Science.gov

Sample records for advanced nox control

  1. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  2. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    1998-07-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The third reporting period in Phase II (April 1--June 30, 1998) included experimental activities at pilot scale and comparison of the results with full-scale data. The pilot scale tests were performed with the objective of simulating furnace conditions of ongoing full-scale tests at the Greenidge boiler No. 6 owned and operated by NYSEG and defining the processes controlling AR performance to subsequently improve the performance. The tests were conducted in EER' s Boiler Simulator Facility. The main fuel pulsing system was used at the BSF to control the degree of unmixedness, thus providing control over furnace gas O{sub 2} and CO concentrations. Results on AR-Lean, presented in the previous quarterly report, were compared with full-scale data. Performance of reburn+SNCR was tested to predict NO{sub x} control at Greenidge. The results of the BSF reburn+SNCR simulation tests demonstrated that there are synergistic advantages of using these two technologies in series. In particular, injection of overfire air provides additional mixing that reduces negative effects on AR performance at the temperature regime of the Greenidge boiler.

  3. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Vitali V. Lissianski

    1999-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The ninth reporting period in Phase II (October 1-December 31, 1999) included preparation of the 10 x 10{sup 6} Btu/hr Tower Furnace for tests and setting the SGAR model to predict process performance under Tower Furnace conditions. Based on results of previous work, a paper has been prepared and submitted for the presentation at the 28 Symposium (International) on Combustion to be held at the University of Edinburgh, Scotland.

  4. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  5. Advanced combustor design concept to control NOx and air toxics

    SciTech Connect

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  6. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    PubMed

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis. PMID:25913215

  7. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  8. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  9. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  10. DIESEL NOX CONTROL APPLICATION

    EPA Science Inventory

    The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...

  11. Advancements in low NOx tangential firing systems

    SciTech Connect

    Hein, R. von; Maney, C.; Borio, R.

    1996-12-31

    The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

  12. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  13. Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Williams, J.T.; Steele, R.C.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  14. MULTISTAGED BURNER DESIGN FOR IN-FURNACE NOX CONTROL

    EPA Science Inventory

    The paper gives results of an evaluation of a multistage combustion modification design, combining two advanced NOx control technologies, on a pilot-scale (0.9 MW) package boiler simulator for in-furnace NOx control of high nitrogen fuel combustion applications. A low NOx precomb...

  15. Second Generation Advanced Reburning for High Eficiency NO(x) Control

    SciTech Connect

    Zamansky, V.M.; Maly, P.M.; Sheldon, M.S.; Moyeda, D.; Gardiner, W.C., Jr.; Lissianski, V.V.

    1997-04-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The sixth reporting period (January I - March 31, 1997) included both experimental and modeling activities. New kinetic experimental data for high-temperature decomposition of sodium carbonate were obtained in a flow reactor at the University of Texas in Austin. Pilot scale combustion tests in a 1.0 MMBtu/hr Boiler Simulator Facility were continued with firing coal and using natural gas as reburn fuel. The results demonstrate that over 90% NO control is achievable by injecting one or two N-agents with sodium promoters into the reburning zone and with the overfire air. Advanced reburning technologies does not cause significant byproduct emissions. The AR kinetic model was updated to include chemical reactions of sodium carbonate decomposition. Modeling was conducted on evaluation of the effect of sodium on process kinetics in the rebuming zone. This study revealed that increasing or decreasing radical concentrations in the presence of sodium can significantly affect the reactions responsible for NO reduction under fuel-rich conditions. The effect of mixing time on performance with sodium was also evaluated. Initial activities on engineering design methodology for second generation AR improvements are described.

  16. SOURCEBOOK: NOX CONTROL TECHNOLOGY DATA

    EPA Science Inventory

    The report, a compilation of available information on the control of nitrogen oxide (NOx) emissions from stationary sources, is provided to assist new source permitting activities by regulatory agencies. he sources covered are combustion turbines, internal combustion engines, non...

  17. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  18. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  19. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  20. NOx control buys to peak in `98

    SciTech Connect

    McIlvaine, R.W.

    1995-10-01

    Titles I and IV of the Clean Air Act provide the legislative framework for a huge NOx reduction program now in operation. This reduction will have a substantial effect in reducing ground-level ozone. A new McIlvaine report concludes that US utilities and industrial companies during the next 10 years will spend more than $800 million annually to meet CAA`s NOx-control regulations. Much of that investment will be for low-NOx burners, which minimize NOx formation. Many utilities and industrial boilers can be retrofitted with a new generation of burners; however, this technology achieves less than 50% NOx reduction. Post-combustion technologies, such as selective catalytic reduction and selective noncatalytic reduction, can reduce NOx as much as 90%. Therefore, plants needing greater NOx reduction will use post-combustion technologies, often in combination with low-NOx burners. The peak order year for NOx-control equipment will be 1998, primarily because Title IV of CAA requires utilities to comply by 2000. Many industrial sources also will be ordering equipment in 1998.

  1. Ultra-Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Steele, R.C.; Williams, J.T.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2006-05-01

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  2. Control of NOx Emissions from Stationary Combustion Sources

    EPA Science Inventory

    In general, NOx control technologies are categorized as being either primary control technologies or secondary control technologies. Primary control technologies reduce the formation of NOx in the primary combustion zone. In contrast, secondary control technologies destroy the NO...

  3. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT

    SciTech Connect

    Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-10-01

    This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide

  4. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    PubMed

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions. PMID:12078003

  5. PROCEEDINGS: 1985 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL. VOLUME 1. UTILITY BOILER APPLICATIONS

    EPA Science Inventory

    The two-volume proceedings document the more than 60 papers, describing recent advances in NOx control technology, that were presented at the 1985 Joint Symposium on Stationary Combustion NOx Control, May 6-9, 1985, in Boston, MA. The papers covered the following topics: the stat...

  6. AMMONIA-FREE NOx CONTROL SYSTEM

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  7. NOx Sensor for Direct Injection Emission Control

    SciTech Connect

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  8. Generic NOx Control Intelligent System

    1997-03-24

    GNOCIS is a system of programs designed to perform on-line closed-loop optimization of utility boilers. The major components of the system include: GNREAD A program which resides on the host digital control system (DCS) that retrieves data from the DCS and then transmits the collected data to the GNOCIS host system. GNWRITE A program which resides on the host DCS that receives data from the GNOCIS host platform and then sends this information to themore » DCS. GNARCH A program which resides on the GNOCIS host platform that receives data from GNREAD or GNCTL and then archives this data on a periodic basis. GNCTL A program which resides on the GNOCIS host platform that receives data from GNREAD and then executes the optimizer/combustion model. GNDCS Configuration changes to the DCS which allows automatic implementation of the GNOCIS recommendations and closed-loop operation. Substantial safeguards and constraints are imbedded in this component to prevent adverse impact on unit operation.« less

  9. LOW NOX COMBUSTION SYSTEMS WITH SO2 CONTROL USING LIMESTONE

    EPA Science Inventory

    The paper describes EPA work on low NOx combustion systems with SO2 control using limestone. Although SO2 control in low NOx systems for both stoker and pulverized-coal-fired furnaces is under investigation at EPA, most of the current work is with pulverized coal. EPA's Limestone...

  10. PROCEEDINGS: 1985 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL. VOLUME 2. INDUSTRIAL PROCESSES, FUNDAMENTAL STUDIES, AND SLAGGING COMBUSTORS

    EPA Science Inventory

    The two-volume proceedings document is more than 60 papers, describing recent advances in NOx control technology, that were presented at the 1985 Joint Symposium on Stationary Combustion NOx Control, May 6-9, 1985, in Boston, MA. The papers covered the following topics: the statu...

  11. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  12. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  13. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  14. JAPANESE ACTIVITIES IN SO2 AND NOX CONTROL

    EPA Science Inventory

    The paper reviews Japanese activities in SO2 and NOx control. From 1970 to 1985, energy use in Japan increased by 25%, and annual coal consumption rose from virtually nothing to 20 million tons, yet emissions of SO2 declined by 75% and NOx by 40%. While increases in hydroelectric...

  15. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  16. Ammonia-Free NOx Control System

    SciTech Connect

    Zhen Fan; Song Wu; Richard G. Herman

    2004-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

  17. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2005 time period.

  18. Ammonia-Free NOx Control System

    SciTech Connect

    S. Wu; Z. Fan; R. Herman

    2004-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

  19. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Richard G. Herman

    2004-12-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 30, 2004 time period.

  20. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2004-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2004 time period.

  1. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  2. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  3. EVALUATION OF THE ADVANCED LOW-NOX BURNER, EXXON, AND HITACHI ZOSEN DENOX PROCESSES

    EPA Science Inventory

    The report is a technical discussion and preliminary economic evaluation of six NOx control methods: three at 50% NOx reduction, and three at 90%. The basecase power plant is a new 500-MW coal-fired unit emitting 0.6 lb NO2/million Btu in the flue gas. The three 50% NOx reduction...

  4. NOX CONTROL BY COMBUSTION MODIFICATION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch has performed research and developed technologies for NOx reduction via combustion modification. Techniques such as low-excess air firing, staged combustion, flue gas recirculation, low NOx bu...

  5. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  6. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION: ADD-ON NOX CONTROLS

    EPA Science Inventory

    The paper discusses the environmental technology verification (ETV) of add-on nitrogen oxide (NOx) controls. Research Triangle Institute (RTI) is EPA's cooperating partner for the Air Pollution Control Technology (APCT) Program, one of a dozen ETV pilot programs. Verification of ...

  8. ENVIRONMENTAL ASSESSMENT OF STATIONARY SOURCE NOX CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report summarizes results of the 2nd year of an environmental assessment of stationary source NOx control technologies. The 2nd year effort focused on: (a) characterizing the baseline (uncontrolled) environmental impact of stationary combustion sources; (b) developing fuel co...

  9. STATIONARY COMBUSTION NOX CONTROL: A SUMMARY OF THE 1991 SYMPOSIUM

    EPA Science Inventory

    The paper summarizes the 1991 Symposium on Stationary Combustion NOx (nitrous oxides) Control, held March 25-28, 1991, in Washington, DC. pproximately 500 attended, representing 53 domestic and 13 foreign utility companies, federal and state government agencies, research and deve...

  10. STATIONARY COMBUSTION NOX CONTROL: A SUMMARY OF THE 1991 SYMPOSIUM

    EPA Science Inventory

    The 1991 Symposium on Stationary Combustion NOX Control was held March 25-28,1991 in Washington, DC. The sixth meeting in a biennial series, the Symposium was cosponsored by the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA). Approxima...

  11. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

  12. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  13. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  14. NATURAL GAS REBURNING FOR NOX CONTROL ON A CYCLONE-FIRED BOILER

    EPA Science Inventory

    The paper discusses natural gas reburning (fuel staging) for nitrogen oxide (NOx) control on a cyclone-fired boiler. eburning is an in-furnace NOx combustion modification technology that has been shown to reduce NOx by 50-60%. eburning is accomplished by injecting fuel downstream...

  15. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect

    Hamid Farzan; Jennifer L. Sivy

    2005-07-30

    Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO

  16. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  17. Phase II NOx controls for the Marama and Nescaum regions. Final report

    SciTech Connect

    1995-11-01

    This technical report discusses Phase II NOx controls for utility boilers in the Mid-Atlantic Regional Air Management Association (MARAMA) and the Northeast States for Coordinated Air Use Management (NESCAUM) regions. The subject areas include: Utility boiler population profile in the MARAMA and NESCAUM regions; Discussion of RACT controls; Available NOx controls and their levels of performance; and Costs and cost effectiveness of NOx controls.

  18. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  19. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    SciTech Connect

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  20. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  2. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...

  3. STATE-OF-THE-ART COMBUSTION MODIFICATION NOX CONTROL FOR STATIONARY COMBUSTION EQUIPMENT

    EPA Science Inventory

    The paper is a brief discussion and summary of state-of-the-art combustion modification NOx control technology for boilers and industrial process combustion equipment. These combustion modification techniques, when properly applied, offer the potential for cost-effective NOx cont...

  4. FUEL OIL REBURNING APPLICATION FOR NOX CONTROL TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The paper discusses retrofitting two 1.0 MW (3.5 million Btu/hr) firetube package boilers for fuel oil reburning application for NOx emission control. An overall NOx reduction of 46% from an uncontrolled emission of 125 ppm (dry, at 0% O2) was realized by diverting 20% of the tot...

  5. FUEL OIL REBURNING APPLICATION FOR NOX CONTROL TO FIRETUBE PACKAGE BOILERS (JOURNAL VERSION)

    EPA Science Inventory

    The paper discusses retrofitting two 1.0 MW (3.5 million Btu/hr) firetube package boilers for fuel oil reburning application for NOx emission control. An overall NOx reduction of 46% from an uncontrolled emission of 125 ppm (dry, at 0% O2) was realized by diverting 20% of the tot...

  6. EVALUATION OF NOX EMISSION CONTROL CATALYSTS FOR POWER PLANT SCR INSTALLATIONS

    EPA Science Inventory

    The paper gives results of an evaluation of nitrogen oxide (NOx) emission control catalysts commercially developed for power plant selective catalytic reduction (SCR) installations. ith the objective of establishing the performance of SCR catalysts and related technology, control...

  7. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  8. NOX CONTROL TECHNOLOGIES APPLICABLE TO MUNICIPAL WASTE COMBUSTION

    EPA Science Inventory

    The report documents the key design and operating parameters, commercial status, demonstrated performance, and cost of three technologies available for reducing nitrogen oxide (NOx) emissions from municipal waste combustors (MWCs), and identifies technology research and developme...

  9. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST). VOLUME 1. FUNDAMENTAL RESEARCH AND PROCESS DEVELOPMENT

    EPA Science Inventory

    Forty six papers describing recent advances in dry sorbent injection technologies for SO2 control were presented at the 1st Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies. These papers covered the following topics: fundamental research; pilot-scale devel...

  10. The integration of low NOx control technologies at the Southern Energy, Inc. Birchwood Power Facility

    SciTech Connect

    Lauber, J.A.; Cohen, M.B.; Donais, R.E.

    1997-12-31

    The Southern Energy, Inc. (SEI) Birchwood Power Facility, a cogeneration unit, represents the first application worldwide of the TFS 2000{trademark} firing system and selective catalytic reduction (SCR). The installation of these state-of-the-art NOx control technologies was necessary to meet strict Commonwealth of Virginia environmental regulations requiring a 0.10 lbs/10{sup 6} Btu (0.043 g/MJ) NOx emission rate based upon a 30-day rolling average. The plant successfully completed all performance and emission testing on September 24, 1996. Commercial operation began November 14, 1996. Stack NOx emission rates are consistently maintained below 0.10 lbs/10{sup 6} Btu. The paper describes the integration of both in-furnace and post-combustion NOx control technologies into the overall boiler design. Operational data depicting boiler outlet NOx, stack NOx and loss on ignition (LOI) are presented across the design load range from 32% to 100% boiler output. The description, arrangement, design parameters and operation of the NOx control equipment are discussed. Novel design features include a split economizer, an air heater suitable for ammonia applications, Dynamic{trademark} classifiers, and a multi-zone secondary air flow control system utilized for the TFS 2000{trademark} firing system.

  11. The evolution of NOx control policy for coal-fired power plants in the United States

    SciTech Connect

    Dallas Burtraw; David A. Evans

    2003-12-15

    Emissions of nitrogen oxides (NOx) contribute to formation of particulate matter and ozone, and also to acidification of the environment. The electricity sector is responsible for about 20% of NOx emissions in the United States, and the sector has been the target of both prescriptive (command-and-control) and flexible (cap-and-trade) approaches to regulation. The paper summarises the major NOx control policies affecting this sector in the USA, and provides some perspectives as to their effectiveness. While both prescriptive and flexible approaches continue to play an important role, significant new proposals have wholly embraced a cap-and-trade approach. 20 refs., 7 figs., 2 tabs.

  12. ENVIRONMENTAL ASSESSMENT OF UTILITY BOILER COMBUSTION MODIFICATION NOX CONTROLS: VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of combustion modification techniques for coal-, oil-, and gas-fired utility boilers, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effect o...

  13. ENVIRONMENTAL ASSESSMENT OF UTILITY BOILER COMBUSTION MODIFICATION NOX CONTROLS: VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of an evaluation of combustion modification techniques for coal-, oil-, and gas-fired utility boilers, with repect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effect on...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, NOX CONTROL TECHNOLOGIES, CATALYTICA COMBUSTION SYSTEMS, INC., XONON FLAMELESS COMBUSTION SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  15. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  16. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  17. Trade-offs between fuel economy and NOx emissions using fuzzy logic control.

    SciTech Connect

    Rousseau, Aymeric; Saglini, Sylvain; Jakov, Michael; Gray, Donald; Hardy, Keith

    2002-08-19

    The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by evaluating advanced automotive technologies in a systems context. ANL has developed a unique set of compatible simulation tools and test equipment to perform an integrated systems analysis project from modeling through hardware testing and validation. This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides of Nitrogen (NOx) emissions in a so-called ''pre-transmission'' parallel hybrid powertrain. The powertrain configuration (in simulation and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously Variable Transmission (CVT) and an electric drive motor coupled to the CVT input shaft. The trade-off is studied in a simulated environment using PSAT{copyright} with different controllers (fuzzy logic and rule based) and engine models (neural network and steady state models developed from ANL data).

  18. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  19. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  20. SELECTIVE CATALYTIC REDUCTION AND NOX CONTROL IN JAPAN

    EPA Science Inventory

    The report documents the travels of a four-member study team in Japan during March 1980 to assess NOx flue gas treatment (FGT) technology and related areas. Overall goals of the study were to obtain new information on current issues concerning application of FGT technology and to...

  1. EVALUATION OF SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGY

    EPA Science Inventory

    The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial ...

  2. Solid sorbent control of nitrogen oxides (NOx). Final report, September 1996--January 1999

    SciTech Connect

    Lee, M.R.

