cheng, Feng; Zhang, Qing-xian; Ge, Liang-quan; Gu, Yi; Zeng, Guo-qiang; Luo, Yao-yao; Chen, Shuang; Wang, Lei; Zhao, Jian-kun

    2015-07-01

    The X-ray Fluorescence Analysis(XRFA) is an important and efficient method on the element anylsis and is used in geology, industry and environment protection. But XRFA has a backdraw that the determination limit and accuracy are effected by the matrix of the sample. Now the fundamental parameter is usually used to calculate the content of elements in XRFA, and it is an efficient method if the matrix and net area of characteristic X-ray peak are obtained. But this is invalide in in-stu XRFA. Also the method of net area and the "black material" of sample are the key point of the fundamental parameter method when the Energy Dispersive X-ray Fluorescence Analysis(EDXRFA) method is used in the low content sample. In this paper a advanced fundamental parameter method is discussed. The advanced fundamental parameter method includes the spectra analysis and the fundamental parameter method, which inserts the overlapping peaks separation method into the iteration process of the fundamental parameter method. The advanced method can resolve the net area and the quantitative analysis. The advanced method is used to analyse the standard sample. Compare to the content obtained from the coefficient method, the precision of Cu, Ni and Zn is better than coeffieciency method. The result shows that the advanced method could improve the precision of the EDXRFA, so the advanced method is better than the coefficient method.

  11. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  12. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  13. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  14. Radial nodalization effects on BWR (boiling water reactor) stability calculations

    SciTech Connect

    March-Leuba, J.

    1990-01-01

    Computer simulations have shown that stability calculations in boiling water reactors (BWRs) are very sensitive to a number of input parameters and modeling assumptions. In particular, the number of thermohydraulic regions (i.e., channels) used in the calculation can affect the results of decay ratio calculations by as much as 30%. This paper presents the background theory behind the observed effects of radial nodalization in BWR stability calculations. The theory of how a radial power distribution can be simulated in time or frequency domain codes by using representative'' regions is developed. The approximations involved in this method of solution are reviewed, and some examples of the effect of radial nodalization are presented based on LAPUR code solutions. 2 refs., 4 figs., 2 tabs.

  15. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  16. Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

    SciTech Connect

    Mannella, N.

    2010-06-02

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

  17. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  18. MURR nodal analysis with simple interactive simulation

    NASA Astrophysics Data System (ADS)

    Enani, Mohammad Abdulsamad

    The main goal of this research is to design and produce computer codes that should do a NODAL analysis of the core of Missouri University Research Reactor 'MURR' with a simple neutron transient simulation. These codes should be executed on any of the family of the widely used modern IBM/PC (or IBM/PS) microcomputers (or compatibles). The nodal analysis code should find the power (or flux) distribution inside the reactor core and calculate fuel burnup for each of the fuel elements by using the nodal analysis technique described in chapter 3. The simulator code is a relatively simple, educational aid of MURR reactor kinetics simulation that uses one group point reactor model.

  19. Advanced reliability methods for structural evaluation

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y.-T.

    1985-01-01

    Fast probability integration (FPI) methods, which can yield approximate solutions to such general structural reliability problems as the computation of the probabilities of complicated functions of random variables, are known to require one-tenth the computer time of Monte Carlo methods for a probability level of 0.001; lower probabilities yield even more dramatic differences. A strategy is presented in which a computer routine is run k times with selected perturbed values of the variables to obtain k solutions for a response variable Y. An approximating polynomial is fit to the k 'data' sets, and FPI methods are employed for this explicit form.

  20. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  1. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  2. Advances in Geometric Acoustic Propagation Modeling Methods

    NASA Astrophysics Data System (ADS)

    Blom, P. S.; Arrowsmith, S.

    2013-12-01

    Geometric acoustics provides an efficient numerical method to model propagation effects. At leading order, one can identify ensonified regions and calculate celerities of the predicted arrivals. Beyond leading order, the solution of the transport equation provides a means to estimate the amplitude of individual acoustic phases. The auxiliary parameters introduced in solving the transport equation have been found to provide a means of identifying ray paths connecting source and receiver, or eigenrays, for non-planar propagation. A detailed explanation of the eigenray method will be presented as well as an application to predicting azimuth deviations for infrasonic data recorded during the Humming Roadrunner experiment of 2012.

  3. Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model''

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  4. Advanced method for making vitreous waste forms

    SciTech Connect

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.

  5. Advanced methods in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kragh, Thomas

    2012-02-01

    For over 50 years our world has been mapped and measured with synthetic aperture radar (SAR). A SAR system operates by transmitting a series of wideband radio-frequency pulses towards the ground and recording the resulting backscattered electromagnetic waves as the system travels along some one-dimensional trajectory. By coherently processing the recorded backscatter over this extended aperture, one can form a high-resolution 2D intensity map of the ground reflectivity, which we call a SAR image. The trajectory, or synthetic aperture, is achieved by mounting the radar on an aircraft, spacecraft, or even on the roof of a car traveling down the road, and allows for a diverse set of applications and measurement techniques for remote sensing applications. It is quite remarkable that the sub-centimeter positioning precision and sub-nanosecond timing precision required to make this work properly can in fact be achieved under such real-world, often turbulent, vibrationally intensive conditions. Although the basic principles behind SAR imaging and interferometry have been known for decades, in recent years an explosion of data exploitation techniques enabled by ever-faster computational horsepower have enabled some remarkable advances. Although SAR images are often viewed as simple intensity maps of ground reflectivity, SAR is also an exquisitely sensitive coherent imaging modality with a wealth of information buried within the phase information in the image. Some of the examples featured in this presentation will include: (1) Interferometric SAR, where by comparing the difference in phase between two SAR images one can measure subtle changes in ground topography at the wavelength scale. (2) Change detection, in which carefully geolocated images formed from two different passes are compared. (3) Multi-pass 3D SAR tomography, where multiple trajectories can be used to form 3D images. (4) Moving Target Indication (MTI), in which Doppler effects allow one to detect and

  6. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  7. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed

  8. Retrospective Analysis of Locally Advanced Noninflammatory Breast Cancer From Chennai, South India, 1990-1999

    SciTech Connect

    Shanta, Viswanathan Swaminathan, Rajaraman; Rama, Ranganathan M.Sc.; Radhika, Ramachandran M.S.

    2008-01-01

    Purpose: This was a retrospective observational study to elicit the outcome of the therapeutic strategy of concurrent neoadjuvant chemoradiotherapy protocol for locally advanced breast cancer. Methods and Materials: A large series of 1,117 consecutive cases of locally advanced breast cancer treated at the Cancer Institute (WIA), in Chennai, South India, between 1990 and 1999 and followed through 2004 formed the basis for this study. Disease-free survival was the main outcome, and nodal and tumor downstaging were the intermediate outcome measures studied. Results: Primary tumor downstaging was observed in 45% and nodal downstaging in 57.5%. The disease-free survival rate of nodal downstaged patients at 5, 10, and 15 years was 75%, 65%, and 58%, respectively. The corresponding rates for pre- and postoperative node-negative patients were 70%, 60%, and 59%. The best survival was seen among those who were tumor and node negative postoperatively. Nodal downstaging halved the risk of disease recurrence and death compared with node positivity, irrespective of tumor sterility. Conclusions: A randomized trial using cyclophosphamide, methotrexate, and 5-fluorouracil vs. an anthracycline-based regimen in the setting of concurrent chemoradiotherapy appears indicated. Additional preoperative chemotherapy to maximize nodal and tumor downstaging should be investigated. A change in postoperative chemotherapy according to nodal status could also be explored.

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  10. Nodal·Gdf1 Heterodimers with Bound Prodomains Enable Serum-independent Nodal Signaling and Endoderm Differentiation

    PubMed Central

    Fuerer, Christophe; Nostro, M. Cristina; Constam, Daniel B.

    2014-01-01

    The TGFβ family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation. PMID:24798330

  11. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  12. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  13. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  14. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  15. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  16. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    SciTech Connect

    Moulton, J.D.; Ascher, U.M.; Morel, J.E.

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  17. Pathology of extra-nodal non Hodgkin lymphomas.

    PubMed

    Wright, D H

    2012-06-01

    In the management of extra-nodal lymphomas it is important to determine whether the tumour has disseminated and whether lymph nodes are involved. Some extra-nodal lymphomas may be the result of random spread of nodal lymphoma. Specific homing, however, determines the site of many extra-nodal lymphomas, as exemplified by cutaneous T-cell lymphomas, which seem to be derived from skin-homing T-cells and mucosa-associated lymphoid tissue lymphomas that show features of the mucosal immune system. Enteropathy-associated T-cell lymphoma is derived from mucosal T-cells in patients with coeliac disease. Immunological sanctuary accounts for the localisation of primary brain, eye and testicular lymphoma. Mantle cell lymphoma frequently causes tumours in the gastrointestinal tract. Random biopsies have shown that a high proportion of patients with this lymphoma have extensive occult involvement of the gastrointestinal tract at the time of first diagnosis. Follicular lymphoma occurs at both nodal and extra-nodal sites, but uncommonly at both sites at the same time. Extra-nodal follicular lymphomas frequently lack t(14;18)(q32;q21) and do not express bcl-2, which are characteristics of the nodal disease. At extra-nodal sites, follicular lymphoma is more likely to be curable than nodal follicular lymphoma. The behaviour of extra-nodal lymphomas cannot be assumed to follow that of their nodal counterparts.

  18. Comparison between 18F-Fluorodeoxyglucose Positron Emission Tomography and Sentinel Lymph Node Biopsy for Regional Lymph Nodal Staging in Patients with Melanoma: A Review of the Literature

    PubMed Central

    Mirk, Paoletta; Treglia, Giorgio; Salsano, Marco; Basile, Pietro; Giordano, Alessandro; Bonomo, Lorenzo

    2011-01-01

    Aim. to compare 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to sentinel lymph node biopsy (SLNB) for regional lymph nodal staging in patients with melanoma. Methods. We performed a literature review discussing original articles which compared FDG-PET to SLNB for regional lymph nodal staging in patients with melanoma. Results and Conclusions. There is consensus in the literature that FDG-PET cannot replace SLNB for regional lymph nodal staging in patients with melanoma. PMID:22242204

  19. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  20. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  1. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  2. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  3. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    SciTech Connect

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  4. Nodal resonance in a strong standing wave

    NASA Astrophysics Data System (ADS)

    Fernández C., David J.; Mielnik, Bogdan

    1990-06-01

    The motion of charged particles in a standing electromagnetic wave is considered. For amplitudes that are not too high, the wave causes an effect of attraction of particles to the nodal points, resembling the channeling effect reported by Salomon, Dalibard, Aspect, Metcalf, and Cohen-Tannoudji [Phys. Rev. Lett. 59, 1659 (1987)] consistent with the ``high-frequency potential'' of Kapitza [Zh. Eksp. Teor. Fiz. 21, 588 (1951)]. For high-field intensities, however, the nodal points undergo a qualitative metamorphosis, converting themselves from particle attractors into resonant centers. Some chaotic phenomena arise and the description of the oscillating field in terms of an ``effective potential'' becomes inappropriate. The question of a correct Floquet Hamiltonian that could describe the standing wave within this amplitude and frequency regime is open.

  5. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  6. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  7. Multiple nodal locoregional recurrence of pheochromocytoma

    PubMed Central

    Ramírez-Plaza, César Pablo; Cárdenas, Elena Margarita Sanchiz; Humanes, Rocío Soler

    2015-01-01

    Introduction Malignancy is present in 10% of pheochromocytomas (PCC) and is defined as local/vascular infiltration of surrounding tissues or the presence of chromaffin cells deposits in distant organs. The presence of isolated nodal recurrence is very rare and only 7 cases have been reported in the medical literature. Presentation of the case The case of a 32-y male with a symptomatic recurrence of a previously operated (2-years ago) PCC is presented. Radiological and functional imaging studies confirmed the presence of multiple nodules in the surgical site. A radical left nephrectomy with extensive lymphatic clearance in order to get an R0 resection was performed. The pathologist confirmed the diagnosis of massive locoregional nodal invasion. Discussion A detailed histological report and a thorough genetic study must be considered in every operated PCC in order to identify mutations and profiles of risk for malignancy. When recurrence or metastastic disease is suspected, imaging and functional exams are done in order to obtain a proper staging. Radical surgery for the metastatic disease is the only treatment that may provide prolonged survival. If an R0 resection is not possible, then a debulking surgery is a good option when the benefit/risk ratio is acceptable. Conclusion Isolated lymph nodal recurrence is very rare in malignant PCC, with only 7 cases previously published. The role of surgery is essential to get long-term survival because provides clinical and functional control of the disease. PMID:26117450

  8. Advanced digital methods for solid propellant burning rate determination

    NASA Astrophysics Data System (ADS)

    Jones, Daniel A.

    The work presented here is a study of a digital method for determining the combustion bomb burning rate of a fuel-rich gas generator propellant sample using the ultrasonic pulse-echo technique. The advanced digital method, which places user defined limits on the search for the ultrasonic echo from the burning surface, is computationally faster than the previous cross correlation method, and is able to analyze data for this class of propellant that the previous cross correlation data reduction method could not. For the conditions investigated, the best fit burning rate law at 800 psi from the ultrasonic technique and advanced cross correlation method is within 3 percent of an independent analysis of the same data, and is within 5 percent of the best fit burning rate law found from parallel research of the same propellant in a motor configuration.

  9. Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    NASA Technical Reports Server (NTRS)

    Stern, Martin O.

    1992-01-01

    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.

  10. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    EPA Science Inventory

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  11. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  12. Domain Decomposition By the Advancing-Partition Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  13. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  14. An advanced Gibbs-Duhem integration method: theory and applications.

    PubMed

    van 't Hof, A; Peters, C J; de Leeuw, S W

    2006-02-07

    The conventional Gibbs-Duhem integration method is very convenient for the prediction of phase equilibria of both pure components and mixtures. However, it turns out to be inefficient. The method requires a number of lengthy simulations to predict the state conditions at which phase coexistence occurs. This number is not known from the outset of the numerical integration process. Furthermore, the molecular configurations generated during the simulations are merely used to predict the coexistence condition and not the liquid- and vapor-phase densities and mole fractions at coexistence. In this publication, an advanced Gibbs-Duhem integration method is presented that overcomes above-mentioned disadvantage and inefficiency. The advanced method is a combination of Gibbs-Duhem integration and multiple-histogram reweighting. Application of multiple-histogram reweighting enables the substitution of the unknown number of simulations by a fixed and predetermined number. The advanced method has a retroactive nature; a current simulation improves the predictions of previously computed coexistence points as well. The advanced Gibbs-Duhem integration method has been applied for the prediction of vapor-liquid equilibria of a number of binary mixtures. The method turned out to be very convenient, much faster than the conventional method, and provided smooth simulation results. As the employed force fields perfectly predict pure-component vapor-liquid equilibria, the binary simulations were very well suitable for testing the performance of different sets of combining rules. Employing Lorentz-Hudson-McCoubrey combining rules for interactions between unlike molecules, as opposed to Lorentz-Berthelot combining rules for all interactions, considerably improved the agreement between experimental and simulated data.

  15. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  16. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by semi-randomly varying routing policies for different packets

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-11-23

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Nodes vary a choice of routing policy for routing data in the network in a semi-random manner, so that similarly situated packets are not always routed along the same path. Semi-random variation of the routing policy tends to avoid certain local hot spots of network activity, which might otherwise arise using more consistent routing determinations. Preferably, the originating node chooses a routing policy for a packet, and all intermediate nodes in the path route the packet according to that policy. Policies may be rotated on a round-robin basis, selected by generating a random number, or otherwise varied.

  17. Plasticity underlies tumor progression: Role of Nodal signaling

    PubMed Central

    Bodenstine, Thomas M.; Chandler, Grace S.; Seftor, Richard E. B.; Seftor, Elisabeth A.; Hendrix, Mary J. C.

    2016-01-01

    The transforming growth factor beta (TGFβ) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry and primitive streak formation. Nodal signals through TGFβ family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its re-expression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition. PMID:26951550

  18. Advanced Doubling Adding Method for Radiative Transfer in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Liu, Quanhua; Weng, Fuzhong

    2006-12-01

    The doubling adding method (DA) is one of the most accurate tools for detailed multiple-scattering calculations. The principle of the method goes back to the nineteenth century in a problem dealing with reflection and transmission by glass plates. Since then the doubling adding method has been widely used as a reference tool for other radiative transfer models. The method has never been used in operational applications owing to tremendous demand on computational resources from the model. This study derives an analytical expression replacing the most complicated thermal source terms in the doubling adding method. The new development is called the advanced doubling adding (ADA) method. Thanks also to the efficiency of matrix and vector manipulations in FORTRAN 90/95, the advanced doubling adding method is about 60 times faster than the doubling adding method. The radiance (i.e., forward) computation code of ADA is easily translated into tangent linear and adjoint codes for radiance gradient calculations. The simplicity in forward and Jacobian computation codes is very useful for operational applications and for the consistency between the forward and adjoint calculations in satellite data assimilation.

  19. General advancing front packing algorithm for the discrete element method

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán

    2016-11-01

    A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.

  20. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  1. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  2. Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors

    NASA Astrophysics Data System (ADS)

    Micklitz, T.; Norman, M. R.

    2017-01-01

    We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3.

  3. Advanced three-dimensional dynamic analysis by boundary element methods

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahma, S.

    1985-01-01

    Advanced formulations of boundary element method for periodic, transient transform domain and transient time domain solution of three-dimensional solids have been implemented using a family of isoparametric boundary elements. The necessary numerical integration techniques as well as the various solution algorithms are described. The developed analysis has been incorporated in a fully general purpose computer program BEST3D which can handle up to 10 subregions. A number of numerical examples are presented to demonstrate the accuracy of the dynamic analyses.

  4. Advanced boundary element methods in aeroacoustics and elastodynamics

    NASA Astrophysics Data System (ADS)

    Lee, Li

    In the first part of this dissertation, advanced boundary element methods (BEM) are developed for acoustic radiation in the presence of subsonic flows. A direct boundary integral formulation is first introduced for acoustic radiation in a uniform flow. This new formulation uses the Green's function derived from the adjoint operator of the governing differential equation. Therefore, it requires no coordinate transformation. This direct BEM formulation is then extended to acoustic radiation in a nonuniform-flow field. All the terms due to the nonuniform-flow effect are taken to the right-hand side and treated as source terms. The source terms result in a domain integral in the standard boundary integral formulation. The dual reciprocity method is then used to convert the domain integral into a number of boundary integrals. The second part of this dissertation is devoted to the development of advanced BEM algorithms to overcome the multi-frequency and nonuniqueness difficulties in steady-state elastodynamics. For the multi-frequency difficulty, two different interpolation schemes, borrowed from recent developments in acoustics, are first extended to elastodynamics to accelerate the process of matrix re-formation. Then, a hybrid scheme that retains only the merits of the two different interpolation schemes is suggested. To overcome the nonuniqueness difficulty, an enhanced CHIEF (Combined Helmholtz Integral Equation Formulation) method using a linear combination of the displacement and the traction boundary integral equations on the surface of a small interior volume is proposed. Numerical examples are given to demonstrate all the advanced BEM formulations.

  5. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    SciTech Connect

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  6. New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding

    PubMed Central

    Focà, Annalia; Sanguigno, Luca; Focà, Giuseppina; Strizzi, Luigi; Iannitti, Roberta; Palumbo, Rosanna; Hendrix, Mary J. C.; Leonardi, Antonio; Ruvo, Menotti; Sandomenico, Annamaria

    2015-01-01

    Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44–67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention. PMID:26370966

  7. Advances in Statistical Methods for Substance Abuse Prevention Research

    PubMed Central

    MacKinnon, David P.; Lockwood, Chondra M.

    2010-01-01

    The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467

  8. SU-E-J-179: Prediction of Pelvic Nodal Coverage Using Mutual Information Between Cone-Beam and Planning CTs

    SciTech Connect

    Jani, S; Kishan, A; O'Connell, D; King, C; Steinberg, M; Low, D; Lamb, J

    2014-06-01

    Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as a ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.

  9. Influence of Pathological Nodal Status and Maximal Standardized Uptake Value of the Primary Tumor and Regional Lymph Nodes on Treatment Plans in Patients With Advanced Oral Cavity Squamous Cell Carcinoma

    SciTech Connect

    Liao, C.-T.; Wang, H.-M.; Chang, Joseph Tung-Chieh; Lin, C.-Y.; Ng, S.-H.; Huang, S.-F.; Chen, I.-H.; Hsueh Chuen; Lee, L.-Y.; Lin, C.-H.

    2010-06-01

    Purpose: A better understanding of the prognostic factors in oral cavity squamous cell carcinoma (OSCC) may optimize the therapeutic approach. In this study, we sought to investigate whether the combination of clinical information, pathologic results, and preoperative maximal standardized uptake value (SUVmax) at the primary tumor and regional lymph nodes might improve the prognostic stratification in this patient group. Methods and Materials: A total of 347 consecutive OSCC patients were investigated. All participants underwent fluorodeoxyglucose-positron emission tomography within 2 weeks before surgery and neck dissection. The duration of follow-up was at least 24 months in all surviving patients. The optimal cutoff values for SUVmax at the primary tumor (SUVtumor-max) and regional lymph nodes (SUVnodal-max) were selected according to the 5-year disease-free survival (DFS) rate. Independent prognosticators were identified by Cox regression analysis. Results: In multivariate analysis, a cutoff SUVtumor-max of 8.6, a cutoff SUVnodal-max of 5.7, and the presence of pathologic lymph node metastases were found to be significant prognosticators for the 5-year DFS. A scoring system using these three prognostic factors was formulated to define distinct prognostic groups. The 5-year rates for patients with a score between 0 and 3 were as follows: neck control, 94%, 86%, 77%, 59% (p < 0.0001); distant metastases, 1%, 7%, 22%, 47% (p < 0.0001); disease-specific survival, 93%, 85%, 61%, 36%, respectively (p < 0.0001). Conclusion: Based on the study findings, the combined evaluation of pathologic node status and SUVmax at the primary tumor and regional lymph nodes may improve prognostic stratification in OSCC patients.

  10. Nodal signaling and the evolution of deuterostome gastrulation.

    PubMed

    Chea, Helen K; Wright, Christopher V; Swalla, Billie J

    2005-10-01

    Chordates, including vertebrates, evolved within a group of animals called the deuterostomes. All holoblastic deuterostomes gastrulate at the vegetal pole and the blastopore becomes the anus, while a mouth is formed at the anterior or to the oral side. Nodal is a member of the TGF-beta superfamily of signaling molecules that are important in signaling between cells during many embryonic processes in vertebrate embryos. Nodal has also been found in other invertebrate deuterostomes, such as ascidians and sea urchins, but, so far, is missing in protostomes. Nodal has been shown to be particularly important in determining left-right asymmetries in vertebrate embryos, but less information is available for its developmental role in the invertebrate deuterostomes. We review gastrulation in the deuterostomes, then examine nodal expression early during mesoderm formation and later during the establishment of asymmetries in both vertebrates and invertebrates. Nodal is expressed asymmetrically on the left side in chordates and on the presumptive oral side of the embryo in echinoid echinoderms. The expression of nodal is in different germ layers in embryos of different phyla. Expression is in the ectoderm in most of the invertebrate deuterostomes, and in the mesoderm in vertebrates. We summarize the work that has been published to date, especially nodal expression in the invertebrate deuterostomes, and suggest future experiments to better understand the evolution of nodal signaling and deuterostome gastrulation.

  11. Market redesign and technology upgrade: a nodal implementation

    SciTech Connect

    Isemonger, Alan G.

    2009-10-15

    The California ISO and its market participants collectively cut over to a new nodal-based market on April 1, largely without incident and 11 years to the day from the initial startup in 1998. Thus far, the new nodal framework has proven robust, and the inevitable design and implementation issues that have emerged since cutover have been manageable. (author)

  12. Advanced Methods in Black-Hole Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Pani, Paolo

    2013-09-01

    Black-hole perturbation theory is a useful tool to investigate issues in astrophysics, high-energy physics, and fundamental problems in gravity. It is often complementary to fully-fledged nonlinear evolutions and instrumental to interpret some results of numerical simulations. Several modern applications require advanced tools to investigate the linear dynamics of generic small perturbations around stationary black holes. Here, we present an overview of these applications and introduce extensions of the standard semianalytical methods to construct and solve the linearized field equations in curved space-time. Current state-of-the-art techniques are pedagogically explained and exciting open problems are presented.

  13. Radar response from vegetation with nodal structure

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Oneill, P. E.

    1984-01-01

    Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties.

  14. Incessant junctional reciprocating tachycardia caused by dual atrioventricular nodal pathways and atrio-nodal bypass tract.

    PubMed Central

    Santarelli, P; Sosa, E; Denes, P

    1982-01-01

    A case is described with clinical and electrocardiographic findings of incessant junctional reciprocating tachycardia. Electrophysiological study showed that longitudinal dissociation of the atrioventricular node into two pathways was responsible for the maintenance of the arrhythmia. The two intranodal pathways had different refractory periods but reciprocally related and overlapping conduction times (anterograde fast, retrograde slow, and vice versa). Induction and termination of the arrhythmia was related to the presence of a partial atrio-nodal bypass tract. Images PMID:7082510

  15. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  16. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  17. Mammographic Density and Prediction of Nodal Status in Breast Cancer Patients

    PubMed Central

    Hack, C. C.; Häberle, L.; Geisler, K.; Schulz-Wendtland, R.; Hartmann, A.; Fasching, P. A.; Uder, M.; Wachter, D. L.; Jud, S. M.; Loehberg, C. R.; Lux, M. P.; Rauh, C.; Beckmann, M. W.; Heusinger, K.

    2013-01-01

    Aim: Nodal status remains one of the most important prognostic factors in breast cancer. The cellular and molecular reasons for the spread of tumor cells to the lymph nodes are not well understood and there are only few predictors in addition to tumor size and multifocality that give an insight into additional mechanisms of lymphatic spread. Aim of our study was therefore to investigate whether breast characteristics such as mammographic density (MD) add to the predictive value of the presence of lymph node metastases in patients with primary breast cancer. Methods: In this retrospective study we analyzed primary, metastasis-free breast cancer patients from one breast center for whom data on MD and staging information were available. A total of 1831 patients were included into this study. MD was assessed as percentage MD (PMD) using a semiautomated method and two readers for every patient. Multiple logistic regression analyses with nodal status as outcome were used to investigate the predictive value of PMD in addition to age, tumor size, Ki-67, estrogen receptor (ER), progesterone receptor (PR), grading, histology, and multi-focality. Results: Multifocality, tumor size, Ki-67 and grading were relevant predictors for nodal status. Adding PMD to a prediction model which included these factors did not significantly improve the prediction of nodal status (p = 0.24, likelihood ratio test). Conclusion: Nodal status could be predicted quite well with the factors multifocality, tumor size, Ki-67 and grading. PMD does not seem to play a role in the lymphatic spread of tumor cells. It could be concluded that the amount of extracellular matrix and stromal cell content of the breast which is reflected by MD does not influence the probability of malignant breast cells spreading from the primary tumor to the lymph nodes. PMID:24771910

  18. Advances in direct and diffraction methods for surface structural determination

    NASA Astrophysics Data System (ADS)

    Tong, S. Y.