    1999-01-18

    Solid materials have demonstrated applicable control of combustion-source NOx. A support material of (gamma)-alumina can provide improved NOx sorption in comparison to a previously applied sorbent, magnesia-coated vermiculite. NOx sorption of treated (gamma)-alumina correlates with the ionization potential of the group-1 element. General mechanisms of NOx sorption have been developed for untreated, K{sub 2}CO{sub 3}-treated and KOH-treated (gamma)-alumina. Sorption of NO appears to increase formation of nitrite. Untreated (gamma)-alumina formed little nitrite. For the treated (gamma)-alumina, the ratio of nitrite-nitrate formed relates to the ratio of NO-to-NO{sub 2} sorbed. Additional NO{sub 2} exposure converts nitrite into nitrate and NO. This nitrite-to-nitrate conversion correlates with the thermal stability of subsurface species. In addition, thermal-decomposition tests indicated similarities of NOx-exposed sorbents to nitrite and nitrate salts. The proposed mechanisms suggest that formed nitrite stability is crucial to improving NOx sorption. Effects of additional gases (O{sub 2}, SO{sub 2}, CO{sub 2}, or water vapor) to NO and NO{sub 2} sorption at 25 and 250 deg C by untreated, K{sub 2}CO{sub 3}-treated and KOH-treated (gamma)-alumina were evaluated. Only SO{sub 2} and water vapor were observed to affect NOx sorption.

  3. Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX-MAPK pathway.

    PubMed

    Sun, Baihui; Ding, Ruoting; Yu, Wenlin; Wu, Yanhong; Wang, Bulin; Li, Qin

    2016-07-01

    Impaired wound healing is a major diabetes-related complication. Keratinocytes play an important role in wound healing. Multiple factors have been proposed that can induce dysfunction in keratinocytes. The focus of present research is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing human immortalized keratinocyte (HaCaT) cell apoptosis and the cellular mechanism underlying the proapoptotic effect of AOPPs. HaCaT cells were treated with increasing concentrations of AOPP-human serum albumin or for increasing time durations. The cell viability was measured using the thiazolyl blue tetrazolium bromide method, and flow cytometry was used to assess the rate of cell apoptosis. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed through a confocal laser scanning microscope system, and the level of ROS generation was determined using a microplate reader. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)4, extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and apoptosis-related downstream protein interactions were investigated using the Western blot analysis. We found that AOPPs triggered HaCaT cell apoptosis and MMP loss. After AOPP treatment, intracellular ROS generation increased in a time- and dose-dependent manner. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and poly(ADP-ribose) polymerase (PARP)-1 were activated, whereas anti-apoptotic Bcl-2 protein was downregulated. AOPPs also increased NOX4, ERK1/2, and p38 MAPK expression. Taken together, these findings suggest that extracellular AOPP accumulation triggered NOX-dependent ROS production, which activated ERK1/2 and p38 MAPK, and induced HaCaT cell apoptosis by activating caspase 3 and PARP-1. PMID:27155970

  4. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-10-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV

  5. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  6. Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis

    SciTech Connect

    Aardahl, C; Rozmiarek, R; Rappe, K; Mendoza, D Park, P

    2003-08-24

    Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

  7. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  8. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-07-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet

  9. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not

  10. The Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, A. Lamont

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  11. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature

    PubMed Central

    Wang, Zhi-hua; Zhou, Jun-hu; Zhang, Yan-wei; Lu, Zhi-min; Fan, Jian-ren; Cen, Ke-fa

    2005-01-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C~1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  12. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO{sub x} Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable.

  13. BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW-NOX BURNERS

    EPA Science Inventory

    The report describes the development of boiler design criteria for application of dry sorbent control technology with low-NOx burners on tangentially fired pulverized-coal-burning boilers. A comprehensive review of past and current research in the area of sorbent SOx control prov...

  14. Air quality benefits of universal particle filter and NOx controls on diesel trucks

    NASA Astrophysics Data System (ADS)

    Tao, L.; Mcdonald, B. C.; Harley, R.

    2015-12-01

    Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.

  15. Cost analysis of NOx control alternatives for stationary gas turbines

    SciTech Connect

    Bill Major

    1999-11-05

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

  16. Waterwall corrosion after combustion modifications for NOx control

    SciTech Connect

    Davis, K.; Eddings, E.; Harding, S.; Heap, M.; Valentine, J.

    1999-07-01

    Much of the information concerning the mechanisms contributing to waterwall corrosion in coal fired boilers has been derived from examination of tube/deposit sections collected after the boiler has been taken out of service. In some circles this is referred to as the cut, polish and guess approach. The potential problems associated with staged combustion were recognized when it was first proposed for coal fired boilers. There were concerns about reduced thermal efficiency due to the presence of unburned carbon and the potential for increased waterwall corrosion rated in the lower furnace which is subjected to sub-stoichiometric conditions. Developers claimed that unburned carbon was not a problem and improving coal particle fineness would reduce unburned carbon. Field tests had often shown no significant increase in tube wastage rates. Yet recent experience with plants that have been retrofitted with advanced low-NO{sub x} firing systems is contrary to this optimistic view. Almost invariably, carbon in the fly ash increases and several plants are reporting excessive waterwall wastage tube rates after retrofitting low-NO{sub x} firing systems. Regardless of the reasons, in-furnace NO{sub x} control technologies may not be a low cost panacea for more stringent NO{sub x} emission limits as was originally thought. This paper describes the use of a reacting, computational fluids dynamic model to simulate boilers fitted with advanced low-NO{sub x} firing systems to investigate the link between firing system characteristics and the conditions that might affect waterwall corrosion such as local hydrogen sulfide concentration, heat flux, etc. The model does not predict corrosion directly unless the corrosion rate can be linked to the predicted properties.

  17. Impact of national NOx and SO2 control policies on particulate matter pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Wang, Jiandong; Fu, Joshua S.; Liu, Tonghao; Xu, Jiayu; Fu, Xiao; Hao, Jiming

    2013-10-01

    China's air pollution control policies during the 12th Five Year Plan (2011-2015) are characterized by the targets of 10% nitrogen oxides (NOx) reduction and 8% sulfur dioxide (SO2) reduction from the 2010 levels. In this study, the Community Multi-scale Air Quality (CMAQ) modeling system was used to evaluate the impact of only SO2, only NOx, and joint SO2/NOx control measures on particulate matter pollution, the greatest concern for urban air quality in China. Four emission scenarios were developed for 2015, including a business-as-usual scenario, a reference NOx control scenario based on the governmental plan, an accelerated NOx control technology scenario, and a scenario assuming joint controls of NOx and SO2 based on the governmental plan. Under the planned NOx control measures, the annual mean concentrations of particulate matter less than or equal to 2.5 μm (PM2.5) decline by 1.5-6 μg m-3, i.e. 1.6%-8.5%, in the majority of eastern China. The largest reduction occurs in the middle reach of the Yangtze River. Under accelerated NOx control measures, the annual average PM2.5 concentration reductions (compared with the business-as-usual scenario) in eastern China are 65% higher than the reductions under planned control measures. The unusual increase of PM2.5 concentrations in the North China Plain and the Yangtze River Delta during January after the reductions of NOx emissions was an integrated effect of excessive NOx, the ammonia-rich inorganic aerosol chemistry, and the non-methane volatile organic compounds (NMVOC) sensitive photochemical regime. Under the joint controls of NOx and SO2, the annual mean PM2.5 concentrations decline over 3 μg m-3, i.e. 3.2%-13%, in the majority of eastern China, and some areas in the middle reach of the Yangtze River have reductions as large as 6-8.3 μg m-3, i.e. 5.0%-13%. The average PM2.5 concentration reductions in eastern China are 1.20 μg m-3, 3.14 μg m-3, 3.57 μg m-3, 4.22 μg m-3 in January, May, August, and

  18. PROCEEDINGS: 1989 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL, SAN FRANCISCO, CA, MARCH 6-9, 1989 VOLUME 2

    EPA Science Inventory

    The proceedings document presentations at the 1989 Joint Symposium on Stationary Combustion NOx Control, held March 6-9. 1989. in San Francisco, CA. The symposium, sponsored by the U.S. EPA and EPRI, was the fifth in a series devoted solely to the discussion of control of NOx emi...

  19. PROCEEDINGS: 1989 JOINT SYMPOSIUM ON STATIONARY COMBUSTION NOX CONTROL, SAN FRANCISCO, CA, MARCH 6-9, 1989 VOLUME 1

    EPA Science Inventory

    The proceedings document presentations at the 1989 Joint Symposium on Stationary Combustion NOx Control, held March 6-9, 1989, in San Francisco, CA. The symposium, sponsored by the U. S. EPA and EPRl, was the fifth in a series devoted solely to the discussion of control of NOx em...

  20. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells.

    PubMed

    Pekarčíková, Lucie; Knopfová, Lucia; Beneš, Petr; Šmarda, Jan

    2016-08-01

    The c-Myb transcription factor is important for maintenance of immature cells of many tissues including colon epithelium. Overexpression of c-Myb occurring in colorectal carcinomas (CRC) as well as in other cancers often marks poor prognosis. However, the molecular mechanism explaining how c-Myb contributes to progression of CRC has not been fully elucidated. To address this point, we investigated the way how c-Myb affects sensitivity of CRC cells to anticancer drugs. Using CRC cell lines expressing exogenous c-myb we show that c-Myb protects CRC cells from the cisplatin-, oxaliplatin-, and doxorubicin-induced apoptosis, elevates reactive oxygen species via up-regulation of NOX1, and sustains the pro-survival p38 MAPK pathway. Using pharmacological inhibitors and gene silencing of p38 and NOX1 we found that these proteins are essential for the protective effect of c-Myb and that NOX1 acts upstream of p38 activation. In addition, our result suggests that transcription of NOX1 is directly controlled by c-Myb and these genes are strongly co-expressed in human tumor tissue of CRC patients. The novel c-Myb/NOX1/p38 signaling axis that protects CRC cells from chemotherapy described in this study could provide a new base for design of future therapies of CRC. PMID:27107996

  1. VERIFICATION OF SIMPLIFIED PROCEDURES FOR SITE- SPECIFIC SO2 AND NOX CONTROL COST ESTIMATES

    EPA Science Inventory

    The report documents results of an evaluation to verify the accuracy of simplified procedures for estimating sulfur dioxide (S02) and nitrogen oxides (NOx) retrofit control costs and performance for 200 502-emitting coal-fired power plants in the 31-state eastern region. nitially...

  2. TEST DESIGN FOR ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) OF ADD-ON NOX CONTROL UTILIZING OZONE INJECTION

    EPA Science Inventory

    The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...

  3. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME I: TANGENTIAL COAL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives results of an environmental assessment field testing program on a tangential-coal-fired utility boiler. The aim of the program was to measure multimedia emissions changes as a result of applying combustion modification NOx control. Emissions of trace elements, or...

  4. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.

    PubMed

    Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K

    2002-03-01

    Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed. PMID:11924858

  5. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  6. UPDATING PERFORMANCE AND COST OF NOX CONTROL TECHNOLOGIES IN THE INTEGRATED PLANNING MODEL

    EPA Science Inventory

    The US EPA uses the Integrated Planning Model (IPM) to evaluate the cost and emission impacts of proposed policies. Studies were undertaken recently to update the performance and cost factors contained in this model for various NOx control technologies. The studies showed a sig...

  7. VERIFICATION OF SIMPLIFIED PROCEDURES FOR SITE-SPECIFIC SO2 AND NOX CONTROL COST ESTIMATES

    EPA Science Inventory

    The report documents results of an evaluation to verify the accuracy of simplified procedures for estimating sulfur dioxide (S02) and nitrogen oxides (NOx) retrofit control costs and performance for 200 502-emitting coal-fired power plants in the 31-state eastern region. nitially...

  8. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  9. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  10. The SCONOx catalytic absorption system: Combined CO, NOx, and SOx control for power generation

    SciTech Connect

    MacDonald, R.J.; Girdlestone, T.

    1998-07-01

    Goal Line Environmental Technologies has revolutionized the pollution control industry with its SCONOx{trademark} Catalytic Absorption System for Power Generation. The system has been installed at Sunlaw Energy Corporation's Federal Cogeneration Plant since December 20, 1996, with average NOx readings of less than 2 ppm and average CO readings of less than 1 ppm in base load operation. This plant is a 30 MW facility that fires a GE LM2500 gas turbine. The SCONOx{trademark} system uses a single catalyst for both CO and NOx control. It oxidizes CO to CO{sub 2} and NO to NO{sub 2}, and the NO{sub 2} is then absorbed onto the surface of the catalyst. Just as a sponge absorbs water and must be wrung out periodically, the SCONOx{trademark} catalyst must be periodically regenerated. This is accomplished by passing a dilute hydrogen gas across the surface of the catalyst in the absence of oxygen. Nitrogen oxides are broken down into nitrogen and water vapor, and this is exhausted up the stack instead of NOx. No ammonia or other hazardous materials are required in the process. Goal Line's SCOCOx{trademark} Sulfur Removal System works in a similar manner, sub favors the absorption of sulfur compounds instead of NOx. The SCONOx{trademark}/SCOSOx{trademark} system is a breakthrough in CO, NOx, and SOx control technology that makes it possible to have clean air without the use of ammonia or other hazardous materials. This paper will describe the development of the system and full-scale operational results, as well as focusing on the implications that SCONOx{trademark} as an ultra-clean pollution control technology has on the power generation industry.

  11. Neural network based supervisory & closed loop controls for NOx emission reductions and heat rate improvement

    SciTech Connect

    Radl, B.J.; Corfman, D.; Kish, B.

    1995-12-31

    This paper discusses the operational experience gained from installing a neural network based supervisor setpoint control system for selected combustion parameters at Penn Power`s New Castle station. The primary goal of the program is to reduce NOx emissions while maintaining or improving heat rate. The program was jointly funded by Ohio Edison, U.S. Department of Energy (DOE) and Pegasus Technologies Corp. The target power station, Penn Power`s New Castle Unit 5, is a 1950`s vintage Babcock & Wilcox wall fired furnace with gross generation capacity of 150 MW. Before installation of the neural network system (NeuSIGHT), NOx averaged 0.75 to 0.80 lbs/mbtu at full load conditions. Previous testing reduced this from 1.0 lbs/mbtu under normal operating conditions. To meet the new Pennsylvania DER limits, which set an absolute tonnage limit on NOx, and operate for a full year, a further NOx reduction of 20% was required. The control system setup interfaced a Unix workstation to a Bailey Controls N90 DCS. The neural network and data collection/processing system resided on the workstation. New setpoints were determined by the neural network periodically. These setpoints were constrained within existing control system limits. The objective was to model the multi-dimensional and non-linear problem of NOx formation in the furnace with a neural network. Once modeled the neural network performed many {open_quote}what if{close_quote} simulations to optimize setpoints for the current operating conditions. To keep up with changes in operating conditions the neural network was set to continually learn from the most recent set of measurements. Conditioning algorithms for the input data and output setpoints were developed to handle the inherently {open_quote}noisy{close_quote} input data and to provide stable output recommendations. Test results and parameters used for combustion optimization are summarized in this paper.

  12. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  13. Observational constraints on projections of the ozone response to NOx controls in the Southern San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Wooldridge, P. J.; Browne, E. C.; Russell, A. R.; Rollins, A.; Min, K.; Thomas, J.; Zhang, L.; Brune, W. H.; Henry, S. B.; DiGangi, J. P.; Keutsch, F. N.; Sanders, J. E.; Ren, X.; Weber, R.; Goldstein, A. H.; Cohen, R. C.

    2011-12-01

    We investigate the impact of NOx reductions on ozone production in the Southern San Joaquin Valley using a large suite of radical and trace gas measurements collected during CalNex-2010 in Bakersfield, California (May 15-June 28) combined with the historical record of O3, nitrogen oxides and temperature from CARB monitoring sites in the region. We calculate the instantaneous ozone production rate (PO3) by radical balance and investigate relationships between PO3 and NOx abundance; finding temperature to be a useful proxy for VOC reactivity. We show Bakersfield photochemistry is at peak PO3 and therefore at a minimum with respect to the effectiveness of NOx controls indicating: (1) more than 30% reductions from present day are required before sizable decreases in ozone will occur and (2) reduction from the lower weekend baseline NOx concentrations will result in weekend PO3 decreases with continued NOx controls at high temperatures when VOC reactivity is largest.

  14. NOX CONTROL TECHNOLOGY REQUIREMENTS UNDER THE UNITED STATES 1990 CLEAN AIR ACT AMENDMENTS COMPARED TO THOSE IN SELECTED PACIFIC RIM COUNTRIES

    EPA Science Inventory

    The paper compares nitrogen oxide (NOx) control technology requirements under the U.S. 1990 Clean Air Act Amendments (CAAAS) with those in selected Pacific Rim countries. he CAAAs require reduction of NOx emissions under Titles I (requiring control of NOx from all source types fo...

  15. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  16. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  17. Exploring links between innovation and diffusion: adoption of NOx control technologies at U.S. coal-fired power plants

    SciTech Connect

    Popp, D.

    2006-03-15

    While many studies have looked at innovation and adoption of technologies separately, the two processes are linked. Advances (and expected advances) in a single technology should affect both its adoption rate and the adoption of alternative technologies. Moreover, advances made abroad may affect adoption differently than improvements developed domestically. This paper combines plant-level data on US coal-fired electric power plants with patent data pertaining to NOx pollution control techniques to study these links. It is shown that technological advances, particularly those made abroad, are important for the adoption of newer post-combustion treatment technologies, but have little effect on the adoption of older combustion modification techniques. Moreover, it provides evidence that adaptive R&D by US firms is necessary before foreign innovations are adopted in the US. Expectations of future technological advances delay adoption. Nonetheless, as in other studies of environmental technologies, the effect of other explanatory variables is dominated by the effect of environmental regulations, demonstrating that the mere presence of environmental technologies is not enough to encourage its usage.

  18. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  19. Advancing natural gas combustion science and technology low NOx. Final technical report, May 1989-September 1992

    SciTech Connect

    Correa, S.M.

    1992-12-01

    The three issues of NOx, CO/UHC and dynamics were studied. First, NOx was measured in lean premixed methane combustion stabilized over a 5 cm dia. perforated-plate burner in the range 3-10 atm, inlet temperature 300-615K (80-647 F), and fuel-air equivalence ratio 0.5 - 0.8. Experimental data compared to within 50% with predictions of a stirred/plug-flow reactor model. For flames below about 1750K (2690 F), (i) NOx formation rates in post-flame gas are < 1 ppm/ms, so combustors can be lengthened to burn out CO and unburned hydrocarbons without increasing NOx and (ii) NOx formation becomes slow enough to decouple from the turbulence, so the flameholder shape can be optimized based on CO and dynamics. Second, analyses suggest that CO quenching effects are generally too small to be significant but (i) CO can be quenched in stagnation point flow of post-flame gas towards the combustor wall, (ii) CO can be quenched in turbulent eddies if unburned fuel-air premixture escapes the flame zone and pyrolyzes downstream in cooler flow, and (iii) the acoustic interaction can exacerbate CO emissions in those cases where the base CO is high (e.g., 10-100 times equilibrium levels) and the pressure fluctuations are large (e.g., 5-10% peak-to-peak). Except in these extreme cases, however, CO/UHC emissions should not be a limiting factor in the use of lean premixed combustion to minimize NOx. Last, Discrete Vortex calculations were compared with data from a 13.5 cm (5.3 in.) burner at lean conditions approaching blowoff. Strouhal shedding frequencies were detected, suggesting a role for flameholder-shed vorticity.

  20. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source. PMID:26587749

  1. New catalyst for NO(x) control. Phase 1. Final report, August 1988-March 1989

    SciTech Connect

    Nelson, B.W.; Nelson, S.G.; Higgins, M.O.; Brandum, P.A.

    1989-06-01

    During static firing tests, aircraft engines are subject to regulation as fixed sources of air pollution. Present best available technology (BAT) to control NOx emissions in exhaust gases from jet-engine test cells (JETCs) is selective catalytic reduction (SCR). SCR is effective at a narrow range of high temperatures, requires elaborate process controls to minimize emissions of ammonia reagent, and consumes precious metal catalysts. This Phase I SBIR project tested vermiculite (a common silicate mineral) as a catalyst for reducing NOx to oxygen and nitrogen. Efficient reduction (50-98%) of NOx was observed over a practical range of operating temperatures (200->850 F) and gas flow rates (5,000-60,000 bed volumes/hr). The vermiculite test bed also efficiently scavenges carbon particulates and reduces part of the CO and CO{sub 2} from the exhaust stream. Used catalyst was regenerated by heating to 930 F in an air stream; it was also judged to be a disposable solid.

  2. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  3. Cost and performance of Group 2 boiler NOx controls

    SciTech Connect

    Khan, S.; Maibodi, M.; Srivastava, R.

    1997-12-31

    This paper presents the results of a study conducted to assist EPA in developing the Phase II NO{sub x} rule under Title IV of the Clean Air Act Amendment of 1990 (the Act). The specific purpose of this study was to assess the performance and capital and total levelized costs of NO{sub x} controls pertinent to Group 2 boilers. Group 2 boilers are all coal-fired boilers that are not dry-bottom wall-fired and tangentially fired and include cell burner-fired, cyclone-fired, wet-bottom, vertically fired, stoker-fired, and fluidized-bed boilers.

  4. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2005-03-31

    This is the nineteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Refurbished corrosion probes were installed at Plant Gavin and operated for approximately 1,300 hours. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ lab, and includes the first results from a model suitable for comprehensive simulation codes for describing catalyst performance. The SCR slipstream reactor at Plant Gadsden operated for approximately 100 hours during the quarter because of ash blockage in the inlet probe.

  5. Turbulent Mixing Effects in NOx Control via Reburning

    NASA Astrophysics Data System (ADS)

    Cha, C. M.; Kosály, G.; Kramlich, J. C.

    1997-11-01

    An integral model of a turbulent, reacting jet, based on the Two-Stage Lagrangian (TSL) model of Broadwell and Lutz, is used to gain insight into how mixing influences performance in a reburning application. Reburning is a promising NO_ x control technology for industrial furnaces that has been demonstrated at full-scale in a number of embodiments. Past work on reburning have applied plug-flow reactor (PFR) modeling, which assumes the fuel and oxidizer to be perfectly premixed initially and a perfectly mixed volume of the reacting species thereafter, in order to concentrate on the understanding of the underlying (reburning) kinetics. However, PFR predictions of reburning efficiency yield results which are far below the experimental data. Present results account for finite-rate mixing and yield, thereby, improved predictions over those from PFR calculations. The cause of the improved reburning performance in a delayed mixing environment is discussed and a number of parametric studies are reported.

  6. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-09-30

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. The corrosion probe task is proceeding: Two plant visits were made to prepare for field testing and shakedown tests for the probes were conducted at the University of Utah''s L1500 furnace. Corrosion probes will be installed at the Gavin Plant site in the next quarter. Laboratory studies of SCR catalyst continued this quarter. FTIR studies of catalyst sulfation and of adsorption of NH3 and NO were continued at BYU. NO activities have been measured for a number of samples of BYU catalyst and insights have been gained from the results. Plans are being detailed to test monolith and plate catalysts exposed in the field. In this quarter, the catalysts in the slipstream reactor at AEP's Rockport plant were exposed to the dusty flue gas for 1695 hours. Thus the cumulative catalyst exposure to flue gas rose from 980 hours last quarter to 2677 hours in this quarter. Loss of catalyst activity was noted between April (when the catalysts were fresh) and August. Further analysis of activity data will be needed.

  7. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  8. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  9. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  10. Evolution of NOx emissions in Europe with focus on road transport control measures

    NASA Astrophysics Data System (ADS)

    Vestreng, V.; Ntziachristos, L.; Semb, A.; Reis, S.; Isaksen, I. S. A.; Tarrasón, L.

    2009-02-01

    European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880-1950) is determined by a slow increase in fuel consumption all over Europe. The second regime (1950-1980) is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980-1990) that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990-2000) involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000-2005), the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable in the evolution of

  11. Evolution of NOx emissions in Europe with focus on road transport control measures

    NASA Astrophysics Data System (ADS)

    Vestreng, V.; Ntziachristos, L.; Semb, A.; Reis, S.; Isaksen, I. S. A.; Tarrasón, L.

    2008-06-01

    European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880-1950) is determined by a slow increase in fuel consumption all over Europe. The second regime (1950-1980) is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980-1990) that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990-2000) involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000-2005), the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable in the evolution of

  12. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  13. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  14. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  15. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    SciTech Connect

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.; Peterson, R.A.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that form as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.

  16. Wide range operation of advanced low NOx combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.

    1977-01-01

    An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.

  17. Advances in infection control

    PubMed Central

    Marra, Alexandre Rodrigues

    2016-01-01

    ABSTRACT Several initiatives took place in recent years in relation to nosocomial infection control in order to increase patient safety. Some of these initiatives will be commented in this brief review. PMID:27074240

  18. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  19. Method for control of NOx emission from combustors using fuel dilution

    DOEpatents

    Schefer, Robert W.; Keller, Jay O

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  20. Control of diesel soot and NOx emissions with a particulate trap and EGR.

    PubMed

    Liu, Rui-xiang; Gao, Xi-yan; Yang, De-sheng; Xu, Xiao-guang

    2005-01-01

    The exhaust gas recirculation (EGR), coupled with a high-collection efficiency particulate trap to simultaneously control smoke and NOx emissions from diesel engines were studied. This ceramic trap developed previously provided the soot cleaning efficiency of 99%, the regeneration efficiency reaches 80% and the ratio of success reaches 97%, which make EGR used in diesel possible. At the presence of EGR, opening of the regeneration control valve of the trap was over again optimized to compensate for the decrease of the oxygen concentration in the exhaust gas resulted from EGR. The results indicated the cleaning efficiency and regeneration performance of the trap were maintained at the same level except that the back pressure increased faster. A new EGR system was developed, which is based on a wide range oxygen (UEGO) sensor. Experiments were carried out under steady state conditions while maintaining the engine speed at 1600 r/min, setting the engine loads at 0%, 25%, 50%, 75% and 100% respectively. Throughout each test the EGR rate was kept at nine different settings and data were taken with the gas analyzer and UEGO sensor. Then, the EGR rate and engine load maps, which showed the tendencies of NOx, CO and HC emissions from diesel engine, were made using the measured data. Using the maps, the author set up the EGR regulation, the relationship between the optimal amounts of EGR flow and the equivalence ratio, sigma, where sigma = 14.5/AFR. PMID:16295898

  1. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    PubMed

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  2. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering

    PubMed Central

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  3. New Insights on NOX Enzymes in the Central Nervous System

    PubMed Central

    Nayernia, Zeynab; Jaquet, Vincent

    2014-01-01

    Abstract Significance: There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. Recent Advances: NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. Critical Issues: The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. Future Directions: Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications. Antioxid. Redox Signal. 20: 2815–2837. PMID:24206089

  4. Delayed coker fractionator advanced control

    SciTech Connect

    Jaisinghani, R.; Minter, B. ); Tica, A.; Puglesi, A.; Ojeda, R. )

    1993-08-01

    In a delayed coking process, as coke drum switches are made, rapid changes occur in both the fractionator feed rate and composition. With conventional control, it is not unusual to see long transient behavior of large swings in both quality and flowrates of coker gas oils. This can extract a heavy economic toll, not only in coker operation, but in the operation of downstream units as the upset is propagated. An advanced process control application (APC) was recently implemented on the coker fractionator at the Yacimentos Petroliferos Fiscales (YPF), Lujan de Cuyo Refinery, in Mendoza, Argentina. This coker fractionator control design was unique as it handled two different operating objectives: control of product qualities via tower temperature profile during normal operation and control of gas oil product flow ratio during drum switch. This combination of control objectives in one multivariable predictive control program was achieved by including special logic to decouple the individual tuning requirements. Also, additional logic was included to unambiguously detect and identify drum switch and drum steam out as discrete events within 30 seconds of their actual occurrence. These discrete events were then used as disturbance variables to minimize fractionator transient behavior. As a performance measure, the overhead temperature was controlled within 2 C to 2.5 C of its target, gas oil flows were stabilized during drum switches and steam generation via pump around was maximized. Overall, implementing advanced control for the delayed coker fractionator resulted in substantial benefits from product quality control, product flow control and minimized energy consumption.

  5. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  6. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.

    PubMed

    Wang, Zhi-Hua; Zhou, Jun-Hu; Zhang, Yan-Wei; Lu, Zhi-Min; Fan, Jian-Ren; Cen, Ke-Fa

    2005-03-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15% approximately 25% reburn heat input, temperature range from 1100 degrees C to 1400 degrees C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 degrees C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 degrees C approximately 1100 degrees C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NO(x) Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  7. Investigation of SO2, HCl and NOx, control from waste incinerators using a novel additive in a pilot scale reactor.

    PubMed

    Williams, P T; Nimmo, W; Patsias, A; Hall, W

    2006-05-01

    A pilot scale experimental investigation of the use of a novel additive, calcium magnesium acetate, for the simultaneous control of SO2, HCl and NOx has been carried out. The pilot scale reactor simulated the furnace and flue gas conditions of a typical large scale waste incinerator and was a vertical 4m high reactor operated at 80 kW. The calcium magnesium acetate was added as a wet spray to the reactor at temperatures above 750 degrees C. The influence of the calcium magnesium acetate dose rate was investigated on the simultaneous removal of SO2, HCl and NOx. Maximum reductions were achieved at a Ca/S ratio (or Ca/Cl ratio) of 2.5 and were, 70% for SO2, 45% for HCl and 18% for NOx for each of the pollutant gases respectively. PMID:16749624

  8. Method for the control of NOx emissions in long-range space travel

    NASA Technical Reports Server (NTRS)

    Xu, X. H.; Shi, Y.; Liu, S. H.; Wang, H. P.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment.

  9. Method for the control of NOx emissions in long-range space travel.

    PubMed

    Xu, X H; Shi, Y; Liu, S H; Wang, H P; Chang, S G; Fisher, J W; Pisharody, S; Moran, M; Wignarajah, K

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment. PMID:14672086

  10. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  11. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  12. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME III: RESIDUAL OIL WALL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives methods and results of an environmental assessment test program at Pacific Gas and Electric's Moss Landing Power Plant, Unit 6. The aim of the program was to measure changes in emissions as a result of applying NOx controls. Emissions of trace elements, organic m...

  13. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME II: PULVERIZED-COAL WALL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives methods and results of an environmental assessment test program at Gulf Power's Crist Power Plant, Unit 7. The aim of the program was to measure multimedia emissions changes as a result of applying NOx controls. Emissions of trace elements, organic materials, sul...

  14. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A SPARK-IGNITED LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results for a spark-ignited, largebore, reciprocating, internal-combustion engine operating both under baseline (normal) conditions, and with combustion modification controls to reduce NOx emissions to levels below the proposed new source per...

  15. SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-RTP-P-593a Ghorishi, S.B., Singer, C., Jozewicz, W., Sedman*, C.B., and Srivastava*, R.K. Simultaneous Control of Hg(0), SO2, and NOx by Novel Oxidized Calcium-Based Sorbents. Journal of Air & Waste Management Association 52 (3):273-278 (2002). EPA/600/J-02/189, http://w...

  16. RETROFIT COSTS OF SO2 AND NOX CONTROL AT 200 U.S. COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper gives results of a study to improve engineering applying cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2 emitting coal-fired utility plants in the U.S. To accomplish this objective, procedures were d...

  17. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME I - INTRODUCTION AND METHODOLOGY

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  18. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  19. PROCEEDINGS: 1987 JOINT SYMPOSIUM ON STATIONARY SOURCE COMBUSTION NOX CONTROL. HELD IN NEW ORLEANS, LOUISIANA ON MARCH 23-26, 1987

    EPA Science Inventory

    The two-volume proceedings document the 1987 Joint (EPA and EPRI) Symposium on Stationary Combustion NOx Control, held March 23-26, 1987 in New Orleans, LA. The 49 presentations covered: low NOx combustion developments (e.g., reburning and burner design modifications); coal-, oil...

  20. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  1. NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in Neurospora crassa▿ †

    PubMed Central

    Cano-Domínguez, Nallely; Álvarez-Delfín, Karen; Hansberg, Wilhelm; Aguirre, Jesús

    2008-01-01

    We have proposed that reactive oxygen species (ROS) play essential roles in cell differentiation. Enzymes belonging to the NADPH oxidase (NOX) family produce superoxide in a regulated manner. We have identified three distinct NOX subfamilies in the fungal kingdom and have shown that NoxA is required for sexual cell differentiation in Aspergillus nidulans. Here we show that Neurospora crassa NOX-1 elimination results in complete female sterility, decreased asexual development, and reduction of hyphal growth. The lack of NOX-2 did not affect any of these processes but led instead to the production of sexual spores that failed to germinate, even in the presence of exogenous oxidants. The elimination of NOR-1, an ortholog of the mammalian Nox2 regulatory subunit gp67phox, also caused female sterility, the production of unviable sexual spores, and a decrease in asexual development and hyphal growth. These results indicate that NOR-1 is required for NOX-1 and NOX-2 functions at different developmental stages and establish a link between NOX-generated ROS and the regulation of growth. Indeed, NOX-1 was required for the increased asexual sporulation previously observed in mutants without catalase CAT-3. We also analyzed the function of the penta-EF calcium-binding domain protein PEF-1 in N. crassa. Deletion of pef-1 resulted in increased conidiation but, in contrast to what occurs in Dictyostelium discoideum, the mutation of this peflin did not suppress the phenotypes caused by the lack of NOX-1. Our results support the role of ROS as critical cell differentiation signals and highlight a novel role for ROS in regulation of fungal growth. PMID:18567788

  2. Understanding the Controls over NOx Loss in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Romer, P.; Duffey, K.; Wooldridge, P. J.; Feiner, P. A.; Zhang, L.; Koss, A.; Olson, K. F.; Wild, R. J.; Brune, W. H.; De Gouw, J. A.; Goldstein, A. H.; Brown, S. S.; Cohen, R. C.

    2014-12-01

    The Southeast United States is an ideal place to study the interactions of anthropogenic and biogenic NOx with high concentrations of biogenic organic compounds. NOx loss processes under these conditions are not well understood and have a large impact on ozone formation and the products of VOC oxidation. We use measurements collected during summer 2013 at a rural forest in Alabama as part of the Southern Oxidant and Aerosol Study (SOAS) to calculate NOx loss rates. In this low-NOx, high-BVOC region, nitric acid formation is a minor loss process during the day and is nearly negligible during the night. Formation of alkyl nitrates, especially isoprene nitrates during the day and monoterpene nitrates during the night, accounts for the large majority(over 80 percent) of NOx loss in this region. This stands out compared to other regions, which have generally either found the alkyl nitrate and nitric acid formation to be roughly equal in importance or nitric acid formation to be the dominant channel for NOx loss. The rapid formation of alkyl nitrates leads to an average afternoon NOx lifetimes of under three hours, and makes the fate of alkyl nitrates crucial for understanding the NOy budget.

  3. LOW NOX COMBUSTION CONCEPTS FOR ADVANCED POWER GENERATION SYSTEMS FIRING LOW-BTU GAS

    EPA Science Inventory

    The report gives results of an analysis of several advanced power generating concepts firing low-Btu gasified coal. A combined gas-turbine/steam-cycle power plant with integrated gasifier was the most promising from fuel utilization and economic viewpoints. Two representative com...

  4. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  5. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  6. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    SciTech Connect

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.W.; Pisharody, S.; Moran, M.J.; Wignarajah, K.

    2001-12-21

    The use of the activated carbon produced from rice hulls to control NOx emissions for the future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 C and 750 C. The burnoff of 61.8% was found at 700 C in pyrolysis and 750 C in activation. The BET surface area of the activated carbon from rice hulls was determined to be 172 m{sup 2}/g when prepared at 700 C. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of NO in the flue gas was removed for more than one and a half hours when 10% oxygen was present and using a ratio of the carbon weight to the flue gas flow rate (W/F) of 15.4 g-min/L. The reduction of the adsorbed NO to form N{sub 2} can be effectively accomplished under anaerobic conditions at 550 C. For NO saturated activated carbon, the loss of carbon mass was determined to be about 0.16% of the activated carbon per cycle of regeneration. The reduction of the adsorbed NO also regenerates the activated carbon. The regenerated activated carbon exhibits improved NO adsorption efficiency.

  7. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-01

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. PMID:23550802

  8. The kinematic and microphysical control of lightning rate, extent, and NOX production

    NASA Astrophysics Data System (ADS)

    Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.

    2016-07-01

    This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.

  9. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    NASA Technical Reports Server (NTRS)

    Xu, X. H.; Shi, Y.; Kwak, D.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M. J.; Wignarajah, K.