    1999-08-01

    I describe recent advances in low-energy electron diffraction holography and photoelectron diffraction holography. These are direct methods for determining the surface structure. I show that for LEED and PD spectra taken in an energy and angular mesh, the relative phase between the reference wave and the scattered wave has a known geometric form if the spectra are always taken from within a small angular cone in the near backscattering direction. By using data in the backscattering small cone at each direction of interest, a simple algorithm is developed to invert the spectra and extract object atomic positions with no input of calculated dynamic factors. I also describe the use of a convergent iterative method of PD and LEED. The computation time of this method scales as N2, where N is the dimension of the propagator matrix, rather than N3 as in conventional Gaussian substitutional methods. Both the Rehr-Albers separable-propagator cluster approach and the slab-type non-separable approach can be cast in the new iterative form. With substantial savings in computational time and no loss in numerical accuracy, this method is very useful in applications of multiple scattering theory, particularly for systems involving either very large unit cells (>300 atoms) or where no long-range order is present.

  19. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  20. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  1. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  2. Integration of isothermal amplification methods in microfluidic devices: Recent advances.

    PubMed

    Giuffrida, Maria Chiara; Spoto, Giuseppe

    2017-04-15

    The integration of nucleic acids detection assays in microfluidic devices represents a highly promising approach for the development of convenient, cheap and efficient diagnostic tools for clinical, food safety and environmental monitoring applications. Such tools are expected to operate at the point-of-care and in resource-limited settings. The amplification of the target nucleic acid sequence represents a key step for the development of sensitive detection protocols. The integration in microfluidic devices of the most popular technology for nucleic acids amplifications, polymerase chain reaction (PCR), is significantly limited by the thermal cycling needed to obtain the target sequence amplification. This review provides an overview of recent advances in integration of isothermal amplification methods in microfluidic devices. Isothermal methods, that operate at constant temperature, have emerged as promising alternative to PCR and greatly simplify the implementation of amplification methods in point-of-care diagnostic devices and devices to be used in resource-limited settings. Possibilities offered by isothermal methods for digital droplet amplification are discussed.

  3. Advances in nondestructive evaluation methods for inspection of refractory concretes

    SciTech Connect

    Ellingson, W. A.

    1980-01-01

    Refractory concrete linings are essential to protect steel pressure boundaries from high-temperature agressive erosive/corrosive environments. Castable refractory concretes have been gaining more acceptance as information about their performance increases. Economic factors, however, have begun to impose high demands on the reliability of refractory materials. Advanced nondestructive evaluation methods are being developed to assist the refractory user. Radiographic techniques, thermography, acoustic-emission detection, and interferometry have been shown to yield information on the structural status of refractory concrete. Methods using /sup 60/Co radiation sources are capable of yielding measurements of refractory wear rate as well as images of cracks and/or voids in pre- and post-fired refractory linings up to 60 cm thick. Thermographic (infrared) images serve as a qualitative indicator of refractory spalling, but quantitative measurements are difficult to obtain from surface-temperature mapping. Acoustic emission has been shown to be a qualitative indicator of thermomechanical degradation of thick panels of 50 and 95% Al/sub 2/O/sub 3/ during initial heating and cooling at rates of 100 to 220/sup 0/C/h. Laser interferometry methods have been shown to be capable of complete mappings of refractory lining thicknesses. This paper will present results obtained from laboratory and field applications of these methods in petrochemical, steel, and coal-conversion plants.

  4. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  5. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    SciTech Connect

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  6. Exploration of Advanced Probabilistic and Stochastic Design Methods

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  7. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  8. Computational methods of the Advanced Fluid Dynamics Model

    SciTech Connect

    Bohl, W.R.; Wilhelm, D.; Parker, F.R.; Berthier, J.; Maudlin, P.J.; Schmuck, P.; Goutagny, L.; Ichikawa, S.; Ninokata, H.; Luck, L.B.

    1987-01-01

    To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development.

  9. Designer Nodal/BMP2 Chimeras Mimic Nodal Signaling, Promote Chondrogenesis, and Reveal a BMP2-like Structure

    PubMed Central

    Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon

    2014-01-01

    Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780

  10. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  11. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    SciTech Connect

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  12. Nodal Solutions for Supercritical Laplace Equations

    NASA Astrophysics Data System (ADS)

    Dalbono, Francesca; Franca, Matteo

    2016-11-01

    In this paper we study radial solutions for the following equation Δ u(x)+f (u(x), |x|) = 0, where {x in {Rn}}, n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent {2^{*} = 2n/n-2}. The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular ground states with fast decay and singular ground states with slow decay, all of them with exactly j zeroes. Our approach, based on Fowler transformation and invariant manifold theory, enables us to deal with a wide family of potentials allowing spatial inhomogeneity and a quite general dependence on u. In particular, for the Matukuma-type potential, we show a kind of structural stability.

  13. The genetics of nodal marginal zone lymphoma

    PubMed Central

    Spina, Valeria; Khiabanian, Hossein; Messina, Monica; Monti, Sara; Cascione, Luciano; Bruscaggin, Alessio; Spaccarotella, Elisa; Holmes, Antony B.; Arcaini, Luca; Lucioni, Marco; Tabbò, Fabrizio; Zairis, Sakellarios; Diop, Fary; Cerri, Michaela; Chiaretti, Sabina; Marasca, Roberto; Ponzoni, Maurilio; Deaglio, Silvia; Ramponi, Antonio; Tiacci, Enrico; Pasqualucci, Laura; Paulli, Marco; Falini, Brunangelo; Inghirami, Giorgio; Bertoni, Francesco; Foà, Robin; Rabadan, Raul; Gaidano, Gianluca

    2016-01-01

    Nodal marginal zone lymphoma (NMZL) is a rare, indolent B-cell tumor that is distinguished from splenic marginal zone lymphoma (SMZL) by the different pattern of dissemination. NMZL still lacks distinct markers and remains orphan of specific cancer gene lesions. By combining whole-exome sequencing, targeted sequencing of tumor-related genes, whole-transcriptome sequencing, and high-resolution single nucleotide polymorphism array analysis, we aimed at disclosing the pathways that are molecularly deregulated in NMZL and we compare the molecular profile of NMZL with that of SMZL. These analyses identified a distinctive pattern of nonsilent somatic lesions in NMZL. In 35 NMZL patients, 41 genes were found recurrently affected in ≥3 (9%) cases, including highly prevalent molecular lesions of MLL2 (also known as KMT2D; 34%), PTPRD (20%), NOTCH2 (20%), and KLF2 (17%). Mutations of PTPRD, a receptor-type protein tyrosine phosphatase regulating cell growth, were enriched in NMZL across mature B-cell tumors, functionally caused the loss of the phosphatase activity of PTPRD, and were associated with cell-cycle transcriptional program deregulation and increased proliferation index in NMZL. Although NMZL shared with SMZL a common mutation profile, NMZL harbored PTPRD lesions that were otherwise absent in SMZL. Collectively, these findings provide new insights into the genetics of NMZL, identify PTPRD lesions as a novel marker for this lymphoma across mature B-cell tumors, and support the distinction of NMZL as an independent clinicopathologic entity within the current lymphoma classification. PMID:27335277

  14. Advances in Time Estimation Methods for Molecular Data.

    PubMed

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  15. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  16. Nodal recovery, dual pathway physiology, and concealed conduction determine complex AV dynamics in human atrial tachyarrhythmias.

    PubMed

    Masè, Michela; Glass, Leon; Disertori, Marcello; Ravelli, Flavia

    2012-11-15

    The genesis of complex ventricular rhythms during atrial tachyarrhythmias in humans is not fully understood. To clarify the dynamics of atrioventricular (AV) conduction in response to a regular high-rate atrial activation, 29 episodes of spontaneous or pacing-induced atrial flutter (AFL), covering a wide range of atrial rates (cycle lengths from 145 to 270 ms), were analyzed in 10 patients. AV patterns were identified by applying firing sequence and surrogate data analysis to atrial and ventricular activation series, whereas modular simulation with a difference-equation AV node model was used to correlate the patterns with specific nodal properties. AV node response at high atrial rate was characterized by 1) AV patterns of decreasing conduction ratios at the shortening of atrial cycle length (from 236.3 ± 32.4 to 172.6 ± 17.8 ms) according to a Farey sequence ordering (conduction ratio from 0.34 ± 0.12 to 0.23 ± 0.06; P < 0.01); 2) the appearance of high-order alternating Wenckebach rhythms, such as 6:2, 10:2, and 12:2, associated with ventricular interval oscillations of large amplitude (407.7 ± 150.4 ms); and 3) the deterioration of pattern stability at advanced levels of block, with the percentage of stable patterns decreasing from 64.3 ± 35.2% to 28.3 ± 34.5% (P < 0.01). Simulations suggested these patterns to originate from the combined effect of nodal recovery, dual pathway physiology, and concealed conduction. These results indicate that intrinsic nodal properties may account for the wide spectrum of AV block patterns occurring during regular atrial tachyarrhythmias. The characterization of AV nodal function during different AFL forms constitutes an intermediate step toward the understanding of complex ventricular rhythms during atrial fibrillation.

  17. [Contemporary methods of treatment in local advanced prostate cancer].

    PubMed

    Brzozowska, Anna; Mazurkiewicz, Maria; Starosławska, Elzbieta; Stasiewicz, Dominika; Mocarska, Agnieszka; Burdan, Franciszek

    2012-10-01

    The prostate cancer is one of the most often cancers amongst males. Its frequency is increasing with age. Thanks to widespread of screening denomination of specific prostate specific antigen (PSA), ultrasonography including the one in transrectal (TRUS), computed tomography, magnetic resonance and especially the awareness of society, the number of patients with low local advance of illness is increasing. The basic method of treatment in such cases is still the surgical removal of prostate with seminal bladder or radiotherapy. To this purpose tele-(IMRT, VMAT) or brachytherapy (J125, Ir192, Pa103) is used. In patients with higher risk of progression the radiotherapy may be associated with hormonotherapy (total androgen blockage-LH-RH analog and androgen). Despite numerous clinical researches conducted there is still no selection of optimal sequence of particular methods. Moreover, no explicit effectiveness was determined. The general rule of treatment in patients suffering from prostate cancer still remains individual selection of therapeutic treatment depending on the age of a patient, general condition and especially patient's general preferences. In case of elderly patients and patients with low risk of progression, recommendation of direct observation including systematical PSA denomination, clinical transrectal examination, TRUS, MR of smaller pelvis or scintigraphy of the whole skeleton may be considered.

  18. Nodal signalling and asymmetry of the nervous system.

    PubMed

    Signore, Iskra A; Palma, Karina; Concha, Miguel L

    2016-12-19

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  19. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    SciTech Connect

    Filho, J. F. P.

    2013-07-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  20. Role of Ultrasonography of Regional Nodal Basins in Staging Triple-Negative Breast Cancer and Implications For Local-Regional Treatment

    SciTech Connect

    Shaitelman, Simona F.; Tereffe, Welela; Dogan, Basak E.; Hess, Kenneth R.; Caudle, Abigail S.; Valero, Vicente; Stauder, Michael C.; Krishnamurthy, Savitri; Candelaria, Rosalind P.; Strom, Eric A.; Woodward, Wendy A.; Hunt, Kelly K.; Buchholz, Thomas A.; Whitman, Gary J.

    2015-09-01

    Purpose: We sought to determine the rate at which regional nodal ultrasonography would increase the nodal disease stage in patients with triple-negative breast cancer (TNBC) beyond the clinical stage determined by physical examination and mammography alone, and significantly affect the treatments delivered to these patients. Methods and Materials: We retrospectively reviewed the charts of women with stages I to III TNBC who underwent physical examination, mammography, breast and regional nodal ultrasonography with needle biopsy of abnormal nodes, and definitive local-regional treatment at our institution between 2004 and 2011. The stages of these patients' disease with and without ultrasonography of the regional nodal basins were compared using the Pearson χ{sup 2} test. Definitive treatments of patients whose nodal disease was upstaged on the basis of ultrasonographic findings were compared to those of patients whose disease stage remained the same. Results: A total of 572 women met the study requirements. In 111 (19.4%) of these patients, regional nodal ultrasonography with needle biopsy resulted in an increase in disease stage from the original stage by physical examination and mammography alone. Significantly higher percentages of patients whose nodal disease was upstaged by ultrasonographic findings compared to that in patients whose disease was not upstaged underwent neoadjuvant systemic therapy (91.9% and 51.2%, respectively; P<.0001), axillary lymph node dissection (99.1% and 34.5%, respectively; P<.0001), and radiation to the regional nodal basins (88.2% and 29.1%, respectively; P<.0001). Conclusions: Regional nodal ultrasonography in TNBC frequently changes the initial clinical stage and plays an important role in treatment planning.

  1. Striking against bioterrorism with advanced proteomics and reference methods.

    PubMed

    Armengaud, Jean

    2017-01-01

    The intentional use by terrorists of biological toxins as weapons has been of great concern for many years. Among the numerous toxins produced by plants, animals, algae, fungi, and bacteria, ricin is one of the most scrutinized by the media because it has already been used in biocrimes and acts of bioterrorism. Improving the analytical toolbox of national authorities to monitor these potential bioweapons all at once is of the utmost interest. MS/MS allows their absolute quantitation and exhibits advantageous sensitivity, discriminative power, multiplexing possibilities, and speed. In this issue of Proteomics, Gilquin et al. (Proteomics 2017, 17, 1600357) present a robust multiplex assay to quantify a set of eight toxins in the presence of a complex food matrix. This MS/MS reference method is based on scheduled SRM and high-quality standards consisting of isotopically labeled versions of these toxins. Their results demonstrate robust reliability based on rather loose scheduling of SRM transitions and good sensitivity for the eight toxins, lower than their oral median lethal doses. In the face of an increased threat from terrorism, relevant reference assays based on advanced proteomics and high-quality companion toxin standards are reliable and firm answers.

  2. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    PubMed Central

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  3. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    PubMed

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies.

  4. Regenerative medicine: advances in new methods and technologies.

    PubMed

    Park, Dong-Hyuk; Eve, David J

    2009-11-01

    The articles published in the journal Cell Transplantation - The Regenerative Medicine Journal over the last two years reveal the recent and future cutting-edge research in the fields of regenerative and transplantation medicine. 437 articles were published from 2007 to 2008, a 17% increase compared to the 373 articles in 2006-2007. Neuroscience was still the most common section in both the number of articles and the percentage of all manuscripts published. The increasing interest and rapid advance in bioengineering technology is highlighted by tissue engineering and bioartificial organs being ranked second again. For a similar reason, the methods and new technologies section increased significantly compared to the last period. Articles focusing on the transplantation of stem cell lineages encompassed almost 20% of all articles published. By contrast, the non-stem cell transplantation group which is made up primarily of islet cells, followed by biomaterials and fetal neural tissue, etc. comprised less than 15%. Transplantation of cells pre-treated with medicine or gene transfection to prolong graft survival or promote differentiation into the needed phenotype, was prevalent in the transplantation articles regardless of the kind of cells used. Meanwhile, the majority of non-transplantation-based articles were related to new devices for various purposes, characterization of unknown cells, medicines, cell preparation and/or optimization for transplantation (e.g. isolation and culture), and disease pathology.

  5. Spin-orbit interaction driven collective electron-hole excitations in a noncentrosymmetric nodal loop Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.

    2015-09-01

    NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.

  6. Shifting nodal-plane suppressions in high-order-harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    NASA Astrophysics Data System (ADS)

    Das, T.; Figueira de Morisson Faria, C.

    2016-08-01

    We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.

  7. Bioinformatics Methods and Tools to Advance Clinical Care

    PubMed Central

    Lecroq, T.

    2015-01-01

    Summary Objectives To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. Method We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. Results The selection and evaluation process of this Yearbook’s section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. Conclusions The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their

  8. Advances in Experimental Neuropathology: New Methods and Insights.

    PubMed

    Roth, Kevin A

    2016-03-01

    This Editorial introduces this month's special Neuropathology Theme Issue, a series of Reviews on advances in our understanding of rare human hereditary neuropathies, peripheral nervous system tumors, and common degenerative diseases.

  9. Positron Emission Tomography for Neck Evaluation Following Definitive Treatment with Chemoradiotherapy for Locoregionally Advanced Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Bar-Ad, Voichita; Mishra, Mark; Ohri, Nitin; Intenzo, Charles

    2013-01-01

    Objectives The objective of the current review was to assess published data on the role of Positron Emission Tomography (PET) for evaluation of nodal residual disease after definitive chemoradiotherapy for head and neck squamous cell carcinoma (HNSCC). Methods Studies were identified by searching PubMed electronic databases. Only studies using a post-chemoradiotherapy PET for nodal residual disease evaluation were included in the present review. Both prospective and retrospective studies were included. Information regarding sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET for detecting nodal residual disease after definitive chemoradiotherapy for HNSCC was extracted and analyzed. Results Twenty published studies were included in the present review. Existing data suggest that a negative post-chemoradiotherapy PET scan is associated with a negative predictive value up to 100%. The sensitivity of PET in detecting nodal residual disease is greater for scans performed ≥ 10 weeks after definitive treatment with chemoradiotherapy for HNSCC. Conclusions Further studies are needed to quantify the reliability of PET in detecting nodal residual disease after chemoradiotherapy for locoregionally advanced HNSCC. The optimal timing of PET imaging after chemoradiotherapy remains to be defined. PMID:21864252

  10. Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-12-01

    We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.

  11. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  12. Processing of alnico permanent magnets by advanced directional solidification methods

    SciTech Connect

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying

  13. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGES

    Zou, Min; Johnson, Francis; Zhang, Wanming; ...

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  14. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  15. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    SciTech Connect

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target

  16. Three-Dimensional Conformal Radiation Therapy for Esophageal Squamous Cell Carcinoma: Is Elective Nodal Irradiation Necessary?

    SciTech Connect

    Zhao Kuaile; Ma Jinbo; Liu Guang; Wu Kailiang; Shi Xuehui; Jiang Guoliang

    2010-02-01

    Purpose: To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. Methods and Materials: A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. Results: All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. Conclusions: In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems.

  17. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    NASA Astrophysics Data System (ADS)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  18. Spin-Orbit Nodal Semimetals in the Layer Groups

    NASA Astrophysics Data System (ADS)

    Wieder, Benjamin; Kim, Youngkuk; Kane, Charles

    Recent interest in point and line node semimetals has lead to the proposal and discovery of these phenomena in numerous systems. Frequently, though, these nodal systems are described in terms of individual properties reliant on specific space group intricacies or band-tuning conditions. Restricting ourselves to cases with strong spin-orbit interaction, we develop a more general framework which captures existing systems and predicts new examples of nodal materials. In many previously proposed systems, the three-dimensional nature of the space group has obscured key generalities. Therefore, we show how within our framework one can predict and characterize a diverse set of nodal phenomena even in two-dimensional systems constructed of three-dimensional sites, known as the ``Layer Groups''. Introducing a set of simple models, we characterize the allowed semimetallic structures in the layer groups and draw connections to analogous three-dimensional systems.

  19. A computational study of nodal-based tetrahedral element behavior.

    SciTech Connect

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  20. Distant nodal metastasis: is it always an unresectable disease?

    PubMed Central

    Celotti, Andrea; Molfino, Sarah; Baggi, Paolo; Tarasconi, Antonio; Baronio, Gianluca; Arru, Luca; Gheza, Federico; Tiberio, Guido; Portolani, Nazario

    2017-01-01

    This article aims at analyzing the published literature concerning the treatment of patients with gastric cancer and distant nodal metastases, actually considered metastatic disease. A systematic search was undertaken using Medline, Embase, Cochrane and Web-of-Science libraries. No specific restriction on year of publication was used; preference was given to English papers. Both clinical series and literature reviews were selected. Only 11 papers address the issue of surgery for nodal basins outside the D2 dissection area. From these papers, in selected cases extended surgery may prove useful in prolonging survival, when a comprehensive therapeutic pathway including chemotherapy is scheduled. In conclusion, in presence of nodal metastases outside the loco-regional nodes, surgery may be considered for metastatic nodes in stations 13 and 16, in selected cases. PMID:28217751

  1. Impact of FDG-PET/CT Imaging on Nodal Staging for Head-And-Neck Squamous Cell Carcinoma

    SciTech Connect

    Murakami, Ryuji . E-mail: murakami@kaiju.medic.kumamoto-u.ac.jp; Uozumi, Hideaki; Hirai, Toshinori; Nishimura, Ryuichi; Shiraishi, Shinya; Ota, Kazutoshi D.D.S.; Murakami, Daizo; Tomiguchi, Seiji; Oya, Natsuo; Katsuragawa, Shigehiko; Yamashita, Yasuyuki

    2007-06-01

    Purpose: To evaluate the impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging on nodal staging for head-and-neck squamous cell carcinoma (SCC). Methods and Materials: The study population consisted of 23 patients with head-and-neck SCC who were evaluated with FDG-PET/CT and went on to neck dissection. Two observers consensually determined the lesion size and maximum standardized uptake value (SUV{sub max}) and compared the results with pathologic findings on nodal-level involvement. Two different observers (A and B) independently performed three protocols for clinical nodal staging. Methods 1, 2, and 3 were based on conventional modalities, additional visual information from FDG-PET/CT images, and FDG-PET/CT imaging alone with SUV data, respectively. Results: All primary tumors were visualized with FDG-PET/CT. Pathologically, 19 positive and 93 negative nodal levels were identified. The SUV{sub max} overlapped in negative and positive nodes <15 mm in diameter. According to receiver operating characteristics analysis, the size-based SUV{sub max} cutoff values were 1.9, 2.5, and 3.0 for lymph nodes <10 mm, 10-15 mm, and >15 mm, respectively. These cutoff values yielded 79% sensitivity and 99% specificity for nodal-level staging. For Observer A, the sensitivity and specificity in Methods 1, 2, and 3 were 68% and 94%, 68% and 99%, and 84% and 99%, respectively, and Method 3 yielded significantly higher accuracy than Method 1 (p = 0.0269). For Observer B, Method 3 yielded the highest sensitivity (84%) and specificity (99%); however, the difference among the three protocols was not statistically significant. Conclusion: Imaging with FDG-PET/CT with size-based SUV{sub max} cutoff values is an important modality for radiation therapy planning.

  2. Chiral Spin-Orbital Liquids with Nodal Lines

    NASA Astrophysics Data System (ADS)

    Natori, W. M. H.; Andrade, E. C.; Miranda, E.; Pereira, R. G.

    2016-07-01

    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba2YMoO6.

  3. Nodal metastases in thyroid cancer: prognostic implications and management.

    PubMed

    Wang, Laura Y; Ganly, Ian

    2016-04-01

    The significance of cervical lymph node metastases in differentiated thyroid cancer has been controversial and continues to evolve. Current staging systems consider nodal metastases to confer a poorer prognosis, particularly in older patients. Increasingly, the literature suggests that characteristics of the metastatic lymph nodes such as size and number are also prognostic. There is a growing trend toward less aggressive treatment of low-volume nodal disease. The aim of this review is to summarize the current literature and discuss prognostic and management implications of lymph node metastases in differentiated thyroid cancer.

  4. Long period nodal motion of sun synchronous orbits

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1975-01-01

    An approximative model is formulated for assessing these perturbations that significantly affect long term modal motion of sun synchronous orbits. Computer simulations with several independent computer programs consider zonal and tesseral gravitational harmonics, third body gravitational disturbances induced by the sun and the moon, and atmospheric drag. A pendulum model consisting of evenzonal harmonics through order 4 and solar gravity dominated nodal motion approximation. This pendulum motion results from solar gravity inducing an inclination oscillation which couples into the nodal precession induced by the earth's oblateness. The pendulum model correlated well with simulations observed flight data.

  5. Selective Nodal Irradiation on Basis of {sup 18}FDG-PET Scans in Limited-Disease Small-Cell Lung Cancer: A Prospective Study

    SciTech Connect

    Loon, Judith van; De Ruysscher, Dirk; Wanders, Rinus; Boersma, Liesbeth; Simons, Jean; Oellers, Michel; Dingemans, Anne-Marie C.; Hochstenbag, Monique; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Teule, Jaap; Rhami, Ali; Thimister, Willy; Snoep, Gabriel; Dehing-Oberije, Cary; Lambin, Philippe

    2010-06-01

    Purpose: To evaluate the results of selective nodal irradiation on basis of {sup 18}F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. Methods and Materials: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. Results: A difference was seen in the involved nodal stations between the pretreatment {sup 18}F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. Conclusion: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC.

  6. Conceptual frameworks and methods for advancing invasion ecology.

    PubMed

    Heger, Tina; Pahl, Anna T; Botta-Dukát, Zoltan; Gherardi, Francesca; Hoppe, Christina; Hoste, Ivan; Jax, Kurt; Lindström, Leena; Boets, Pieter; Haider, Sylvia; Kollmann, Johannes; Wittmann, Meike J; Jeschke, Jonathan M

    2013-09-01

    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology.

  7. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  8. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  9. PoroTomo Subtask 6.3 Nodal Seismometers Metadata

    SciTech Connect

    Lesley Parker

    2016-03-28

    Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.

  10. Nodal Structure and the Partitioning of Equivalence Classes

    ERIC Educational Resources Information Center

    Fields, Lanny; Watanabe-Rose, Mari

    2008-01-01

    By definition, all of the stimuli in an equivalence class have to be functionally interchangeable with each other. The present experiment, however, demonstrated that this was not the case when using post-class-formation dual-option response transfer tests. With college students, two 4-node 6-member equivalence classes with nodal structures of…

  11. Advanced 3D inverse method for designing turbomachine blades

    SciTech Connect

    Dang, T.

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  12. Advancing digital methods in the fight against communicable diseases.

    PubMed

    Chabot-Couture, Guillaume; Seaman, Vincent Y; Wenger, Jay; Moonen, Bruno; Magill, Alan

    2015-03-01

    Important advances are being made in the fight against communicable diseases by using new digital tools. While they can be a challenge to deploy at-scale, GPS-enabled smartphones, electronic dashboards and computer models have multiple benefits. They can facilitate program operations, lead to new insights about the disease transmission and support strategic planning. Today, tools such as these are used to vaccinate more children against polio in Nigeria, reduce the malaria burden in Zambia and help predict the spread of the Ebola epidemic in West Africa.

  13. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    Powell, Jade; Torres-Forné, Alejandro; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A.

    2017-02-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers.

  14. Functional mathematical model of dual pathway AV nodal conduction.

    PubMed

    Climent, A M; Guillem, M S; Zhang, Y; Millet, J; Mazgalev, T N

    2011-04-01

    Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.

  15. Advanced methods of microscope control using μManager software

    PubMed Central

    Edelstein, Arthur D.; Tsuchida, Mark A.; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D.; Stuurman, Nico

    2014-01-01

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging. PMID:25606571

  16. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  17. An advanced deterministic method for spent fuel criticality safety analysis

    SciTech Connect

    DeHart, M.D.

    1998-01-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  18. Advances in rapid detection methods for foodborne pathogens.

    PubMed

    Zhao, Xihong; Lin, Chii-Wann; Wang, Jun; Oh, Deog Hwan

    2014-03-28

    Food safety is increasingly becoming an important public health issue, as foodborne diseases present a widespread and growing public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens are some of the most effective ways to control and prevent human foodborne infections. Traditional microbiological detection and identification methods for foodborne pathogens are well known to be time consuming and laborious as they are increasingly being perceived as insufficient to meet the demands of rapid food testing. Recently, various kinds of rapid detection, identification, and monitoring methods have been developed for foodborne pathogens, including nucleic-acid-based methods, immunological methods, and biosensor-based methods, etc. This article reviews the principles, characteristics, and applications of recent rapid detection methods for foodborne pathogens.

  19. Adherence to Scientific Method while Advancing Exposure Science

    EPA Science Inventory

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  20. Advances in validation, risk and uncertainty assessment of bioanalytical methods.

    PubMed

    Rozet, E; Marini, R D; Ziemons, E; Boulanger, B; Hubert, Ph

    2011-06-25

    Bioanalytical method validation is a mandatory step to evaluate the ability of developed methods to provide accurate results for their routine application in order to trust the critical decisions that will be made with them. Even if several guidelines exist to help perform bioanalytical method validations, there is still the need to clarify the meaning and interpretation of bioanalytical method validation criteria and methodology. Yet, different interpretations can be made of the validation guidelines as well as for the definitions of the validation criteria. This will lead to diverse experimental designs implemented to try fulfilling these criteria. Finally, different decision methodologies can also be interpreted from these guidelines. Therefore, the risk that a validated bioanalytical method may be unfit for its future purpose will depend on analysts personal interpretation of these guidelines. The objective of this review is thus to discuss and highlight several essential aspects of methods validation, not only restricted to chromatographic ones but also to ligand binding assays owing to their increasing role in biopharmaceutical industries. The points that will be reviewed are the common validation criteria, which are selectivity, standard curve, trueness, precision, accuracy, limits of quantification and range, dilutional integrity and analyte stability. Definitions, methodology, experimental design and decision criteria are reviewed. Two other points closely connected to method validation are also examined: incurred sample reproducibility testing and measurement uncertainty as they are highly linked to bioanalytical results reliability. Their additional implementation is foreseen to strongly reduce the risk of having validated a bioanalytical method unfit for its purpose.

  1. [Recent advances in sample preparation methods of plant hormones].

    PubMed

    Wu, Qian; Wang, Lus; Wu, Dapeng; Duan, Chunfeng; Guan, Yafeng

    2014-04-01

    Plant hormones are a group of naturally occurring trace substances which play a crucial role in controlling the plant development, growth and environment response. With the development of the chromatography and mass spectroscopy technique, chromatographic analytical method has become a widely used way for plant hormone analysis. Among the steps of chromatographic analysis, sample preparation is undoubtedly the most vital one. Thus, a highly selective and efficient sample preparation method is critical for accurate identification and quantification of phytohormones. For the three major kinds of plant hormones including acidic plant hormones & basic plant hormones, brassinosteroids and plant polypeptides, the sample preparation methods are reviewed in sequence especially the recently developed methods. The review includes novel methods, devices, extractive materials and derivative reagents for sample preparation of phytohormones analysis. Especially, some related works of our group are included. At last, the future developments in this field are also prospected.

  2. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.; Hively, W. Dean; Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco

    2012-01-01

    The gold standard for soil C determination is combustion. However, this method requires expensive consumables, is limited to the determination of the total carbon and in the number of samples which can be processed (~100/d). With increased interest in soil C sequestration, faster methods are needed. Thus, interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared ranges using either proximal or remote sensing. These methods have the ability to analyze more samples (2 to 3X/d) or huge areas (imagery) and do multiple analytes simultaneously, but require calibrations relating spectral and reference data and have specific problems, i.e., remote sensing is capable of scanning entire watersheds, thus reducing the sampling needed, but is limiting to the surface layer of tilled soils and by difficulty in obtaining proper calibration reference values. The objective of this discussion is the present state of spectroscopic methods for soil C determination.

  3. Advancements in frequency-domain methods for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1989-01-01

    A new method for frequency-domain identification of rotorcraft dynamics is presented. Nonparametric frequency-response identification and parametric transfer-function modeling methods are extended to allow the extraction of state-space (stability and control derivative) representations. An interactive computer program DERIVID is described for the iterative solution of the multi-input/multi-output frequency-response matching approach used in the identification. Theoretical accuracy methods are used to determine the appropriate model structure and degree-of-confidence in the identified parameters. The method is applied to XV-15 tilt-rotor aircraft data in hover. Bare-airframe stability and control derivatives for the lateral/directional dynamics are shown to compare favorably with models previously obtained using time-domain identification methods and the XV-15 simulation program.

  4. Advancements in frequency-domain methods for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1988-01-01

    A new method for frequency-domain identification of rotorcraft dynamics is presented. Nonparametric frequency-response identification and parametric tranfer-function modeling methods are extended to allow the extraction of state-space (stability and control derivative) representations. An interactive computer program DERIVID is described for the iterative solution of the multi-input/multi-output frequency-response matching approach used in the identification. Theoretical accuracy methods are used to determine the appropriate model structure and degree-of-confidence in the identified parameters. The method is applied to XV-15 tilt-rotor aircraft data in hover. Bare-airframe stability and control derivatives for the lateral/directional dynamics are shown to compare favorably with models previously obtained using time-domain identification methods and the XV-15 simulation program.

  5. Methods to Determine Recommended Feeder-Wide Advanced Inverter Settings for Improving Distribution System Performance

    SciTech Connect

    Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.; Ding, Fei; Li, Huijuan; Broderick, Robert J.; Mather, Barry; Smith, Jeff

    2016-11-21

    This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.

  6. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    SciTech Connect

    Michaelides, Angelos; Martinez, Todd J.; Alavi, Ali; Kresse, Georg

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  7. Health, wealth, and air pollution: advancing theory and methods.

    PubMed Central

    O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel

    2003-01-01

    The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658

  8. Nuclear methods of analysis in the advanced neutron source

    SciTech Connect

    Robinson, L.; Dyer, F.F.

    1994-12-31

    The Advanced Neutron Source (ANS) research reactor is presently in the conceptual design phase. The thermal power of this heavy water cooled and moderated reactor will be about 350 megawatts. The core volume of 27 liter is designed to provide the optimum neutron fluence rate for the numerous experimental facilities. The peak thermal neutron fluence rate is expected to be slightly less than 10{sup 20} neutrons/m{sup 2}s. In addition to the more than 40 neutron scattering stations, there will be extensive facilities for isotope production, material irradiation and analytical chemistry including neutron activation analysis (NAA) and a slow positron source. The highlight of this reactor will be the capability that it will provide for conducting research using cold neutrons. Two cryostats containing helium-cooled liquid deuterium will be located in the heavy water reflector tank. Each cryostat will provide low-temperature neutrons to researchers via numerous guides. A hot source with two beam tubes and several thermal beam tubes will also be available. The NAA facilities in the ANS will consist of seven pneumatic tubes, one cold neutron guide for prompt gamma-ray neutron activation analysis (PGNAA), and one cold neutron slanted guide for neutron depth profiling (NDP). In addition to these neutron interrogation systems, a gamma-ray irradiation facility for materials testing will be housed in a spent fuel storage pool. This paper will provide detailed information regarding the design and use of these various experimental systems.

  9. Investigation of advancing front method for generating unstructured grid

    NASA Astrophysics Data System (ADS)

    Thomas, A. M.; Tiwari, S. N.

    1992-06-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  10. Investigation of advancing front method for generating unstructured grid

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1992-01-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  11. The Saccharomyces Genome Database: Advanced Searching Methods and Data Mining.

    PubMed

    Cherry, J Michael

    2015-12-02

    At the core of the Saccharomyces Genome Database (SGD) are chromosomal features that encode a product. These include protein-coding genes and major noncoding RNA genes, such as tRNA and rRNA genes. The basic entry point into SGD is a gene or open-reading frame name that leads directly to the locus summary information page. A keyword describing function, phenotype, selective condition, or text from abstracts will also provide a door into the SGD. A DNA or protein sequence can be used to identify a gene or a chromosomal region using BLAST. Protein and DNA sequence identifiers, PubMed and NCBI IDs, author names, and function terms are also valid entry points. The information in SGD has been gathered and is maintained by a group of scientific biocurators and software developers who are devoted to providing researchers with up-to-date information from the published literature, connections to all the major research resources, and tools that allow the data to be explored. All the collected information cannot be represented or summarized for every possible question; therefore, it is necessary to be able to search the structured data in the database. This protocol describes the YeastMine tool, which provides an advanced search capability via an interactive tool. The SGD also archives results from microarray expression experiments, and a strategy designed to explore these data using the SPELL (Serial Pattern of Expression Levels Locator) tool is provided.

  12. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  13. Review: Advances in delta-subsidence research using satellite methods

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  14. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool: insights from sinoatrial node development and function.

    PubMed

    Barbuti, Andrea; Robinson, Richard B

    2015-01-01

    Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents. All such applications require reasonably efficient methods for selecting or enriching the "nodal-like" cells, however, which in turn depends on first defining what constitutes a nodal-like cell since not all pacemaking cells are necessarily of nodal lineage. This review discusses the current state of the field in terms of characterizing sinoatrial-like cardiomyocytes derived from embryonic and induced pluripotent stem cells, markers that might be appropriate based on the current knowledge of the gene program leading to sinoatrial node development, what functional characteristics might be expected and desired based on studies of the sinoatrial node, and recent efforts at enrichment and selection of nodal-like cells.

  15. Prediction of Dynamic Stall Characteristics Using Advanced Nonlinear Panel Methods,

    DTIC Science & Technology

    This paper presents preliminary results of work in which a surface singularity panel method is being extended for modelling the dynamic interaction...between a separated wake and a surface undergoing an unsteady motion. The method combines the capabilities of an unsteady time-stepping code and a... technique for modelling extensive separation using free vortex sheets. Routines are developed for treating the dynamic interaction between the separated

  16. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  17. The advance of non-invasive detection methods in osteoarthritis

    NASA Astrophysics Data System (ADS)

    Dai, Jiao; Chen, Yanping

    2011-06-01

    Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.

  18. Application of advanced reliability methods to local strain fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, T. T.; Wirsching, P. H.

    1983-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) might become extremely difficult or very inefficient. This study suggests using a simple, and easily constructed, second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  19. Protein Microarrays with Novel Microfluidic Methods: Current Advances.

    PubMed

    Dixit, Chandra K; Aguirre, Gerson R

    2014-07-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.

  20. Advances in dual algorithms and convex approximation methods

    NASA Technical Reports Server (NTRS)

    Smaoui, H.; Fleury, C.; Schmit, L. A.

    1988-01-01

    A new algorithm for solving the duals of separable convex optimization problems is presented. The algorithm is based on an active set strategy in conjunction with a variable metric method. This first order algorithm is more reliable than Newton's method used in DUAL-2 because it does not break down when the Hessian matrix becomes singular or nearly singular. A perturbation technique is introduced in order to remove the nondifferentiability of the dual function which arises when linear constraints are present in the approximate problem.

  1. A CTSA agenda to advance methods for comparative effectiveness research.

    PubMed

    Helfand, Mark; Tunis, Sean; Whitlock, Evelyn P; Pauker, Stephen G; Basu, Anirban; Chilingerian, Jon; Harrell, Frank E; Meltzer, David O; Montori, Victor M; Shepard, Donald S; Kent, David M

    2011-06-01

    Clinical research needs to be more useful to patients, clinicians, and other decision makers. To meet this need, more research should focus on patient-centered outcomes, compare viable alternatives, and be responsive to individual patients' preferences, needs, pathobiology, settings, and values. These features, which make comparative effectiveness research (CER) fundamentally patient-centered, challenge researchers to adopt or develop methods that improve the timeliness, relevance, and practical application of clinical studies. In this paper, we describe 10 priority areas that address 3 critical needs for research on patient-centered outcomes (PCOR): (1) developing and testing trustworthy methods to identify and prioritize important questions for research; (2) improving the design, conduct, and analysis of clinical research studies; and (3) linking the process and outcomes of actual practice to priorities for research on patient-centered outcomes. We argue that the National Institutes of Health, through its clinical and translational research program, should accelerate the development and refinement of methods for CER by linking a program of methods research to the broader portfolio of large, prospective clinical and health system studies it supports. Insights generated by this work should be of enormous value to PCORI and to the broad range of organizations that will be funding and implementing CER.

  2. Advanced Methods for the Solution of Differential Equations.

    ERIC Educational Resources Information Center

    Goldstein, Marvin E.; Braun, Willis H.

    This is a textbook, originally developed for scientists and engineers, which stresses the actual solutions of practical problems. Theorems are precisely stated, but the proofs are generally omitted. Sample contents include first-order equations, equations in the complex plane, irregular singular points, and numerical methods. A more recent idea,…

  3. Origins, Methods and Advances in Qualitative Meta-Synthesis

    ERIC Educational Resources Information Center

    Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris

    2016-01-01

    Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…

  4. Generalized Weighted Residual Method; Advancements and Current Studies

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Lindvall, Kristoffer

    2016-10-01

    The Generalized Weighted Residual Method (GWRM) is a time-spectral method for solving initial value partial differential equations. The GWRM treats the temporal, spatial, and parameter domains by projecting the residual to a Chebyshev polynomial space, with the variational principle being that the residual is zero. This treatment provides a global semi-analytical solution. However, straightforward global solution is not economical. One remedy is the inclusion of spatial and temporal sub-domains with coupled internal boundary conditions, which decreases memory requirements and introduces sparse matrices. Only the equations pertaining to the boundary conditions need be solved globally, making the method parallelizable in time. Efficient solution of the linearized ideal MHD stability equations of screw-pinch equilibria are proved possible. The GWRM has also been used to solve strongly nonlinear ODEs such as the Lorenz equations (1984), and is capable of competing with finite time difference schemes in terms of both accuracy and efficiency. GWRM solutions of linear and nonlinear model problems of interest for stability and turbulence modelling will be presented, including detailed comparisons with time stepping methods.

  5. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  6. Anomalous contagion and renormalization in networks with nodal mobility

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Qi, Hong; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F.

    2016-07-01

    A common occurrence in everyday human activity is where people join, leave and possibly rejoin clusters of other individuals —whether this be online (e.g. social media communities) or in real space (e.g. popular meeting places such as cafes). In the steady state, the resulting interaction network would appear static over time if the identities of the nodes are ignored. Here we show that even in this static steady-state limit, a non-zero nodal mobility leads to a diverse set of outbreak profiles that is dramatically different from known forms, and yet matches well with recent real-world social outbreaks. We show how this complication of nodal mobility can be renormalized away for a particular class of networks.

  7. Off-diagonal Jacobian support for Nodal BCs

    SciTech Connect

    Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.

    2015-01-01

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  8. A modified captive bubble method for determining advancing and receding contact angles

    NASA Astrophysics Data System (ADS)

    Xue, Jian; Shi, Pan; Zhu, Lin; Ding, Jianfu; Chen, Qingmin; Wang, Qingjun

    2014-03-01

    In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°.

  9. Advanced discretizations and multigrid methods for liquid crystal configurations

    NASA Astrophysics Data System (ADS)

    Emerson, David B.

    Liquid crystals are substances that possess mesophases with properties intermediate between liquids and crystals. Here, we consider nematic liquid crystals, which consist of rod-like molecules whose average pointwise orientation is represented by a unit-length vector, n( x, y, z) = (n1, n 2, n3)T. In addition to their self-structuring properties, nematics are dielectrically active and birefringent. These traits continue to lead to many important applications and discoveries. Numerical simulations of liquid crystal configurations are used to suggest the presence of new physical phenomena, analyze experiments, and optimize devices. This thesis develops a constrained energy-minimization finite-element method for the efficient computation of nematic liquid crystal equilibrium configurations based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy model. First-order optimality conditions are derived and linearized via a Newton approach, yielding a linear system of equations. Due to the nonlinear unit-length constraint, novel well-posedness theory for the variational systems, as well as error analysis, is conducted. The approach is shown to constitute a convergent and well-posed approach, absent typical simplifying assumptions. Moreover, the energy-minimization method and well-posedness theory developed for the free-elastic case are extended to include the effects of applied electric fields and flexoelectricity. In the computational algorithm, nested iteration is applied and proves highly effective at reducing computational costs. Additionally, an alternative technique is studied, where the unit-length constraint is imposed by a penalty method. The performance of the penalty and Lagrange multiplier methods is compared. Furthermore, tailored trust-region strategies are introduced to improve robustness and efficiency. While both approaches yield effective algorithms, the Lagrange multiplier method demonstrates superior accuracy per unit cost. In

  10. Accuracy of Computed Tomography for Predicting Pathologic Nodal Extracapsular Extension in Patients With Head-and-Neck Cancer Undergoing Initial Surgical Resection

    SciTech Connect

    Prabhu, Roshan S.; Magliocca, Kelly R.; Hanasoge, Sheela; Aiken, Ashley H.; Hudgins, Patricia A.; Hall, William A.; Chen, Susie A.; Eaton, Bree R.; Higgins, Kristin A.; Saba, Nabil F.; Beitler, Jonathan J.

    2014-01-01

    Purpose: Nodal extracapsular extension (ECE) in patients with head-and-neck cancer increases the loco-regional failure risk and is an indication for adjuvant chemoradiation therapy (CRT). To reduce the risk of requiring trimodality therapy, patients with head-and-neck cancer who are surgical candidates are often treated with definitive CRT when preoperative computed tomographic imaging suggests radiographic ECE. The purpose of this study was to assess the accuracy of preoperative CT imaging for predicting pathologic nodal ECE (pECE). Methods and Materials: The study population consisted of 432 consecutive patients with oral cavity or locally advanced/nonfunctional laryngeal cancer who underwent preoperative CT imaging before initial surgical resection and neck dissection. Specimens with pECE had the extent of ECE graded on a scale from 1 to 4. Results: Radiographic ECE was documented in 46 patients (10.6%), and pECE was observed in 87 (20.1%). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 43.7%, 97.7%, 82.6%, and 87.3%, respectively. The sensitivity of radiographic ECE increased from 18.8% for grade 1 to 2 ECE, to 52.9% for grade 3, and 72.2% for grade 4. Radiographic ECE criteria of adjacent structure invasion was a better predictor than irregular borders/fat stranding for pECE. Conclusions: Radiographic ECE has poor sensitivity, but excellent specificity for pECE in patients who undergo initial surgical resection. PPV and NPV are reasonable for clinical decision making. The performance of preoperative CT imaging increased as pECE grade increased. Patients with resectable head-and-neck cancer with radiographic ECE based on adjacent structure invasion are at high risk for high-grade pECE requiring adjuvant CRT when treated with initial surgery; definitive CRT as an alternative should be considered where appropriate.

  11. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    nonequilibrium. For example, the plasma transport may transition between rarefied and continuum flow , requiring appropriate models for each case through...AFRL-AFOSR-UK-TR-2011-0023 Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics...2010 4. TITLE AND SUBTITLE Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics 5a

  12. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation. PMID:27600343

  13. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  14. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Meiggs, T.

    1997-12-31

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  15. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  16. Advanced Numerical Methods for Computing Statistical Quantities of Interest

    DTIC Science & Technology

    2014-07-10

    coefficients , forcing terms, and initial conditions was analyzed. The input data were assumed to depend on a finite number of random variables . Unlike...89, 2012, 1269-1280. We considered the Musiela equation of forward rates; this is a hyperbolic stochastic partial differential equation . A weak...ZHANG AND M. GUNZBURGER, Error analysis of stochastic collocation method for parabolic partial differential equations with random input data; SIAM Journal

  17. Advanced and In Situ Analytical Methods for Solar Fuel Materials.

    PubMed

    Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W

    2016-01-01

    In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

  18. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training.

  19. Recent advances in sample preparation techniques for effective bioanalytical methods.

    PubMed

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article.

  20. Advances in multifocal methods for imaging human brain activity

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2006-02-01

    The typical multifocal stimulus used in visual evoked potential (VEP) studies consists of about 60 checkerboard stimulus patches each independently contrast reversed according to an m-sequence. Cross correlation of the response (EEG, MEG, ERG, or fMRI) with the m-sequence results in a series of response kernels for each response channel and each stimulus patch. In the past the number and complexity of stimulus patches has been constrained by graphics hardware, namely the use of look-up-table (LUT) animation methods. To avoid such limitations we replaced the LUTs with true color graphic sprites to present arbitrary spatial patterns. To demonstrate the utility of the method we have recorded simultaneously from 192 cortically scaled stimulus patches each of which activate about 12mm2 of cortex in area V1. Because of the sparseness of cortical folding, very small stimulus patches and robust estimation of dipole source orientation, the method opens a new window on precise spatio-temporal mapping of early visual areas. The use of sprites also enables multiplexing stimuli such that at each patch location multiple stimuli can be presented. We have presented patterns with different orientations (or spatial frequencies) at the same patch locations but independently temporally modulated, effectively doubling the number of stimulus patches, to explore cell population interactions at the same cortical locus. We have also measured nonlinear responses to adjacent pairs of patches, thereby getting an edge response that doubles the spatial sampling density to about 1.8 mm on cortex.

  1. Advanced physical models and monitoring methods for in situ bioremediation

    SciTech Connect

    Simon, K.; Chalmer, P.

    1996-05-30

    Numerous reports have indicated that contamination at DOE facilities is widespread and pervasive. Existing technology is often too costly or ineffective in remediating these contamination problems. An effective method to address one class of contamination, petroleum hydrocarbons, is in situ bioremediation. This project was designed to provide tools and approaches for increasing the reliability of in situ bioremediation. An example of the recognition within DOE for developing these tools is in the FY-1995 Technology Development Needs Summary of the Office of Technology Development of the US DOE. This document identifies specific needs addressed by this research. For example, Section 3.3 Need Statement IS-3 identifies the need for a {open_quotes}Rapid method to detect in situ biodegradation products.{close_quotes} Also, BW-I identifies the need to recognize boundaries between clean and contaminated materials and soils. Metabolic activity could identify these boundaries. Measuring rates of in situ microbial activity is critical to the fundamental understanding of subsurface microbiology and in selecting natural attenuation as a remediation option. Given the complexity and heterogeneity of subsurface environments, a significant cost incurred during bioremediation is the characterization of microbial activity, in part because so many intermediate end points (biomass, gene frequency, laboratory measurements of activity, etc.) must be used to infer in situ activity. A fast, accurate, real-time, and cost-effective method is needed to determine success of bioremediation at DOE sites.

  2. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  3. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  4. Topological phase transitions in line-nodal superconductors

    NASA Astrophysics Data System (ADS)

    Han, SangEun; Cho, Gil Young; Moon, Eun-Gook

    2017-03-01

    Fathoming interplay between symmetry and topology of many-electron wave functions has deepened our understanding of quantum many-body systems, particularly after the discovery of topological insulators. Topology of electron wave functions often enforces and protects emergent gapless excitation, and symmetry is intrinsically tied to the topological protection of the excitations. Namely, unless the symmetry is broken, the topological nature of the excitations is intact. We show intriguing phenomena of interplay between symmetry and topology in three-dimensional topological phase transitions associated with line-nodal superconductors. More specifically, we discover an exotic universality class out of topological line-nodal superconductors. The order parameter of broken symmetries is strongly correlated with underlying line-nodal fermions, and this gives rise to a large anomalous dimension in sharp contrast to that of the Landau-Ginzburg theory. Remarkably, hyperscaling violation and emergent relativistic scaling appear in spite of the presence of nonrelativistic fermionic excitation. We also propose characteristic experimental signatures around the phase transitions, for example, a linear phase boundary in a temperature-tuning parameter phase diagram, and discuss the implication of recent experiments in pnictides and heavy-fermion systems.

  5. Anomalous scaling of the penetration depth in nodal superconductors

    NASA Astrophysics Data System (ADS)

    She, Jian-Huang; Lawler, Michael J.; Kim, Eun-Ah

    2015-07-01

    Recent findings of anomalous superlinear scaling of low-temperature (T ) penetration depth (PD) in several nodal superconductors near putative quantum critical points suggest that the low-temperature PD can be a useful probe of quantum critical fluctuations in a superconductor. On the other hand, cuprates, which are poster child nodal superconductors, have not shown any such anomalous scaling of PD, despite growing evidence of quantum critical points (QCP). Then it is natural to ask when and how can quantum critical fluctuations cause anomalous scaling of PD? Carrying out the renormalization group calculation for the problem of two-dimensional superconductors with point nodes, we show that quantum critical fluctuations associated with a point group symmetry reduction result in nonuniversal logarithmic corrections to the T dependence of the PD. The resulting apparent power law depends on the bare velocity anisotropy ratio. We then compare our results to data sets from two distinct nodal superconductors: YBa2Cu3O6.95 and CeCoIn5. Considering all symmetry-lowering possibilities of the point group of interest, C4 v, we find our results to be remarkably consistent with YBa2Cu3O6.95 being near a vertical nematic QCP and CeCoIn5 being near a diagonal nematic QCP. Our results motivate a search for diagonal nematic fluctuations in CeCoIn5.

  6. A nodal domain theorem for integrable billiards in two dimensions

    SciTech Connect

    Samajdar, Rhine; Jain, Sudhir R.

    2014-12-15

    Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.

  7. Histogenesis of metaplastic breast carcinoma and axillary nodal metastases.

    PubMed

    Osako, Tomo; Horii, Rie; Ogiya, Akiko; Iijima, Kotaro; Iwase, Takuji; Akiyama, Futoshi

    2009-02-01

    A 40-year-old breast-feeding woman presented with left breast swelling. On physical examination a 7 cm mass was found in the breast. Because biopsy demonstrated malignant tissue, mastectomy with axillary nodal dissection was performed. Pathological findings were consistent with metaplastic breast carcinoma with nodal metastases. The primary tumor consisted of three types of invasion: ductal, squamous, and sarcomatous. Furthermore, three morphological transitions were observed: ductal-squamous, ductal-sarcomatous, and squamous-sarcomatous. Ductal-squamous (12/18 microscopy slides) and squamous-sarcomatous transitions (10/18) were more commonly observed than ductal-sarcomatous transition (3/18). Furthermore, immunohistochemistry showed loss of epithelial marker (cytokeratin) and acquisition of mesenchymal markers (vimentin and alpha-smooth muscle actin) in the sarcomatous component. These findings suggested that epithelial-mesenchymal transition had occurred in the tumor and that two pathways, ductal-squamous-sarcomatous and ductal-sarcomatous transition, were involved in progression of metaplastic breast carcinoma. The main pathway appeared to be ductal-squamous-sarcomatous transition. Regarding the nodal metastases, of 13 positive nodes, ductal, squamous, and sarcomatous components were observed in 13, seven, and two nodes, respectively. Moreover, as in the primary tumor, ductal-squamous and squamous-sarcomatous transitions were observed. This suggested that the ductal component metastasized to the nodes and that epithelial-mesenchymal transition subsequently occurred within the nodes.

  8. Topological Phase Transitions in Line-nodal Superconductors

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook

    Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.

  9. Advances in Laboratory Methods for Detection and Typing of Norovirus

    PubMed Central

    2014-01-01

    Human noroviruses are the leading cause of epidemic and sporadic gastroenteritis across all age groups. Although the disease is usually self-limiting, in the United States norovirus gastroenteritis causes an estimated 56,000 to 71,000 hospitalizations and 570 to 800 deaths each year. This minireview describes the latest data on laboratory methods (molecular, immunological) for norovirus detection, including real-time reverse transcription-quantitative PCR (RT-qPCR) and commercially available immunological assays as well as the latest FDA-cleared multi-gastrointestinal-pathogen platforms. In addition, an overview is provided on the latest nomenclature and molecular epidemiology of human noroviruses. PMID:24989606

  10. Advanced Signal Processing Methods Applied to Digital Mammography

    NASA Technical Reports Server (NTRS)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  11. Human body composition: advances in models and methods.

    PubMed

    Heymsfield, S B; Wang, Z; Baumgartner, R N; Ross, R

    1997-01-01

    The field of human body composition research is reaching a mature stage in its development: The three interconnected areas that define body composition research--models and their rules, methodology, and biological effects--are well-defined and are actively investigated by scientists in diverse disciplines from many different nations; and methods are available for measuring all major atomic, molecular, cellular, and tissue-system level body composition components in research, clinical, and epidemiological settings. This review summarizes main body composition research concepts, examines new component-measurement methodologies, and identifies potential areas of future research.