    2003-01-01

    The use of the activated carbon produced from rice hulls to control NOx emissions for future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 and 750 degrees C. A burnoff of 61.8% was found at 700 degrees C in pyrolysis and 750 degrees C in activation. The BET surface area of the activated carbon from rice hulls was determined to be 172 m2/g when prepared at 700 degrees C. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 1.5 h when 10% oxygen was present and the ratio of the carbon weight to the flue gas flow rate (W/F) was 15.4 g min/L. Reduction of the adsorbed NO to form N2 could be effectively accomplished under anaerobic conditions at 550 degrees C. The adsorption capacity of NO on the activated carbon was found to be 5.02 mg of NO/g of carbon. The loss of carbon mass was determined to be about 0.16% of the activated carbon per cycle of regeneration if the regeneration occurred when the NO in the flue gas after the carbon bed reached 4.8 ppm, the space maximum allowable concentration. The reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency.

  10. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  11. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    EPA Science Inventory

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  12. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    PubMed Central

    Manea, Simona-Adriana; Constantin, Alina; Manda, Gina; Sasson, Shlomo; Manea, Adrian

    2015-01-01

    NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. PMID:26133261

  13. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  14. Solidification process control for advanced superalloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Dreshfield, R. L.

    1982-01-01

    The importance of understanding and controlling the basic solidification process in high temperature alloy technology as applied to gas turbine engine production is discussed. Resultant tailoring of the superalloy macro- and microstructure offers significant potential for continued advances in superalloy use temperatures in turbine engines. Atomized superalloy powders, rapidly solidified superalloys, microstructural control, and advanced superalloys are discussed.

  15. Kinetic Control of O2 Reactivity in H-NOX Domains.

    PubMed

    Sun, Yuhan; Benabbas, Abdelkrim; Zeng, Weiqiao; Muralidharan, Sandhya; Boon, Elizabeth M; Champion, Paul M

    2016-06-23

    Transient absorption, resonance Raman, and vibrational coherence spectroscopies are used to investigate the mechanisms of NO and O2 binding to WT Tt H-NOX and its P115A mutant. Vibrational coherence spectra of the oxy complexes provide clear evidence for the enhancement of an iron-histidine mode near 217 cm(-1) following photoexcitation, which indicates that O2 can be dissociated in these proteins. However, the quantum yield of O2 photolysis is low, particularly in the wild type (≲3%). Geminate recombination of O2 and NO in both of these proteins is very fast (∼1.4 × 10(11) s(-1)) and highly efficient. We show that the distal heme pocket of the H-NOX system forms an efficient trap that limits the O2 off-rate and determines the overall affinity. The distal pocket hydrogen bond, which appears to be stronger in the P115A mutant, may help retard the O2 ligand from escaping into the solvent following either photoinduced or thermal dissociation. This, along with a strengthening of the Fe-O2 bond that is correlated with the significant heme ruffing and saddling distortions, explains the unusually high O2 affinity of WT Tt H-NOX and the even higher affinity found in the P115A mutant. PMID:27229134

  16. MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOX CONTROL

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-17

    Although the SCR technology exhibits higher NOx reduction efficiency over a wider range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NOx reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional detailed kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas.

  17. Redox Modulation of FAK Controls Melanoma Survival - Role of NOX4

    PubMed Central

    Ribeiro-Pereira, Cristiane; Moraes, João Alfredo; Souza, Mariele de Jesus; Laurindo, Francisco R.; Arruda, Maria Augusta; Barja-Fidalgo, Christina

    2014-01-01

    Studies have demonstrated that reactive oxygen species (ROS) generated by NADPH oxidase are essential for melanoma proliferation and survival. However, the mechanisms by which NADPH oxidase regulates these effects are still unclear. In this work, we investigate the role of NADPH oxidase-derived ROS in the signaling events that coordinate melanoma cell survival. Using the highly metastatic human melanoma cell line MV3, we observed that pharmacological NADPH oxidase inhibition reduced melanoma viability and induced dramatic cellular shape changes. These effects were accompanied by actin cytoskeleton rearrangement, diminished FAKY397 phosphorylation, and decrease of FAK-actin and FAK-cSrc association, indicating disassembly of focal adhesion processes, a phenomenon that often results in anoikis. Accordingly, NADPH oxidase inhibition also enhanced hypodiploid DNA content, and caspase-3 activation, suggesting activation of the apoptotic machinery. NOX4 is likely to be involved in these effects, since silencing of NOX4 significantly inhibited basal ROS production, reduced FAKY397 phosphorylation and decreased tumor cell viability. Altogether, the results suggest that intracellular ROS generated by the NADPH oxidase, most likely NOX4, transmits cell survival signals on melanoma cells through the FAK pathway, maintaining adhesion contacts and cell viability. PMID:24911159

  18. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  19. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  20. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  1. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    PubMed

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating. PMID:22289082

  2. KINETIC MODELING OF NOX FORMATION AND DESTRUCTION AND COMBUSTIBLES BURNOUT

    EPA Science Inventory

    The report describes a model of the gas-phase chemistry involved in the combustion of simple hydrocarbon fuels and the interconversion of fixed nitrogen species. One focus of the work was on modeling the chemistry involved in reburning and other advanced NOx control strategies. A...

  3. Issues in advanced automation for manipulator control

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1976-01-01

    This paper provides a brief description and analysis of the main issues in advanced autonomous control of manipulators as seen from a system point of view. The nature of manipulation is analyzed at some depth. A general multilevel structure is outlined for manipulator control organization which includes the human operator at the top level of the control structure. Different approaches to the development of advanced automation of mechanical arms are summarized. Recent work in the JPL teleoperator project is described, including control system, force/torque sensor, and control software development. Some results from control experiments are summarized.

  4. A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert; Wey, Changlie; Laing, Peter; Mansour, Adel

    2002-01-01

    A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.

  5. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  6. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    PubMed

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  7. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  8. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  9. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  10. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. PMID:26856444

  11. Real-Time Control of Lean Blowout in a Turbine Engine for Minimizing No(x) Emissions

    NASA Technical Reports Server (NTRS)

    Zinn, Ben

    2004-01-01

    This report describes research on the development and demonstration of a controlled combustor operates with minimal NO, emissions, thus meeting one of NASA s UEET program goals. NO(x) emissions have been successfully minimized by operating a premixed, lean burning combustor (modeling a lean prevaporized, premixed LPP combustor) safely near its lean blowout (LBO) limit over a range of operating conditions. This was accomplished by integrating the combustor with an LBO precursor sensor and closed-loop, rule-based control system that allowed the combustor to operate far closer to the point of LBO than an uncontrolled combustor would be allowed to in a current engine. Since leaner operation generally leads to lower NO, emissions, engine NO, was reduced without loss of safety.

  12. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  13. Advanced Thermal HPT Clearance Control

    NASA Technical Reports Server (NTRS)

    WojciechVoytek, Sak

    2006-01-01

    OBJECTIVE: Develop a fast acting HPT Active Clearance Control System to improve engine efficiency and reduce emissions CHALLENGE: Reduction of HPT blade clearance throughout engine operation System complexity, reliability and cost must remain comparable or surpass today s engines Reduced clearance may increase possibility of rubs

  14. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  15. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  16. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  17. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  18. Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-10-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round III, the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System (IDECS), as described in a Report to Congress (U.S. Department of Energy 1991). The desire to reduce emissions of nitrogen oxides (NO, nitric oxide, and NO{sub 2}, nitrogen dioxide, collectively referred to as NO{sub x}) and sulfur dioxide (SO{sub 2}) by up to 70 percent at a minimum capital expenditure, while limiting waste production to dry solids that can be handled by conventional ash-removal equipment, prompted Public Service Company of Colorado (PSCC) to submit the proposal for the IDECS project. In March 1991, PSCC entered into a cooperative agreement with DOE to conduct the study. The project was sited at PSCC's Arapahoe Steam Electric Generating Station in Denver, Colorado. The purpose of this CCT project was to demonstrate the reduction of NO{sub x} and SO{sub 2} emissions by installing a combination of existing and emerging technologies, which were expected to work synergistically to reduce emissions. The technologies were low-NO{sub x} burners (LNBS), overfire air (OFA), and selective noncatalytic reduction (SNCR) for NO{sub x} reduction; and dry sorbent injection (DSI), both with and without flue-gas humidification (FGH), for SO{sub 2} reduction. DOE provided 50 percent of the total project funding of $26.2 million.

  19. NOx adsorber and method of regenerating same

    SciTech Connect

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  20. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  1. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX allowance allocations to CAIR... 31 of the control period after the control period in which a CAIR NOX opt-in unit enters the CAIR NOX Annual Trading Program under § 97.184(g) and October 31 of each year thereafter, the permitting...

  2. 40 CFR 96.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX allowance allocations to CAIR... later than October 31 of the control period after the control period in which a CAIR NOX opt-in unit enters the CAIR NOX Annual Trading Program under § 96.184(g) and October 31 of each year thereafter,...

  3. ADVANCED SORBENTS FOR CONTROL OF MULTIPLE AIR POLLUTANTS

    EPA Science Inventory

    EPA's Clean Air Interstate Rule (CAIR)and Utility MACT rulemaking are focusing on future reductions of NOX, SO2, and mercury emissions from power plants. Multipollutant sorbents could provide a cost-effective approach to control these emissions. This research will develop, charac...

  4. Using OPC technology to support the study of advanced process control.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2015-03-01

    OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. PMID:25702044

  5. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  6. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  7. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  8. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  9. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

    PubMed Central

    Sokolovska, Anna; Becker, Christine E.; Eddie Ip, WK; Rathinam, Vijay A.K.; Brudner, Matthew; Paquette, Nicholas; Tanne, Antoine; Vanaja, Sivapriya K.; Moore, Kathryn J.; Fitzgerald, Katherine A.; Lacy-Hulbert, Adam; Stuart, Lynda M.

    2013-01-01

    Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense. PMID:23644505

  10. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    SciTech Connect

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  11. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST): VOLUME 2. POWER PLANT INTEGRATION, ECONOMICS, AND FULL-SCALE EXPERIENCE

    EPA Science Inventory

    The proceedings document the First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held November 13-16, 1984, in San Diego, CA. The symposium, sponsored jointly by EPRI and EPA, was the first meeting of its kind devoted solely to the discussion of emissi...

  12. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME III - SITE SPECIFIC STUDIES FOR IN, KY, MA, MD, MI, MN

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  13. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME V - SITE SPECIFIC STUDIES FOR PA, SC, TN, VA, WI, WV

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  14. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME II - SITE SPECIFIC STUDIES FOR AL, DE. FL, GA, IL

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  15. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME IV - SITE SPECIFIC STUDIES FOR MO, MS, NC, NH, NJ, NY, OH

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  16. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  17. Characterization of Regional Marginal Abatement Cost Curves for NOx that Incorporate Control Measures, Renewable Energy, Energy Efficiency and Fuel Switching

    EPA Science Inventory

    Anthropogenic nitrogen oxides (NOx) are emitted when fossil fuels are combusted. In the atmosphere, NOx reacts with volatile organic compounds (VOCs) to produce tropospheric ozone, a component of photochemical smog. In most parts of the country, strategies for reducing ozone gene...

  18. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.; Crawford, James H.

    2010-01-01

    We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.

  19. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  20. Advanced control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  1. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... allocations will be the lesser of: (i) The CAIR NOX opt-in unit's baseline NOX emissions rate (in lb/mmBtu... emissions limitation applicable to the CAIR NOX opt-in unit at any time during the control period for which... baseline NOX emissions rate (in lb/mmBtu) determined under § 97.184(d); or (B) The most stringent State...

  2. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... allocations will be the lesser of: (i) The CAIR NOX opt-in unit's baseline NOX emissions rate (in lb/mmBtu... emissions limitation applicable to the CAIR NOX opt-in unit at any time during the control period for which... baseline NOX emissions rate (in lb/mmBtu) determined under § 97.184(d); or (B) The most stringent State...

  3. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  4. Yield advances in peanut - weed control effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements in weed management are a contributing factor to advancements in peanut yield. Widespread use of vacuum planters and increased acceptance of narrow row patterns enhance weed control by lessening bareground caused by skips and promoting quick canopy closure. Cultivation was traditionall...

  5. Microprocessor controlled advanced battery management systems

    NASA Technical Reports Server (NTRS)

    Payne, W. T.

    1978-01-01

    The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.

  6. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  7. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  8. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  9. NOx analyser interefence from alkenes

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Lee, J. D.; Vazquez, M.; Munoz, A.; Rodenas, M.

    2012-04-01

    Nitrogen oxides (NO and NO2, collectively NOx) are critical intermediates in atmospheric chemistry. NOx abundance controls the levels of the primary atmospheric oxidants OH, NO3 and O3, and regulates the ozone production which results from the degradation of volatile organic compounds. NOx are also atmospheric pollutants in their own right, and NO2 is commonly included in air quality objectives and regulations. In addition to their role in controlling ozone formation, NOx levels affect the production of other pollutants such as the lachrymator PAN, and the nitrate component of secondary aerosol particles. Consequently, accurate measurement of nitrogen oxides in the atmosphere is of major importance for understanding our atmosphere. The most widely employed approach for the measurement of NOx is chemiluminescent detection of NO2* from the NO + O3 reaction, combined with NO2 reduction by either a heated catalyst or photoconvertor. The reaction between alkenes and ozone is also chemiluminescent; therefore alkenes may contribute to the measured NOx signal, depending upon the instrumental background subtraction cycle employed. This interference has been noted previously, and indeed the effect has been used to measure both alkenes and ozone in the atmosphere. Here we report the results of a systematic investigation of the response of a selection of NOx analysers, ranging from systems used for routine air quality monitoring to atmospheric research instrumentation, to a series of alkenes ranging from ethene to the biogenic monoterpenes, as a function of conditions (co-reactants, humidity). Experiments were performed in the European Photoreactor (EUPHORE) to ensure common calibration, a common sample for the monitors, and to unequivocally confirm the alkene (via FTIR) and NO2 (via DOAS) levels present. The instrument responses ranged from negligible levels up to 10 % depending upon the alkene present and conditions used. Such interferences may be of substantial importance

  10. Architectures & requirements for advanced weapon controllers.

    SciTech Connect

    McMurtrey, Brian J.; Klarer, Paul Richard; Bryan, Jon R.

    2004-02-01

    This report describes work done in FY2003 under Advanced and Exploratory Studies funding for Advanced Weapons Controllers. The contemporary requirements and envisioned missions for nuclear weapons are changing from the class of missions originally envisioned during development of the current stockpile. Technology available today in electronics, computing, and software provides capabilities not practical or even possible 20 years ago. This exploratory work looks at how Weapon Electrical Systems can be improved to accommodate new missions and new technologies while maintaining or improving existing standards in nuclear safety and reliability.

  11. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  12. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  13. Exposure tool control for advanced semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Matsuyama, Tomoyuki

    2015-08-01

    This is a review paper to show how we control exposure tool parameters in order to satisfy patterning performance and productivity requirements for advanced semiconductor lithography. In this paper, we will discuss how we control illumination source shape to satisfy required imaging performance, heat-induced lens aberration during exposure to minimize the aberration impact on imaging, dose and focus control to realize uniform patterning performance across the wafer and patterning position of circuit patterns on different layers. The contents are mainly about current Nikon immersion exposure tools.

  14. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE PAGESBeta

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  15. Factors controlling global tropospheric ozone: roles of isoprene chemistry, tropospheric halogen chemistry, convection, and lightning NOx sources

    NASA Astrophysics Data System (ADS)

    Hu, L.; Jacob, D. J.; Zhang, Y.; Liu, X.; Zhang, L.

    2015-12-01

    Ozone is central to our understanding of tropospheric oxidant chemistry through its driving of radical cycles. Yet our understanding of factors determining its spatial distribution and long-term trend is still poor. In this work, we use the GEOS-Chem chemical transport model as a platform to test our current knowledge of key factors controlling tropospheric ozone. We evaluate the most recent GEOS-Chem simulation against in-situ data using ozonesonde networks from WOUDC and NOAA-GMD and using aircraft observations from MOZAIC/IAGOS, to examine the vertical distribution of modeled tropospheric ozone. Satellite observed ozone data from OMI (Ozone Monitoring Instrument) are used to assess the spatial distribution of the predicted ozone concentrations. We also examine different versions of GEOS-Chem outputs from historical benchmarks and from sensitivity runs (such as changing in chemistry and meteorological fields) for their capabilities to reproduce observed tropospheric ozone patterns. In this presentation, we interpret these analyses in terms of present understanding in isoprene chemistry, tropospheric bromine chemistry, lightning NOx sources and deep convection, and examine their implications for key model processes controlling the abundance and variability of global tropospheric ozone.

  16. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  17. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    SciTech Connect

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  18. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  19. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  20. Control definition study for advanced vehicles

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  1. SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane

    NASA Astrophysics Data System (ADS)

    Akimoto, Hajime; Kurokawa, Jun`ichi; Sudo, Kengo; Nagashima, Tatsuya; Takemura, Toshihiko; Klimont, Zbigniew; Amann, Markus; Suzuki, Katsunori

    2015-12-01

    The emissions of NOx and CO2 in East Asia (Northeast and Southeast Asia) contribute more than 30% of the global total since 2008, and consequently the control of air pollutants and CO2 alleviating regional air pollution and global climate change is of great concern of not only in this region but also worldwide. In order to arrive at a rational view of the short-lived climate pollutants (SLCPs) co-control approach in East Asia, the effectiveness of the reduction of NOx/NMVOC and CH4 emissions for the reduction of tropospheric O3 has been evaluated by individual and simultaneous 50%-reduction of the emissions in Northeast Asia (NEA) using both a global chemical climate model (CHASER/SPRINTARS-MIROC), and a regional chemical transport model (WRF-CMAQ). The simultaneous reduction of NOx/NMVOC and CH4 emissions was found to reduce the regional concentration of surface O3 in NEA, and globally averaged net radiative forcing most effectively. Global mean RF and regional air quality change were also evaluated for the climate stabilization scenario ("450-ppm"), and climate stabilization with additional air pollution mitigation strengthened scenario ("450-ppm-cntr") developed in IIASA with the aid of GAINS model. In the 450 ppm-cntr scenario, emissions of NOx NMVOC, BC and OC were further reduced respectively, for East Asia from the emissions in 450 ppm. The improvement of air quality as well as the mitigation of climate change would grant to the basis of the SLCP co-control approach in East Asia.