  12. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  13. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  14. Advanced Computational Aeroacoustics Methods for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane (Technical Monitor); Tam, Christopher

    2003-01-01

    Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.

  15. Advanced methods for displays and remote control of robots.

    PubMed

    Eliav, Ami; Lavie, Talia; Parmet, Yisrael; Stern, Helman; Edan, Yael

    2011-11-01

    An in-depth evaluation of the usability and situation awareness performance of different displays and destination controls of robots are presented. In two experiments we evaluate the way information is presented to the operator and assess different means for controlling the robot. Our study compares three types of displays: a "blocks" display, a HUD (head-up display), and a radar display, and two types of controls: touch screen and hand gestures. The HUD demonstrated better performance when compared to the blocks display and was perceived to have greater usability compared to the radar display. The HUD was also found to be more useful when the operation of the robot was more difficult, i.e., when using the hand-gesture method. The experiments also pointed to the importance of using a wide viewing angle to minimize distortion and for easier coping with the difficulties of locating objects in the field of view margins. The touch screen was found to be superior in terms of both objective performance and its perceived usability. No differences were found between the displays and the controllers in terms of situation awareness. This research sheds light on the preferred display type and controlling method for operating robots from a distance, making it easier to cope with the challenges of operating such systems.

  16. Advanced criticality assessment method for sewer pipeline assets.

    PubMed

    Syachrani, S; Jeong, H D; Chung, C S

    2013-01-01

    For effective management of water and wastewater infrastructure, the United States Environmental Protection Agency (US-EPA) has long emphasized the significant role of risk in prioritizing and optimizing asset management decisions. High risk assets are defined as assets with a high probability of failure (e.g. soon to fail, old, poor condition) and high consequences of failure (e.g. environmental impact, high expense, safety concerns, social disruption). In practice, the consequences of failure are often estimated by experts through a Delphi method. However, the estimation of the probability of failure has been challenging as it requires the thorough analysis of the historical condition assessment data, repair and replacement records, and other factors influencing the deterioration of the asset. The most common predictor in estimating the probability of failure is calendar age. However, a simple reliance on calendar age as a basis for estimating the asset's deterioration pattern completely ignores the different aging characteristics influenced by various operational and environmental conditions. This paper introduces a new approach of using 'real age' in estimating the probability of failure. Unlike the traditional calendar age method, the real age represents the adjusted age based on the unique operational and environmental conditions of the asset. Depending on the individual deterioration pattern, the real age could be higher or lower than its calendar age. Using the concept of real age, the probability of failure of an asset can be more accurately estimated.

  17. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  18. Comparative Assessment of Advanced Gay Hydrate Production Methods

    SciTech Connect

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  19. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Vesper, S.

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  20. Advanced view factor analysis method for radiation exchange

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2014-03-01

    A raster-based method for determining complex view factor patterns is presented (HURES model). The model uses Johnson and Watson's view factor analysis method for fisheye lens photographs. The entire sphere is divided into 13 different view factors: open sky; sunny and shaded building walls, vegetation (trees) and ground surfaces above and below 1.2 m from the ground surface. The HURES model gave reasonable view factor results in tests at two urban study sites on summer days: downtown Nanaimo, B.C., Canada and Changwon, Republic of Korea. HURES gave better estimates of open sky view factors determined from fisheye lens photographs than did ENVI-met 3.1 and RayMan Pro. However, all three models underestimated sky view factor. For view factor analysis in outdoor urban areas, the 10° interval of rotation angle at 100 m distance of annuli will be suitable settings for three-dimensional computer simulations. The HURES model can be used for the rapid determination of complex view factor patterns which facilitates the analysis of their effects. Examples of how differing view factor patterns can affect human thermal sensation indices are given. The greater proportion of sunny view factors increased the computed predicted mean vote (PMV) by 1.3 on the sunny side of the street compared with the shady side during mid-morning in downtown Nanaimo. In another example, effects of differing amounts of open sky, sunny ground, sunny buildings and vegetation combined to produce only slight differences in PMV and two other human thermal sensation indices, PET and UTCI.

  1. An evolutionary method for synthesizing technological planning and architectural advance

    NASA Astrophysics Data System (ADS)

    Cole, Bjorn Forstrom

    In the development of systems with ever-increasing performance and/or decreasing drawbacks, there inevitably comes a point where more progress is available by shifting to a new set of principles of use. This shift marks a change in architecture, such as between the piston-driven propeller and the jet engine. The shift also often involves an abandonment of previous competencies that have been developed with great effort, and so a foreknowledge of these shifts can be advantageous. A further motivation for this work is the consideration of the Micro Autonomous Systems and Technology (MAST) project, which aims to develop very small (<5 cm) robots for a variety of uses. This is primarily a technology research project, and there is no baseline morphology for a robot to be considered. This then motivates an interest in the ability to automatically compose physical architectures from a series of components and quantitatively analyze them for a basic, conceptual analysis. The ability to do this would enable researchers to turn attention to the most promising forms. This work presents a method for using technology forecasts of components that enable future architectural shifts in order to forecast those shifts. The method consists of the use of multidimensional S-curves, genetic algorithms, and a graph-based formulation of architecture that is more flexible than other morphological techniques. Potential genetic operators are explored in depth to draft a final graph-based genetic algorithm. This algorithm is then implemented in a design code called Sindri, which leverages a commercial design tool named Pacelab. The first chapters of this thesis provide context and a philosophical background to the studies and research that was conducted. In particular, the idea that technology progresses in a fundamentally gradual way is developed and supported with previous historical research. The import of this is that the future can to some degree be predicted by the past, provided that

  2. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  3. Advancing Methods for U.S. Transgender Health Research

    PubMed Central

    Reisner, Sari L.; Deutsch, Madeline B.; Bhasin, Shalender; Bockting, Walter; Brown, George R.; Feldman, Jamie; Garofalo, Rob; Kreukels, Baudewijntje; Radix, Asa; Safer, Joshua D.; Tangpricha, Vin; T’Sjoen, Guy; Goodman, Michael

    2016-01-01

    Purpose of Review To describe methodological challenges, gaps, and opportunities in U.S. transgender health research. Recent Findings Lack of large prospective observational studies and intervention trials, limited data on risks and benefits of gender affirmation (e.g., hormones and surgical interventions), and inconsistent use of definitions across studies hinder evidence-based care for transgender people. Systematic high-quality observational and intervention-testing studies may be carried out using several approaches, including general population-based, health systems-based, clinic-based, venue-based, and hybrid designs. Each of these approaches has its strength and limitations; however, harmonization of research efforts is needed. Ongoing development of evidence-based clinical recommendations will benefit from a series of observational and intervention studies aimed at identification, recruitment, and follow-up of transgender people of different ages, from different racial, ethnic, and socioeconomic backgrounds and with diverse gender identities. Summary Transgender health research faces challenges that include standardization of lexicon, agreed-upon population definitions, study design, sampling, measurement, outcome ascertainment, and sample size. Application of existing and new methods is needed to fill existing gaps, increase the scientific rigor and reach of transgender health research, and inform evidence-based prevention and care for this underserved population. PMID:26845331

  4. Recent advancements in mechanical reduction methods: particulate systems.

    PubMed

    Leleux, Jardin; Williams, Robert O

    2014-03-01

    The screening of new active pharmaceutical ingredients (APIs) has become more streamlined and as a result the number of new drugs in the pipeline is steadily increasing. However, a major limiting factor of new API approval and market introduction is the low solubility associated with a large percentage of these new drugs. While many modification strategies have been studied to improve solubility such as salt formation and addition of cosolvents, most provide only marginal success and have severe disadvantages. One of the most successful methods to date is the mechanical reduction of drug particle size, inherently increasing the surface area of the particles and, as described by the Noyes-Whitney equation, the dissolution rate. Drug micronization has been the gold standard to achieve these improvements; however, the extremely low solubility of some new chemical entities is not significantly affected by size reduction in this range. A reduction in size to the nanometric scale is necessary. Bottom-up and top-down techniques are utilized to produce drug crystals in this size range; however, as discussed in this review, top-down approaches have provided greater enhancements in drug usability on the industrial scale. The six FDA approved products that all exploit top-down approaches confirm this. In this review, the advantages and disadvantages of both approaches will be discussed in addition to specific top-down techniques and the improvements they contribute to the pharmaceutical field.

  5. Recent advances for the production and recovery methods of lysozyme.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2016-12-01

    Lysozyme is an antimicrobial peptide with a high enzymatic activity and positive charges. Therefore, it has applications in food and pharmaceutical industries as an antimicrobial agent. Lysozyme is ubiquitous in both animal and plant kingdoms. Currently, egg-white lysozyme is the most commercially available form of lysozyme. The main concerns of egg-white lysozyme are high recovery cost, low activity and most importantly the immunological problems to some people. Therefore, human lysozyme production has gained importance in recent years. Scientists have developed transgenic plants, animals and microorganisms that can produce human lysozyme. Out of these, microbial production has advantages for commercial productions, because high production levels are achievable in a relatively short time. It has been reported that fermentation parameters, such as pH, temperature, aeration, are key factors to increase the effectiveness of the human lysozyme production. Moreover, purification of the lysozyme from the fermentation broth needs to be optimized for the economical production. In conclusion, this review paper covers the mechanism of lysozyme, its sources, production methods and recovery of lysozyme.

  6. Investigation of advanced fault insertion and simulator methods

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.

    1986-01-01

    The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.

  7. Cervical nodal necrosis is an independent survival predictor in nasopharyngeal carcinoma: an observational cohort study

    PubMed Central

    Luo, Yangkun; Ren, Jing; Zhou, Peng; Gao, Yang; Yang, Guangquan; Lang, Jinyi

    2016-01-01

    Purpose Most nasopharyngeal carcinoma (NPC) patients present with locoregionally advanced disease at the time of diagnosis; however, there is a lack of consensus on specific prognostic factors potentially improving overall survival, especially in late-stage disease. Herein, we conducted a retrospective study to evaluate various potential prognostic factors in order to provide useful information for clinical treatment of T3/T4-stage NPC. Patients and methods A total of 189 previously untreated NPC patients were enrolled in the current study. All patients received intensity-modulated radiotherapy. Survival, death, relapse-free survival (both local and regional), and metastasis were recorded during follow-up. Factors affecting patient survival were assessed by using univariate and multivariate analyses. Results The median follow-up time was 69 months. The 5-year local-regional recurrence-free survival, distant metastasis-free survival, progression-free survival (PFS), and overall survival (OS) of the entire group were 89.8%, 71.5%, 66.3%, and 68.9%, respectively. Univariate analysis revealed significant differences in the 5-year PFS (58.5% vs 72.5%, P=0.015) and OS (59.5% vs 75.8%, P=0.033) rates of patients with and without cervical nodal necrosis (CNN). Subgroup analyses revealed that CNN was associated with poorer distant metastasis-free survival and PFS among patients with N2 stage (P=0.046 and P=0.005) and with poorer PFS among patients with T3 or III stage (all P=0.022). Multivariate analysis revealed CNN to be an independent prognostic factor for PFS and OS (PFS: adjusted hazard ratio, 1.860; 95% CI: 1.134–3.051; P=0.014; OS: adjusted hazard ratio, 1.754; 95% CI: 1.061–2.899; P=0.028). Conclusion CNN is a potential independent negative prognostic factor in NPC patients. Our results suggest that stratification of NPC patients based on their CNN status should be considered as part of NPC disease management. PMID:27843328

  8. Advanced Density Functional Theory Methods for Materials Science

    NASA Astrophysics Data System (ADS)

    Demers, Steven

    In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description. Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems. Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via 'classical' molecular

  9. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  10. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation.

    PubMed

    Blanchet, Marie-Hélène; Le Good, J Ann; Mesnard, Daniel; Oorschot, Viola; Baflast, Stéphane; Minchiotti, Gabriella; Klumperman, Judith; Constam, Daniel B

    2008-10-08

    The glycosylphosphatidylinositol (GPI)-anchored proteoglycan Cripto binds Nodal and its type I receptor Alk4 to activate Smad2,3 transcription factors, but a role during Nodal precursor processing has not been described. We show that Cripto also binds the proprotein convertases Furin and PACE4 and localizes Nodal processing at the cell surface. When coexpressed as in early embryonic cells, Cripto and uncleaved Nodal already associated during secretion, and a Cripto-interacting region in the Nodal propeptide potentiated the effect of proteolytic maturation on Nodal signalling. Disruption of the trans-Golgi network (TGN) by brefeldin A blocked secretion, but export of Cripto and Nodal to the cell surface was not inhibited, indicating that Nodal is exposed to extracellular convertases before entering the TGN/endosomal system. Density fractionation and antibody uptake experiments showed that Cripto guides the Nodal precursor in detergent-resistant membranes to endocytic microdomains marked by GFP-Flotillin. We conclude that Nodal processing and endocytosis are coupled in signal-receiving cells.

  11. Endogenous Nodal promotes melanoma undergoing epithelial-mesenchymal transition via Snail and Slug in vitro and in vivo

    PubMed Central

    Guo, Qiang; Ning, Fen; Fang, Rui; Wang, Hong-Sheng; Zhang, Ge; Quan, Mei-Yu; Cai, Shao-Hui; Du, Jun

    2015-01-01

    Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey. PMID:26269769

  12. Advancing the study of violence against women using mixed methods: integrating qualitative methods into a quantitative research program.

    PubMed

    Testa, Maria; Livingston, Jennifer A; VanZile-Tamsen, Carol

    2011-02-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women's sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided.

  13. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    PubMed Central

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  14. Method and system for advancement of a borehole using a high power laser

    DOEpatents

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  15. Recent advances in computational methods for nuclear magnetic resonance data processing.

    PubMed

    Gao, Xin

    2013-02-01

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  16. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals.

    PubMed

    Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi

    2017-01-11

    In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin-orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111).

  17. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi

    2017-01-01

    In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin-orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111).

  18. Topological nodal line semimetals with and without spin-orbital coupling

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Chen, Yige; Kee, Hae-Young; Fu, Liang

    2015-08-01

    We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared to TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands touch at discrete points, in these TSMs the two bands cross at closed lines in the Brillouin zone. We propose two different classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by a combination of inversion symmetry and time-reversal symmetry, yet, unlike previously studied nodal lines in the same symmetry class, each nodal line has a Z2 monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.

  19. Elsevier Trophoblast Research Award lecture: The multifaceted role of Nodal signaling during mammalian reproduction.

    PubMed

    Park, C B; Dufort, D

    2011-03-01

    Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth.

  20. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    NASA Astrophysics Data System (ADS)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  1. Comparison of Nodal Risk Formula and MR Lymphography for Predicting Lymph Node Involvement in Prostate Cancer

    SciTech Connect

    Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van

    2011-09-01

    Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.

  2. A generalized framework for nodal first derivative summation-by-parts operators

    NASA Astrophysics Data System (ADS)

    Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.

    2014-06-01

    A generalized framework is presented that extends the classical theory of finite-difference summation-by-parts (SBP) operators to include a wide range of operators, where the main extensions are (i) non-repeating interior point operators, (ii) nonuniform nodal distribution in the computational domain, (iii) operators that do not include one or both boundary nodes. Necessary and sufficient conditions are proven for the existence of nodal approximations to the first derivative with the SBP property. It is proven that the positive-definite norm matrix of each SBP operator must be associated with a quadrature rule; moreover, given a quadrature rule there exists a corresponding SBP operator, where for diagonal-norm SBP operators the weights of the quadrature rule must be positive. The generalized framework gives a straightforward means of posing many known approximations to the first derivative as SBP operators; several are surveyed, such as discontinuous Galerkin discretizations based on the Legendre-Gauss quadrature points, and shown to be SBP operators. Moreover, the new framework provides a method for constructing SBP operators by starting from quadrature rules; this is illustrated by constructing novel SBP operators from known quadrature rules. To demonstrate the utility of the generalization, the Legendre-Gauss and Legendre-Gauss-Radau quadrature points are used to construct SBP operators that do not include one or both boundary nodes.

  3. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    PubMed Central

    2012-01-01

    Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275

  4. Topological insulating phases from two-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Araújo, Miguel A. N.

    2016-10-01

    Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.

  5. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  6. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  7. Radiotherapy studies and extra-nodal non-Hodgkin lymphomas, progress and challenges.

    PubMed

    Specht, L

    2012-06-01

    Extra-nodal lymphomas may arise in any organ, and different histological subtypes occur in distinct patterns. Prognosis and treatment depend not only on the histological subtype and disease extent, but also on the particular involved extra-nodal organ. The clinical course and response to treatment for the more common extra-nodal organs, e.g. stomach, Waldeyer's ring, skin and brain, are fairly well known and show significant variation. A few randomised trials have been carried out testing the role of radiotherapy in these lymphomas. However, for most extra-nodal lymphomas, randomised trials have not been carried out, and treatment decisions are made on small patient series and extrapolations from nodal lymphomas. Hopefully, wide international collaboration will make controlled clinical trials possible in the less common extra-nodal lymphomas. Modern highly conformal radiotherapy allows better coverage of extra-nodal lymphomatous involvement with better sparing of normal tissues. The necessary radiation doses and volumes need to be defined for the different extra-nodal lymphoma entities. The challenge is to optimise the use of radiotherapy in the modern multimodality treatment of extra-nodal lymphomas.

  8. Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets

    NASA Astrophysics Data System (ADS)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-01-01

    We introduce a type of topological magnon matter: the magnonic pendant to electronic nodal-line semimetals. Magnon spectra of anisotropic pyrochlore ferromagnets feature twofold degeneracies of magnon bands along a closed loop in reciprocal space. These magnon nodal lines are topologically protected by the coexistence of inversion and time-reversal symmetry; they require the absence of spin-orbit interaction (no Dzyaloshinskii-Moriya interaction). We calculate the topological invariants of the nodal lines and show that details of the associated magnon drumhead surface states depend strongly on the termination of the surface. Magnon nodal-line semimetals complete the family of topological magnons in three-dimensional ferromagnetic materials.

  9. Nodal line optimization and its application to violin top plate design

    NASA Astrophysics Data System (ADS)

    Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man

    2010-10-01

    In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.

  10. Development of a standing-wave fluorescence microscope with high nodal plane flatness.

    PubMed

    Freimann, R; Pentz, S; Hörler, H

    1997-09-01

    distinction of layers of stress fibres whose axial separation was just a fraction of a wavelength. Layers at such a small distance would lie completely within the depth-of-field of a conventional or confocal fluorescence microscope and could therefore not be distinguished by these two methods. To obtain further information from the SWFM images it would be advantageous to use the images as input-data to image processing algorithms such as conceived by Krishnamurthi et al. (Proc. SPIE, 2655, 1996, 18-25). To minimize specimen-caused nodal plane distortion, the specimen should be embedded in a medium of closely matched refractive index. The proper match of the refractive indices could be checked via the method presented here for the measurement of nodal plane flatness. For this purpose the fluorescent layer of latex beads would simply be replaced by the specimen. A combination of the developed SWFM with a specimen embedded in a medium of matched refractive index and further image processing would exploit the full potential of standing-wave fluorescence microscopy.

  11. Intensity-Modulated Radiation Therapy for the Treatment of Squamous Cell Anal Cancer With Para-aortic Nodal Involvement

    SciTech Connect

    Hodges, Joseph C.; Das, Prajnan; Eng, Cathy; Reish, Andrew G.; Beddar, A. Sam; Delclos, Marc E.; Krishnan, Sunil; Crane, Christopher H.

    2009-11-01

    Purpose: To determine the rates of toxicity, locoregional control, distant control, and survival in anal cancer patients with para-aortic nodal involvement, treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy at a single institution. Methods and Materials: Between 2001 and 2007, 6 patients with squamous cell anal cancer and para-aortic nodal involvement were treated with IMRT and concurrent infusional 5-fluorouracil and cisplatin. The primary tumor was treated with a median dose of 57.5 Gy (range, 54-60 Gy), involved para-aortic, pelvic, and inguinal lymph nodes were treated with a median dose of 55 Gy (range, 50.5-55 Gy), and noninvolved nodal regions were treated with a median dose of 45 Gy (range, 43.5-45 Gy). Results: After a median follow-up of 25 months, none of the patients had a recurrence at the primary tumor, pelvic/inguinal nodes, or para-aortic nodes, whereas 2 patients developed distant metastases to the liver. Four of the 6 patients are alive. The 3-year actuarial locoregional control, distant control, and overall survival rates were 100%, 56%, and 63%, respectively. Four of the 6 patients developed Grade 3 acute gastrointestinal toxicity during chemoradiation. Conclusions: Intensity-modulated radiotherapy and concurrent chemotherapy could potentially serve as definitive therapy in anal cancer patients with para-aortic nodal involvement. Adjuvant chemotherapy may be indicated in these patients, as demonstrated by the distant failure rates. These patients need to be followed carefully because of the potential for treatment-related toxicities.

  12. Pseudospin Vortex Ring with a Nodal Line in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Lim, Lih-King; Moessner, Roderich

    2017-01-01

    We present a model of a topological semimetal in three dimensions whose energy spectrum exhibits a nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke ring. Contrary to a Weyl point node spectrum, the vortex ring gives rise to Skyrmionic pseudospin patterns in cuts on both sides of the nodal ring plane; this pattern covers the full Brillouin zone, thus leading to a fully extended chiral Fermi arc and a new, "maximal," anomalous Hall effect in a 3D semimetal. Tuning a model parameter shrinks the vortex ring until it vanishes, giving way to a pair of Weyl nodes of opposite chirality. This establishes a connection between two distinct momentum-space topologies—that of a vortex ring (a circle of singularity) and a monopole-antimonopole pair (two point singularities). We present the model both as a low-energy continuum and a two-band tight-binding lattice model. Its simplicity permits an analytical computation of its Landau level spectrum.

  13. Amyloid precursor protein at node of Ranvier modulates nodal formation

    PubMed Central

    Xu, De-En; Zhang, Wen-Min; Yang, Zara Zhuyun; Zhu, Hong-Mei; Yan, Ke; Li, Shao; Bagnard, Dominique; Dawe, Gavin S; Ma, Quan-Hong; Xiao, Zhi-Cheng

    2014-01-01

    Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination. PMID:25482638

  14. Symmetry Breaking in a Model for Nodal Cilia

    NASA Astrophysics Data System (ADS)

    Brokaw, Charles J.

    2005-03-01

    Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.

  15. Human-System Safety Methods for Development of Advanced Air Traffic Management Systems

    SciTech Connect

    Nelson, W.R.

    1999-05-24

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

  16. Benign nodal lesions mimicking metastases from pediatric renal neoplasms: a report of the National Wilms' Tumor Study Pathology Center.

    PubMed

    Weeks, D A; Beckwith, J B; Mierau, G W

    1990-12-01

    Regional lymph node status is a key factor in the staging of pediatric renal tumors on the National Wilms' Tumor Study (NWTS). A review of cases entered on the NWTS has uncovered a number of cases where benign lymph node findings were mistaken for metastases. Most frequently, this was due to the presence of complexes of epithelial cells and Tamm-Horsfall protein within nodal sinuses. The epithelial cells were derived from damaged nephrons, usually resulting from obstruction by tumor. Another epithelial pseudometastic lesion, intranodal squamous epithelial cells, was found to originate from metaplastic calyceal urothelium. Benign mesothelial or coelomic inclusions similar to those previously described in pelvic and periaortic lymph nodes of adult females were found in nodes of four patients, including two boys, who are, to our knowledge, the first to be described with this finding. Other sources of confusion included protrusion of lymphoid follicles or germinal centers into nodal sinuses, thick endothelial cells of postcapillary venules mimicking epithelial tubules, nodal megakaryocytes resembling anaplastic nuclear changes, and histiocytic granulomas. Immunocytochemical methods were useful in evaluating some of these phenomena. Recognition of these pseudometastatic lesions is essential in order to avoid unnecessary and potentially hazardous therapeutic intensification.

  17. What is the role of lymph nodal metastases and lymphadenectomy in the surgical treatment and prognosis of thymic carcinomas and carcinoids?

    PubMed

    Viti, Andrea; Bertolaccini, Luca; Terzi, Alberto

    2014-12-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. We looked at the clinical relevance of lymph node involvement and nodal (N) stage, in thymomas, thymic carcinomas and carcinoids. The possible role of lymphadenectomy in addition to thymectomy was also evaluated. A total of 605 papers were found, of which nine represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers were tabulated. In the Yamakawa-Masaoka classification, based on 226 patients, lymph nodes were classified as anterior mediastinal (N1), defined as nodes surrounding the thymus gland; intrathoracic (N2), all nodes within the thorax excluding N1; and extrathoracic nodes (N3). Kondo validated the Yamakawa-Masaoka classification in a multicentric cohort of 1320 patients. Thymomas presented nodal involvement in 1.8% of cases, carcinomas in 27% of cases, and carcinoids in 28% of cases. The role of nodal status in defining the stage was even more emphasized in the staging system developed by Tsuchiya for thymic carcinomas. In the Istituto Nazionale Tumori classification, thymomas with N1 or N2 were considered as locally advanced disease with a 95-month disease-free survival rate for locally advanced disease of 46.9 vs 98.6% for locally restricted disease (absence of nodal involvement). Weissferdt and Moran, on a series of 65 thymic carcinomas, underlined the clinical relevance of nodal involvement. Positive lymph nodes were associated with significantly worse survival (P = 0.01070). Okuma, in a series of 68 advanced stage thymic carcinomas, showed that curative-intent surgical treatment was related to prolonged survival (P = 0.03). In particular, IVb tumours due to node-only involvement had better survival when radical resection was achieved when compared with IVb due to distant metastases (P = 0.03). Sung et al. showed the

  18. Advanced Manufacturing Methods for Systems of Microsystem Nanospacecraft- Status of the Project

    NASA Astrophysics Data System (ADS)

    Plesseria, J. Y.; Corbelli, A.; Masse, C.; Rigo, O.; Pambaguian, L.; Bonvoisin, B.

    2014-06-01

    In the frame of an ESA TRP project, CSL, SIRRIS, ALMASpace and TAS-F associated to evaluate advanced manufacturing methods for application to space hardware.The state of the art of the new manufacturing methods, including additive manufacturing but also advanced bonding, joining and shaping techniques has been reviewed. Then three types of case studies have been developed successively. The first type was a re- manufacture of an existing piece of hardware using advanced techniques to evaluate if there is some potential improvement to be achieved (cost, production time, complexity reduction). The second level was to design and manufacture a part based on the application requirements. The last level was to design and manufacture a part taking into account the subsystem to which it belongs. All case studies have been tested in terms of achieved performances and resistance to the mechanical and thermal environment.

  19. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  20. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  1. An advanced panel method for analysis of arbitrary configurations in unsteady subsonic flow

    NASA Technical Reports Server (NTRS)

    Dusto, A. R.; Epton, M. A.

    1980-01-01

    An advanced method is presented for solving the linear integral equations for subsonic unsteady flow in three dimensions. The method is applicable to flows about arbitrary, nonplanar boundary surfaces undergoing small amplitude harmonic oscillations about their steady mean locations. The problem is formulated with a wake model wherein unsteady vorticity can be convected by the steady mean component of flow. The geometric location of the unsteady source and doublet distributions can be located on the actual surfaces of thick bodies in their steady mean locations. The method is an outgrowth of a recently developed steady flow panel method and employs the linear source and quadratic doublet splines of that method.

  2. A Mixed Methods Approach to Examining an Advanced Placement Program in One Connecticut Public School District

    ERIC Educational Resources Information Center

    Docimo, Chelsey L.

    2013-01-01

    The purpose of this eleventh grade Advanced Placement (AP) program study was to determine factors associated with AP placement and subsequent student performance. This research was considered to be a mixed methods case study with elements of arrested action research. One hundred and twenty-four students, four guidance counselors, three AP…

  3. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    SciTech Connect

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  4. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  5. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  6. Advances in explosives analysis—part II: photon and neutron methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-07

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  7. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  8. Advances in explosives analysis—part II: photon and neutron methods

    SciTech Connect

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-07

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  9. Advances in methods and algorithms in a modern quantum chemistry program package.

    PubMed

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

  10. Advances in neutron radiographic techniques and applications: a method for nondestructive testing.

    PubMed

    Berger, Harold

    2004-10-01

    A brief history of neutron radiography is presented to set the stage for a discussion of significant neutron radiographic developments and an assessment of future directions for neutron radiography. Specific advances are seen in the use of modern, high dynamic range imaging methods (image plates and flat panels) and for high contrast techniques such as phase contrast, and phase-sensitive imaging. Competition for neutron radiographic inspection may develop as these techniques offer application prospects for X-ray methods.

  11. Prevention of AV Nodal Reentry Tachycardia by Oral Amiodarone: An Alternative Mechanism of Action

    PubMed Central

    Gold, Robert L.; Haffajee, Charles I.; Entes, Kenneth L.

    1987-01-01

    A 73-year-old man was noted to have atrioventricular (AV) nodal reentry tachycardia, which was induced during programmed electrical stimulation. After 1 month of oral amiodarone therapy, AV nodal reentry tachycardia was prevented by the prolongation of atrial refractoriness and not by direct action on the AV node itself. (Texas Heart Institute Journal 1987; 14:99-101) PMID:15227337

  12. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Digital Electronic Message Service...

  13. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Digital Electronic Message Service...

  14. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Digital Electronic Message Service...

  15. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital Electronic Message Service...

  16. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  17. Prognostic value of whole-body SUVmax of nodal and extra-nodal lesions detected by 18F-FDG PET/CT in extra-nodal NK/T-cell lymphoma

    PubMed Central

    Gale, Robert Peter; Wang, Li; Xu, Ji; Qu, Xiao-Yan; Fan, Lei; Li, Tian-Lv; Li, Jian-Yong; Xu, Wei

    2017-01-01

    We analyzed data from 54 newly-diagnosed persons with extra-nodal natural killer/T-cell (NK/T) lymphoma, who had a pretreatment 18F-FDG PET/CT study, to determine whether the sum of SUVmax of all the nodal and extra-nodal lesions predicted progression-free survival (PFS) and/or overall survival (OS). Three models (WB1SUVmax, WB2SUVmax, WB3SUVmax) based on the basis of the sum of SUVmax of the whole-body SUVmax of 11 nodal and 10 extra-nodal lesions were tested. The discrimination value of these models was evaluated using time-dependent receiver-operator characteristic (ROC) curves and corresponding areas under the curve (AUC) in training and validation cohorts. Findings were validated in an independent cohort of 15 subjects. ROC curve analysis showed the optimal cut-off values for WB1SUVmax, WB2SUVmax and WB3SUVmax were 15.8 (sensitivity 92%, specificity 67%, AUC 0.811; P<0.001), 12.7 (sensitivity 96%; specificity 57%; AUC 0.785; P<0.001) and 15.8 (sensitivity 88%; specificity 70%; AUC 0.793; P<0.001). Multivariate analyses indicated WB3SUVmax was independently associated with PFS (hazard ratio [HR]=3.67, 95% confidence interval [95% CI]=1.19, 11.29; P=0.023) and OS (HR= 4.51 [1.02, 19.91]; P=0.047). WB3SUVmax calculated based of the sum of the SUVmax of 3 nodal and 10 extra-nodal lesions was significantly associated with PFS and OS. PMID:27974685

  18. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  19. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  20. Nodal Structure of Quasi-Two-Dimensional Superconductors Probed by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Vorontsov, A.; Vekhter, I.

    2006-06-01

    We consider a quasi-two-dimensional superconductor with line nodes in the presence of an in-plane magnetic field, and compute the dependence of the specific heat C and the in-plane heat conductivity κ on the angle between the field and the nodal direction in the vortex state. We use a variation of the microscopic Brandt-Pesch-Tewordt method that accounts for the scattering of quasiparticles off vortices, and analyze the signature of the nodes in C and κ. At low to moderate fields the specific heat anisotropy changes sign with increasing temperature. Comparison with measurements of C and κ in CeCoIn5 resolves the contradiction between the two in favor of the dx2-y2 gap.

  1. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  2. Magnetic susceptibility in three-dimensional nodal semimetals

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito; Hizbullah, Intan Fatimah

    2016-01-01

    We study the magnetic susceptibility in various three-dimensional gapless systems, including Dirac and Weyl semimetals, and a line-node semimetal. The susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term, which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger δ -function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.

  3. Magnetic response in three-dimensional nodal semimetals

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito; Hizbullah, Intan Fatimah

    We study the magnetic response in various three-dimensional gapless systems, including Dirac and Weyl semimetals and a line-node semimetal. We show that the susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger delta-function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.

  4. CAISO flicks switch on nodal scheme and lights stay on

    SciTech Connect

    2009-06-15

    In 2000-01, two years after introducing a competitive wholesale power auction in California - with a separate day-ahead zonal market operated by the California Power Exchange and a zonal market for ancillary services and balancing energy operated by the California Independent System Operator (CAISO) - the California market collapsed from exorbitant prices, flagrant gaming, and abuse of market power. Nine years later, CAISO introduced a nodal pricing auction for the wholesale market in April, replacing the zonal scheme, which was among many causes of the original market's demise. With nearly 3,000 nodes on the network, high prices in one region do not affect prices everywhere on the system. After investing some $200 million to upgrade the software, countless delays, and 18 months of market simulation and testing, the new auction was introduced and nothing unusual happened.

  5. Nodal staging of colorectal carcinomas and sentinel nodes

    PubMed Central

    Cserni, G

    2003-01-01

    This review surveys the staging systems used for the classification of colorectal carcinomas, including the TNM system, and focuses on the assessment of the nodal stage of the disease. It reviews the quantitative requirements for a regional metastatic work up, and some qualitative features of lymph nodes that may help in the selection of positive and negative lymph nodes. Identification of the sentinel lymph nodes (those lymph nodes that have direct drainage from the primary tumour site) is one such qualitative feature that is claimed to allow the upstaging of colorectal carcinomas via an oriented, enhanced pathological work up. Current evidence in favour of a change in the requisite of assessing as may lymph nodes as is possible, and concentrating the efforts on only a selected number of lymph nodes, is weak. PMID:12719450

  6. Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma

    PubMed Central

    Na’ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv

    2016-01-01

    Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC. PMID:26886954

  7. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

    PubMed Central

    Wolff, Sebastian; Bucher, Christian

    2013-01-01

    This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in

  8. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm

    PubMed Central

    Ellis, Pamela S.; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M.; Constam, Daniel; Placzek, Marysia

    2015-01-01

    The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. PMID:26417042

  9. Advanced Life Analysis Methods. Volume 2. Crack Growth Analysis Methods for Attachment Lugs

    DTIC Science & Technology

    1984-09-01

    GROUP SUB. GR. ,ttachment Lugs, Cracking, Aircraft, Damage Tolerance, 3 Analysis Methods, Straight Lugs, Tapered Lugs, Stresses, .3 3 Stress Intensity...the damage tolerance of aircraft attachment lugs are developed and presented. Stress and fracture analyses are conducted for simple male straight...Parameter Weight Function Approximation 78 3.3 Three-Dimensional Cracked Finite Element Method 85 4. Elastoplastic Analysis 100 IV STRESS INTENSITY FACTORS

  10. Total Gross Tumor Volume Is an Independent Prognostic Factor in Patients Treated With Selective Nodal Irradiation for Stage I to III Small Cell Lung Cancer

    SciTech Connect

    Reymen, Bart; Van Loon, Judith; Baardwijk, Angela van; Wanders, Rinus; Borger, Jacques; Dingemans, Anne-Marie C.; Bootsma, Gerben; Pitz, Cordula; Lunde, Ragnar; Geraedts, Wiel; Lambin, Philippe; De Ruysscher, Dirk

    2013-04-01

    Purpose: In non-small cell lung cancer, gross tumor volume (GTV) influences survival more than other risk factors. This could also apply to small cell lung cancer. Methods and Materials: Analysis of our prospective database with stage I to III SCLC patients referred for concurrent chemo radiation therapy. Standard treatment was 45 Gy in 1.5-Gy fractions twice daily concurrently with carboplatin-etoposide, followed by prophylactic cranial irradiation (PCI) in case of non-progression. Only fluorodeoxyglucose (FDG)-positron emission tomography (PET)-positive or pathologically proven nodal sites were included in the target volume. Total GTV consisted of post chemotherapy tumor volume and pre chemotherapy nodal volume. Survival was calculated from diagnosis (Kaplan-Meier ). Results: A total of 119 patients were included between May 2004 and June 2009. Median total GTV was 93 ± 152 cc (7.5-895 cc). Isolated elective nodal failure occurred in 2 patients (1.7%). Median follow-up was 38 months, median overall survival 20 months (95% confidence interval = 17.8-22.1 months), and 2-year survival 38.4%. In multivariate analysis, only total GTV (P=.026) and performance status (P=.016) significantly influenced survival. Conclusions: In this series of stage I to III small cell lung cancer patients treated with FDG-PET-based selective nodal irradiation total GTV is an independent risk factor for survival.

  11. Sentinel Lymph Node Mapping with Pathologic Ultrastaging: A Valuable Tool for Assessing Nodal Metastasis in Low-Grade Endometrial Cancer with Superficial Myoinvasion

    PubMed Central

    Kim, Christine H.; Khoury-Collado, Fady; Barber, Emma L.; Soslow, Robert A.; Makker, Vicky; Leitao, Mario M.; Sonoda, Yukio; Alektiar, Kaled M.; Barakat, Richard R.; Abu-Rustum, Nadeem R.

    2013-01-01

    Objective To report the incidence of nodal metastases in patients presenting with presumed low-grade endometrioid adenocarcinomas using a sentinel lymph node (SLN) mapping protocol including pathologic ultrastaging. Methods All patients from 9/2005-12/2011 who underwent endometrial cancer staging surgery with attempted SLN mapping for preoperative grade 1 (G1) or grade 2 (G2) tumors with <50% invasion on final pathology, were included. All lymph nodes were examined with hematoxylin and eosin (H&E). Negative SLNs were further examined using an ultrastaging protocol to detect micrometastases and isolated tumor cells. Results Of 425 patients, lymph node metastasis was found in 25 patients (5.9%) on final pathology—13 cases on routine H&E, 12 cases after ultrastaging. Patients whose tumors had a DMI <50% were more likely to have positive SLNs on routine H&E (p<0.005) or after ultrastaging (p=0.01) compared to those without myoinvasion. Conclusions Applying a standardized SLN mapping algorithm with ultrastaging allows for the detection of nodal disease in a presumably low-risk group of patients who in some practices may not undergo any nodal evaluation. Ultrastaging of SLNs can likely be eliminated in endometrioid adenocarcinoma with no myoinvasion. The long-term clinical significance of ultrastage-detected nodal disease requires further investigation as recurrences were noted in some of these cases. PMID:24099838

  12. Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound.

    PubMed

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M; Rajaraman, Prathish K; Heys, Jeffrey J; Belohlavek, Marek

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics.

  13. Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound

    PubMed Central

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M.; Rajaraman, Prathish K.; Heys, Jeffrey J.

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics. PMID:23690874

  14. Application of Advanced Methods to Predict Grid to Rod Fretting in PWRs

    SciTech Connect

    Karoutas, Zeses; Roger, Lu Y.; Yan, J.; Krammen, M.A.; Sham, Sam

    2012-01-01

    Advanced modeling and simulation methods are being developed as part of the US Department of Energy sponsored Nuclear Energy Modeling and Simulation Hub called CASL (Consortium for Advanced Simulation of LWRs). The key participants of the CASL team include Oak Ridge National Laboratory (lead), Idaho National Laboratory, Sandia National Laboratories, Los Alamos National Laboratory, Massachusetts Institute of Technology, North Carolina State University, University of Michigan, Electric Power Research Institute, Tennessee Valley Authority and Westinghouse Electric Corporation. One of the key objectives of the CASL program is to develop multi-physics methods and tools which evaluate neutronic, thermal-hydraulic, structural mechanics and nuclear fuel rod performance in rod bundles to support power uprates, increased burnup/cycle length and life extension for US nuclear plants.

  15. The Association Between Biological Subtype and Isolated Regional Nodal Failure After Breast-Conserving Therapy

    SciTech Connect

    Wo, Jennifer Y.; Taghian, Alphonse G.; Nguyen, Paul L.; Raad, Rita Abi; Sreedhara, Meera B.A.; Bellon, Jennifer R.; Wong, Julia S.; Gadd, Michele A.; Smith, Barbara L.; Harris, Jay R.

    2010-05-01

    Purpose: To evaluate the risk of isolated regional nodal failure (RNF) among women with invasive breast cancer treated with breast-conserving surgery (BCS) and radiation therapy (RT) and to determine factors, including biological subtype, associated with RNF. Methods and Materials: We retrospectively studied 1,000 consecutive women with invasive breast cancer who received breast-conserving surgery and RT from 1997 through 2002. Ninety percent of patients received adjuvant systemic therapy; none received trastuzumab. Sentinel lymph node biopsy was done in 617 patients (62%). Of patients with one to three positive nodes, 34% received regional nodal irradiation (RNI). Biological subtype classification into luminal A, luminal B, HER-2, and basal subtypes was based on estrogen receptor status-, progesterone receptor status-, and HER-2-status of the primary tumor. Results: Median follow-up was 77 months. Isolated RNF occurred in 6 patients (0.6%). On univariate analysis, biological subtype (p = 0.0002), lymph node involvement (p = 0.008), lymphovascular invasion (p = 0.02), and Grade 3 histology (p = 0.01) were associated with significantly higher RNF rates. Compared with luminal A, the HER-2 (p = 0.01) and basal (p = 0.08) subtypes were associated with higher RNF rates. The 5-year RNF rate among patients with one to three positive nodes treated with tangents alone was 2.4%; we could not identify a subset of these patients with a substantial risk of RNF. Conclusions: Isolated RNF is a rare occurrence after breast-conserving therapy. Patients with the HER-2 (not treated with trastuzumab) and basal subtypes appear to be at higher risk of developing RNF although this risk is not high enough to justify the addition of RNI. Low rates of RNF in patients with one to three positive nodes suggest that tangential RT without RNI is reasonable in most patients.

  16. Nodal upstaging during lung cancer resection is associated with surgical approach

    PubMed Central

    Martin, Jeremiah T.; Durbin, Eric B.; Chen, Li; Gal, Tamas; Mahan, Angela; Ferraris, Victor; Zwischenberger, Joseph

    2015-01-01

    Background Recent reports demonstrate that thoracoscopic lobectomy for lung cancer may be associated with lower rates of surgical upstaging. We queried a state-wide cancer registry for differences in upstaging rates and survival by surgical approach. Methods The Kentucky Cancer Registry (KCR) collects data, including centralized pathology reporting, on cancer patients treated statewide. We performed a retrospective review from 2010-2012 to examine clinical and pathologic stage. We assessed rates of upstaging and whether or not the surgical approach, thoracotomy (THOR) versus minimally invasive techniques (VATS), had an impact on final pathologic stage and survival. Results The KCR database from 2010 to 2012 contained information on 2830 lung cancer cases, 1964 having THOR and 500 having VATS resections. Preoperatively, 36.4% of THOR were clinically stage 1a vs. 47.4% % VATS (p=0.0002). Of these, final pathologic stage remained stage 1a in 30.5% of THOR and 38.0% of VATS (p=0.0002). The overall nodal upstaging rate for THOR was 9.9% and 4.8% for VATS (p=0.002). There was decreased nodal upstaging with VATS, independent of tumor size and extent of resection (OR 0.6, 95% CI 0.387-0.985, p=0.04). However there was improved survival with VATS compared with THOR (HR 0.733, 95% CI 0.592-0.907, p = 0.0042). Conclusions Consistent with other reports, we demonstrate a lower upstaging rate with VATS. Nevertheless, there is a survival advantage in VATS patients. Although selection bias may play a role in these observed differences, the improved quality of life measures associated with VATS, may explain survival improvement despite lower surgical upstaging. PMID:26428690

  17. Recent advances on the encoding and selection methods of DNA-encoded chemical library.

    PubMed

    Shi, Bingbing; Zhou, Yu; Huang, Yiran; Zhang, Jianfu; Li, Xiaoyu

    2017-02-01

    DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research.

  18. Advanced methods and means to improve atmospheric lidar stability against sky background clutter

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil R.

    2011-11-01

    An impact of intensive background clutter on lidar photodetectors leads to changes of their sensitivity and can even overload them. As a result, information on atmospheric optical parameters is distorted and sometimes can be completely lost. Since a problem of lidar system structure and parameters adaptation to background radiation remains actual one, some advanced methods and means to improve atmospheric lidar stability against sky background clutter are discussed.

  19. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  20. A Preliminary Analysis of Advance Appropriations as a Budgeting Method for Navy Ship Procurements

    DTIC Science & Technology

    2002-02-01

    Irv Blickstein • Giles Smith R A Preliminary Analysis of ADVANCE APPROPRIATIONS as a Budgeting Method for Navy Ship Procurements National Defense ...conducted for the U.S. Navy within the Acquisition and Technology Policy Center of RAND’s National Defense Research Institute, a federally funded...research and development center supported by the Office of the Secretary of Defense , the Joint Staff, the unified commands, and the defense agencies under

  1. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  2. Development and application of a probabilistic evaluation method for advanced process technologies

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  3. An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model. Quarterly Technical Progress Report, April 1 - June 30, 2000

    SciTech Connect

    Anistratov, Dmitriy Y.; Adams, Marvin L.; Palmer, Todd S.; Smith, Kord S.

    2000-07-25

    The status summary of Nuclear Energy Research Initiative (NERI) Tasks - Phase 1 are: Task 1--The development of the following methods in 1D slab geometry: (1) Homogenization and definition of discontinuity factors, (2) Group constants functionalization using assembly transport solution of multigroup eigenvalue problem with albedo boundary conditions, and (3) solving coarse-mesh effective few-group 1D QD moment equations using tables of data parameterized with respect to the ratio {rvec n} {center_dot} {rvec J}{sup G}/{tilde {phi}{sup G}} on boundaries. Status summary of NERI Tasks - Phase 1: Task 2--Development of a numerical method for solving the 2D few-group moment QD equations: (1) Development of a nodal discretization method for 2D moment QD equations, and (2) Development of an efficient iteration method for solving the system of equations of the nodal discretization method for 2D moment QD equations.

  4. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation.

    PubMed

    Liu, Xiuli; Ma, Yuanqing; Zhang, Congwei; Wei, Shi; Cao, Yu; Wang, Qiang

    2013-10-20

    Nodal, a member of the transforming growth factor β (TGF-β) superfamily, has been shown to play a role in mesendoderm induction and gastrulation movements. The activity of Nodal signaling can be modulated by microRNAs (miRNAs) as previously reported, but little is known about which miRNAs are regulated by Nodal during gastrulation. In the present study, we found that the expression of mir206, one of the most abundant miRNAs during zebrafish early embryo development, is regulated by Nodal signaling. Abrogation of Nodal signal activity results in defective convergence and extension (CE) movements, and these cell migration defects can be rescued by supplying an excess of mir206, suggesting that mir206 acts downstream of Nodal signaling to regulate CE movements. Furthermore, in mir206 morphants, the expression of cell adhesion molecule E-cadherin is significantly increased, while the key transcriptional repressor of E-cadherin, snail1a, is depressed. Our study uncovers a novel mechanism by which Nodal-regulated mir206 modulates gastrulation movements in connection with the Snail/E-cadherin pathway.

  5. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts.

    PubMed

    McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F

    2010-04-01

    Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.

  6. Nicalin and its binding partner Nomo are novel Nodal signaling antagonists.

    PubMed

    Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian

    2004-08-04

    Nodals are signaling factors of the transforming growth factor-beta (TGFbeta) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated gamma-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish.

  7. Nicalin and its binding partner Nomo are novel Nodal signaling antagonists

    PubMed Central

    Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian

    2004-01-01

    Nodals are signaling factors of the transforming growth factor-β (TGFβ) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated γ-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish. PMID:15257293

  8. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations

    PubMed Central

    Mohapatra, Bhagyalaxmi; Casey, Brett; Li, Hua; Ho-Dawson, Trang; Smith, Liana; Fernbach, Susan D.; Molinari, Laura; Niesh, Stephen R.; Jefferies, John Lynn; Craigen, William J.; Towbin, Jeffrey A.; Belmont, John W.; Ware, Stephanie M.

    2009-01-01

    NODAL and its signaling pathway are known to play a key role in specification and patterning of vertebrate embryos. Mutations in several genes encoding components of the NODAL signaling pathway have previously been implicated in the pathogenesis of human left–right (LR) patterning defects. Therefore, NODAL, a member of TGF-β superfamily of developmental regulators, is a strong candidate to be functionally involved in congenital LR axis patterning defects or heterotaxy. Here we have investigated whether variants in NODAL are present in patients with heterotaxy and/or isolated cardiovascular malformations (CVM) thought to be caused by abnormal heart tube looping. Analysis of a large cohort of cases (n = 269) affected with either classic heterotaxy or looping CVM revealed four different missense variants, one in-frame insertion/deletion and two conserved splice site variants in 14 unrelated subjects (14/269, 5.2%). Although similar with regard to other associated defects, individuals with the NODAL mutations had a significantly higher occurrence of pulmonary valve atresia (P = 0.001) compared with cases without a detectable NODAL mutation. Functional analyses demonstrate that the missense variant forms of NODAL exhibit significant impairment of signaling as measured by decreased Cripto (TDGF-1) co-receptor-mediated activation of artificial reporters. Expression of these NODAL proteins also led to reduced induction of Smad2 phosphorylation and impaired Smad2 nuclear import. Taken together, these results support a role for mutations and rare deleterious variants in NODAL as a cause for sporadic human LR patterning defects. PMID:19064609

  9. Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.

    PubMed

    Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan

    2017-04-04

    Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus, Nodal, Lefty, and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal, Lefty, and Pitx, whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal, whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.

  10. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments.

    PubMed

    Calvanese, Luisa; Sandomenico, Annamaria; Caporale, Andrea; Focà, Annalia; Focà, Giuseppina; D'Auria, Gabriella; Falcigno, Lucia; Ruvo, Menotti

    2015-04-01

    Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.

  11. Comparison of advanced reduced-basis methods for transient structural analysis

    NASA Technical Reports Server (NTRS)

    Mcgowan, David M.; Bostic, Susan W.

    1991-01-01

    Two advanced reduced-basis methods for linear, transient structural analysis, the force-derivative method and the Lanczos method, are compared to two widely-used modal methods, the mode-displacement method and the mode-acceleration method. Comparisons are made for two linear example problems: a proportionally-damped cantilevered beam subject to a discrete tip load which varies linearly with time, and a discretely-damped multispan beam subject to a uniformly distributed load which varies as a quintic function of time. Results from the methods are compared in terms of the number of basis vectors required to obtain a desired level of accuracy and the associated computational times. The results are problem dependent, and it is shown that for the cantilevered beam problem, the mode-acceleration and force-derivative methods are the most efficient in terms of the number of basis vectors and computational time. The force-derivative method is shown to be the most effective method for solving the multispan beam problem with closely-spaced frequencies. In general, the force-derivative method is shown to produce an accurate solution using very few basis vectors and to require less computational time as compared to the other methods studied.

  12. Advanced Life Analysis Methods. Volume 3. Experimental Evaluation of Crack Growth Analysis Methods for Attachment Lugs

    DTIC Science & Technology

    1984-09-17

    Structural Lugs 10 6.00 TETM TESX, MARI LOCKHEED L𔃼.0 GRUP IIhA AND 2Rii * 2~~~~.0 .RUPINI .01 .05 1 .2 .5. 9 99PROABLTY F*ý,r 1-40 4oprsno R ato nTs rga...monitor loads and perform failsafe functions . A sinewave function generator provides load commands to the servo loop and a calibrated amplitude measurement...Simple Compounding Solution o 2-D Cracked Finite Element Procedure o Green’s Function Method 0 3-D Cracked Finite Element PrTocedure Parameters and

  13. Advanced Numerical methods for F. E. Simulation of Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Chenot, Jean-Loup; Bernacki, Marc; Fourment, Lionel; Ducloux, Richard

    2010-06-01

    The classical scientific basis for finite element modeling of metal forming processes is first recalled. Several developments in advanced topics are summarized: adaptive and anisotropic remeshing, parallel solving, multi material deformation. More recent researches in numerical analysis are outlined, including multi grid and multi mesh methods, mainly devoted to decrease computation time, automatic optimization method for faster and more effective design of forming processes. The link of forming simulation and structural computations is considered with emphasis on the necessity to predict the final mechanical properties. Finally a brief account of computation at the micro scale level is given.

  14. Detection of 18.6 year nodal induced drought in the Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Currie, Robert G.

    1983-11-01

    Analysis of tree-ring chronologies from the Patagonian Andes yields evidence for the 18.6 yr lunar nodal term in drought/flood. The mean discrepancy between epochs of drought/flood and the nodal tide since AD 1600 is 0.7 ± 2.2 yr, but the polarity of the signal is apparently bimodal. From nodal epoch 1750.0 through 1898.9 drought and tide were in phase, whereas prior to 1750.0 and subsequent to 1898.9 drought and tide were out of phase. There is evidence also for the solar cycle drought signal in the data.

  15. Perinodal slow potential as a local guide for transcatheter radiofrequency ablation of atrioventricular nodal reentrant tachycardia: therapeutic efficacy and electrophysiological mechanisms of success.

    PubMed Central

    Lin, J. L.; Lin, F. Y.; Lo, H. M.; Tseng, C. D.; Cheng, T. F.; Chen, J. J.; Tseng, Y. Z.; Lien, W. P.

    1995-01-01

    BACKGROUND--A specific local indicator in the Koch's triangle could be critical to the complication-free treatment of atrioventricular nodal reentrant tachycardia by transcatheter radiofrequency ablation. Recording of perinodal slow potential reflects a slow conduction area, and probably indicates the location of the slow pathway component of the circuit. Specific ablation of the slow pathway would carry the least risk of atrioventricular block. METHOD AND RESULTS--Guided by the mapped perinodal slow potential, atrioventricular nodal reentrant tachycardia was successfully eliminated in all of 55 consecutive patients in one session. Fifty two patients (94.5%) had confirmed slow potential at the final success sites. Despite the good result, the underlying electrophysiological mechanisms of early success from slow-potential-guiding catheter ablation were heterogeneous: selective slow pathway eradication in 31 patients (56.4%, group A), selective slow pathway modification in 18 patients (32.7%, group B), inadvertent fast pathway damage in six patients (10.9%, group C). Group B patients had the preservation of dual atrioventricular nodal pathways, adequate atrio-Hisian delay, fast pathway facilitation, and a higher frequency of inducible, single non-conducted nodal echo (15/18, 83.3% v 6/31, 19.4% in group A, P << 0.001). The upper communicating path of the circuit was implicated as another site of radiofrequency destruction. Three recurrences were documented in follow up study. However, reablation by the same approach caused complete atrioventricular block in one patient (1.7%, 1/58 procedures). None of the local characteristics of ablation sites was an independent predictor of procedure outcome. CONCLUSIONS--Perinodal slow potential is not a specific slow pathway indicator in transcatheter radiofrequency ablation of atrioventricular nodal reentrant tachycardia. Multiple strategic sites of the reentry circuit may be damaged through similar local signals. PMID:7547021

  16. A framework for advanced methods of control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Reynolds, Paul

    2012-04-01

    The vibration serviceability of civil engineering structures under human dynamic excitation is becoming ever more critical with the design and redevelopment of structures with reduced mass, stiffness and damping. A large number of problems have been reported in floors, footbridges, sports stadia, staircases and other structures. Unfortunately, the range of options available to fix such problems are very limited and are primarily limited to structural modification or the implementation of passive vibration control measures, such as tuned mass dampers. This paper presents the initial development of a new framework for advanced methods of control of humaninduced vibrations in civil engineering structures. This framework includes both existing passive methods of vibration control and more advanced active, semi-active and hybrid control techniques, which may be further developed as practical solutions for these problems. Through the use of this framework, rational decisions as to the most appropriate technologies for particular human vibration problems may be made and pursued further. This framework is also intended to be used in the design of new civil engineering structures, where advanced control technologies may be used both to increase the achievable slenderness and to reduce the amount of construction materials used and hence their embodied energy. This will be an ever more important consideration with the current drive for structures with reduced environmental impact.