  2. WALL-FIRED BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW NOX BURNERS

    EPA Science Inventory

    The report assesses the impact of Limestone Injection Multistage Burner (LIMB) technology on wall-fired utility boilers for both new and retrofit designs. Recent attention has focused on dry sorbent sulfur dioxide (SO2) control technology which, in conjunction with low-nitrogen-o...

  3. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  4. SIMULTANEOUS CONTROL OF HGO, SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). (NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents...

  5. SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). {NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents ...

  6. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  7. Advanced combustor design concepts to control NOx and air toxics. Quarterly report, July--September 1995

    SciTech Connect

    Pershing, D.W.; Lighty, J.; Spinti, J.

    1995-10-31

    The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics. Existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. Since they will ultimately be a recipient of the enhanced design methodology, they are also providing ongoing review of the practical applicability of the tools being developed. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sub x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultra-low NO{sub x} conditions because it is possible that such conditions will alter the fate of volatile and semivolatile metal species and the emission of heavy hydrocarbons. Finally the University of Utah is responsible for the development of the improved NO{sub x} and carbon burnout submodels.

  8. Advanced control design for hybrid turboelectric vehicle

    NASA Astrophysics Data System (ADS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-08-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  9. The Observed Response of Ozone Monitoring Instrument (OMI) NO2 Columns to NOx Emission Controls on Power Plants in the United States: 2005-2011

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; deFoy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.

    2013-01-01

    We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005e2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.

  10. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  11. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  12. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  13. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A COMPRESSION IGNITION LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results from field tests of the exhaust gas from a large-bore, compression-ignition reciprocating engine burning diesel fuel. An objective of the tests was to evaluate the operating efficiency of the engine with combustion modification NOx co...

  14. EFFECTS OF FUEL PROPERTIES AND ATOMIZATION PARAMETERS ON NOX CONTROL FOR HEAVY LIQUID FUEL FIRED PACKAGE BOILERS

    EPA Science Inventory

    The report gives information necessary for development and generalization of low-NOx oil burner technology for package firetube boilers. It gives results of experiments at two scales: 20 kW and 1.08 MW heat input. At 20 kW, effects of fuel properties were examined in tests of 3 d...

  15. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOX and SO₂ removal with hydrogen peroxide.

    PubMed

    Ding, Jie; Zhong, Qin; Zhang, Shule; Cai, Wei

    2015-01-01

    A novel, simple, reproducible and low-cost strategy is introduced for the size- and shape-controlled synthesis of iron-aluminum mixed oxide nanoparticles (NIAO(x/y)). The as-synthesized NIAO(x/y) catalyze decomposition of H2O2 yielding highly reactive hydroxyl radicals (OH) for NOX and SO2 removal. 100% SO2 removal is achieved. NIAO(x/y) with Fe/Al molar ratio of 7/3 (NIAO(7/3)) shows the highest NOX removal of nearly 80% at >170°C, whereas much lower NOX removal (<63%) is obtained for NIAO(3/7). The melting of aluminum oxides in NIAO(7/3) promotes the formation of lamellar products, thus improving the specific surface areas and mesoporous distribution, benefiting the production of OH radicals. Furthermore, the NIAO(7/3) leads to the minor increase of points of zero charges (PZC), apparent enhancement of FeOH content and high oxidizing ability of Fe(III), further improving the production of OH radicals. However, the NIAO(3/7) results in the formation of aluminum surface-enriched spherical particles, thus decreasing the surface atomic ratio of iron oxides, decreasing OH radical production. More importantly, the generation of FeOAl causes the decline of active sites. Finally, the catalytic decomposition of H2O2 on NIAO(x/y) is proposed. And the well catalytic stability of NIAO(7/3) is obtained for evaluation of 30 h. PMID:25464305

  16. Improved low NOx firing systems for pulverized coal combustion

    SciTech Connect

    McCarthy, K.; Laux, S.; Grusha, J.; Rosin, T.; Hausman, G.L.

    1999-07-01

    More stringent emission limits or the addition of post combustion NOx control create the need for improvements of NOx emissions from pulverized coal boilers. Many boilers retrofitted with Low NOx technology during Phase 1 and Phase 2 of the CAAA fail or marginally meet their requirements. Technical solutions range from addition of overfire air and state-of-the-art low NOx burners to low cost additions of combustion enhancements. Regardless of the combustion NOx control method used, stoichiometries local to the burners must be maintained at the designed values at all times to provide high NOx performance at low efficiency loss due to unburned fuel. This paper describes Foster Wheeler's approach to NOx emission improvements for existing low NOx firing systems. The technology to measure air and coal flow individually for each burner and to control the parameters for optimum combustion are presented and discussed. Field experience shows the installation and advantages of the technology.

  17. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    are significantly increased. More comprehensive analysis of the effects of SCR on diesel NOx and N2O emissions will be reported in the presentation. These on-road emission studies indicate that advanced emission control systems such as DPF and SCR dramatically reduce PM and NOx emissions, but can cause undesirable side effects like increased NO2 and N2O emissions.

  18. Sampling for advanced overlay process control

    NASA Astrophysics Data System (ADS)

    Choi, DongSub; Izikson, Pavel; Sutherland, Doug; Sherman, Kara; Manka, Jim; Robinson, John C.

    2008-03-01

    Overlay metrology and control have been critical for successful advanced microlithography for many years, and are taking on an even more important role as time goes on. Due to throughput constraints it is necessary to sample only a small subset of overlay metrology marks, and typical sample plans are static over time. Standard production monitoring and control involves measuring sufficient samples to calculate up to 6 linear correctables. As design rules shrink and processing becomes more complex, however, it is necessary to consider higher order modeled terms for control, fault detection, and disposition. This in turn, requires a higher level of sampling. Due to throughput concerns, however, careful consideration is needed to establish a base-line sampling, and higher levels of sampling can be considered on an exception-basis based on automated trigger mechanisms. The goal is improved scanner control and lithographic cost of ownership. This study addresses tools for establishing baseline sampling as well as motivation and initial results for dynamic sampling for application to higher order modeling.

  19. Assessment of control technologies for reducing emissions of SO sub 2 and NOx from existing coal-fired utility boilers. Final report, January 1987-December 1989

    SciTech Connect

    White, D.M.; Maibodi, M.

    1990-09-01

    The report reviews available information and estimated costs on 15 emission control technology categories applicable to existing coal-fired electric utility boilers. The categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies still undergoing pilot scale and commercial demonstration. The status of each technology is reviewed relative to four elements: Description--how the technology works; Applicability--its applicability to existing plants; Performance--the expected emissions reduction; and Costs--the capital cost, busbar cost, and cost per ton of SO2 and NOx removed. Costs are estimated for new and retrofit applications for various boiler sizes, operating characteristics, fuel qualities, and boiler retrofit difficulties.

  20. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    SciTech Connect

    Eric D. Wachsman

    2005-05-29

    We have made great progress in both developing solid state sensors for coal combustion control and understanding the mechanism by which they operate. We have fabricated and tested numerous sensors and identified the role electrode microstructure plays in sensor response. We have developed both p-type (La{sub 2}CuO{sub 4}) and n-type (WO{sub 3}) semiconducting NO{sub x} sensing electrodes. We have demonstrated their respective sensing behavior (sensitivities and cross-sensitivities), related this behavior to their gas adsorption/desorption behavior and catalytic activity, and in so doing verified that our proposed Differential Electrode Equilibria is a more comprehensive sensing mechanism. These investigations and their results are summarized below. The composition and microstructure of the sensing electrode is the key parameters that influence the sensing performance. We investigated the effect of electrode microstructure on the NO{sub x} sensitivity and response time using a La{sub 2}CuO{sub 4}-based potentiometric sensor. Temperature dependence, cross-sensitivity and selectivities of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. In order to optimize the sensor electrode microstructure, powders were prepared using four different powder synthesis routes, resulting in different particle size distributions and BET surface areas. Different sintering conditions were also applied. The microstructure of electrodes, synthesized with the same composition, has a dramatic effect on both sensitivity and response time of potentiometric NO sensors, showing that large surface areas generate a porous morphology with smaller

  1. LOW-CONCENTRATION NOX EMISSIONS MEASUREMENT

    EPA Science Inventory

    The paper gives results of a recent series of low-concentration nitrogen oxides (NOx) emission measurements, made by Midwest Research Institute (MRI) during U.S. EPA-sponsored Environmental Technology Verification (ETV) test of a NOx control system called Xonon (TM) Cool Combust...

  2. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  3. The Advanced Controls Program at Oak Ridge National Laboratory

    SciTech Connect

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor (ALWR) and high temperature gas-cooled reactor (HTGR) designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs.

  4. Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines

    NASA Astrophysics Data System (ADS)

    Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.

    2016-03-01

    A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

  5. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high

  6. Sampling for advanced overlay process control

    NASA Astrophysics Data System (ADS)

    Kato, Cindy; Kurita, Hiroyuki; Izikson, Pavel; Robinson, John C.

    2009-03-01

    Overlay metrology and control have been critical for successful advanced microlithography for many years, and are taking on an even more important role as time goes on. Due to throughput constraints it is necessary to sample only a small subset of overlay metrology marks, and typical sample plans are static over time. Standard production monitoring and control involves measuring sufficient samples to calculate up to 6 linear correctables. As design rules shrink and processing becomes more complex, however, it is necessary to consider higher order models with additional degrees of freedom for control, fault detection, and disposition. This in turn, requires a higher level of sampling and a careful consideration of flyer removal. Due to throughput concerns, however, careful consideration is needed to establish a baseline sampling plan using rigorous statistical methods. This study focuses on establishing a 3x nm node immersion lithography production-worthy sampling plan for 3rd order modeling, verification of the accuracy, and proof of robustness of the sampling. In addition we discuss motivation for dynamic sampling for application to higher order modeling.

  7. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  8. NOx production in lightning

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Stedman, D. H.; Dickerson, R. R.; Rusch, D. W.; Cicerone, R. J.

    1977-01-01

    The rate of odd nitrogen (NOx) production by electrical discharge through air was theoretically and experimentally estimated to be about 60,000 trillion NOx molecules per joule. The theoretical treatment employed a cylindrical shock-wave solution to calculate the rate of NOx production in high temperature reactions. The limits obtained were experimentally verified by subjecting a regulated air flow to electrical discharges followed by a measurement of NOx production using chemiluminescence. These measurements also indicated that water vapor content has no detectable effect on the NOx production rate. The results imply that lightning is a significant source of NOx, producing about 30-40 megatons NOx-N per year and possibly accounting for as much as 50% of the total atmospheric NOx source.

  9. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false NOX converter check. 91.319 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not...

  10. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX converter check. 91.319 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not...

  11. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX... 40 Protection of Environment 21 2012-07-01 2012-07-01 false NOX converter check. 91.319 Section 91... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not...

  12. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  13. Control Software for Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.

    2006-01-01

    Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.

  14. System and method for diagnosing EGR performance using NOx sensor

    DOEpatents

    Mazur, Christopher John

    2003-12-23

    A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.

  15. FACTORS AND UNCERTAINTIES THAT IMPACT ECONOMIC ASSESSMENTS OF NON-THERMAL PLASMA BASED DEVICES TO CONTROL NOX GENERATED FROM JET ENGINE AND CRUISE MISSILE TEST FACILITIES

    EPA Science Inventory

    Federal regulations concerning the generation and release of many gaseous pollutants, including NOxs, are becoming increasingly more stringent. A number of diverse military operations generate large amounts of NOxs on an episodic basis. Therefore, the military is motivated to acq...

  16. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    NASA Astrophysics Data System (ADS)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  17. Advanced Control and Power System (ACAPS) Technology Program

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Groom, N. J.

    1983-01-01

    The advanced control and power system (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  18. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  19. Impact of Advance Control on Microturbine Generation System Performance

    NASA Astrophysics Data System (ADS)

    Kamil Mat Hussin, Ahmad; Zamri Che Wanik, Mohd

    2013-06-01

    Advance control employed in microturbine generation system (MTGS) is expected to improve its performance in responding to grid faults. This paper compares the effect of advance control of MTGS power conversion topology on the performance in riding through the grid faults. The analysis and investigation study through simulation shows there is no significant different on MTGS output performance even advance control is employed for its rectifier.

  20. Application of multifuel reburn for NOx control on a 300 MWe boiler in Ukraine. Report for October 1994--December 1995

    SciTech Connect

    Hall, R.E.; Miller, C.A.; Payne, R.; Yakushin, E.; Mospan, J.

    1996-01-01

    The paper gives results of a program to design two reburn systems for operation on 300 MWe, coal-fired utility boilers operating in Ukraine. One is a natural-gas-fired system designed by ABB Combustion Engineering, installed in September 1992, and continuing to operate with a 50 percent nitrogen oxides (NOx) reduction. The paper summarizes the natural gas reburn test results. Emphasis is placed on the second demonstration, a multifuel (natural gas, oil, and/or coal) reburn system for which a conceptual design has been completed by Energy and Environmental Research Corp. Engineering drawings are being prepared by the Karkov Design Bureau in Ukraine.

  1. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer deadline. The CAIR NOX Ozone Season allowances are available to be deducted for compliance with a source's CAIR NOX Ozone Season emissions limitation for a control period...

  2. 40 CFR 97.411 - Timing requirements for TR NOX Annual allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for TR NOX Annual... TR NOX Annual Trading Program § 97.411 Timing requirements for TR NOX Annual allowance allocations. (a) Existing units. (1) TR NOX Annual allowances are allocated, for the control periods in 2012...

  3. 40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in...

  4. 40 CFR 97.411 - Timing requirements for TR NOX Annual allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for TR NOX Annual... TR NOX Annual Trading Program § 97.411 Timing requirements for TR NOX Annual allowance allocations. (a) Existing units. (1) TR NOX Annual allowances are allocated, for the control periods in 2012...

  5. 40 CFR 97.411 - Timing requirements for TR NOX Annual allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for TR NOX Annual... TR NOX Annual Trading Program § 97.411 Timing requirements for TR NOX Annual allowance allocations. (a) Existing units. (1) TR NOX Annual allowances are allocated, for the control periods in 2012...

  6. 40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in...

  7. 40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in...

  8. 40 CFR 96.88 - NOX allowance allocations to opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section multiplied by the lesser of: (i) The NOX Budget opt-in source's baseline NOX emissions... emissions limitation applicable to the NOX Budget opt-in source during the control period. ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX allowance allocations to...

  9. 40 CFR 96.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with CAIR NOX emissions... IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.154 Compliance with CAIR NOX emissions limitation... with a source's CAIR NOX emissions limitation for a control period in a given calendar year only if...

  10. 40 CFR 96.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with CAIR NOX emissions... IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.154 Compliance with CAIR NOX emissions limitation... with a source's CAIR NOX emissions limitation for a control period in a given calendar year only if...

  11. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation

    PubMed Central

    Lan, Tian; Kisseleva, Tatiana; Brenner, David A.

    2015-01-01

    Reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX) play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs) as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4) to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), or sonic hedgehog (Shh) in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days). Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC. PMID:26222337

  12. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Menzies, B.; Smouse, S.M.; Stallings, J.W.

    1995-09-01

    Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide NOx emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control/optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  13. Advanced control technology for LSST antennas

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.

    1981-01-01

    The control technology for the realization of large space system technology (LSST) antenna systems was identified and developed. Emphasis was directed at the control of LSST wrap-rib offset-feed antenna. The overall dynamic and control performance of offset-feed antenna was evaluated. Quantitative definitions of control problems were provided and control concepts for future development were identified.

  14. DESIGN AND FIELD DEMONSTRATION OF A LOW-NOX BURNER FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAMERS

    EPA Science Inventory

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental stud...

  15. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.

    PubMed

    Shemwell, Brooke E; Ergut, Ali; Levendis, Yiannis A

    2002-05-01

    An integrated approach for the simultaneous reduction of major combustion-generated pollutants from power plants is presented along with a simplified economic analysis. With this technology, the synergistic effects of high-temperature sorbent/coal or sorbent/natural gas injection and high-temperature flue gas filtration are exploited. Calcium-based (or Na-based, etc.) sorbents are sprayed in the post-flame zone of a furnace, where they react with S- and Cl-containing gases to form stable salts of Ca (or Na, etc.). The partially reacted sorbent is then collected in a high-temperature ceramic filter, which is placed downstream of the sorbent injection point, where it further reacts for a prolonged period of time. With this technique, both the likelihood of contact and the length of time of contact between the solid sorbent particles and the gaseous pollutants increase, because reaction takes place both in the furnace upstream of the filter and inside the filter itself. Hence, the sorbent utilization increases significantly. Several pollutants, such as SO2, H2S, HCl, and particulate (soot, ash, and tar), may be partially removed from the effluent. The organic content of the sorbents (or blends) also pyrolyzes and reduces NOx. Unburned carbon in the ash may be completely oxidized in the filter. The filter is cleaned periodically with aerodynamic regeneration (back pulsing) without interrupting furnace operation. The effectiveness of this technique has been shown in laboratory-scale experiments using either rather costly carboxylic salts of Ca or low- to moderate-cost blends of limestone, lime, or sodium bicarbonate with coal fines. Injection occurred in the furnace at 1150 degrees C, while the filter was maintained at 600 degrees C. Results showed that 65 or 40% SO2 removal was obtained with calcium formate or a limestone/coal blend, respectively, at an entering calcium-to-sulfur molar ratio of 2. A sodium bicarbonate/coal blend resulted in 78% SO2 removal at a sodium

  16. Open architecture controllers for advanced manufacturing

    SciTech Connect

    Gore, R.A.

    1994-03-01

    The application of intelligent control systems to the real world of machining and manufacturing will benefit form the presence of open architecture control systems on the machines or the processes. The ability to modify the control system as the process or product changes can be essential to the success of the application of neural net or fuzzy logic controllers. The effort at Los Alamos to obtain a commercially available open architecture machine tool controller is described.

  17. Experiment-Based Teaching in Advanced Control Engineering

    ERIC Educational Resources Information Center

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  18. Cost effective NOx reduction for tangentially fired boilers

    SciTech Connect

    Hager, M.; Camody, G.; Lewis, R.D.; Maney, C.Q.; Towle, D.P.

    1998-07-01

    Deregulation of the utility industry as well as lower capacity factors on many boilers regulated under Title IV Phase II has mandated ever-tighter vigilance on the costs of NOx compliance. ABB C-E services has responded to this customer need with the development of an in-windbox low NOx firing system. The LNCFS{trademark}-P2 NOx reduction system recently developed by ABB C-E Services represents a significant advancement in coal combustion technology for tangentially fired units. This system was developed to offer the advantages of significant NOx emissions reduction through simple nozzle tip replacements, thereby minimizing costs.