  17. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested.

  18. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  19. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  20. The promise of mixed-methods for advancing latino health research.

    PubMed

    Apesoa-Varano, Ester Carolina; Hinton, Ladson

    2013-09-01

    Mixed-methods research in the social sciences has been conducted for quite some time. More recently, mixed-methods have become popular in health research, with the National Institutes of Health leading the impetus to fund studies that implement such an approach. The public health issues facing us today are great and they range from policy and other macro-level issues, to systems level problems to individuals' health behaviors. For Latinos, who are projected to become the largest minority group bearing a great deal of the burden of social inequality in the U.S., it is important to understand the deeply-rooted nature of these health disparities in order to close the gap in health outcomes. Mixed-methodology thus holds promise for advancing research on Latino heath by tackling health disparities from a variety of standpoints and approaches. The aim of this manuscript is to provide two examples of mixed methods research, each of which addresses a health topic of considerable importance to older Latinos and their families. These two examples will illustrate a) the complementary use of qualitative and quantitative methods to advance health of older Latinos in an area that is important from a public health perspective, and b) the "translation" of findings from observational studies (informed by social science and medicine) to the development and testing of interventions.

  1. The Promise of Mixed-Methods for Advancing Latino Health Research

    PubMed Central

    Apesoa-Varano, Ester Carolina; Hinton, Ladson

    2015-01-01

    Mixed-methods research in the social sciences has been conducted for quite some time. More recently, mixed-methods have become popular in health research, with the National Institutes of Health leading the impetus to fund studies that implement such an approach. The public health issues facing us today are great and they range from policy and other macro-level issues, to systems level problems to individuals' health behaviors. For Latinos, who are projected to become the largest minority group bearing a great deal of the burden of social inequality in the U.S., it is important to understand the deeply-rooted nature of these health disparities in order to close the gap in health outcomes. Mixed-methodology thus holds promise for advancing research on Latino heath by tackling health disparities from a variety of standpoints and approaches. The aim of this manuscript is to provide two examples of mixed methods research, each of which addresses a health topic of considerable importance to older Latinos and their families. These two examples will illustrate a) the complementary use of qualitative and quantitative methods to advance health of older Latinos in an area that is important from a public health perspective, and b) the “translation” of findings from observational studies (informed by social science and medicine) to the development and testing of interventions. PMID:23996325

  2. Active optical alignment of off-axis telescopes based on nodal aberration theory.

    PubMed

    Zhang, Xiaobin; Zhang, Dong; Xu, Shuyan; Ma, Hongcai

    2016-11-14

    Our paper mainly separates the specific aberration contributions of third-order astigmatism and third-order coma from the total aberration fields, on the framework of the modified nodal aberration theory (NAT), for the perturbed off-axis telescope. Based on the derived aberration functions, two alignment models for the same off-axis two-mirror telescope are established and compared. Among them, one is based on third-order NAT, the other is based on fifth-order NAT. By comparison, it is found that the calculated perturbations based on fifth-order NAT are more accurate. It illustrates that third-order astigmatism and third-order coma contributed from fifth-order aberrations can't be neglected in the alignment process. Then the fifth-order NAT is used for the alignment of off-axis three-mirror telescopes. After simulation, it is found that the perturbed off-axis three-mirror telescope can be perfectly aligned as well. To further demonstrate the application of the alignment method based on fifth-order NAT (simplified as NAT method), Monte-Carlo simulations for both off-axis two-mirror telescope and off-axis three-mirror telescope are conducted in the end. Meantime, a comparison between NAT method and sensitivity table method is also conducted. It is proven that the computation accuracy of NAT method is much higher, especially in poor conditions.

  3. Status of the Development of an Embedded Transport Treatment of Control Rods and of Radial Flux Expansion in Cylindrical Nodal Diffusion Codes

    SciTech Connect

    Frederick N. Gleicher II; Abderrafi M. Ougouag

    2009-09-01

    A new diffusion-transport hybrid nodal method in R-Z is presented that can effectively treat non-multiplying zones in pebble bed reactors. The new method seamlessly combines the analytic coarse mesh finite difference (CMFD) diffusion formulation and a transport theory based response matrix formulation while retaining the properties and structure of the CMFD diffusion solver. The resulting combined formulation is utilized in selected non-multiplying nodes to capture angular effects on the flux. Test results indicate that the method has been implemented correctly into the CYNOD reactor kinetics code. This document also presents a status report on the development of a better source approximation for the Green’s function nodal solution in the radial direction of cylindrical geometry. The basic theory has been developed, including obtaining polynomials that are orthonormal over the domain of integration and the derivation of approximately half of the required matrix elements (single and double integrals in the source expansions).

  4. Nodal Domain Statistics for Quantum Maps, Percolation, and Stochastic Loewner Evolution

    SciTech Connect

    Keating, J. P.; Marklof, J.; Williams, I. G.

    2006-07-21

    We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant {kappa} close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.

  5. Dose-dependent Nodal/Smad signals pattern the early mouse embryo.

    PubMed

    Robertson, Elizabeth J

    2014-08-01

    Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo.

  6. Childhood nodal marginal zone lymphoma with unusual clinicopathologic and cytogenetic features for the pediatric variant: a case report.

    PubMed

    Aqil, Barina; Merritt, Brian Y; Elghetany, M Tarek; Kamdar, Kala Y; Lu, Xinyan Y; Curry, Choladda V

    2015-01-01

    Nodal marginal zone lymphoma (NMZL) is a B-cell lymphoma that shares morphologic and immunophenotypic features with extranodal and splenic marginal zone lymphomas but lacks extranodal or splenic involvement at presentation. NMZL occurs mostly in adults with no sex predilection, at advanced stage (III or IV), with frequent relapses and a high incidence of tumoral genetic abnormalities including trisomies 3 and 18 and gain of 7q. Pediatric NMZL, however, is a rare but distinct variant of NMZL with characteristic features including male predominance, asymptomatic and localized (stage I) disease, low relapse rates with excellent outcomes, and a lower incidence of essentially similar genetic aberrations compared to adult NMZL. Here we describe a unique case of childhood NMZL with unusual clinicopathologic features for the pediatric variant including generalized lymphadenopathy, high-stage disease with persistence after therapy, unusual immunophenotype (CD5, CD23, and BCL6 positive), and unique chromosomal abnormalities including monosomy 20 and add(10)(p11.2).

  7. Structural Analysis and Quantitative Determination of Clevidipine Butyrate Impurities Using an Advanced RP-HPLC Method.

    PubMed

    Zhou, Yuxia; Zhou, Fan; Yan, Fei; Yang, Feng; Yao, Yuxian; Zou, Qiaogen

    2016-03-01

    Eleven potential impurities, including process-related compounds and degradation products, have been analyzed by comprehensive studies on the manufacturing process of clevidipine butyrate. Possible formation mechanisms could also be devised. MS and NMR techniques have been used for the structural characterization of three previously unreported impurities (Imp-3, Imp-5 and Imp-11). To separate and quantify the potential impurities in a simultaneous fashion, an efficient and advanced RP-HPLC method has been developed. In doing so, four major degradation products (Imp-2, Imp-4, Imp-8 and Imp-10) can be observed under varying stress conditions. This analytical method has been validated according to ICH guidelines with respect to specificity, accuracy, linearity, robustness and stability. The method described has been demonstrated to be applicable in routine quality control processes and stability evaluation studies of clevidipine butyrate.

  8. Prediction and preliminary standardization of fire debris constituents with the advanced distillation curve method.

    PubMed

    Bruno, Thomas J; Lovestead, Tara M; Huber, Marcia L

    2011-01-01

    The recent National Academy of Sciences report on forensic sciences states that the study of fire patterns and debris in arson fires is in need of additional work and eventual standardization. We discuss a recently introduced method that can provide predicted evaporation patterns for ignitable liquids as a function of temperature. The method is a complex fluid analysis protocol, the advanced distillation curve approach, featuring a composition explicit data channel for each distillate fraction (for qualitative, quantitative, and trace analysis), low uncertainty temperature measurements that are thermodynamic state points that can be modeled with an equation of state, consistency with a century of historical data, and an assessment of the energy content of each distillate fraction. We discuss the application of the method to kerosenes and gasolines and outline how expansion of the scope of fluids to other ignitable liquids can benefit the criminalist in the analysis of fire debris for arson.

  9. Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances.

    PubMed

    Darwish, Ibrahim A

    2006-09-01

    Immunoassays are bioanalytical methods in which the quantitation of the analyte depends on the reaction of an antigen (analyte) and an antibody. Immunoassays have been widely used in many important areas of pharmaceutical analysis such as diagnosis of diseases, therapeutic drug monitoring, clinical pharmacokinetic and bioequivalence studies in drug discovery and pharmaceutical industries. The importance and widespread of immunoassay methods in pharmaceutical analysis are attributed to their inherent specificity, high-throughput, and high sensitivity for the analysis of wide range of analytes in biological samples. Recently, marked improvements were achieved in the field of immunoassay development for the purposes of pharmaceutical analysis. These improvements involved the preparation of the unique immunoanalytical reagents, analysis of new categories of compounds, methodology, and instrumentation. The basic methodologies and recent advances in immunoassay methods applied in different fields of pharmaceutical analysis have been reviewed.

  10. A complex method of equipment replacement planning. An advanced plan for the replacement of medical equipment.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    This complex method of equipment replacement planning is a methodology; it is a means to an end, a process that focuses on equipment most in need of replacement, rather than the end itself. It uses data available from the maintenance management database, and attempts to quantify those subjective items important [figure: see text] in making equipment replacement decisions. Like the simple method of the last issue, it is a starting point--albeit an advanced starting point--which the user can modify to fit their particular organization, but the complex method leaves room for expansion. It is based on sound logic, documented facts, and is fully defensible during the decision-making process and will serve your organization well as provide a structure for your equipment replacement planning decisions.

  11. Cranial location of level II lymph nodes in laryngeal cancer: Implications for elective nodal target volume delineation

    SciTech Connect

    Braam, Petra M. . E-mail: P.M.Braam@umcutrecht.nl; Raaijmakers, Cornelis P.J.; Terhaard, Chris

    2007-02-01

    Purpose: To analyze the cranial distribution of level II lymph nodes in patients with laryngeal cancer to optimize the elective radiation nodal target volume delineation. Methods and Materials: The most cranially located metastatic lymph node was delineated in 67 diagnostic CT data sets. The minimum distance from the base of the skull (BOS) to the lymph node was determined. Results: A total of 98 lymph nodes were delineated including 62 ipsilateral and 36 contralateral lymph nodes. The mean ipsilateral and contralateral distance from the top of the most cranial metastatic lymph node to the BOS was 36 mm (range, -9-120; standard deviation [SD], 17.9) and 35 mm (range, 14-78; SD 15.0), respectively. Only 5% and 12% of the ipsilateral and 3% and 9% of the contralateral metastatic lymph nodes were located within 15 mm and 20 mm below the BOS, respectively. No significant differences were found between patients with only ipsilateral metastatic lymph nodes and patients with bilateral metastatic lymph nodes. Between tumors that do cross the midline and those that do not, no significant difference was found in the distance of the most cranial lymph node to the BOS and the occurrence ipsilateral or contralateral. Conclusions: Setting the cranial border of the nodal target volume 1.5 cm below the base of the skull covers 95% of the lymph nodes and should be considered in elective nodal irradiation for laryngeal cancer. Bilateral neck irradiation is mandatory, including patients with unilateral laryngeal cancer, when elective irradiation is advised.

  12. Advanced Multifunctional Properties of Aligned Carbon Nanotube-Epoxy Composites from Carbon Nanotube Aerogel Method

    NASA Astrophysics Data System (ADS)

    Tran, Thang; Liu, Peng; Fan, Zeng; Ngern, Nigel; Duong, Hai

    2015-03-01

    Unlike previous methods of making carbon nanotube (CNT) thin films, aligned CNT thin films in this work are synthesized directly from CNT aerogels in a CVD process. CH4/H2/He gases and ferrocene/thiophene catalysts are mixed and reacted in the reactor at 1200 °C to form CNT aerogel socks. By pulling out the socks with a metal rod, CNT thin films with 15-nm diameter MWNTs are aligned and produced continuously at a speed of a few meters per minute. The number of the aligned CNT thin film layers/ thickness can also be controlled well. The as-synthesized aligned CNT films are further condensed by acetone spray and post-treated by UV light. The aligned CNT films without any above post-treatment have a high electrical conductivity of 400S/cm. We also develop aligned CNT-epoxy composites by infiltrating epoxy into the above aligned CNT thin films using Vacuum Assisted Resin Transfer Molding (VARTM) method. Our cost-effective fabrication method of the aligned CNT films is more advanced for developing the composites having CNT orientation control. The mechanical, electrical and optical properties of the aligned CNT epoxy composites are measured. About 2% of the aligned CNTs can enhance significantly the electrical conductivity and hardness of aligned CNT-epoxy composite films. Effects of morphologies, volume fraction, and alignment of the CNTs on the advanced multifunctional properties of the aligned CNT-epoxy composites are also quantified.

  13. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  14. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  15. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals

    PubMed Central

    Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi

    2017-01-01

    In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin–orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111). PMID:28074835

  16. The nodal inhibitor Coco is a critical target of leftward flow in Xenopus.

    PubMed

    Schweickert, Axel; Vick, Philipp; Getwan, Maike; Weber, Thomas; Schneider, Isabelle; Eberhardt, Melanie; Beyer, Tina; Pachur, Anke; Blum, Martin

    2010-04-27

    Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.

  17. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.

    PubMed

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-08-10

    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  18. Nodal Stage of Surgically Resected Non-Small Cell Lung Cancer and Its Effect on Recurrence Patterns and Overall Survival

    SciTech Connect

    Varlotto, John M.; Yao, Aaron N.; DeCamp, Malcolm M.; Ramakrishna, Satvik; Recht, Abe; Flickinger, John; Andrei, Adin; Reed, Michael F.; Toth, Jennifer W.; Fizgerald, Thomas J.; Higgins, Kristin; Zheng, Xiao; Shelkey, Julie; and others

    2015-03-15

    Purpose: Current National Comprehensive Cancer Network guidelines recommend postoperative radiation therapy (PORT) for patients with resected non-small cell lung cancer (NSCLC) with N2 involvement. We investigated the relationship between nodal stage and local-regional recurrence (LR), distant recurrence (DR) and overall survival (OS) for patients having an R0 resection. Methods and Materials: A multi-institutional database of consecutive patients undergoing R0 resection for stage I-IIIA NSCLC from 1995 to 2008 was used. Patients receiving any radiation therapy before relapse were excluded. A total of 1241, 202, and 125 patients were identified with N0, N1, and N2 involvement, respectively; 161 patients received chemotherapy. Cumulative incidence rates were calculated for LR and DR as first sites of failure, and Kaplan-Meier estimates were made for OS. Competing risk analysis and proportional hazards models were used to examine LR, DR, and OS. Independent variables included age, sex, surgical procedure, extent of lymph node sampling, histology, lymphatic or vascular invasion, tumor size, tumor grade, chemotherapy, nodal stage, and visceral pleural invasion. Results: The median follow-up time was 28.7 months. Patients with N1 or N2 nodal stage had rates of LR similar to those of patients with N0 disease, but were at significantly increased risk for both DR (N1, hazard ratio [HR] = 1.84, 95% confidence interval [CI]: 1.30-2.59; P=.001; N2, HR = 2.32, 95% CI: 1.55-3.48; P<.001) and death (N1, HR = 1.46, 95% CI: 1.18-1.81; P<.001; N2, HR = 2.33, 95% CI: 1.78-3.04; P<.001). LR was associated with squamous histology, visceral pleural involvement, tumor size, age, wedge resection, and segmentectomy. The most frequent site of LR was the mediastinum. Conclusions: Our investigation demonstrated that nodal stage is directly associated with DR and OS but not with LR. Thus, even some patients with, N0-N1 disease are at relatively high risk of local recurrence. Prospective

  19. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    SciTech Connect

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  20. Recent advances in nanoparticle preparation by spray and micro-emulsion methods.

    PubMed

    Eslamian, Morteza; Shekarriz, Marzieh

    2009-01-01

    Micro- and nano-sized metal, semiconductor, pharmaceutical, and simple or complex ceramic particles have numerous applications in the development of sensors, thermal barrier coatings, catalysts, pigments, drugs, etc. The challenges include controlling the particle size, size distribution, particle crystallinity, morphology and shape, being able to use the nanoparticles for a given purpose, and to produce them from a variety of precursors. There are several methods to produce nanoparticles, each suitable for a range of applications. In this article, two methods that are receiving increasing attention are considered: spray and microemulsion methods. Spray techniques are single-step methods of producing a broad spectrum of simple to multicomponent functional micro and nanoparticles and quantum dots. Microemulsion is a wet chemistry method. A micro-emulsion system consists of aqueous domains, called reverse micelles, dispersed in a continuous oil phase. In this article, the above mentioned methods of nanoparticle production are introduced and recent advances, research directions and challenges, and the pertinent patents are reviewed and discussed.

  1. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    SciTech Connect

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab.

  2. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  3. PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data

    PubMed Central

    2013-01-01

    Background Tandem affinity purification coupled with mass-spectrometry (TAP/MS) analysis is a popular method for the identification of novel endogenous protein-protein interactions (PPIs) in large-scale. Computational analysis of TAP/MS data is a critical step, particularly for high-throughput datasets, yet it remains challenging due to the noisy nature of TAP/MS data. Results We investigated several major TAP/MS data analysis methods for identifying PPIs, and developed an advanced method, which incorporates an improved statistical method to filter out false positives from the negative controls. Our method is named PPIRank that stands for PPI ranking in TAP/MS data. We compared PPIRank with several other existing methods in analyzing two pathway-specific TAP/MS PPI datasets from Drosophila. Conclusion Experimental results show that PPIRank is more capable than other approaches in terms of identifying known interactions collected in the BioGRID PPI database. Specifically, PPIRank is able to capture more true interactions and simultaneously less false positives in both Insulin and Hippo pathways of Drosophila Melanogaster. PMID:24565074

  4. Methods and advances in metabolic flux analysis: a mini-review.

    PubMed

    Antoniewicz, Maciek R

    2015-03-01

    Metabolic flux analysis (MFA) is one of the pillars of metabolic engineering. Over the past three decades, it has been widely used to quantify intracellular metabolic fluxes in both native (wild type) and engineered biological systems. Through MFA, changes in metabolic pathway fluxes are quantified that result from genetic and/or environmental interventions. This information, in turn, provides insights into the regulation of metabolic pathways and may suggest new targets for further metabolic engineering of the strains. In this mini-review, we discuss and classify the various methods of MFA that have been developed, which include stoichiometric MFA, (13)C metabolic flux analysis, isotopic non-stationary (13)C metabolic flux analysis, dynamic metabolic flux analysis, and (13)C dynamic metabolic flux analysis. For each method, we discuss key advantages and limitations and conclude by highlighting important recent advances in flux analysis approaches.

  5. Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances.

    PubMed

    Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V

    2015-12-01

    Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment.

  6. Advanced fluorescence microscopy methods for the real-time study of transcription and chromatin dynamics

    PubMed Central

    Annibale, Paolo; Gratton, Enrico

    2014-01-01

    In this contribution we provide an overview of the recent advances allowed by the use of fluorescence microscopy methods in the study of transcriptional processes and their interplay with the chromatin architecture in living cells. Although the use of fluorophores to label nucleic acids dates back at least to about half a century ago,1 two recent breakthroughs have effectively opened the way to use fluorescence routinely for specific and quantitative probing of chromatin organization and transcriptional activity in living cells: namely, the possibility of labeling first the chromatin loci and then the mRNA synthesized from a gene using fluorescent proteins. In this contribution we focus on methods that can probe rapid dynamic processes by analyzing fast fluorescence fluctuations. PMID:25764219

  7. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    NASA Astrophysics Data System (ADS)

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  8. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  9. Improvements in the application and reporting of advanced Bland-Altman methods of comparison.

    PubMed

    Olofsen, Erik; Dahan, Albert; Borsboom, Gerard; Drummond, Gordon

    2015-02-01

    Bland and Altman have developed a measure called "limits of agreement" to assess correspondence of two methods of clinical measurement. In many circumstances, comparisons are made using several paired measurements in each individual subject. If such measurements are considered as statistically independent pairs, rather than as sets of measurements from separate individuals, limits of agreement will be too narrow. In addition, the confidence intervals for these limits will also be too narrow. Suitable software to compute valid limits of agreement and their confidence intervals is not readily available. Therefore, we set out to provide a freely available implementation accompanied by a formal description of the more advanced Bland-Altman comparison methods. We validate the implementation using simulated data, and demonstrate the effects caused by failing to take the presence of multiple paired measurements per individual properly into account. We propose a standard format of reporting that would improve analysis and interpretation of comparison studies.

  10. A novel method for analyzing sequential eye movements reveals strategic influence on Raven's Advanced Progressive Matrices.

    PubMed

    Hayes, Taylor R; Petrov, Alexander A; Sederberg, Per B

    2011-09-16

    Eye movements are an important data source in vision science. However, the vast majority of eye movement studies ignore sequential information in the data and utilize only first-order statistics. Here, we present a novel application of a temporal-difference learning algorithm to construct a scanpath successor representation (SR; P. Dayan, 1993) that captures statistical regularities in temporally extended eye movement sequences. We demonstrate the effectiveness of the scanpath SR on eye movement data from participants solving items from Raven's Advanced Progressive Matrices Test. Analysis of the SRs revealed individual differences in scanning patterns captured by two principal components that predicted individual Raven scores much better than existing methods. These scanpath SR components were highly interpretable and provided new insight into the role of strategic processing on the Raven test. The success of the scanpath SR in terms of prediction and interpretability suggests that this method could prove useful in a much broader context.

  11. Advanced magnetic resonance imaging techniques in the preterm brain: methods and applications.

    PubMed

    Tao, Joshua D; Neil, Jeffrey J

    2014-01-01

    Brain development and brain injury in preterm infants are areas of active research. Magnetic resonance imaging (MRI), a non-invasive tool applicable to both animal models and human infants, provides a wealth of information on this process by bridging the gap between histology (available from animal studies) and developmental outcome (available from clinical studies). Moreover, MRI also offers information regarding diagnosis and prognosis in the clinical setting. Recent advances in MR methods - diffusion tensor imaging, volumetric segmentation, surface based analysis, functional MRI, and quantitative metrics - further increase the sophistication of information available regarding both brain structure and function. In this review, we discuss the basics of these newer methods as well as their application to the study of premature infants.

  12. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    NASA Astrophysics Data System (ADS)

    Hurvitz, G.; Ehrlich, Y.; Strum, G.; Shpilman, Z.; Levy, I.; Fraenkel, M.

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  13. Methods for quantification of soil-transmitted helminths in environmental media: current techniques and recent advances

    PubMed Central

    Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.

    2015-01-01

    Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788

  14. Setting health research priorities using the CHNRI method: IV. Key conceptual advances

    PubMed Central

    Rudan, Igor

    2016-01-01

    Introduction Child Health and Nutrition Research Initiative (CHNRI) started as an initiative of the Global Forum for Health Research in Geneva, Switzerland. Its aim was to develop a method that could assist priority setting in health research investments. The first version of the CHNRI method was published in 2007–2008. The aim of this paper was to summarize the history of the development of the CHNRI method and its key conceptual advances. Methods The guiding principle of the CHNRI method is to expose the potential of many competing health research ideas to reduce disease burden and inequities that exist in the population in a feasible and cost–effective way. Results The CHNRI method introduced three key conceptual advances that led to its increased popularity in comparison to other priority–setting methods and processes. First, it proposed a systematic approach to listing a large number of possible research ideas, using the “4D” framework (description, delivery, development and discovery research) and a well–defined “depth” of proposed research ideas (research instruments, avenues, options and questions). Second, it proposed a systematic approach for discriminating between many proposed research ideas based on a well–defined context and criteria. The five “standard” components of the context are the population of interest, the disease burden of interest, geographic limits, time scale and the preferred style of investing with respect to risk. The five “standard” criteria proposed for prioritization between research ideas are answerability, effectiveness, deliverability, maximum potential for disease burden reduction and the effect on equity. However, both the context and the criteria can be flexibly changed to meet the specific needs of each priority–setting exercise. Third, it facilitated consensus development through measuring collective optimism on each component of each research idea among a larger group of experts using a simple

  15. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  16. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2013-01-01

    This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) reactor design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant (NGNP), where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu, and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed.

  17. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation

    USGS Publications Warehouse

    Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.

    2000-01-01

    Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.

  18. A comparison report of three advanced methods for drug-cyclodextrin interaction measurements.

    PubMed

    Singh, Vikramjeet; He, Yaping; Wang, Caifen; Xu, Jianghui; Xu, Xiaonan; Li, Haiyan; Singh, Parbeen; York, Peter; Sun, Lixin; Zhang, Jiwen

    2017-02-05

    Three advanced methods, high performance affinity chromatography (HPAC), surface plasmon resonance (SPR) and surface plasmon resonance imaging (SPRi) were compared and evaluated for determining the drug-cyclodextrin (CD) interactions herein. In total, 18 sparingly soluble drugs were selected for this comparative study. The three methods share a unique connection in the working principles and strategies. The same strategies of CD fixation onto solid phase were used in HPAC and SPR for the measurements, whereas, the SPR and SPRi share identical working principles. However, whilst these relationships are evident, no strong correlation was found between kinetic constants obtained from the three methods: Four drugs, namely, prednisolone, pseudolaric acid B, diazepam and gramisetron failed to show any response on SPR, whereas, the kinetics parameters from SPRi and HPAC were successfully measured. From a comparative review of all the kinetic data, random results without any trends were observed (ka, kd and KA) regardless of the relationships between the three methods: It is apparent that the measurement conditions (volume, flow rate, buffers), non-specific adsorption and experimental procedures had a strong impact on the generated data. The relative advantages and limitations of each method are critically presented on the basis of generated data. This comparative study provides a basis to further upgrade these techniques for confident measurement of drug-CDs interactions.

  19. BELFA: an integrated bridge loading truck for application of the advanced test method EXTRA

    NASA Astrophysics Data System (ADS)

    Schwesinger, Peter; Thor, Bianca

    2001-08-01

    In Germany a research group from four universities has developed an advanced experimental supported objective condition assessment method for concrete bridges, called 'EXTRA'. This method is useable preferably in cases, where conventional assessment methods cannot be applied successfully. In the past more than 200 bridges and buildings were evaluated regarding their real actual load bearing capacity using this method. An authorized guideline for the practical use at concrete structures is available. Until now the process of mounting and dismantling the loading structure was the most time-consuming part of such a test and influenced testing costs and duration of traffic interruption decisive. This background and the technical conception for development and testing the truck prototype with a maximum total loading capacity of 150 t will be introduced. Main subjects are a brief characterization of EXTRA method, the truck structure, the hydraulic loading system, measurement equipment and control facilities as well as the loading regime and belonging on-line information controlling the structure response as main parts of the testing process. The concept of the future employment of such trucks and ideas for a co-operation of consulting offices, owners and authorities will be short discussed. First testing experiences and an outlook on further activities will be given. Acknowledgments finalize the contribution.

  20. A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images

    PubMed Central

    Barcelos, Emilio Z.; Caminhas, Walmir M.; Ribeiro, Eraldo; Pimenta, Eduardo M.; Palhares, Reinaldo M.

    2014-01-01

    In this paper, a method that combines image analysis techniques, such as segmentation and registration, is proposed for an advanced and progressive evaluation of thermograms. The method is applied for the prevention of muscle injury in high-performance athletes, in collaboration with a Brazilian professional soccer club. The goal is to produce information on spatio-temporal variations of thermograms favoring the investigation of the athletes' conditions along the competition. The proposed method improves on current practice by providing a means for automatically detecting adaptive body-shaped regions of interest, instead of the manual selection of simple shapes. Specifically, our approach combines the optimization features in Otsu's method with a correction factor and post-processing techniques, enhancing thermal-image segmentation when compared to other methods. Additional contributions resulting from the combination of the segmentation and registration steps of our approach are the progressive analyses of thermograms in a unique spatial coordinate system and the accurate extraction of measurements and isotherms. PMID:25414972

  1. Pelvic Nodal Dosing With Registration to the Prostate: Implications for High-Risk Prostate Cancer Patients Receiving Stereotactic Body Radiation Therapy

    SciTech Connect

    Kishan, Amar U. Lamb, James M.; Jani, Shyam S.; Kang, Jung J.; Steinberg, Michael L.; King, Christopher R.

    2015-03-15

    Purpose: To determine whether image guidance with rigid registration (RR) to intraprostatic markers (IPMs) yields acceptable coverage of the pelvic lymph nodes in the context of a stereotactic body radiation therapy (SBRT) regimen. Methods and Materials: Four to seven kilovoltage cone-beam CTs (CBCTs) from 12 patients with high-risk prostate cancer were analyzed, allowing approximation of an SBRT regimen. The nodal clinical target volume (CTV{sub N}) and bladder were contoured on all kilovoltage CBCTs. The V{sub 100} CTV{sub N}, expressed as a ratio to the same parameter on the initial plan, and the magnitude of translational shift between RR to the IPMs versus RR to the pelvic bones, were computed. The ability of a multimodality bladder filling protocol to minimize bladder height variation was assessed in a separate cohort of 4 patients. Results: Sixty-five CBCTs were assessed. The average V{sub 100} CTV{sub N} was 92.6%, but for a subset of 3 patients the average was 80.0%, compared with 97.8% for the others (P<.0001). The average overall and superior–inferior axis magnitudes of the bony-to-fiducial translations were significantly larger in the subgroup with suboptimal nodal coverage (8.1 vs 3.9 mm and 5.8 vs 2.4 mm, respectively; P<.0001). Relative bladder height changes were also significantly larger in the subgroup with suboptimal nodal coverage (42.9% vs 18.5%; P<.05). Use of a multimodality bladder-filling protocol minimized bladder height variation (P<.001). Conclusion: A majority of patients had acceptable nodal coverage after RR to IPMs, even when approximating SBRT. However, a subset of patients had suboptimal nodal coverage. These patients had large bony-to-fiducial translations and large variations in bladder height. Nodal coverage should be excellent if the superior–inferior axis bony-to-fiducial translation and the relative bladder height change (both easily measured on CBCT) are kept to a minimum. Implementation of a strict bladder filling

  2. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  3. Extra-nodal extension is a significant prognostic factor in lymph node positive breast cancer

    PubMed Central

    Aziz, Sura; Wik, Elisabeth; Davidsen, Benedicte; Aas, Hans; Aas, Turid; Akslen, Lars A.

    2017-01-01

    Presence of lymph node (LN) metastasis is a strong prognostic factor in breast cancer, whereas the importance of extra-nodal extension and other nodal tumor features have not yet been fully recognized. Here, we examined microscopic features of lymph node metastases and their prognostic value in a population-based cohort of node positive breast cancer (n = 218), as part of the prospective Norwegian Breast Cancer Screening Program NBCSP (1996–2009). Sections were reviewed for the largest metastatic tumor diameter (TD-MET), nodal afferent and efferent vascular invasion (AVI and EVI), extra-nodal extension (ENE), number of ENE foci, as well as circumferential (CD-ENE) and perpendicular (PD-ENE) diameter of extra-nodal growth. Number of positive lymph nodes, EVI, and PD-ENE were significantly increased with larger primary tumor (PT) diameter. Univariate survival analysis showed that several features of nodal metastases were associated with disease-free (DFS) or breast cancer specific survival (BCSS). Multivariate analysis demonstrated an independent prognostic value of PD-ENE (with 3 mm as cut-off value) in predicting DFS and BCSS, along with number of positive nodes and histologic grade of the primary tumor (for DFS: P = 0.01, P = 0.02, P = 0.01, respectively; for BCSS: P = 0.02, P = 0.008, P = 0.02, respectively). To conclude, the extent of ENE by its perpendicular diameter was independently prognostic and should be considered in line with nodal tumor burden in treatment decisions of node positive breast cancer. PMID:28199370

  4. Accuracy Evaluation of a Mobile Mapping System with Advanced Statistical Methods

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Rodríguez-Gonzálvez, P.; Remondino, F.; Minto, S.; Orlandini, S.; Fuller, A.

    2015-02-01

    This paper discusses a methodology to evaluate the precision and the accuracy of a commercial Mobile Mapping System (MMS) with advanced statistical methods. So far, the metric potentialities of this emerging mapping technology have been studied in few papers, where generally the assumption that errors follow a normal distribution is made. In fact, this hypothesis should be carefully verified in advance, in order to test how well the Gaussian classic statistics can adapt to datasets that are usually affected by asymmetrical gross errors. The workflow adopted in this study relies on a Gaussian assessment, followed by an outlier filtering process. Finally, non-parametric statistical models are applied, in order to achieve a robust estimation of the error dispersion. Among the different MMSs available on the market, the latest solution provided by RIEGL is here tested, i.e. the VMX-450 Mobile Laser Scanning System. The test-area is the historic city centre of Trento (Italy), selected in order to assess the system performance in dealing with a challenging and historic urban scenario. Reference measures are derived from photogrammetric and Terrestrial Laser Scanning (TLS) surveys. All datasets show a large lack of symmetry that leads to the conclusion that the standard normal parameters are not adequate to assess this type of data. The use of non-normal statistics gives thus a more appropriate description of the data and yields results that meet the quoted a-priori errors.

  5. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  6. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  7. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  8. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    NASA Astrophysics Data System (ADS)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  9. An Improved Micropropagation Protocol by Ex Vitro Rooting of Passiflora edulis Sims. f. flavicarpa Deg. through Nodal Segment Culture

    PubMed Central

    Shekhawat, Mahipal S.; Manokari, M.; Ravindran, C. P.

    2015-01-01

    A procedure for rapid clonal propagation of Passiflora edulis Sims. f. flavicarpa Deg. (Passifloraceae) has been developed in this study. Nodal explants were sterilized with 0.1% HgCl2 and inoculated on Murashige and Skoog (MS) basal medium. The addition of 2.0 mgL−1 6-benzylaminopurine (BAP) to MS medium caused an extensive proliferation of multiple shoots (8.21 ± 1.13) primordial from the nodal meristems. Subculturing of these multiple shoots on the MS medium augmented with 1.0 mgL−1 of each BAP and Kinetin (Kin) was successful for the multiplication of the shoots in vitro with maximum numbers of shoots (25.73 ± 0.06) within four weeks of incubation. Shoots were rooted best (7.13 ± 0.56 roots/shoots) on half strength MS medium supplemented with 2.0 mgL−1 indole-3 butyric acid (IBA). All in vitro regenerated shoots were rooted by ex vitro method, and this has achieved 6-7 roots per shoot by pulsing of cut ends of the shoots using 200 as well as 300 mgL−1 IBA. The plantlets were hardened in the greenhouse for 4-5 weeks. The hardened plantlets were shifted to manure containing nursery polybags after five weeks and then transferred to a sand bed for another four weeks for acclimatization before field planting with 88% survival rate. PMID:26273489

  10. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory.

    PubMed

    Ju, Guohao; Yan, Changxiang; Gu, Zhiyuan; Ma, Hongcai

    2016-05-01

    In active optics systems, one concern is how to quantitatively separate the effects of astigmatic and trefoil figure errors and misalignments that couple together in determining the total aberration fields when wavefront measurements are available at only a few field points. In this paper, we first quantitatively describe the impact of mount-induced trefoil deformation on the net aberration fields by proposing a modified theoretical formulation for the field-dependent aberration behavior of freeform surfaces based on the framework of nodal aberration theory. This formulation explicitly expresses the quantitative relationships between the magnitude of freeform surfaces and the induced aberration components where the freeform surfaces can be located away from the aperture stop and decentered from the optical axis. On this basis, and in combination with the mathematical presentation of nodal aberration theory for the effects of misalignments, we present the analytic expressions for the aberration fields of two-mirror telescopes in the presence of astigmatic primary mirror figure errors, mount-induced trefoil deformations on both mirrors, and misalignments. We quantitatively separate these effects using the analytical expressions with wavefront measurements at a few field points and pointing errors. Valuable insights are provided on how to separate these coupled effects in the computation process. Monte Carlo simulations are conducted to demonstrate the correctness and accuracy of the analytic method presented in this paper.

  11. A three-dimensional definition of nodal spaces on the basis of CT images showing enlarged nodes for pelvic radiotherapy

    SciTech Connect

    Portaluri, Maurizio . E-mail: portaluri@hotmail.com; Bambace, Santa; Perez, Celeste; Angone, Grazia

    2005-11-15

    Purpose: To demonstrate that margins of each pelvic chain may be derived by verifying the bony and soft tissue structures around abnormal nodes on computed tomography (CT) slices. Methods and Materials: Twenty consecutive patients (16 males, 4 females; mean age, 66 years; range, 43-80 years) with radiologic diagnosis of nodal involvement by histologically proved cervix carcinoma (two), rectum carcinoma (three), prostate carcinoma (four), lymphoma (five), penis carcinoma (one), corpus uteri carcinoma (one), bladder carcinoma (two), cutis tumor (one), and soft-tissue sarcoma (one) were retrospectively reviewed. One hundred CT scans showing 85 enlarged pelvic nodes were reviewed by two radiation oncologists (M.P., S.B.), and two radiologists (C.P., G.A.). Results: The more proximal structures to each enlarged node or group of nodes were thus recorded in a clockwise direction. Conclusion: According to their frequency and visibility, craniocaudal, anterior, lateral, posterior and medial margins of common iliac, external and internal iliac nodal chains, obturator and pudendal nodes, and deep and superficial inguinal nodes were derived from CT observations.

  12. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  13. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.

    PubMed

    Lee, Anthony; Yau, Christopher; Giles, Michael B; Doucet, Arnaud; Holmes, Christopher C

    2010-12-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design.

  14. [Advances in development of gene-gene interaction analysis methods based on SNP data: a review].

    PubMed

    Luan, Yi-Zhao; Zuo, Xiao-Yu; Liu, Ke; Li, Gu; Rao, Shao-Qi

    2013-12-01

    The SNP-based association analysis has become one of the most important approaches to interpret the underlying molecular mechanisms for human complex diseases. Nevertheless, the widely-used singe-locus analysis is only capable of capturing a small portion of susceptible SNPs with prominent marginal effects, leaving the important genetic component, epistasis or joint effects, to be undetectable. Identifying the complex interplays among multiple genes in the genome-wide context is an essential task for systematically unraveling the molecular mechanisms for complex diseases. Many approaches have been used to detect genome-wide gene-gene interactions and provided new insights into the genetic basis of complex diseases. This paper reviewed recent advances of the methods for detecting gene-gene interaction, categorized into three types, model-based and model-free statistical methods, and data mining methods, based on their characteristics in theory and numerical algorithm. In particular, the basic principle, numerical implementation and cautions for application for each method were elucidated. In addition, this paper briefly discussed the limitations and challenges associated with detecting genome-wide epistasis, in order to provide some methodological consultancies for scientists in the related fields.

  15. Advanced Thermal Energy Conversion of Temperature under 300°C by Thermoelectric Conversion Method

    NASA Astrophysics Data System (ADS)

    Ueda, Tadashi; Uchida, Yoshiyuki; Shingu, Hiroyasu

    Many approaches have been developing for energy conversion throughout the world. However, it is difficult to achieve the global warming countermeasure based on “The Kyoto protocol”. Until now effective utilization of low temperature thermal energy (under 300°C) is not advancing one. For example, effective utilization method has not been established for waste heat energy which arise from industry machine tools, automobiles, internal combustion engines and thermal energy from natural environment, etc. In this paper, we reported the experiment for effective utilizing of low temperature (under 300°C) thermal energy conversion. The device used for the measurement is a copper thermo device. Thermo electromotive force of 150mW/cm2 was obtained at 200°C. The obtained thermo electromotive force is about 15 times higher in comparison with generally used alumal-chromal thermocouple. Our aim is that utilizes low temperature thermal energy effectively by converting into electricity.

  16. Characterization of organic and inorganic optoelectronic semiconductor devices using advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Schroeder, Raoul

    In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide.

  17. Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers

    NASA Astrophysics Data System (ADS)

    Colin, T. A.

    1995-07-01

    This paper reviews advances in methods for estimating fluvial transport of suspended sediment and nutrients. Research from the past four years, mostly dealing with estimating monthly and annual loads, is emphasized. However, because this topic has not appeared in previous IUGG reports, some research prior to 1990 is included. The motivation for studying sediment transport has shifted during the past few decades. In addition to its role in filling reservoirs and channels, sediment is increasingly recognized as an important part of fluvial ecosystems and estuarine wetlands. Many groups want information about sediment transport [Bollman, 1992]: Scientists trying to understand benthic biology and catchment hydrology; citizens and policy-makers concerned about environmental impacts (e.g. impacts of logging [Beschta, 1978] or snow-fences [Sturges, 1992]); government regulators considering the effectiveness of programs to protect in-stream habitat and downstream waterbodies; and resource managers seeking to restore wetlands.

  18. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  19. Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods.

    PubMed

    Gilar, M; Bouvier, E S; Compton, B J

    2001-02-16

    The quality of sample preparation is a key factor in determining the success of analysis. While analysis of pharmaceutically important compounds in biological matrixes has driven forward the development of sample clean-up procedures in last 20 years, today's chemists face an additional challenge: sample preparation and analysis of complex biochemical samples for characterization of genotypic or phenotypic information contained in DNA and proteins. This review focuses on various sample pretreatment methods designed to meet the requirements for the analysis of biopolymers and small drugs in complex matrices. We discuss the advances in development of solid-phase extraction (SPE) sorbents, on-line SPE, membrane-based sample preparation, and sample clean-up of biopolymers prior to their analysis by mass spectrometry.

  20. ADVANCED MR IMAGING METHODS FOR PLANNING AND MONITORING RADIATION THERAPY IN PATIENTS WITH HIGH GRADE GLIOMA

    PubMed Central

    Lupo, Janine M.; Nelson, Sarah J.

    2016-01-01

    This review explores how the integration of advanced imaging methods with high quality anatomic images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion, perfusion, and susceptibility weighted MR imaging in conjunction with MR spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast enhancing or T2 lesion alone and have a significant impact on targeting resection, planning radiation, and assessing treatment effectiveness. In the long-term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiation-induced vascular injury in otherwise normal appearing brain tissue. PMID:25219809

  1. Advances in the Development and Validation of Test Methods in the United States

    PubMed Central

    Casey, Warren M.

    2016-01-01

    The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) provides validation support for US Federal agencies and the US Tox21 interagency consortium, an interagency collaboration that is using high throughput screening (HTS) and other advanced approaches to better understand and predict chemical hazards to humans and the environment. The use of HTS data from assays relevant to the estrogen receptor signaling data pathway is used as an example of how HTS data can be combined with computational modeling to meet the needs of US agencies. As brief summary of US efforts in the areas of biologics testing, acute toxicity, and skin sensitization will also be provided. PMID:26977254

  2. Assessment of Crack Detection in Cast Austenitic Piping Components Using Advanced Ultrasonic Methods.

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-01-01

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the utility, effec¬tiveness and limitations of ultrasonic testing (UT) inspection techniques as related to the in-service inspec¬tion of primary system piping components in pressurized water reactors (PWRs). Cast stainless steel pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The low-frequency ultrasonic method employed a zone-focused, multi-incident angle inspection protocol (operating at 250-450 kHz) coupled with a synthetic aperture focusing technique (SAFT) for improved signal-to-noise and advanced imaging capabilities. The phased array approach was implemented with a modified instrument operating at 500 kHz and composite volumetric images of the specimens were generated. Re¬sults from laboratory studies for assessing detection, localization and sizing effectiveness are discussed in this paper.

  3. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells

    PubMed Central

    Gong, Wenchen; Sun, Baocun; Sun, Huizhi; Zhao, Xiulan; Zhang, Danfang; Liu, Tieju; Zhao, Nan; Gu, Qiang; Dong, Xueyi; Liu, Fang

    2017-01-01

    Nodal signaling plays several vital roles in the embryogenesis process. However, its reexpression in breast cancer is correlated with cancer progression, metastasis and poor prognosis. Recently, Nodal has also been reported to regulate self-renewal capacity in pancreatic cancer. This study aimed to explore the role of Nodal in breast cancer stem cells (BCSCs) and the underlying mechanisms. Therefore, the immunohistochemistry staining of Nodal in 135 human breast cancer cases was performed to analyzed the relationship of Nodal signaling, clinical outcomes and BCSC marker. And the results showed that high Nodal expression was positively correlated with poor prognosis and BCSC marker expression in breast cancer samples. We further assessed the effects of Nodal in regulating the BCSC properties in breast cancer cell lines and xenografts. Then, SB431542 was administered in vitro and in vivo to explore the function of the Smad2/3 pathway. And we demonstrated that Nodal signaling up-regulated the expression of ALDH1, CD44, CD133, Sox2, Oct4 and Nanog by activating the Smad2/3 pathway, thereby enhancing the tumorigenicity and sphere-forming ability of breast cancer cells. Furthermore, treatment with SB431542 could inhibit the properties of BCSCs in vitro and in vivo. In conclusion, these findings indicate that Nodal signaling may play a vital role in maintaining the BCSC phenotype in breast cancer and serve as a potential target to explore BCSC-specific therapies.

  4. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    PubMed Central

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889

  5. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy.

    PubMed

    Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu

    2014-06-01

    Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.

  6. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    SciTech Connect

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-02-02

    Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.

  7. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    DOE PAGES

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...

    2016-02-02

    Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterizedmore » by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less

  8. The impact of surgical technique on neck dissection nodal yield: making a difference.

    PubMed

    Lörincz, Balazs B; Langwieder, Felix; Möckelmann, Nikolaus; Sehner, Susanne; Knecht, Rainald

    2016-05-01

    The nodal yield of neck dissections is an independent prognostic factor in several types of head and neck cancer. The authors aimed to determine whether the applied dissection technique has a significant impact on nodal yield. This is a single-institution, prospective study with internal control group (level of evidence: 2A). Data of 150 patients undergoing 223 neck dissections between February 2011 and March 2013 have been collected in a comprehensive cancer centre. Eighty-two patients underwent neck dissection with unwrapping the cervical fascia from lateral to medial, while 68 patients were operated without specifically unwrapping the fascia, in a caudal to cranial fashion. The standardised, horizontal neck dissection technique along the fascial planes resulted in a significantly higher nodal count in Levels I, II, III and IV, as well as in terms of overall nodal yield (mean: n = 22.53) than that of the vertical dissection applied in the control group (mean: n = 15.00). This is the first publication showing a direct correlation between neck dissection nodal yield and surgical technique. Therefore, it is paramount to optimise the applied surgical concept to maximise the oncological benefit.

  9. Alignment of a three-mirror anastigmatic telescope using nodal aberration theory.

    PubMed

    Gu, Zhiyuan; Yan, Changxiang; Wang, Yang

    2015-09-21

    Most computer-aided alignment methods for optical systems are based on numerical algorithms at present, which omit aberration theory. This paper presents a novel alignment algorithm for three-mirror anastigmatic (TMA) telescopes using Nodal Aberration Theory (NAT). The aberration field decenter vectors and boresight error of misaligned TMA telescopes are derived. Two alignment models based on 3rd and 5th order NAT are established successively and compared in the same alignment example. It is found that the average and the maximum RMS wavefront errors in the whole field of view of 0.3° × 0.15° are 0.063 λ (λ = 1 μm) and 0.068 λ respectively after the 4th alignment action with the 3rd order model, and 0.011 λ and 0.025 λ (nominal values) respectively after the 3rd alignment action with the 5th order model. Monte-Carlo alignment simulations are carried out with the 5th order model. It shows that the 5th order model still has good performance even when the misalignment variables are large (-1 mm≤linear misalignment≤1 mm, -0.1°≤angular misalignment≤0.1°), and multiple iterative alignments are needed when the misalignment variables increase.

  10. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    SciTech Connect

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochastic methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.

  11. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    DOE PAGES

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; ...

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore » methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less

  12. Nodal energy weighted transformation: A mistuning projection and its application to FLADE™ turbines

    NASA Astrophysics Data System (ADS)

    Fitzner, Colin; Epureanu, Bogdan I.; Filippi, Sergio

    2014-01-01

    In recent years, several researchers have developed reduced-order models (ROMs) to efficiently and accurately calculate the forced response of blisks with known small mistuning. Small mistuning consists of the small blade-to-blade structural differences which destroy the inherent cyclic symmetry of the structure. This paper presents a nodal energy weighted transformation (NEWT) which can be used to construct ROMs of mistuned blisks and dual flow path systems, such as FLADE™ turbines. The NEWT approach can be interpreted as a hybrid of two existing techniques: component mode mistuning (CMM) and the subset of nominal modes (SNM). Similar to the previous methods, NEWT assumes that the mistuned modes of the system are a linear combination of tuned modes. However, NEWT differs from its predecessors in the blisk substructuring and in the mistuning projection. Numerical results obtained using full order models, CMM, and NEWT are presented and compared over multiple frequency ranges for a finite element model of a blisk and that of a FLADE™ turbine. These results show that ROMs based on NEWT have several attractive features: (a) the accuracy of the ROMs is comparable to ROMs based on CMM, and can be improved by increasing the size of the projection mode subset; (b) no necessary modifications are needed to analyze FLADE™ turbines; and (c) the response of all modes can be predicted well even if they are not blade dominated.

  13. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization

    PubMed Central

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes. PMID:28316619

  14. [Theory and Practice of the Constructive Jigsaw Method in Advancing Domain Knowledge and Skills in Parallel].

    PubMed

    Masukawa, Hiroyuki

    2016-01-01

    The Learning Sciences constitute a rapidly expanding discipline that focuses on the learning potential of humans. In this paper, I will discuss the particular learning mechanism involved in the concomitant advancement of domain knowledge and 21st century skills, as well as the Constructive Jigsaw Method of knowledge construction through collaboration-that is, collaborative problem solving. An especially important focus on knowledge construction separates routine experts from adaptive experts. While routine experts develop a core set of skills that they apply throughout their lives with increasing efficiency, adaptive experts are much more likely to change their core skills and continually expand the depth of their expertise. This restructuring of core ideas and skills may reduce their efficiency in the short run but make them more flexible in the long run. The Constructive Jigsaw Method employs a learning mechanism that encourages the development of adaptive experts. Under this method, students first study a piece of material in an expert group. One member from each of several expert groups then joins a new study group, a jigsaw group. The members of this new group then combine what they have learned, creating new knowledge and a deeper understanding of the concept through collaboration, communication, and innovation.

  15. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  16. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.

    PubMed

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC.

  17. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    PubMed Central

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  18. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization.

    PubMed

    Yang, Yan-Pu

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes.

  19. PREFACE: Advanced many-body and statistical methods in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe

    2012-02-01

    It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius

  20. Results of a Phase 2 Study Examining the Effects of Omitting Elective Neck Irradiation to Nodal Levels IV and V{sub b} in Patients With N{sub 0-1} Nasopharyngeal Carcinoma

    SciTech Connect

    Chen, Jian-zhou; Le, Quynh-Thu; Han, Fei; Lu, Li-Xia; Huang, Shao-Min; Lin, Cheng-Guang; Deng, Xiao-Wu; Cui, Nian-Ji; Zhao, Chong

    2013-03-15

    Purpose: To evaluate the patterns of nodal failure and toxicity in clinically negative necks of N{sub 0-1} nasopharyngeal carcinoma (NPC) patients who were treated with intensity modulated radiation therapy (IMRT) but did not receive elective neck irradiation (ENI) to level IV and V{sub b} nodes. Methods and Materials: We conducted a phase 2 prospective study in N{sub 0-1} NPC patients treated with IMRT. ENI included the retropharyngeal nodes and levels II to V{sub a} but omitted levels IV and V{sub b} in clinically negative necks. Patterns of nodal failure, regional control (RC), and late toxicity were evaluated. Results: Between 2001 and 2008, a total of 212 patients (128 N{sub 0} and 84 N{sub 1}) were enrolled in the study. Seven patients (4 in-field and 3 out-of-field) developed nodal failure. One patient (0.5%) developed nodal failure at level V{sub b}, but no patients developed nodal failure at level IV. The 5-year RC rates of the entire group, N{sub 0} patients and N{sub 1} patients were 95.6%, 98.2%, and 91.3%, respectively. Fifteen patients (7.1%) developed distant metastases. The 5-year distant failure-free survival (DFFS) and overall survival (OS) rates were 91.4% and 89.8%, respectively. The rates of grade 2 or greater skin dystrophy, subcutaneous fibrosis and xerostomia were 6.2%, 16.6%, and 17.9%, respectively. Conclusions: The rate of out-of-field nodal failure when omitting ENI to levels IV and V{sub b} in clinically negative necks of patients with N{sub 0-1} NPC was extremely low; therefore, a further phase 3 study is warranted.

  1. Does Lymphovascular Invasion Predict Regional Nodal Failure in Breast Cancer Patients With Zero to Three Positive Lymph Nodes Treated With Conserving Surgery and Radiotherapy? Implications for Regional Radiation

    SciTech Connect

    Boutrus, Rimoun; Abi-Raad, Rita; Niemierko, Andrzej; Brachtel, Elena F.; Rizk, Levi; Kelada, Alexandra; Taghian, Alphonse G.