  19. Advanced control technology for LSST platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1981-01-01

    Basic technology in the design, mechanization, and analysis of control systems for large flexible space structures was examined. The focus of the platform control effort was on pointing control. The reason for this emphasis was because of the unique problems in this area posed by multiple independent experiment packages operating simultaneously on a single platform. Attitude control and stationkeeping were also addressed for future consideration.

  20. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    SciTech Connect

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

  1. Smart Engines Via Advanced Model Based Controls

    SciTech Connect

    Allain, Marc

    2000-08-20

    A ''new'' process for developing control systems - Less engine testing - More robust control system - Shorter development cycle time - ''Smarter'' approach to engine control - On-board models describe engine behavior - Shorter, systematic calibration process - Customer and legislative requirements designed-in.

  2. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  3. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  4. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  5. Application of commercial sensor manufacturing methods for NOx/NH3 mixed potential sensors for emissions control

    SciTech Connect

    Brosha, Eric L; Mukundan, Rangachary; Nelson, Mark A; Sekhar, Praveen; Williamson, Todd; Garzon, Fernando H

    2009-01-01

    The purpose of this research effort is to develop a low cost on-board Nitrogen Oxide (NO{sub x})/Ammonia (NH{sub 3}) sensor that can not only be used for emissions control but has the potential to improve efficiency through better monitoring of the combustion process and feedback control in both vehicle and stationary systems. Over the past decade, Los AJamos National Laboratory (LANL) has developed a unique class of electrochemical gas sensors for the detection of carbon monoxide, hydrocarbons, hydrogen and nitrogen oxides. These sensors are based on the mixed-potential phenomenon and are a modification of the existing automotive lambda (oxygen) sensor and have the potential to meet the stringent sensitivity, selectivity and stability requirements of an on-board emissions/engine control sensor system. The current state of the art LANL technology is based on the stabilization of the electrochemical interfaces and relies on an externally heated, hand-made, tape cast device. We are now poised to apply our patented sensing principles in a mass production sensor platform that is more suitable for real world engine-out testing such as on dynamometers for vehicle applications and for exhaust-out testing in heavy boilers/SCR systems in power plants. In this present work, our goal is to advance towards commercialization of this technology by packaging the unique LANL sensor design in a standard automotive sensor-type platform. This work is being performed with the help of a leading US technical ceramics firm, utilizing commercial manufacturing techniques. Initial tape cast platforms with screen printed metal oxide and Pt sensor electrodes have shown promising results but also clearly show the need for us to optimize the electrode and electrolyte compositions/morphologies and interfaces of these devices in order to demonstrate a sensitive, selective, and stable NO{sub x} sensor. Our previous methods and routes to preparing stable and reproducible mixed potential sensors

  6. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    EPA Science Inventory

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  7. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  8. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  9. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  10. Model-free adaptive control of advanced power plants

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  11. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  12. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  13. The ATF (Advanced Toroidal Facility) Status and Control System

    SciTech Connect

    Baylor, L.R.; Devan, W.R.; Sumner, J.N.; Alban, A.M.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Status and Control System (SCS) is a programmable controller-based state monitoring and supervisory control system. This paper describes the SCS implementation and its use of a host computer to run a commercially available software package that provides color graphic interactive displays, alarm logging, and archiving of state data.

  14. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  15. Advanced Topics in Wet-Weather Discharge Control

    EPA Science Inventory

    This report discusses four related but generally independent wet-weather flow (WWF) topic areas, namely: i) opportunities for advanced practices in WWF control technology, particularly as it applies to sewered systems; ii) tradeoffs between storage facilities (tanks) and enlarged...

  16. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  17. Advanced control concepts. [for shuttle ascent vehicles

    NASA Technical Reports Server (NTRS)

    Sharp, J. B.; Coppey, J. M.

    1973-01-01

    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.

  18. Ammonia and NO/NOx measurement for DE-NOx applications

    SciTech Connect

    Kita, D.

    1996-10-01

    A number of critical environmental goals may be met by controlling nitrogen oxide (NOx) emissions from combustion sources. These goals include responding to 1990 Clean Air Act Amendment requirements, reduction of human exposure to harmful concentrations of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}), acid deposition control, and urban smog abatement. Technologies utilizing either heterogeneous or homogeneous reactions of NOx with ammonia (NH{sub 3}) are considered major control options. Crucial to the use of such technologies is the continuous measurement of NO/NOx and NH{sub 3} in order to access (and control) performance criteria such as NOx conversion efficiency and NH{sub 3} emissions (NH{sub 3} SLIP) .This paper describes a continuous emission sonitoring system for NO, NO{sub 2}, and NH{sub 3} based upon NO chemiluminescence as well as presenting preliminary field data.

  19. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  20. Control of Smart Building Using Advanced SCADA

    NASA Astrophysics Data System (ADS)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  1. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  2. 40 CFR 97.510 - State NOX Ozone Season trading budgets, new unit set-asides, Indian country new unit set-aside...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.510... new unit-set asides for allocations of TR NOX Ozone Season allowances for the control periods in...

  3. 40 CFR 97.510 - State NOX Ozone Season trading budgets, new unit set-asides, Indian country new unit set-aside...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.510... new unit-set asides for allocations of TR NOX Ozone Season allowances for the control periods in...

  4. 40 CFR 97.410 - State NOX Annual trading budgets, new unit set-asides, Indian country new unit set-aside, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.410 State... asides for allocations of TR NOX Annual allowances for the control periods in 2012 and thereafter are...

  5. 40 CFR 97.410 - State NOX Annual trading budgets, new unit set-asides, Indian country new unit set-aside, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.410 State... asides for allocations of TR NOX Annual allowances for the control periods in 2012 and thereafter are...

  6. 40 CFR 97.510 - State NOX Ozone Season trading budgets, new unit set-asides, Indian country new unit set-aside...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.510... new unit-set asides for allocations of TR NOX Ozone Season allowances for the control periods in...

  7. 40 CFR 97.410 - State NOX Annual trading budgets, new unit set-asides, Indian country new unit set-aside, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.410 State... asides for allocations of TR NOX Annual allowances for the control periods in 2012 and thereafter are...

  8. Human factors survey of advanced instrumentation and controls

    SciTech Connect

    Carter, R.J.

    1989-01-01

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  9. Advanced telerobotic control using neural networks

    NASA Technical Reports Server (NTRS)

    Pap, Robert M.; Atkins, Mark; Cox, Chadwick; Glover, Charles; Kissel, Ralph; Saeks, Richard

    1993-01-01

    Accurate Automation is designing and developing adaptive decentralized joint controllers using neural networks. We are then implementing these in hardware for the Marshall Space Flight Center PFMA as well as to be usable for the Remote Manipulator System (RMS) robot arm. Our design is being realized in hardware after completion of the software simulation. This is implemented using a Functional-Link neural network.

  10. Advancing a Technology of Self-Control.

    ERIC Educational Resources Information Center

    Martin, James E.; Mithaug, Dennis

    1986-01-01

    Examines self-control interventions considered effective in improving the performance of mentally retarded persons in acquiring, maintaining, and generalizing learned tasks. Studies employing self-monitoring, self-reinforcement, and antecedent cue regulation (self-instruction and picture cues) are cited. Picture cues are recommended as the most…

  11. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  12. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  13. REVIEW OF U.S. NOX ABATEMENT TECHNOLOGY

    EPA Science Inventory

    The paper describes U.S. research efforts, demonstration projects, and commercial applications designed to control nitrogen oxide (NOx) emissions from stationary sources. Research and development of NOx control techniques in the U.S. has included a variety of combustion-related t...

  14. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  15. The visible-light driven photocatalytic destruction of NOx using mesoporous TiO2 spheres synthesized via a ``water-controlled release process''

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Wu, Xiaoyong; Yan, Mei; Dong, Qiang; Yin, Shu; Sato, Tsugio; Liu, Shaoqin

    2013-08-01

    Mesoporous anatase TiO2 spheres with tunable sizes ranging from 400 nm to 3 μm were synthesized using an original so-called ``water-controlled solvothemal release process''. In this method, the well-known esterification reaction between ethanol and acetic acid was creatively employed to generate water gradually during a solvothermal process. Thereafter, the slowly released water molecules functioned as nucleation centers for completing the hydrolysis of titanium tetraisopropoxide to produce homogenous mesoporous TiO2 spheres. In reality, these samples consisted of densely packed nanoparticles that formed spherical secondary particles with interparticle pores. Research has demonstrated that the diameter of the TiO2 spheres can be easily tuned by controlling the concentration of the Ti source in the starting solution. Regardless of their diameter, all of these TiO2 spheres exhibited a high specific surface area (above 150 m2 g-1) originating largely from the contribution of mesopores. On the merits of their porous structure and related high specific surface area, the mesoporous TiO2 spheres showed a higher photocatalytic activity than P25 for the oxidative photo-destruction of NOx gas.Mesoporous anatase TiO2 spheres with tunable sizes ranging from 400 nm to 3 μm were synthesized using an original so-called ``water-controlled solvothemal release process''. In this method, the well-known esterification reaction between ethanol and acetic acid was creatively employed to generate water gradually during a solvothermal process. Thereafter, the slowly released water molecules functioned as nucleation centers for completing the hydrolysis of titanium tetraisopropoxide to produce homogenous mesoporous TiO2 spheres. In reality, these samples consisted of densely packed nanoparticles that formed spherical secondary particles with interparticle pores. Research has demonstrated that the diameter of the TiO2 spheres can be easily tuned by controlling the concentration of the Ti

  16. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  17. Sensors, controls, and man-machine interface for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1980-01-01

    Some advances are reviewed which have been made in teleoperator (i.e., mechanical activities performed by mechanical devices at a remote site under remote control) technology through introduction of sensors, computers, automation, and new man-machine interface devices and techniques for remote manipulator control. The state of the art is summarized and some basic problems and challenging developments are examined.

  18. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  19. Photonics in advanced process control applications

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stefan H.; Andersson, Torbjoern; Grimbrandt, Jan

    1999-02-01

    A measurement system optimized for process control in the industrial environment has been developed and successfully commercialized. The system comprises a central unit, which contains all sensitive electronic and electro-optic parts. Fiber optics is used to transport the probing laser light to the measuring points in the process. Extremely rugged sensor heads are used to interface to the harsh industrial environment. Adaptation to the different applications is solely made up by changing the type of sensor head used. Six different process control applications will be presented. Ammonia slip monitoring in the NO(subscript x4/ reduction process in power stations, waste incinerators and heavy-duty diesel engines. Measurement of water vapor and oxygen in municipal waste to energy plants. Monitoring of oxygen and the thermodynamic gas temperature in steel pellets manufacturing. Monitoring HF reduction in a dry scrubber and HF emission from a pot room. Experiences of CO emission peak monitoring to protect electro filter in a chemical waste incinerator. Finally, we will describe measurements of HCI in the raw gas to access the calorific value of waste and to optimize bag-house filter operation.

  20. Advanced Control Methodology for Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Bjornsson, Stefan

    This thesis presents a feasibility study for a low cost sensor-based combustion control system using a predictive chemical kinetic model that captures efficiencies and pollution emissions during biomass combustion. Low cost sensor module was developed, the sensors were calibrated to measure carbon monoxide and particulate matter (PM) in combustion exhaust. Major combustion species in the exhaust of a commercial biomass furnace, operating with white oak, were measured. The species concentrations were measured using the low cost sensors and commercially available diagnostics. The low cost sensor outputs compare well with the reference instruments and the sensors can be employed to measure varying concentration of CO and particulate matter in combustion exhaust. A predictive chemical kinetic model was generated to simulate biomass processes. The model uses a four element chemical reactor network (CRN) and successfully simulates smoldering, ignition and flaming combustion events. The model agrees with concentration of CO and particulate matter from experiments. The sensors and CRN model can be integrated in a control system for biomass combustion that can potentially improve combustion efficiency and reduce emissions of particulate matter, CO and unburned hydrocarbons that have been linked to urban and rural air pollution resulting in adverse health effects.

  1. Advanced Controller for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  2. Full-Scale Demonstration Low-NOx Cell Burner retrofit

    SciTech Connect

    Not Available

    1991-05-24

    The overall objective of the Full-Scale Low-NOx Cell (LNC) Burner Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: at least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; and demonstrate that the LNC burner retrofits are the most cost-effective alternative to emerging, or commercially- available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  3. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  4. 40 CFR 1043.50 - Approval of methods to meet Tier 1 retrofit NOX standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... retrofit NOX standards. 1043.50 Section 1043.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL PROTOCOL § 1043.50 Approval of methods to meet Tier 1 retrofit NOX...

  5. 40 CFR 1043.50 - Approval of methods to meet Tier 1 retrofit NOX standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... retrofit NOX standards. 1043.50 Section 1043.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL PROTOCOL § 1043.50 Approval of methods to meet Tier 1 retrofit NOX...

  6. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  7. A formal structure for advanced automatic flight-control systems

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  8. Controlling adsorbate interactions for advanced chemical patterning

    NASA Astrophysics Data System (ADS)

    Saavedra Garcia, Hector M.

    Molecules designed to have specific interactions were used to influence the structural, physical, and chemical properties of self-assembled monolayers. In the case of 1-adamantanethiolate monolayers, the molecular structure influences lability, enabling alkanethiol molecules in solution to displace the 1-adamantanethiolate monolayers, ultimately leading to complete molecular exchange. The similar Au-S bond environments measured for both n-alkanethiolate and 1-adamantanethiolate monolayers indicate that displacement is not a result of weakened Au-S bonds. Instead, it was hypothesized that the density differences in the two monolayers provide a substantial enthalpic driver, aided by differences in van der Waals forces, ultimately leading to complete displacement of the 1-adamantenthiol molecules. Additionally, it was discovered that displacement occurs via fast insertion of n-dodecanethiolate at the defects in the original 1-adamantanethiolate monolayer, which nucleates an island growth phase and is followed by slow ordering of the n-dodecanethiolate domains into a denser and more crystalline form. Langmuir-based kinetics, which describe alkanethiolate adsorption on bare Au{111}, fail to model this displacement reaction. Instead, a model of perimeter-dependent island growth yields good agreement with kinetic data over a 100-fold variation in n-dodecanethiol concentration. Rescaling the growth rate at each concentration collapses all the data onto a single universal curve, suggesting that displacement is a scale-free process. Exploiting the knowledge gained by studying 1-adamantethiolate monolayer displacement, a reversible molecular resist was developed, in which displacement is controlled via external stimuli. This methodology for the fabrication of controllably displaceable monolayers relies on carboxyl-functionalized self-assembled monolayers and in-situ Fischer esterification. Using an 11-mercaptoundecanoic acid monolayer as a model system, it was shown that in

  9. α-pinene photooxidation under controlled chemical conditions - Part 1: Gas-phase composition in low- and high-NOx environments

    NASA Astrophysics Data System (ADS)

    Eddingsaas, N. C.; Loza, C. L.; Yee, L. D.; Seinfeld, J. H.; Wennberg, P. O.

    2012-07-01

    The OH oxidation of α-pinene under both low- and high-NOx environments was studied in the Caltech atmospheric chambers. Ozone was kept low to ensure OH was the oxidant. The initial α-pinene concentration was 20-50 ppb to ensure that the dominant peroxy radical pathway under low-NOx conditions is reaction with HO2, produced from reaction of OH with H2O2, and under high-NOx conditions, reactions with NO. Here we present the gas-phase results observed. Under low-NOx conditions the main first generation oxidation products are a number of α-pinene hydroxy hydroperoxides and pinonaldehyde, accounting for over 40% of the yield. In all, 65-75% of the carbon can be accounted for in the gas phase; this excludes first-generation products that enter the particle phase. We suggest that pinonaldehyde forms from RO2 + HO2 through an alkoxy radical channel that regenerates OH, a mechanism typically associated with acyl peroxy radicals, not alkyl peroxy radicals. The OH oxidation and photolysis of α-pinene hydroxy hydroperoxides leads to further production of pinonaldehyde, resulting in total pinonaldehyde yield from low-NOx OH oxidation of ~33%. The low-NOx OH oxidation of pinonaldehyde produces a number of carboxylic acids and peroxyacids known to be important secondary organic aerosol components. Under high-NOx conditions, pinonaldehyde was also found to be the major first-generation OH oxidation product. The high-NOx OH oxidation of pinonaldehyde did not produce carboxylic acids and peroxyacids. A number of organonitrates and peroxyacyl nitrates are observed and identified from α-pinene and pinonaldehyde.

  10. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    NASA Astrophysics Data System (ADS)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  11. Advanced robust tracking control of a powered wheelchair system.

    PubMed

    Nguyen, Nghia T; Nguyen, Hung T; Su, Steven

    2007-01-01

    In this paper, the dynamic multivariable model of the wheelchair system is obtained including the presence of transportation lags. The triangular diagonal dominance (TDD) decoupling technique is applied to reduce this multivariable control problem into two independent scalar control problems. An advanced robust control technique for the wheelchair has been developed based on the combination of a TDD decoupling strategy and neural network controller design. The results obtained from the real-time implementation confirm that robust performance for this multivariable wheelchair control system can indeed be achieved. PMID:18003071

  12. Multivariable quadratic synthesis of an advanced turbofan engine controller

    NASA Technical Reports Server (NTRS)

    Dehoff, R. L.; Hall, W. E., Jr.

    1978-01-01

    A digital controller for an advanced turbofan engine utilizing multivariate feedback is described. The theoretical background of locally linearized control synthesis is reviewed briefly. The application of linear quadratic regulator techniques to the practical control problem is presented. The design procedure has been applied to the F100 turbofan engine, and details of the structure of this system are explained. Selected results from simulations of the engine and controller are utilized to illustrate the operation of the system. It is shown that the general multivariable design procedure will produce practical and implementable controllers for modern, high-performance turbine engines.

  13. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin

    2013-05-01

    NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China. PMID:23518281

  14. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  15. NOx emissions in China: historical trends and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, S. X.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-06-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4, 34.0, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64 and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector and more than half is distributed equally between industry and transportation sectors. Selective Catalytic Reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020, and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  16. NOx emissions in China: historical trends and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-10-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  17. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  18. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    NASA Astrophysics Data System (ADS)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  19. LOW NOX STRATEGY FOR COMBUSTING HIGH NITROGEN CONTENT FUELS

    EPA Science Inventory

    The report gives results of an evaluation of a multistaged combustion urner (designed for in-furnace NOx control and high combustion efficieiicy) for [high nitrogen content fuel and waste incineration application in a 1.0 MW package boiler. simulator. A low NOx precombustion cham...

  20. 40 CFR 90.319 - NOX converter check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false NOX converter check. 90.319 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.319 NOX converter check. (a) The efficiency of the converter used for the conversion of...

  1. 40 CFR 89.317 - NOX converter check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false NOX converter check. 89.317 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.317 NOX converter check. (a) Prior to its introduction into service, and monthly...

  2. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  3. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  4. Overview of the US program of controls for advanced reactors

    SciTech Connect

    White, J.D.; Sackett, J.I.; Monson, R.; Lindsay, R.W.; Carroll, D.G.

    1989-01-01

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed.

  5. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  6. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  7. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  8. Advanced software design and standards for traffic signal control

    SciTech Connect

    Bullock, D.; Hendrickson, C. )

    1992-05-01

    Improves traffic management and control systems are widely reported to be cost-effective investments. Simply retiming signals can provide significant benefits by reducing vehicle stops, travel times, and fuel consumption. The installation of advanced traffic management systems (ATMS) can provide even greater savings. However, many hardware and software obstacles have impeded the actual implementation of advanced traffic management systems. The general hardware and software limitations of current traffic signal control technology are reviewed in this paper. The impact of these deficiencies is discussed in the context of three example applications. Based on this discussion, the paper identifies several computing issues that should be addressed in order to reduce the effort involved with integrating existing traffic control devices. Adoption of standard industrial control computing platforms and development of new communication and software engineering models are recommendrecommended.

  9. Optical metrology for advanced process control: full module metrology solutions

    NASA Astrophysics Data System (ADS)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  10. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  11. From form to function: the role of Nox4 in the cardiovascular system

    PubMed Central

    Chen, Feng; Haigh, Stephen; Barman, Scott; Fulton, David J. R.

    2012-01-01

    The NADPH oxidase (Nox) family of proteins is comprised of seven members, including Noxes1–5 and the Duoxes 1 and 2. Nox4 is readily distinguished from the other Nox isoforms by its high level of expression in cardiovascular tissues and unique enzymatic properties. Nox4 is constitutively active and the amount of reactive oxygen species (ROS) contributed by Nox4 is primarily regulated at the transcriptional level although there is recent evidence for post-translational control. Nox4 emits a different pattern of ROS and its subcellular localizations, tissue distribution and influence over signaling pathways is different from the other Nox enzymes. Previous investigations have revealed that Nox4 is involved in oxygen sensing, vasomotor control, cellular proliferation, differentiation, migration, apoptosis, senescence, fibrosis, and angiogenesis. Elevated expression of Nox4 has been reported in a number of cardiovascular diseases, including atherosclerosis, pulmonary fibrosis, and hypertension, cardiac failure and ischemic stroke. However, many important questions remain regarding the functional significance of Nox4 in health and disease, including the role of Nox4 subcellular localization and its downstream targets. The goal of this review is to summarize the recent literature on the genetic and enzymatic regulation, subcellular localization, signaling pathways, and the role of Nox4 in cardiovascular disease states. PMID:23125837

  12. Advanced reactor instrumentation and control reliability and risk assessment

    SciTech Connect

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-01-01

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I C systems requires determining the reliability of the I C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  13. Advanced reactor instrumentation and control reliability and risk assessment

    SciTech Connect

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-12-31

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I&C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I&C systems requires determining the reliability of the I&C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I&C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I&C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  14. Advanced control for airbreathing engines, volume 1: Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.

  15. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  16. The implementation and control of advanced manufacturing systems

    NASA Astrophysics Data System (ADS)

    Anstiss, P.

    An account is given of the development and control of a flexible manufacturing system for small machined parts which can prepare raw materials for fixturing, assemble all necessary resources, then process 'nests' of components through machining, inspection, and secondary operations to produce finished parts ready for surface treatment or painting. The system employs automated stores, transport and machine tools, local area network communications, advanced computer control systems for all automatic and manual functions, and comprehensive tool storage, handling and preparation facilities.

  17. Access control and interlock system at the Advanced Photon Source

    SciTech Connect

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D.

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  18. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  19. Economic convergence of environmental control and advanced technology

    SciTech Connect

    Bolli, R.E.; Haslbeck, J.L.

    1995-12-31

    Emerging advanced technologies for environmental control have many advantages over conventional, single pollutant removal processes. Features include high efficiencies, multiple pollutant control and zero waste streams. In the past, the economics for state-of-the-art emission control processes could not compete with proven, low-efficiency scrubbers that create throw away by-products. With the implementation of the Clean Air Act Amendments (CAAA), the entire economic environment has changed. If a single process can provide a facility`s compliance requirements for Title I, Title III and Title IV of the CAAA, its net costs can be lower than conventional technology and actually provide economic incentives for overcontrol. The emission allowance program is maturing and the annual revenues from overcontrol of SO{sub 2} are easily quantified. The economics of NO{sub x} control and offsets are currently being realized as EPA identified Title IV requirements, and facilities begin to realize the impact from Title I NO{sub x} control. Air toxic control from Title III could require yet a third control process for a facility to maintain emission compliance. The costs associated with single control strategies vs. multiple pollutant control processes will be discussed and compared. This paper will also present a specific application of the NOXSO Process and identify the potential advantages that can transform advanced technologies, like NOXSO, into the prudent solution for overall environmental compliance.

  20. Controlling death: the false promise of advance directives.

    PubMed

    Perkins, Henry S

    2007-07-01

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying. PMID:17606961

  1. 40 CFR 52.2308 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Area-wide nitrogen oxides (NOX...-wide nitrogen oxides (NOX) exemptions. (a) The Texas Natural Resource Conservation Commission (TNRCC... exempted from the NOX control requirements of section 182(f) of the Clean Air Act (CAA) as amended in...

  2. 40 CFR 52.2308 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Area-wide nitrogen oxides (NOX...-wide nitrogen oxides (NOX) exemptions. (a) The Texas Natural Resource Conservation Commission (TNRCC... exempted from the NOX control requirements of section 182(f) of the Clean Air Act (CAA) as amended in...

  3. 40 CFR 97.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with CAIR NOX emissions... Allowance Tracking System § 97.154 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer... emissions limitation for a control period in a given calendar year only if the CAIR NOX allowances: (1)...

  4. 40 CFR 97.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with CAIR NOX emissions... Allowance Tracking System § 97.154 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer... emissions limitation for a control period in a given calendar year only if the CAIR NOX allowances: (1)...

  5. Regional and sectoral marginal abatement cost curves for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  6. Immunotherapy and complexity: overcoming barriers to control of advanced cancer.

    PubMed

    Lage, Agustin

    2014-01-01

    Recent advances in fundamental immunology are changing paradigms for management of advanced cancer, now acknowledged as a chronic disease whose prevalence will increase, and one whose complexity makes it difficult to control. Immunotherapy is emerging as an alternative, with new monoclonal antibodies, therapeutic vaccines and deeper understanding of fundamental phenomena in the interaction between tumor and immune system. These novel insights concern mechanisms of programmed contraction of the immune response, characterization of molecular and cellular markers of immunosenescence, the dual role of inflammation, characterization of myeloid-derived suppressor cells and cancer stem cells, and the phenomena of immunogenic apoptosis and oncogene addiction. Additionally, new data drive a deeper understanding of four barriers to overcome in control of advanced cancer: the complexity of biological systems, tumor heterogeneity, tumor mutation rates, and human genome-environment mismatch. The new landscape points to six main strategies: manage advanced cancer as a chronic disease, find relevant molecular markers for patient stratification, develop a rationale for therapeutic combinations, target regulatory control loops in the immune system, expand mathematical modeling capacity, and evaluate complex health intervention packages in real-world conditions. These transitions in cancer immunotherapy research are illustrated in this paper through description of ongoing projects at Cuba's Molecular Immunology Center. PMID:25208123

  7. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  8. Research and control of advanced schistosomiasis japonica in China.

    PubMed

    Wu, Wei; Feng, Aicheng; Huang, Yixin

    2015-01-01

    Among the three main schistosomes (Schistosoma japonicum, Schistosoma mansoni, and Schistosoma haematobium) known to infect humans, S. japonicum causes the most serious pathological lesions. In China, only schistosomiasis japonica is transmitted. From the 1950s, massive epidemiological investigations and active control measures for schistosomiasis japonica have been carried out. At the early stage of schistosomiasis control program, there were about 12 million schistosomiasis patients, and about 5% of schistosomiasis patients belong to advanced patients, which was 600,000. After more than a half century of active schistosomiasis control work, the schistosomiasis situation has been reduced markedly. The nearest epidemiological investigation showed that, by the end of 2012, there were still 240,000 schistosomiasis patients with the descent rate of 98% and 30,000 advanced patients with the descent rate of 95%. This paper reviews the rich experiences of advanced schistosomiasis research and control in China, including that the epidemiology researches confirm there is a family aggregation of advanced schistosomiasis and advanced schistosomiasis patients have no significance to the schistosomiasis transmission in transmission-interrupted areas but still are an infection source in endemic areas; pathogenic mechanism researches verify that genetic factors and immunoregulation play important roles in the disease developing process; ultrasound image examinations are used not only in the diagnosis and differential diagnosis of advanced schistosomiasis but also in the guidance of treatment and evaluation of therapeutic effects and, furthermore, in the risk predictions of portal hypertension and upper gastrointestinal hemorrhage; clinical practices demonstrate that praziquantel can be used in most of advanced schistosomiasis patients, and the therapy not only can interrupt the schistosomiasis transmission somewhat but also is favorable for liver fibrosis improvement; the

  9. Advanced actuators for the control of large space structures

    NASA Technical Reports Server (NTRS)

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  10. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  11. Advanced X-ray Astrophysics Facility thermal control

    NASA Technical Reports Server (NTRS)

    Fritz, C. G.

    1983-01-01

    A conceptual active/passive thermal control system design is presented for the Advanced X-ray Astrophysics Facility (AXAF), where the design variables considered in system optimization were vehicle orientation for environmental extremes, thermal coating properties, and insulation materials. Because power and weight are at a premium, the design was limited to one power module, resulting in a thermal control limit of 441 W of regulated power. The present study has determined that all thermal control objectives for AXAF's instruments can be met by the design considered. The thermal resistance schematics employed in this conceptual study are presented, together with simulated performance characteristics.

  12. An advanced control system for a next generation transport aircraft

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  13. Development of Advanced Casing Treatments for Flow Control

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Tsung, Fu-Lin

    2001-01-01

    Under the Base R&T and Ultra Efficient Engine Technology programs, the NASA-Goddard Space Flight Center Compressor Branch is investigating flow control strategies required to increase the loading and efficiency of core compressors while maintaining current levels of operability. Flow-control strategies being studied include advanced casing treatments, wall jet injection, and blade-tip injection for compressor stability enhancement, directed jets for surface boundary layer control, and vortex-generating devices. The use of computational fluid dynamics (CFD) simulations to assess the effectiveness of flow-control devices and to guide their design is a key element in this research. CFD simulations serve to screen potential flow-control concepts at a lower cost than executing physical experiments in turbomachinery facilities. CFD simulations also provide guidance in designing physical experiments for those flow control concepts, which appear promising.

  14. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  15. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  16. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  17. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  18. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  19. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  20. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  1. Towards the Tracing of NOx Sources by Isotopic Signature

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Hastings, M. G.

    2012-12-01

    of roadside NOx collected near highways in Rhode Island. Furthermore, preliminary results from NOx collected during a controlled burn of plant material will be discussed. These will be the first direct measurements of vehicle-associated NOx in the U.S., and the first measurements of the isotopic composition of NOx from biomass burning. References: Margeson, et al., Anal. Chem., 1984.

  2. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  3. Microeconomics of advanced process window control for 50-nm gates

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  4. Applications of fiber optic sensors in advanced engine controls

    NASA Astrophysics Data System (ADS)

    Nitka, Edward F., II

    1989-06-01

    Measured parameters, operating ranges, accuracy requirements, environmental constraints, and speed of response of fiber optic sensors are identified for three categories of engines. The three engine categories are: (1) current turbojet, turbofan, and turboprop engines; (2) next generation and turbofan engines to be built in the 1990s; and (3) advanced supersonic/hypersonic engines represented by ramjet, scramjet, and air-turbo-ramjet concepts. The key development and test efforts in engine control applications of fiber optic sensors are discussed.

  5. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J.; De, A. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1991-03-22

    The main goal of the project is to characterize the surface and control the behavior of coal during advanced flotation processing in order to achieve an overall objective of near-total pyritic sulfur removal with a high Btu recovery. Also, investigation of the effects of weathering on the surface characteristics of coal is another important aspect of this project. The effect of butanol, dodecane, lime, calcium cyanide, hydrogen peroxide, and ph on flotation performance is discussed. 2 refs., 26 figs., 18 tabs.

  6. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  7. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  8. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  9. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    PubMed

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells. PMID:22038300

  10. A study of the growth and decay of cigarette smoke NOx in ambient air under controlled conditions

    SciTech Connect

    Rickert, W.S.; Robinson, J.C. ); Collishaw, N.E. )

    1987-01-01

    The amount of NO{sub 2} and NO produced by the machine smoking of cigarettes was determined for 15 commercial Canadian brands. Average yield of NO was 1.44 {mu}moles or about 13% of the average reported for American cigarettes. Levels of NO{sub 2} were all less than 12% of NO and were probably due to the oxidation of NO. In order to assess the contribution of tobacco smoke to levels of NO in ambient air, 5 brands of cigarettes were smoked in a 27 cubic meter controlled environment room. Ventilation conditions were either 2.5 or 5.0 air changes per hour (ACH) and each experiment was replicated 3 times for a total of 30 experiments. Ventilation rates of 0.3 and 1.5 ACH were also selected in a second series of experiments in which only one brand of cigarette was smoked. Least squares estimates for the effective ventilation rates were obtained in the usual manner after linearizing the decay portion of the NO time curve. In each of the experiments, the regression explained at least 95% of the variation in the levels of NO with time. Loss of NO due to factors other than ventilation appeared to be constant within experimental error and averaged 2.22 ACH. Equilibrium values for NO were grossly underestimated when results from currently accepted procedures for smoke analysis were used in modeling the growth and decay of NO. Goodness-of-fit was improved when equilibrium values were estimated based on observed levels in ambient air.

  11. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  12. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  13. Improved safety in advanced control complexes, without side effects

    SciTech Connect

    Harmon, D.L.

    1997-12-01

    If we only look for a moment at the world around us, it is obvious that advances in digital electronic equipment and Human-System Interface (HSI) technology are occurring at a phenomenal pace. This is evidenced from our home entertainment systems to the dashboard and computer-based operation of our new cars. Though the nuclear industry has less vigorously embraced these advances, their application is being implemented through individual upgrades to current generation nuclear plants and as plant-wide control complexes for advanced plants. In both venues modem technology possesses widely touted advantages for improving plant availability as well as safety. The well-documented safety benefits of digital Instrumentation and Controls (I&C) include higher reliability resulting from redundancy and fault tolerance, inherent self-test and self-diagnostic capabilities which have replaced error-prone human tasks, resistance to setpoint drift increasing available operating margins, and the ability to run complex, real-time, computer-based algorithms directly supporting an operator`s monitoring and control task requirements. 22 refs., 3 figs., 5 tabs.

  14. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  15. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  16. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and

  17. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  18. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  19. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  20. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  1. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  2. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  3. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  4. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  5. Advanced interactive displays for deployable command and control centers

    NASA Astrophysics Data System (ADS)

    Jedrysik, Peter A.; Parada, Francisco E.; Stedman, Terrance A.; Zhang, Jingyuan

    2003-09-01

    Command and control in today's battlefield environment requires efficient and effective control of massive amounts of constantly changing information from a variety of databases and real-time sensors. Using advanced information technology for presentation and interactive control enables more extensive data fusion and correlation to present an accurate picture of the battlespace to commanders and their staffs. The Interactive DataWall being developed by the Advanced Displays and Intelligent Interfaces (ADII) technology team of the Air Force Research Laboratory's Information Directorate (AFRL/IF) is a strong contender for solving the information management problems facing the 21st century military commander. It provides an ultra high-resolution large screen display with multi-modal, wireless interaction. Commercial off-the-shelf (COTS) technology has been combined with specialized hardware and software developed in-house to provide a unique capability for multimedia data display and control. The technology once isolated to a laboratory environment has been packaged into deployable systems that have been successfully transitioned to support the warfighter in the field.

  6. Vibroacoustic behavior and noise control studies of advanced composite structures

    NASA Astrophysics Data System (ADS)

    Li, Deyu

    The research presented in this thesis is devoted to the problems of sound transmission and noise transmission control for advanced composite payload fairings. There are two advanced composite fairings under study. The first is a tapered, cylindrical advanced grid-stiffened composite fairing, and the second is a cylindrical ChamberCore composite fairing. A fully coupled mathematical model for characterizing noise transmission into a finite elastic cylindrical structure with application to the ChamberCore fairing is developed. It combines advantages of wave radiation principles and structural-acoustic modal interaction, and provides an ideal noise transmission model that can be extended to other finite cylindrical structures. Structural-acoustic dynamic parameters of the two fairings are obtained using a combination of numerical, analytical, and experimental approaches. An in-situ method for experimentally characterizing sound transmission into the fairings called noise reduction spectrum (NRS) is developed based on noise reduction. The regions of interest in the NRS curves are identified and verified during a passive control investigation, where various fill materials are added into wall-chambers of the ChamberCore fairing. Both Helmholtz resonators (HRs) and long T-shaped acoustic resonators (ARs) are also used to successfully control noise transmission into the ChamberCore fairing. In the process, an accurate model for the resonant frequency calculation and design of cylindrical HRs is derived. Further, a novel and more general model for the design of multi-modal, long, T-shaped ARs is developed, including three new end-correction equations that are validated experimentally. The control results show that noise attenuation is significant in the controlled modes, and the control is also observed in some modes that are not targeted, due to acoustic modal coupling via the structure. Helmholtz resonators are found to produce between 2.0 and 7.7 dB increase in NRS in

  7. Control system for insertion devices at the advanced photon source

    SciTech Connect

    Makarov, Oleg A.; Den Hartog, Patric; Moog, Elizabeth R.; Smith, Martin L.