    2010-11-01

    Purpose: To examine the relationship between lymphovascular invasion (LVI) and regional nodal failure (RNF) in breast cancer patients with zero to three positive nodes treated with breast-conservation therapy (BCT). Methods and Materials: The records of 1,257 breast cancer patients with zero to three positive lymph nodes were reviewed. All patients were treated with BCT at Massachusetts General Hospital from 1980 to December 2003. Lymphovascular invasion was diagnosed by hematoxylin and eosin-stained sections and in some cases supported by immunohistochemical stains. Regional nodal failure was defined as recurrence in the ipsilateral supraclavicular, axillary, or internal mammary lymph nodes. Regional nodal failure was diagnosed by clinical and/or radiologic examination. Results: The median follow-up was 8 years (range, 0.1-21 years). Lymphovascular invasion was present in 211 patients (17%). In univariate analysis, patients with LVI had a higher rate of RNF (3.32% vs. 1.15%; p = 0.02). In multivariate analysis, only tumor size, grade, and local failure were significant predictors of RNF (p = 0.049, 0.013, and 0.0001, respectively), whereas LVI did not show a significant relationship with RNF (hazard ratio = 2.07; 95% CI, 0.8-5.5; p = 0.143). The presence of LVI in the T2/3 population did not increase the risk of RNF over that for those with no LVI (p = 0.15). In addition, patients with Grade 3 tumors and positive LVI did not have a higher risk of RNF than those without LVI (p = 0.96). Conclusion: These results suggest that LVI can not be used as a sole indicator for regional nodal irradiation in breast cancer patients with zero to three positive lymph nodes treated with BCT.

  2. A New Method for Shear Stabilization of Advanced Tokamak Reactors via Mode Converted Ion Bernstein Waves*

    NASA Astrophysics Data System (ADS)

    Sund, Richard; Scharer, John

    2002-11-01

    We examine a new method for generating sheared flows in advanced tokamak D-T reactors with the goal of creating and controlling internal transport barriers. Ion-Bernstein waves (IBWs) have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. Under reactor conditions, the IBW can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side (HFS) on the second harmonic resonance of a minority hydrogen component, with near 100200 MHz) minimizes parasitic absorption and permits the converted IBW to approach the fifth tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. Placement of the 5T absorption layer on the HFS is advantageous for shear production. The scheme is applicable to reactors with aspect ratio < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Various factors (adequate separation of the mode conversion layer from the magnetic axis, concentration of the fast wave near the midplane, large machine size, and plasma elongation) minimize poloidal field effects in the conversion zone and permit a slab analysis. We use a 1-D full-wave code to analyze the conversion and absorption. A 2-D ray-tracing code incorporating poloidal magnetic fields is used to follow the IBW for various equilibria. Within this analysis a weak bean shape appears most favorable. This is an attractive scheme for future advanced tokamak reactors. *Research supported by the Univ. of Wisconsin, Madison

  3. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.

    1998-07-01

    The emerging electro-mechanical impedance technology has high potential for in-situ health monitoring and NDE of structural systems and complex machinery. At first, the fundamental principles of the electro-mechanical impedance method are briefly reviewed and ways for practical implementation are highlighted. The equations of piezo- electric material response are given, and the coupled electro-mechanical impedance of a piezo-electric wafer transducer as affixed to the monitored structure is discussed. Due to the high frequency operation of this NDE method, wave propagation phenomena are identified as the primary coupling method between the structural substrate and the piezo-electric wafer transducer. Attention is then focused on several recent advancements that have extended the electro-mechanical impedance method into new areas of applications and/or have developed its underlying principles. US Army Construction Engineering Research Laboratory used the electro-mechanical impedance method to monitor damage development in composite overlaid civil infrastructure specimens under full-scale static testing. A simplified E/M impedance measuring technique was employed at the Polytechnic University of Madrid, Spain, to detect damage in GFRP composite specimens. The development of miniaturized `bare-bones' impedance analyzer equipment that could be easily packaged into transponder-size dimensions is being studied at the University of South Carolina. US Army Research Laboratory developed novel piezo-composite film transducers for embedment into composite structures. Disbond gauges for monitoring the structural joints of adhesively bonded rotor blades have been studies in the Mechanical Engineering Department at the University of South Carolina. These recent developments accentuate the importance and benefits of using the electro-mechanical impedance method for on-line health monitoring and damage detection in a variety of applications. Further investigation of the electro

  4. Interaction of pupil offset and fifth-order nodal aberration field properties in rotationally symmetric telescopes.

    PubMed

    Hu, Haili; Liu, Jianjun; Fan, Zhigang

    2013-07-29

    In this paper we succeeded in deriving changes in the nodal positions of aberrations that belong to the fifth-order class in pupil dependence by applying a system level pupil decentration vector. Our treatment is specifically for rotationally symmetric multi-mirror optical designs that simply use an offset pupil as a means of creating an unobscured optical design. When the pupil is offset, only the vectors to determine the node locations are modified by the pupil decentration vector, while the nodal properties originally developed for titled/decentered optical systems are retained. In general, the modifications to the nodal vectors for any particular aberration type are contributed only by terms of higher order pupil dependence.

  5. Topological nodal line semimetals in the CaP3 family of materials

    NASA Astrophysics Data System (ADS)

    Xu, Qiunan; Yu, Rui; Fang, Zhong; Dai, Xi; Weng, Hongming

    2017-01-01

    By using first-principles calculations and a k .p model analysis, we propose that the three-dimensional topological nodal line semimetal state can be realized in the CaP3 family of materials, which includes CaP3,CaAs3,SrP3,SrAs3, and BaAs3, when spin-orbit coupling (SOC) is ignored. The closed topological nodal line near the Fermi energy is protected by time reversal symmetry and spatial inversion symmetry. Moreover, drumheadlike two-dimensional surface states are also obtained on the c -direction surface of these materials. When SOC is included, the gaps open along the nodal line and these materials become strong topological insulators with Z2 indices as (1 ;010 ) .

  6. Potential for Infra-Nodal Heart Block and Cardiogenic Shock With Propofol Administration

    PubMed Central

    Olson, Nicholas; Lim, Michael J.; Ferreira, Scott W.; Mehdirad, Ali A.

    2013-01-01

    We report a case of infra-nodal complete heart block and cardiogenic shock in a previously healthy 64-year-old man after administration of 180 mg of intravenous Propofol. Although bradycardia, hypotension, and heart block are commonly seen with propofol administration, such findings are transient and respond quickly to administration of vagolytic or sympathomimetic agents suggesting an AV nodal mechanism of heart block. Sustained left ventricular systolic dysfunction and cardiogenic shock by an alternative, non-autonomic mechanism has also been described in the setting of Propofol administration. Our case is the first to note sustained complete infra-nodal heart block in this setting. Early recognition of such a complication, restoration of atrio-ventricular (A-V) synchrony with dual chamber pacing, and aggressive circulatory support is essential in bridging such patients to recovery.

  7. Doping-Dependent Nodal Fermi Velocity in Bi-2212 Revealed by High-Resolution ARPES

    SciTech Connect

    Vishik, I. M.

    2011-08-19

    The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal dispersion of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212), which demonstrates the ubiquity and robustness of this kink in underdoped Bi-2212. The renormalization of the nodal velocity due to this kink becomes stronger with underdoping, revealing that the nodal Fermi velocity is non-universal, in contrast to assumed phenomenology. This is used together with laser-ARPES measurements of the gap velocity, v{sub 2}, to resolve discrepancies with thermal conductivity measurements.

  8. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  9. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    NASA Technical Reports Server (NTRS)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  10. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges

    SciTech Connect

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Pharr, George M.

    2015-04-30

    In this study, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever beam bending and micro-pillar splitting. A critical comparison of the techniques is made by testing a selected group of bulk and thin film materials. For pillar splitting, cohesive zone finite element simulations are used to validate a simple relationship between the critical load at failure, the pillar radius, and the fracture toughness for a range of material properties and coating/substrate combinations. The minimum pillar diameter required for nucleation and growth of a crack during indentation is also estimated. An analysis of pillar splitting for a film on a dissimilar substrate material shows that the critical load for splitting is relatively insensitive to the substrate compliance for a large range of material properties. Experimental results from a selected group of materials show good agreement between single cantilever and pillar splitting methods, while a discrepancy of ~25% is found between the pillar splitting technique and double-cantilever testing. It is concluded that both the micro-cantilever and pillar splitting techniques are valuable methods for micro-scale assessment of fracture toughness of brittle ceramics, provided the underlying assumptions can be validated. Although the pillar splitting method has some advantages because of the simplicity of sample preparation and testing, it is not applicable to most metals because their higher toughness prevents splitting, and in this case, micro-cantilever bend testing is preferred.

  11. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges

    DOE PAGES

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; ...

    2015-04-30

    In this study, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever beam bending and micro-pillar splitting. A critical comparison of the techniques is made by testing a selected group of bulk and thin film materials. For pillar splitting, cohesive zone finite element simulations are used to validate a simple relationship between the critical load at failure, the pillar radius, and the fracture toughness for a range of material properties and coating/substrate combinations. The minimum pillar diameter required for nucleation and growth ofmore » a crack during indentation is also estimated. An analysis of pillar splitting for a film on a dissimilar substrate material shows that the critical load for splitting is relatively insensitive to the substrate compliance for a large range of material properties. Experimental results from a selected group of materials show good agreement between single cantilever and pillar splitting methods, while a discrepancy of ~25% is found between the pillar splitting technique and double-cantilever testing. It is concluded that both the micro-cantilever and pillar splitting techniques are valuable methods for micro-scale assessment of fracture toughness of brittle ceramics, provided the underlying assumptions can be validated. Although the pillar splitting method has some advantages because of the simplicity of sample preparation and testing, it is not applicable to most metals because their higher toughness prevents splitting, and in this case, micro-cantilever bend testing is preferred.« less

  12. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  13. Advanced development of the boundary element method for steady-state heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, Prasanta K.

    1989-01-01

    Considerable progress has been made in recent years toward advancing the state-of-the-art in solid mechanics boundary element technology. In the present work, much of this new technology is applied in the development of a general-purpose boundary element method (BEM) for steady-state heat conduction. In particular, the BEM implementation involves the use of higher-order conforming elements, self-adaptive integration and multi-region capability. Two- and three-dimensional, as well as axisymmetric analysis, are incorporated within a unified framework. In addition, techniques are introduced for the calculation of boundary flux, and for the inclusion of thermal resistance across interfaces. As a final extension, an efficient formulation is developed for the analysis of solid three-dimensional bodies with embedded holes. For this last class of problems, the new BEM formulation is particularly attractive, since use of the alternatives (i.e. finite element or finite difference methods) is not practical. A number of detailed examples illustrate the suitability and robustness of the present approach for steady-state heat conduction.

  14. The 18.6 yr nodal modulation in the tides of Southern European coasts

    NASA Astrophysics Data System (ADS)

    Shaw, A. G. P.; Tsimplis, M. N.

    2010-02-01

    The nodal modulation of the diurnal ( K1 and O1) and semi-diurnal ( M2 and K2) tidal constituents at the coasts of the Mediterranean Sea and the eastern Atlantic is estimated and its spatial variability mapped. Fourteen hourly tide gauge records each spanning more than 18 years are considered in this analysis. Ten tide gauges are located in the Mediterranean Sea and four in the Bay of Biscay. The nodal modulation of the most energetic tidal constituent ( M2) reaches up to 5 cm at the eastern Atlantic coasts, while within the Mediterranean Sea its modulation is in general less than 1.1 cm. The largest K2 nodal modulation found is 3.7 cm in the eastern Atlantic coasts. In the Mediterranean Sea, smaller modulation amplitudes, ranging between 0.4 and 1.4 cm are found. The K1 tide constituent has the largest amplitude nodal modulation within the Mediterranean Sea of 1.9 cm in the north Adriatic Sea, which is also larger than the modulation of this constituent at the eastern Atlantic coasts. The O1 tide constituent has the highest amplitude nodal modulation (1.4 cm) at the eastern Atlantic coasts. In the Mediterranean Sea the maximum value is 1 cm in the north Adriatic Sea. The derived nodal modulations of the diurnal and semi-diurnal constituents follow, in general, the equilibrium tidal theory. The tidal amplitudes for all four components do not indicate significant secular trends for most tide gauges. The tidal phases indicate significant negative trends for all four tidal constituents within the central and eastern Mediterranean Sea.

  15. A predictive index of axillary nodal involvement in operable breast cancer.

    PubMed Central

    De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.

    1996-01-01

    We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286

  16. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi.

    PubMed

    Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi

    2016-03-22

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro

  17. On bistable phasing of 18.6 year nodal induced flood in India

    NASA Astrophysics Data System (ADS)

    Currie, Robert G.

    1984-01-01

    In agreement with Campbell (1983), Flood Area Indices (FAI) for India are interpreted as being modulated by tidal forcing at the 18.6 yr lunar nodal period. There is evidence maximum flood was approximately out of phase with nodal epoch 1898.9 whereas at epochs 1917.5, 1936,1, 1954.7, and 1973.3 maximum flood was approximately in phase. This interpretation implies that India should be experiencing widespread dryness in an interval ±2 to 3 years centered at mid-epoch 1982.6.

  18. Nodal superconductivity in FeS: Evidence from quasiparticle heat transport

    NASA Astrophysics Data System (ADS)

    Ying, T. P.; Lai, X. F.; Hong, X. C.; Xu, Y.; He, L. P.; Zhang, J.; Wang, M. X.; Yu, Y. J.; Huang, F. Q.; Li, S. Y.

    2016-09-01

    We report low-temperature heat transport measurements on superconducting iron sulfide FeS with Tc≈5 K, which has the same crystal structure and similar electronic band structure to the superconducting iron selenide FeSe. In zero magnetic field, a significant residual linear term κ0/T is observed. At low field, κ0/T increases rapidly with increasing field. These results suggest a nodal superconducting gap in FeS. We compare it with the sister compound FeSe and other iron-based superconductors with nodal gaps.

  19. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint

  20. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  1. Dual institution experience of nodal marginal zone lymphoma reveals excellent long-term outcomes in the rituximab era.

    PubMed

    Starr, Adam G; Caimi, Paolo F; Fu, PingFu; Massoud, Mira R; Meyerson, Howard; Hsi, Eric D; Mansur, David B; Cherian, Sheen; Cooper, Brenda W; De Lima, Marcos J G; Lazarus, Hillard M; Gerson, Stanton L; Jagadeesh, Deepa; Smith, Mitchell R; Dean, Robert M; Pohlman, Brad L; Hill, Brian T; William, Basem M

    2016-10-01

    Nodal marginal zone lymphoma (NMZL) is a rare non-Hodgkin lymphoma that arises from mature B-cells. We delineate outcomes, prognostic factors and treatment trends among a large cohort of patients with NMZL in the rituximab era. We identified 56 such patients treated at our institutions. The majority presented with advanced stage disease (78·6%). Over a median follow-up of 38·2 months, median progression-free survival (PFS) was 42·4 months and median overall survival (OS) was not reached. Kaplan-Meier estimates of OS at 120 months after diagnosis was 71·9%. High-risk follicular lymphoma international prognostic index (FLIPI) was associated with inferior PFS. Age >60 years and elevated serum lactate dehydrogenase (LDH) were associated with inferior OS. Transformation to diffuse large B-cell lymphoma occurred in 7 patients, 6 of who presented with advanced disease. OS was comparable to our previously reported extranodal MZL cohort. FLIPI score predicted for inferior PFS and OS when both cohorts were analysed together (n = 267). In summary, outcomes in NMZL are favourable with a large majority of patients surviving at 120 months. High risk FLIPI, age >60 years, and elevated serum LDH were associated with inferior outcomes.

  2. 7 CFR 1744.68 - Order and method of advances of telephone loan funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... loan from which the funds are drawn. (b) The first or subsequent advances of loan funds may be... of RUS and RTB funds may request advances by wire service only for amounts greater than $500,000 or...,000 can be sent by wire service. (e) The following information shall be included with the FRS:...

  3. Advancing Higher Education with Mobile Learning Technologies: Cases, Trends, and Inquiry-Based Methods

    ERIC Educational Resources Information Center

    Keengwe, Jared, Ed.; Maxfield, Marian B., Ed.

    2015-01-01

    Rapid advancements in technology are creating new opportunities for educators to enhance their classroom techniques with digital learning resources. Once used solely outside of the classroom, smartphones, tablets, and e-readers are becoming common in many school settings. "Advancing Higher Education with Mobile Learning Technologies: Cases,…

  4. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    SciTech Connect

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  5. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  6. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  7. Advanced three-dimensional scan methods in the nanopositioning and nanomeasuring machine

    NASA Astrophysics Data System (ADS)

    Hausotte, T.; Percle, B.; Jäger, G.

    2009-08-01

    The nanopositioning and nanomeasuring machine developed at the Ilmenau University of Technology was originally designed for surface measurements within a measuring volume of 25 mm × 25 mm × 5 mm. The interferometric length measuring and drive systems make it possible to move the stage with a resolution of 0.1 nm and a positioning uncertainty of less than 10 nm in all three axes. Various measuring tasks are possible depending on the installed probe system. Most of the sensors utilized are one-dimensional surface probes; however, some tasks require measuring sidewalls and other three-dimensional features. A new control system, based on the I++ DME specification, was implemented in the device. The I++ DME scan functions were improved and special scan functions added to allow advanced three-dimensional scan methods, further fulfilling the demands of scanning force microscopy and micro-coordinate measurements. This work gives an overview of these new functions and the application of them for several different measurements.

  8. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  9. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  10. Treatment of yellow water by membrane separations and advanced oxidation methods.

    PubMed

    Lazarova, Z; Spendlingwimmer, R

    2008-01-01

    Comparative experimental study is performed on purification of yellow wastewaters separated and collected in solarCity, Linz, Austria. Three membrane methods (micro-, ultra-, and nano-filtration), and two advanced oxidations (gamma radiation and electrochemical oxidation) were applied. Best results concerning the removal of pharmaceuticals and hormones from urine by membrane separation were achieved using the membrane NF-200 (FilmTec). Pharmaceuticals (ibuprofen and diclofenac), and hormones (oestrone, beta-oestradiol, ethenyloestradiol, oestriol) were removed completely from urine. NF-separation also has some disadvantages: losses of urea, and lowering the conductivity in the product (permeate). The retentates (concentrates) received have to be treated further by oxidation to destroy the "problem" compounds. The results showed that electrochemical oxidation is more suitable than gamma radiation. Gamma-radiation with intensities higher than 10 kGy has to be applied for efficiently destroying of ibuprofen, and especially diclofenac. A high quantity of intermediate "problem" substances with oestrone structure was formed during the gamma oxidation of hormone containing urine samples. The electrochemical oxidation can be successfully applied for elimination of pharmaceuticals such as diclofenac, and hormones (oestrone, beta-oestradiol) from yellow wastewater without loss of urea (nitrogen fertiliser).

  11. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods.

    PubMed

    Boye, Birame; Dieng, Momar M; Brillas, Enric

    2002-07-01

    The herbicide 4-chlorophenoxyacetic acid (4-CPA) has been degraded in aqueous medium by advanced electrochemical oxidation processes such as electro-Fenton and photoelectro-Fenton with UV light, using an undivided cell containing a Pt anode. In these environmentally clean methods, the main oxidant is the hydroxyl radical produced from Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated from an 02-diffusion cathode. Solutions of a 4-CPA concentration <400 ppm within the pH range of 2.0-6.0 at 35 degrees C can be completely mineralized at low current by photoelectro-Fenton, while electro-Fenton leads to ca. 80% of mineralization. 4-CPA is much more slowly degraded by anodic oxidation in the absence and presence of electrogenerated H2O2. 4-Chlorophenol, 4-chlorocatechol, and hydroquinone are identified as aromatic intermediates by CG-MS and quantified by reverse-phase chromatography. Further oxidation of these chloroderivatives yields stable chloride ions. Generated carboxylic acids such as glycolic, glyoxylic, formic, malic, maleic, fumaric, and oxalic are followed by ion exclusion chromatography. The highest mineralization rate found for photoelectro-Fenton is accounted for by the fast photodecomposition of complexes of Fe3+ with such short-chain acids, mainly oxalic acid, under the action of UV light.

  12. Development and validation of an advanced low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Iguchi, Steven K.; Dudley, Michael

    1988-01-01

    A low-order potential-flow panel code, PMARC, for modeling complex three-dimensional geometries, is currently being developed at NASA Ames Research Center. The PMARC code was derived from a code named VSAERO that was developed for Ames Research Center by Analytical Methods, Inc. In addition to modeling potential flow over three-dimensional geometries, the present version of PMARC includes several advanced features such as an internal flow model, a simple jet wake model, and a time-stepping wake model. Data management within the code was optimized by the use of adjustable size arrays for rapidly changing the size capability of the code, reorganization of the output file and adopting a new plot file format. Preliminary versions of a geometry preprocessor and a geometry/aerodynamic data postprocessor are also available for use with PMARC. Several test cases are discussed to highlight the capabilities of the internal flow model, the jet wake model, and the time-stepping wake model.

  13. Advances in fuel management and on-line core monitoring

    SciTech Connect

    Stout, R.B.; Hansen, L.E.; Patten, T.W.

    1988-01-01

    Advanced Nuclear Fuels Corporation (ANF) has developed and implemented advanced core power distribution monitoring methods for BWRs and PWRs based on the three dimensional nodal simulator codes used for incore fuel management design and analysis. The use of these methods has resulted in a more accurate assessment of the core power distribution and corresponding increased operating margins. These increased margins allow for more economical fuel cycle designs. Since the initial application in 1982, ANF has made enhancements to the incore monitoring system. These enhancements have permitted more rapid analysis of local power changes, power distribution projections during ascent to full power and on-line statistical analysis of the incore detector signal. The on-line analysis implemented in BWRs has also been developed for application PWRs. In the future, reactors are expected to operate with longer fuel cycles, more aggressive low radial leakage loadings, load follow and use higher burnup fuel. These advances will require more burnable neutron absorbers and more sophisticated fuel designs. To accommodate these advances, the fuel management methodologies and measurement system will require improvements. The state-of-the-art methods provided by ANF provide incore monitoring systems compatible with these expected needs.

  14. Comparing nodal versus bony metastatic spread using tumour phylogenies

    PubMed Central

    Mangiola, Stefano; Hong, Matthew K. H.; Cmero, Marek; Kurganovs, Natalie; Ryan, Andrew; Costello, Anthony J.; Corcoran, Niall M.; Macintyre, Geoff; Hovens, Christopher M.

    2016-01-01

    The role of lymph node metastases in distant prostate cancer dissemination and lethality is ill defined. Patients with metastases restricted to lymph nodes have a better prognosis than those with distant metastatic spread, suggesting the possibility of distinct aetiologies. To explore this, we traced patterns of cancer dissemination using tumour phylogenies inferred from genome-wide copy-number profiling of 48 samples across 3 patients with lymph node metastatic disease and 3 patients with osseous metastatic disease. Our results show that metastatic cells in regional lymph nodes originate from evolutionary advanced extraprostatic tumour cells rather than less advanced central tumour cell populations. In contrast, osseous metastases do not exhibit such a constrained developmental lineage, arising from either intra or extraprostatic tumour cell populations, at early and late stages in the evolution of the primary. Collectively, this comparison suggests that lymph node metastases may not be an intermediate developmental step for distant osseous metastases, but rather represent a distinct metastatic lineage. PMID:27653089

  15. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  16. Quantifying export flows of used electronics: advanced methods to resolve used goods within trade data.

    PubMed

    Duan, Huabo; Miller, T Reed; Gregory, Jeremy; Kirchain, Randolph

    2014-03-18

    There is limited convincing quantitative data on the export of used electronics from the United States (U.S.). Thus, we advance a methodology to quantify the export flows of whole units of used electronics from the U.S. using detailed export trade data, and demonstrate the methodology using laptops. Since used electronics are not explicitly identified in export trade data, we hypothesize that exports with a low unit value below a used-new threshold specific to a destination world region are used. The importance of using the most disaggregated trade data set available when resolving used and new goods is illustrated. Two detailed U.S. export trade data sets were combined to arrive at quantities and unit values for each port, mode of transport, month, trade partner country, and trade code. We add rigor to the determination of the used-new threshold by utilizing both the Neighborhood valley-emphasis method (NVEM) and published sales prices. This analysis found that 748 to 1199 thousand units of used laptops were exported from the U.S. in 2010, of which 78-81% are destined for non-OECD countries. Asia was found to be the largest destination of used laptop exports across all used-new threshold methods. Latin American and the Caribbean was the second largest recipient of these exports. North America and Europe also received used laptops from the U.S. Only a small fraction of used laptops was exported to Africa. However, these quantities are lower bound estimates because not all shipments of used laptops may be shipped using the proper laptop trade code. Still, this approach has the potential to give insight into the quantity and destinations of the exports if applied to all used electronics product types across a series of years.

  17. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features.

    PubMed

    Jeon, Yoon Kyung; Kim, Jo-Heon; Sung, Ji-Youn; Han, Jae Ho; Ko, Young-Hyeh

    2015-07-01

    Nodal peripheral T-cell lymphoma, not otherwise specified, is a heterogeneous entity with variable biologic behavior. We analyze the clinicopathological features of 15 patients with Epstein-Barr virus-positive (EBV+) nodal T/NK-cell lymphoma, including 9 males and 6 females, with a median age of 64 years. All patients presented with multiple lymphadenopathy with common B symptoms (80%, 12/15) at an advanced Ann Arbor stage (III, IV) (87%, 13/15). The International Prognostic Index was high or high/intermediate in 87% (13/15) of patients, and the prognostic index for peripheral T-cell lymphoma was group 3 or 4 in 73% (11/15). Spleen and liver involvement was observed in 73% (11/15) and 60% (9/15) of patients, respectively. In contrast, extranodal involvement was infrequent, with no more than 1 site in 71% (10/15) of patients. Moreover, none had nasal lesions, and only 1 had mucocutaneous involvement. The cell lineage of EBV+ tumor cells was determined to be T cell in all except 1 patient, who was NK-cell lineage. Cytotoxic molecules were expressed in all cases, and 64% (9/14) of patients expressed the αβT-cell receptor. Moreover, most patients (67%, 10/15) showed CD8 positivity, with 2 of them being CD4CD8 double positive; the others were CD4 positive (n = 2) or CD4CD8 double negative (n = 3). The clinical course was very aggressive, with a median survival time of 3.5 months, and 10 patients died within 6 months of diagnosis. Taken together, our data demonstrate that EBV+ nodal T/NK-cell lymphoma is a distinct clinicopathological entity characterized by cytotoxic molecule expression, a frequent CD8-positive αβT-cell lineage, and a very aggressive clinical behavior.

  18. The 18.6 yr nodal cycle and its impact on tidal sedimentation

    NASA Astrophysics Data System (ADS)

    Oost, A. P.; de Haas, H.; Ijnsen, F.; van den Boogert, J. M.; de Boer, P. L.

    1993-09-01

    The 18.6 yr nodal cycle modulates tidal amplitudes and currents, and consequently sedimentation in tide-influenced sedimentary environments. Data are presented which show that such effects are obvious along the coast of the Dutch barrier islands and in the sedimentary fill of abandoned channels.

  19. Precision evaluation of lens systems using a nodal slide/MTF optical bench

    NASA Astrophysics Data System (ADS)

    Doherty, Victor J.; Chapnik, Philip D.

    1992-01-01

    A compact, self-contained production instrument designed to permit the rapid and precise performance characterization of a wide variety of lenses and optical systems has been developed by Eidolon Corporation. The Eidolon Production Nodal Slide/MTF Measurement System can be used to measure effective focal length (EFL), distortion, field curvature, chromatic aberration, spot size, and modulation transfer function (MTF).

  20. Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Gandy, Paul J. F.; Bardhan, Sonny; Mackay, Alan L.; Klinowski, Jacek

    2001-03-01

    The cubic P, G, D and I-WP triply periodic minimal surfaces (TPMS) may be closely approximated using periodic nodal surfaces (PNS) with few Fourier terms, thus enabling easy generation of TPMS for use in various chemical and physical applications. The accuracy of such approximations is quantitatively discussed and represented visually using a colour coding.