    1997-07-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like 'open all IDs' are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  8. Control system for insertion devices at the Advanced Photon Source

    SciTech Connect

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L.

    1997-09-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like ``open all IDs`` are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  9. Control system for insertion devices at the advanced photon source

    SciTech Connect

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L.

    1997-07-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like {open_quotes}open all IDs{close_quotes} are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed. {copyright} {ital 1997 American Institute of Physics.}

  10. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-08-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  11. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-01-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  12. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-06-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  13. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  14. Advanced control strategy for plant heat rate improvement

    SciTech Connect

    Schultz, P.; Frerichs, D.K.; Kyr, D.

    1995-12-31

    Florida Power & Light Company (FPL) supplies electricity to about half of the population of Florida, roughly 6.5 million people. The load base is largely residential/business with the obvious seasonal extremes due to the climate. FPL`s generating capacity is 16,320 MW composed of 70% traditional fossil cycle, 18% nuclear, and 12% gas turbine. The system load profile coupled with bulk power purchases is such that the 400 MW class units (9 Foster Wheeler drum type units comprising 24% of total capacity) are now forced to cycle daily all year, and to come off line on weekends during the winter months. The current economic realities of power generation force utility companies to seek methods to improve plant heat rate, and FPL is no exception. FPL believed it possible to achieve the goal of lower heat rate and follow the required load demand with the 400 MW class units through the use of an advanced control strategy implemented totally within the unit`s Distributed Control System (DCS). As of the writing of this paper, the project is still ongoing. This paper will present the theory and methodology of the advanced control strategy along with the current design and implementation status and results obtained to date.

  15. Advanced Transport Operating System (ATOPS) control display unit software description

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  16. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  17. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  18. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  19. Evaluation of advanced displays for engine monitoring and control

    NASA Technical Reports Server (NTRS)

    Summers, L. G.

    1993-01-01

    The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.

  20. Mercury Control With The Advanced Hybrid Paticulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay Almlie

    2004-09-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task

  1. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to

  2. Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2004-12-01

    Designing wind turbines with maximum energy production and longevity for minimal cost is a major goal of the federal wind program and the wind industry. Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory (NREL) we are designing state-space control algorithms for turbine speed regulation and load reduction and testing them on the Controls Advanced Research Turbine (CART). The CART is a test-bed especially designed to test advanced control algorithms on a two-bladed teetering hub upwind turbine. In this paper we briefly describe the design of control systems to regulate turbine speed in region 3 for the CART. These controls use rotor collective pitch to regulate speed and also enhance damping in the 1st drive-train torsion, 1st rotor symmetric flap mode, and the 1st tower fore-aft mode. We designed these controls using linear optimal control techniques using state estimation based on limited turbine measurements such as generator speed and tower fore-aft bending moment. In this paper, we describe the issues and steps involved with implementing and testing these controls on the CART, and we show simulated tests to quantify controller performance. We then present preliminary results after implementing and testing these controls on the CART. We compare results from these controls to field test results from a baseline Proportional Integral control system. Finally we report conclusions to this work and outline future studies.

  3. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  4. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  5. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  6. A system concept for an advanced vehicle control system

    SciTech Connect

    Mackey, D.E.; Mackey, W.F. Jr.; Mackey, W.F.

    1996-12-01

    This paper explores a system concept for an Advanced Vehicle Control System (AVCS). The progression of highway design and construction has resulted from an evolution of technologies, inventions, organizational creations, and legislative acts supporting the development of a national interstate transportation system. Until now, highway design and construction has been the domain of civil engineers concerned with highway structures, materials loading, traffic patterns, and supporting facilities. However, the growing need for intelligent vehicle-highway systems (IVHS) requires that traditional civil engineering disciplines be integrated with computers, communications, and eventually fully automated vehicles. This paper`s thesis suggests that the complex highway transportation of the late 20th century and the 21st century can benefit from the collaboration of systems engineers and civil engineers. This paper identifies and prototypes an AVCS concept with roadside computers controlling the lateral and longitudinal movements of a vehicle.

  7. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1982-09-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements are outlined. Activities are described in four program areas: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels); (2) optical switching materials (e.g., electrochromic, photochromic); (3) selective transmitters; and (4) daylight enhancement techniques.

  8. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1983-11-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program are outlined, the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements. Activities in four program areas are described: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels) (2) optical switching materials (e.g., electrochromic, photochromic) (3) selective transmitters and (4) daylight enhancement techniques.

  9. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2003-03-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  10. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  11. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  12. Mercuty Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

    2003-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  13. An Advanced Tool for Control System Design and Maintenance

    SciTech Connect

    Storm, Joachim; Lohmann, Heinz

    2006-07-01

    The detailed engineering for control systems is usually supported by CAD Tools creating the relevant logic diagrams including software parameters and signal cross references. However at this stage of the design an early V and V process for checking out the functional correctness of the design is not available. The article describes the scope and capabilities of an advanced control system design tool which has the embedded capability of a stand-alone simulation of complex logic structures. The tool provides the following features for constructing logic diagrams for control systems: - Drag and Drop construction of logic diagrams using a predefined symbol sets; - Cross reference facility; - Data extraction facility; - Stand-alone simulation for Logic Diagrams featuring: On the fly changes, signal line animation, value boxes and mini trends etc. - Creation and on-line animation of Compound Objects (Handler); - Code Generation Facility for Simulation; - Code Generation Facility for several control systems. The results of the integrated simulation based V and V process can be used further for initial control system configuration and life cycle management as well as for Engineering Test Bed applications and finally in full Scope Replica Simulators for Operator Training. (authors)

  14. A feedback control for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.

    1991-01-01

    A robust feedback algorithm is presented for a near-minimum-fuel ascent of a two-stage launch vehicle operating in the equatorial plane. The development of the algorithm is based on the ideas of neighboring optimal control and can be derived into three phases. In phase 1, the formalism of optimal control is employed to calculate fuel-optimal ascent trajectories for a simple point-mass model. In phase 2, these trajectories are used to numerically calculate gain functions of time for the control(s), the total flight time, and possibly, for other variables of interest. In phase 3, these gains are used to determine feedback expressions for the controls associated with a more realistic model of a launch vehicle. With the Advanced Launch System in mind, all calculations are performed on a two-stage vehicle with fixed thrust history, but this restriction is by no means important for the approach taken. Performance and robustness of the algorithm is found to be excellent.

  15. New advanced control methods for doubly salient permanent magnet motor

    SciTech Connect

    Blaabjerg, F.; Christensen, L.; Rasmussen, P.O.; Oestergaard, L.; Pedersen, P.

    1995-12-31

    High performance and high efficiency in adjustable speed drives are needed and new motor constructions are world wide investigated and analyzed. This paper deals with advanced control of a recently developed Doubly Salient Permanent Magnet (DSPM) motor. The construction of the DSPM motor is shown and a dynamical model of the motor is used for simulations. As supply to the DSPM motor, a power converter with a split capacitor is used to reduce the number of devices, and a basic control method for this converter is explained. This control method will cause an unequal voltage distribution across the capacitors because the motor is asymmetrical and a decrease in efficiency and a poorer dynamic performance are the results. To minimize the problems with the unequal load of the capacitors in the converter, a new charge control strategy is developed. The efficiency of the motor can also be improved by using a power minimizing scheme based on changing the turn-on and turn-off angles of the current. The two different strategies are implemented in an adjustable-speed drive, and it is concluded that both control strategies improve the performance of the drive.

  16. LOW NOX BURNER DEVELOPMENT

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  17. Modeling of ICRF Internal Transport Barrier Control for Advanced Tokamaks

    NASA Astrophysics Data System (ADS)

    Sund, R. S.; Scharer, J. E.

    1998-11-01

    We present an analysis of TFTR ICRF current drive experiments carried out by Majeski et al.(R. Majeski, J. Rodgers, G. Schilling, C. Phillips, J. Hosea and the TFTR Group, private communication.) The influence of deuterium, tritium, minority specie, electron and alpha concentrations, temperatures and beam fractions are considered for the two-ion mode conversion current drive experiments. Direct comparison with experimental data is carried out by means of a nonlocal large gyroradius ICRF code(O. Sauter, Ph.D. thesis, Ecole Polytechnique de Lausanne, Switzerland (1992).) which incorporates 1-D plasma profiles. It is found that substantial beam and alpha particle absorption can occur for some cases. Application of ion cyclotron range of frequencies internal transport barrier control requires further examination of fast wave mode conversion and the interaction of ion Bernstein waves with plasmas in advanced tokamaks. The effects of perpendicular and parallel magnetic gradients on the ion, electron, and alpha particle absorption are examined. A viable internal transport barrier control scheme for a reactor grade advanced tokamak will be discussed.

  18. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United

    1991-07-30

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. The results of this research are to be made available to ICF Kaiser Engineers who are currently working on the Engineering Development of Advanced Flotation under a separate contract with DOE under the Acid Rain Control Initiative program. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying degrees of weathering, namely, open to the atmosphere, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals of weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 29 figs., 29 tabs.

  19. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-02-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  20. Advanced Issues of Wind Turbine Modelling and Control

    NASA Astrophysics Data System (ADS)

    Simani, Silvio

    2015-11-01

    The motivation for this paper comes from a real need to have an overview about the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this topic represents a key point mainly for offshore wind turbines with very large rotors, since they are characterised by challenging modelling and control problems, as well as expensive and safety critical maintenance works. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are addressed, and open problems in the areas of modelling of wind turbines are also outlined.

  1. THE ACID RAIN NOX PROGRAM

    EPA Science Inventory

    Between 350,000 and 400,000 tons of annual NOx emissions have been eliminated as a result of Phase I of the Acid Rain NOx Program. As expected. the utilities have chosen emissions averaging as the primary compliance option. This reflects that, in general, NO x reductions have ...

  2. Don't NOx Texas

    SciTech Connect

    Mathis, J.D.; Lachowicz, Y.

    2005-07-01

    Modifications to boiler combustion systems allow Fayette Power Projects units 1 and 2 to meet new NOx emissions limits east of La Grange in Eastern Texas. The article describes modifications executed by Alstom in 2004 which attained an overall reduction in NOx emissions of almost 69%. 4 figs., 1 tab., 1 photo.

  3. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  4. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  5. NOx reduction through combustion optimization at PEPCO`s Potomac River Station

    SciTech Connect

    Cramer, D.S.; Williams, S.E.; Watkins, J.T.

    1995-06-01

    This paper describes the work done under EPRI Project RP 3383 at Potomac River Station to reduce NOx emissions by adjusting boiler controls. it details the method followed by PEPCO and Lehigh engineers to achieve a 35% reduction in average NOx emissions over a one-month extended test. Parameters that had the largest effect on NOx are discussed. A description of instruments installed to better monitor and control combustion is included.

  6. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    SciTech Connect

    Manea, Adrian; Tanase, Laurentia I.; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  7. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  8. Characterization of NOx emission in the suburbs of Tokyo based on simultaneous and real-time observations of atmospheric Ox and NOx

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.

    2013-12-01

    Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0

  9. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  10. Advanced launch system trajectory optimization using suboptimal control

    NASA Technical Reports Server (NTRS)

    Shaver, Douglas A.; Hull, David G.

    1993-01-01

    The maximum-final mass trajectory of a proposed configuration of the Advanced Launch System is presented. A model for the two-stage rocket is given; the optimal control problem is formulated as a parameter optimization problem; and the optimal trajectory is computed using a nonlinear programming code called VF02AD. Numerical results are presented for the controls (angle of attack and velocity roll angle) and the states. After the initial rotation, the angle of attack goes to a positive value to keep the trajectory as high as possible, returns to near zero to pass through the transonic regime and satisfy the dynamic pressure constraint, returns to a positive value to keep the trajectory high and to take advantage of minimum drag at positive angle of attack due to aerodynamic shading of the booster, and then rolls off to negative values to satisfy the constraints. Because the engines cannot be throttled, the maximum dynamic pressure occurs at a single point; there is no maximum dynamic pressure subarc. To test approximations for obtaining analytical solutions for guidance, two additional optimal trajectories are computed: one using untrimmed aerodynamics and one using no atmospheric effects except for the dynamic pressure constraint. It is concluded that untrimmed aerodynamics has a negligible effect on the optimal trajectory and that approximate optimal controls should be able to be obtained by treating atmospheric effects as perturbations.

  11. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  12. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  13. Advanced methods of microscope control using μManager software

    PubMed Central

    Edelstein, Arthur D.; Tsuchida, Mark A.; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D.; Stuurman, Nico

    2014-01-01

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging. PMID:25606571

  14. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Narayanan, K.S.; Herrera-Urbina, R.; Diao, J.; Yin, Y.; Sotillo, F.; Harris, G. ); Hu, Weibei; Zou, Y.; Chen, W. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Xhong, K.; Xiao, L. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Mi

    1990-02-28

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve 90% pyritic sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is an important aspect of the project objectives. The effect of the following additives on flotation response was investigated. These include methanol lethanol, butylbenzaldehyde, glyoxal and several monomers. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been stored in three storage modes, namely, open, covered and in an argon-inerted'' atmosphere, over a period of twelve months. 33 refs., 134 figs., 98 tabs.

  15. Staying competitive with advanced technologies for closed loop supervisory control

    SciTech Connect

    Radl, B.J.; Roland, W.B.; Kish, B.

    1996-05-01

    The following paper discusses the experience gained from installing a neural network-based supervisory control system for selected combustion parameters at Penn Power`s New Castle station. The primary goal of the program was to reduce NO{sub x} emissions, while maintaining or improving unit heat rate. The advanced technologies used to implement supervisory control include: Neural Networks, Genetic Algorithms, Pattern Recognition and Data Visualization. The program was jointly funded by Ohio Edison, U.S. Department of Energy (DOE), Environmental Protection Agency (EPA) and Pegasus Technologies Corporation, under a National Industrial Competitiveness through Energy, Environment and Economics (NICE) grant program. The system is installed on a 1950s vintage Babcock & Wilcox front-fired (four levels) drum unit with a gross generation capacity of 146 MW The program linked a Unix workstation, where the supervisory control system resides, with a Network 90 Digital Control System (DCS). The system uses a neural network-based nonlinear model of the combustion process to interactively adjust setpoints and bias settings in the DCS. The system performs many {open_quotes}what if{close_quotes} simulations to optimize setpoints for the current operating conditions. The neural network model is updated periodically, learning from the most recent data. New setpoints are generated accordingly and downloaded into the DCS. Setpoint and bias adjustments are constrained within the original control system limits. Conditioning algorithms were developed to handle the inherently {open_quote}noisy{close_quote} input data and to provide stable output recommendations. Test results and parameters used for combustion optimization are summarized in this paper.

  16. A Controlled Trial of Sildenafil in Advanced Idiopathic Pulmonary Fibrosis

    PubMed Central

    2013-01-01

    BACKGROUND Sildenafil, a phosphodiesterase-5 inhibitor, may preferentially improve blood flow to well-ventilated regions of the lung in patients with advanced idiopathic pulmonary fibrosis, which could result in improvements in gas exchange. We tested the hypothesis that treatment with sildenafil would improve walk distance, dyspnea, and quality of life in patients with advanced idiopathic pulmonary fibrosis, defined as a carbon monoxide diffusion capacity of less than 35% of the predicted value. METHODS We conducted a double-blind, randomized, placebo-controlled trial of sildenafil in two periods. The first period consisted of 12 weeks of a double-blind comparison between sildenafil and a placebo control. The primary outcome was the proportion of patients with an increase in the 6-minute walk distance of 20% or more. Key secondary outcomes included changes in oxygenation, degree of dyspnea, and quality of life. The second period was a 12-week open-label evaluation involving all patients receiving sildenafil. RESULTS A total of 180 patients were enrolled in the study. The difference in the primary outcome was not significant, with 9 of 89 patients (10%) in the sildenafil group and 6 of 91 (7%) in the placebo group having an improvement of 20% or more in the 6-minute walk distance (P = 0.39). There were small but significant differences in arterial oxygenation, carbon monoxide diffusion capacity, degree of dyspnea, and quality of life favoring the sildenafil group. Serious adverse events were similar in the two study groups. CONCLUSIONS This study did not show a benefit for sildenafil for the primary outcome. The presence of some positive secondary outcomes creates clinical equipoise for further research. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00517933.) PMID:20484178

  17. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2001-11-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot-Scale. The project team will include the Energy and Environmental Research Center (EERC) as the main contractor, W.L. Gore and Associates, Inc., as a technical and financial partner, and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a

  18. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-05-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology

  19. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity...

  20. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  1. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  2. Status of NO sub x control for coal-fired power plants

    NASA Technical Reports Server (NTRS)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  3. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  4. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2003-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  5. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  6. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  7. Speech recognition in advanced rotorcraft - Using speech controls to reduce manual control overload

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.; Bortolussi, Michael R.

    1988-01-01

    An experiment has been conducted to ascertain the usefulness of helicopter pilot speech controls and their effect on time-sharing performance, under the impetus of multiple-resource theories of attention which predict that time-sharing should be more efficient with mixed manual and speech controls than with all-manual ones. The test simulation involved an advanced, single-pilot scout/attack helicopter. Performance and subjective workload levels obtained supported the claimed utility of speech recognition-based controls; specifically, time-sharing performance was improved while preparing a data-burst transmission of information during helicopter hover.

  8. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  9. Advanced illumination control algorithm for medical endoscopy applications

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  10. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  11. Advancing cancer control research in an emerging news media environment.

    PubMed

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control. PMID:24395988

  12. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    SciTech Connect

    Hughes, Steven Michael

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  13. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  14. 40 CFR 97.12 - Changing NOX authorized account representative and alternate NOX authorized account...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Changing NOX authorized account representative and alternate NOX authorized account representative; changes in owners and operators. 97.12... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized...

  15. 40 CFR 97.12 - Changing NOX authorized account representative and alternate NOX authorized account...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Changing NOX authorized account representative and alternate NOX authorized account representative; changes in owners and operators. 97.12... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized...

  16. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: current and advanced act control system definition study

    SciTech Connect

    Not Available

    1982-04-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability (2) angle of attack limiting (3) lateral/directional augmented stability (4) gust load alleviation (5) maneuver load control and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  18. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    SciTech Connect

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  19. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  20. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate