Science.gov

Sample records for advanced nuclear propulsion

  1. Nuclear propulsion technology advanced fuels technology

    NASA Technical Reports Server (NTRS)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  2. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  3. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  4. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  5. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  6. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  7. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  8. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    SciTech Connect

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D. ); Gunn, S.A.; Zweig, H.R. )

    1993-01-10

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements.

  9. Advanced charged particle beam ignited nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2009-06-01

    It is shown that the mass of the driver for nuclear microexplosion—Orion type—pulse propulsion can be substantially reduced with a special fusion-fast fission configuration, which permits to replace an inefficient laser beam driver with a much more efficient and less massive relativistic electron beam (or light ion beam) driver. The driver mass can be further reduced, and the propulsion efficiency increased, by surrounding the nuclear microexplosion assembly with a shell of conventional hydrogen-rich explosive, helping to ignite the nuclear reaction and dissipating the otherwise lost kinetic neutron energy in the shell which becomes part of the propellant.

  10. Advances in NASA's Nuclear Thermal Propulsion Technology project

    NASA Technical Reports Server (NTRS)

    Peecook, Keith M.; Stone, James R.

    1993-01-01

    The status of the Nuclear Thermal Propulsion (NTP) project for space exploration and the future plans for NTP technology are discussed. Current activities in the framework of the NTP project deal with nonnuclear material tests; instrumentation, controls, and health management; turbopumps; nozzles and nozzle extension; and an exhaust plume.

  11. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  12. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  13. Advanced hybrid nuclear propulsion Mars mission performance enhancement

    SciTech Connect

    Dagle, J.E.; Noffsinger, K.E.; Segna, D.R.

    1992-02-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  14. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  15. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  16. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  17. Nuclear concepts/propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

  18. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  19. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  20. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  1. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  2. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  3. Nuclear-electric propulsion - Manned Mars propulsion options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  4. Nuclear gas core propulsion research program

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  5. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  6. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  7. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  8. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion - Phase I

    SciTech Connect

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-06

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature {approx} 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  9. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  10. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion — Phase I

    NASA Astrophysics Data System (ADS)

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-01

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature ˜ 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  11. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  12. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  13. Advanced rocket propulsion

    NASA Astrophysics Data System (ADS)

    Obrien, Charles J.

    1993-02-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  14. Nuclear propulsion for orbital transfer

    SciTech Connect

    Beale, G.A.; Lawrence, T.J. )

    1989-06-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine.

  15. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  16. Advanced Chemical Propulsion

    NASA Astrophysics Data System (ADS)

    Alexander, L.

    2004-11-01

    Improving the performance and reliability characteristics of chemical propulsion systems requires research and testing of higher-performance propellants, higher efficiency thrusters, cryogenics technology, lightweight components and advancements in propulsion system design and assessment. Propellants are being investigated to identify practical combinations with higher efficiencies and better thermal properties to reduce thermal control requirements. This includes combinations with modest increases, such as LOX-hydrazine, as well as a new evaluation of major improvements available from fluorine-bearing oxidizers. Practical ways of implementing cryogenic propulsion to further increase efficiency are also being studied. Some potential advances include small pump-fed engines, and improvements in cryocooler technology and tank pressure control. Gelled propellants will be tested to determine the practicality of letting propellants freeze at low environmental temperatures and thawing them only when required for use. The propellant tank is typically the single highest non-expendable mass in a chemical propulsion system. Lightweight tank designs, materials and methods of fabrication are being investigated. These are projected to offer a 45-50 percent decrease in tank mass, representing the potential inert system mass savings. Mission and systems analyses are being conducted to guide the technology research and set priorities for technology investment, based on estimated gains in payload and mission capabilities. This includes development of advanced assessment tools and analyses of specific missions selected from Science Missions' Directorate. The goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary trip time, increased scientific payload mass fraction and longer on-station operations. This talk will review the Advanced Chemical technology development roadmap, current

  17. Space Nuclear Thermal Propulsion (SNTP) tests

    NASA Technical Reports Server (NTRS)

    Allen, George C.

    1993-01-01

    Viewgraphs on the space nuclear thermal propulsion (SNTP) program are presented. The objective of the research is to develop advanced nuclear thermal propulsion (NTP) technology based on the particle bed reactor concept. A strong philosophical commitment exists in the industry/national laboratory team to emphasize testing in development activities. Nuclear testing currently underway to support development of SNTP technology is addressed.

  18. Advanced propulsion on a shoestring

    SciTech Connect

    Lerner, E.J.

    1990-05-01

    Consideration is given to propulsion concepts under study by NASA Advanced Propulsion Research Program. These concepts include fusion, antimatter-matter annihilation, microwave electrothermal, and electron cyclotron resonance propulsion. Results from programs to develop fusion technologies are reviewed, including compact fusion devices and inertial confinement experiments. Problems concerning both antimatter and fusion propulsion concepts are examined and the economic issues related to propulsion research are discussed.

  19. Hybrid nuclear light bulb-nuclear-pumped laser propulsion for advanced missions

    NASA Astrophysics Data System (ADS)

    Miley, G. H.

    1999-01-01

    A hybrid ``nuclear light bulb'' gaseous core reactor that can radiantly transfer energy to a propellant or alternately activate laser action is proposed for advanced space missions. The propellant mode would be employed in the phases of the mission requiring a higher thrust. However, for the bulk of the travel, the propellant would be turned off and the ultrahigh specific impulse laser mode of operation would be employed. The concept is reviewed, research and development issues are identified, and steps necessary for a feasibility demonstration are discussed.

  20. Collector temperature effects on the performance of advanced thermionic converters and nuclear electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Dick, R. S.; Mcvey, J.; Britt, E. J.; Fitzpatrick, G. O.

    1980-01-01

    The specific weight of a thermionic nuclear electric propulsion (NEP) system depends on the collector temperature because of changes in power density, efficiency and the temperature of heat rejection. Increasing the collector temperature above the value for maximum converter performance decreases both the efficiency and the power density of the converters, but the specific weight of the total system is decreased because of the reduction in radiator weight due to the increased heat rejection temperature. The effect of collector temperature on the performance of thermionic converters was investigated. The behavior of conventional ignited mode converters as well as advanced converters with lower collector work functions; the specific mass of an 'uninsulated' NEP system design was then evaluated as a function of collector temperature. The uninsulated design uses the electrical resistance of the heat pipes between the converters and the reactor to provide electrical insolation, eliminating the need for ceramic insulators at emitter temperature and providing other design advantages. The results indicate that an optimum collector temperature, which minimizes system weight, exists at a temperature above the optimum temperature for converter performance.

  1. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  2. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  3. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  4. Nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.; Tubb, David J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  5. Nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Keaton, Paul W.; Tubb, David J.

    1986-05-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  6. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  7. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  8. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  9. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  10. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Astrophysics Data System (ADS)

    Levack, Daniel

    1993-04-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  11. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  12. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  13. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve

    2015-01-01

    HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.

  14. Comparison of advanced propulsion capabilities for future planetary missions

    NASA Technical Reports Server (NTRS)

    Niehoff, J. C.; Friedlander, A. L.

    1974-01-01

    This paper summarizes unmanned planetary performance (payload and trip time) of Shuttle-based advanced propulsion systems for 1980-90 missions analyzed as part of the recent NASA/AEC Advanced Propulsion Comparisons Studies. Propulsion system designs and condensed results from over 300 propulsion/mission combinations are discussed. Chemical rocket (CRP), solar electric (SEP), nuclear rocket (NRP), and nuclear electric (NEP) propulsion systems are all considered. In terms of missions flown, total flight time, and number of Shuttle launches required, NEP provides the best performance. Relative to NEP, it is shown that NRP, SEP, and CRP degrade mission performance by 20%, 40%, and 50%, respectively, at nominal payloads.

  15. Affordable Development of a Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  16. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  17. Nuclear propulsion for space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.; Bennett, Gary L.

    1992-01-01

    The results of some recent studies of the application of both nuclear electric and nuclear thermal propulsion systems in space exploration are presented. Issues that require further study and which have a significant effect on the propulsion system design and selection are identified. Attention is given to robotic missions, lunar piloted and cargo missions, and Mars missions.

  18. Advanced Propulsion Research Interest in Materials for Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  19. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2014-06-17

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  20. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  1. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  2. Reactors for nuclear electric propulsion

    SciTech Connect

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  3. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1991-01-01

    The topics presented are covered in viewgraph form. The programmatic objective is to establish the feasibility of propulsion technologies for vastly expanded space activity. The technical objective is a revolutionary performance sought, such as: (1) about 1 kg/kW specific mass; (2) specific impulse tailored to mission requirements; (3) ability to use in-situ resources; (4) round-trips to Mars in months; (5) round-trips to outer planets in 1 to 2 years; and (6) the capability for robotic mission beyond the solar system.

  4. An overview of the NASA Advanced Propulsion Concepts program

    SciTech Connect

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R. JPL, Pasadena, CA Sverdrup Technology, Inc., Brook Park, OH NASA, Lewis Research Center, Cleveland, OH )

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs.

  5. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  6. Performance of advanced missions using fusion propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Mcadams, Jim; Schulze, Norm

    1989-01-01

    A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.

  7. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  8. Nuclear space propulsion critical technologies

    SciTech Connect

    Clark, J.S.; Borowski, S.K.; Doherty, M.P. )

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has actively pursued technology development for nuclear rocket propulsion systems for possible use on lunar outpost missions, for exploration missions to Mars, and for outer planet and other solar system exploration missions. A number of these technologies have been broadly identified by the ANS National Critical Technologies Panel, as well as the Department of Commerce as [open quotes]Critical Technologies.[close quotes] A Nuclear Propulsion Office was established at the Lewis Research Center in Cleveland, Ohio, to lead nuclear propulsion development for NASA and to establish appropriate interagency working relationships with the U.S. Department of Energy national laboratories for nuclear technology development and with the Department of Defense (DoD). The NASA intercenter and interagency teams and NASA contractors have initiated conceptual design activities and other trade studies that provide the focus for appropriate critical technology development for both nuclear thermal propulsion (NTP) systems and nuclear electric propulsion (NEP) systems. Critical technology issues have been identified and are discussed in this paper. For NTP systems, the heat generated in the nuclear reactor is used to simply heat a propellant such as hydrogen, and then the high-temperature propellant expands through a nozzle to produce thrust. Specific impulse for NTP systems should be on the order of 900 to 950 s-approximately double the best chemical propulsion systems.

  9. MSFC Nuclear Propulsion Materials Development

    NASA Technical Reports Server (NTRS)

    Rogers, J. R.; Cook, B.

    2004-01-01

    Nuclear propulsion systems for spacecraft applications present numerous technical challenges for propulsion systems. They have been the focus of a recent NRA. Challenges inclue: a nuclear reactor subsystem to produce thermal energy; a power conversion subsystem to convert the thermal energy into electrical energy; a propulsion subsystem that utilizes Hall effect thrusters; thruster technologies and high temperature materials to support subsystems. The MSFC Electrostatic Levitation (ESL) Facility provides an ideal platform for the study of high temperature and reactive materials. An overview of the facility and its capabilities will be presented.

  10. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation

  11. Nuclear Propulsion Project Workshop summary

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.; Clark, John S.; Barnett, John W.

    1991-01-01

    NASA-Lewis has undertaken the planning and coordination of a joint NASA/DOE/DOD Nuclear Propulsion Project which will investigate both nuclear electric and nuclear thermal concepts. The three-agency team has been tasked with the development of an Interagency Agreement and Memorandum of Understanding, as well as the drafting of a statement as to astronaut crew guidelines and values, the assessment of human-rating requirements, the development of an interagency safety and environmental assessment plan, and the development of test facility requirements. Attention is to be given to the role of SP-100 for nuclear-electric propulsion applications.

  12. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC

  13. Nuclear thermal propulsion workshop overview

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning.

  14. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or

  15. Nuclear Propulsion Technical Interchange Meeting, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are an accumulation of the presentations provided at the meeting along with annotations provided by authors. The proceedings cover system concepts, technology development, and system modeling for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The test facilities required for the development of the nuclear propulsion systems are also discussed.

  16. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  17. The Future of Spacecraft Nuclear Propulsion

    NASA Astrophysics Data System (ADS)

    Jansen, F.

    2014-06-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  18. In-space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Bruno, C.; Dujarric, C.

    2013-02-01

    The past and the recent status of nuclear propulsion (NP) for application to space mission is presented. The case for using NP in manned space missions is made based on fundamental physics and on the necessity to ensure safe radiation doses to future astronauts. In fact, the presence of solar and galactic-cosmic radiation poses substantial risks to crews traveling for months in a row to destinations such as asteroids and Mars. Since passive or active shields would be massive to protect against the more energetic part of the radiation energy spectrum, the only alternative is to reduce dose by traveling faster. Hence the importance of propulsion systems with much higher specific impulse than that of current chemical systems, and thus the use of nuclear propulsion. Nuclear-thermal and nuclear-electric propulsions are then discussed in view of their potential application to missions now in the preliminary planning stage by space agencies and industries and being considered by the ISECG international panel. In this context, recent ideas for future use of the ISS that may require NP are also presented.

  19. Advanced technology for future space propulsion systems

    NASA Technical Reports Server (NTRS)

    Diehl, Larry A.

    1989-01-01

    The NASA Project Pathfinder contains programs to provide technologies for future transfer vehicles including those powered by both advanced chemical and electric propulsion rockets. This paper discusses the Chemical Transfer Propulsion and Cargo Vehicle Propulsion elements of Pathfinder. The program requirements and goals for both elements are discussed, and technical activities which are planned or underway are summarized. Recent progress in programs which support or proceed the Pathfinder activities is detailed. In particular, the NASA Program for Advanced Orbital Transfer Vehicle Propulsion, which acted as the precursor for the Chemical Transfer Propulsion element of Pathfinder is summarized.

  20. Applications of nuclear propulsion to Mars missions

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Reck, Gregory M.; Bennett, Gary L.

    1991-01-01

    The basic features of a piloted mission to Mars is described, and it is shown how nuclear propulsion can improve upon the various performance measures of such a mission. An overview of the history and types of nuclear propulsion in the U.S. is presented. Current planning to develop nuclear propulsion technology for the Space Exploration Initiative is addressed.

  1. MSFC nuclear thermal propulsion technology program

    NASA Technical Reports Server (NTRS)

    Swint, Shane

    1993-01-01

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  2. Nuclear Thermal Propulsion Development Risks

    NASA Technical Reports Server (NTRS)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  3. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars

  4. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  5. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  6. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  7. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  8. Nuclear Propulsion Technical Interchange Meeting, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Nuclear Propulsion Technical Interchange Meeting (NP-TIM-92) was sponsored and hosted by the Nuclear Propulsion Office at the NASA Lewis Research Center. The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are a compilation of the presentations given at the meeting (many of the papers are presented in outline or viewgraph form). Volume 1 covers the introductory presentations and the system concepts and technology developments related to nuclear thermal propulsion.

  9. Concepts for Near-Earth Asteroid Deflection using Spacecraft with Advanced Nuclear and Solar Electric Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Walker, R.; Izzo, D.; de Negueruela, C.; Summerer, L.; Ayre, M.; Vasile, M.

    The near-Earth object population, composed mostly of asteroids rather than comets, poses an impact hazard to Earth. Space technology is reaching a sufficient level of capability and maturity where the deflection of an Earth impactor may be possible within the next decades. The paper focuses on assessing the maximum deflection capability (minimum response time) that could be achieved with a rendezvous/landed spacecraft, using electric propulsion and nuclear/solar power technologies likely to be available in the near-term, within the constraints of a single heavy launch into low Earth orbit. Preliminary design concepts are presented for large, high-power nuclear and solar electric spacecraft, based on a trade-off analysis of power/ propulsion technology options and an optimisation of the complete mission design to the minimise the total response time for a representative impactor/deflection scenario. High specific impulse gridded-ion engines show significantly improved mission performance over Hall effect thrusters due to the high delta-V requirements for Earth spiral out, rendezvous, spin axis re-orientation and deflection. Amorphous silicon thin film solar arrays perform substantially better than conventional high cell efficiency alternatives. It was found that solar electric spacecraft could achieve lower total response times for the deflection than a nuclear electric spacecraft of the same initial mass, if the asteroid perihelion is much lower than the Earth. The comparison is expected to be much closer if the asteroid perihelion is near the Earth. Both systems were found to provide effective deflection capabilities for small/moderate-size impactors.

  10. Propulsion of space ships by nuclear explosion

    NASA Astrophysics Data System (ADS)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  11. Nuclear Electric Propulsion mission operations.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Spera, R. J.

    1972-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  12. Nuclear electric propulsion stage requirements and description

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Peelgren, M. L.; Nakashima, A. M.; Nsieh, T. M.; Phillips, W. M.; Kikin, G. M.

    1974-01-01

    The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented.

  13. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  14. Propulsion issues for advanced orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1984-01-01

    Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.

  15. Modeling of Power and Propulsion Parameters For Nuclear Electric Propulsion Misson Studies

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1993-01-01

    Advanced propulsion mission studies sponsored by NASA over the past 10-15 years have indicated that Nuclear Electric Propulsion (NEP) may be a viable candidate for a detailed exploration of the solar system. The first generation of NEP to be used for Planetary missions will most likely be based on modest technology improvements to already existing designs or hardware for a technology readiness in the 2000-2010 time frame.

  16. Overview of DOE space nuclear propulsion programs

    NASA Technical Reports Server (NTRS)

    Newhouse, Alan R.

    1993-01-01

    An overview of Department of Energy space nuclear propulsion programs is presented in outline and graphic form. DOE's role in the development and safety assurance of space nuclear propulsion is addressed. Testing issues and facilities are discussed along with development needs and recent research activities.

  17. A comparison of chemical propulsion, nuclear thermal propulsion, and multimegawatt electric propulsion for Mars missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.; Blandino, John J.; Leifer, Stephanie D.

    1991-01-01

    Various propulsion systems are considered for a split-mission piloted exploration of Mars in terms of reducing total initial mass in low earth orbit (IMLEO) as well as trip time. Aerobraked nuclear thermal propulsion (NTP), multimegawatt (MMW) nuclear electric propulsion (NEP), and MMW solar electric propulsion (SEP) are discussed and compared to a baseline aerobraked chemical propulsion system. NTP offers low IMLEO, MMW NEP allows both low IMLEO and a short trip time, and both nuclear systems offer better mission characteristics than the chemical system. The MMW SEP is concluded to be less efficient in spite of a lower IMLEO because of the system's higher specific mass and nonconstant power production. It is recommended that MMW NEP and SEP systems be considered for application to Mars cargo missions. The NEP system is concluded to be the most effective propulsion configuration for piloted Mars missions and lunar base missions.

  18. Advanced Chemical Propulsion for Science Missions

    NASA Technical Reports Server (NTRS)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  19. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  20. Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2010-02-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  1. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  2. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  3. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  4. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  5. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  6. Space Nuclear Thermal Propulsion (SNTP) program

    NASA Technical Reports Server (NTRS)

    Bleeker, Gary A.

    1993-01-01

    An overview of the Space Nuclear Thermal Propulsion program is presented in graphic form. A program organizational chart is presented that shows the government and industry participants. Enabling technologies and test facilities and approaches are also addressed.

  7. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  8. Advanced Propulsion for the XXIst Century

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2003-01-01

    This document represents a poster presentation offered at the AIAA/CAS International Air & Space Symposium and Exposition from July 14-17, 2003 in Dayton Ohio. This presentation outlines advanced space propulsion concepts as well as associated research and industry activities during the 21st century.

  9. MSFC's Advanced Space Propulsion Formulation Task

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.

    2012-01-01

    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.

  10. Advanced supersonic propulsion study, phase 3

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  11. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  12. Review of Nuclear Thermal Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Gabrielli, Roland Antonius; Herdrich, Georg

    2015-11-01

    This article offers a summary of past efforts in the development of Nuclear Thermal Propulsion systems for space transportation. First, the generic principle of thermal propulsion is outlined: a propellant is directly heated by a power source prior to being expanded which creates a thrusting force on the rocket. This enables deriving a motivation for the use of Nuclear Thermal Propulsion (NTP) relying on nuclear power sources. Then, a summary of major families of NTP systems is established on the basis of a literature survey. These families are distinguished by the nature of their power source, the most important being systems with radioisotope, fission, and fusion cores. Concepts proposing to harness the annihilation of matter and anti-matter are only touched briefly due to their limited maturity. For each family, an overview of physical fundamentals, technical concepts, and - if available - tested engines' propulsion parameters is given.

  13. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  14. Establishing a center for advanced space propulsion

    NASA Technical Reports Server (NTRS)

    Garrison, George W.

    1990-01-01

    The goals and the concept of NASA-sponsored Centers for the Commercial Development of Space (CCDSs) are presented. The Center for Advanced Space Propulsion (CASP), its research projects, and the prognosis for their success are discussed. The establishment of CCDSs is recognized as an experiment to bring together university and industry researchers to maintain and improve the internationally competitive position of the United States in space. Increasing private investment in space-related technology and developing new commercial products are the basic requirements for success. CASP is the only CCDS that focuses on propulsion technology, which is critical to ensuring continued U.S. leadership in space. CASP is expected to become a recognized center for propulsion research and commercialization within the next five years.

  15. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  16. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP.

  17. Nuclear propulsion in the United States.

    NASA Technical Reports Server (NTRS)

    Gabriel, D. S.

    1972-01-01

    The achievements of the Nuclear Propulsion Program over the past 15 years are reviewed. It is shown that the effort in basic and applied research and technological development resulted in a state of technology of nuclear rocket engines based on solid core reactors, which is suitable for the development of a space propulsion system. Current efforts aimed at achieving specific impulses on the order of 975 sec (3400 K) are noted. The characteristics of SNRE (Small Nuclear Rocket Engine), the ALPHA, BETA, and GAMMA engines are discussed. Attention is given to the design and principles of operation of the Rotating Fluidized Dust Bed Reactor.

  18. Recent Advances in Plasma Propulsion for Spacecraft

    NASA Astrophysics Data System (ADS)

    Choueiri, E. Y.

    1998-11-01

    Three decades of research on plasma propulsion for spacecraft have led to a level of maturity that has recently ushered in the era of application. Over the past few years, due to their ability to insure great mass savings over chemical propulsion, plasma propulsion devices (thrusters) have been used (or selected for use) on spacecraft for missions ranging from stationkeeping, drag compensation, attitude control and pointing, orbit raising and repositioning, to primary propulsion for interplanetary missions. Plasma thrusters have also been used as plasma sources in space for active space physics experiments and in the laboratory as plasma sources for reentry simulation, plasma processing and plasma injection in fusion devices. We will review research in the field, focusing on the plasma physics problems related to three classes of plasma thrusters: the Hall thruster (HT), the pulsed plasma thruster (PPT) and the magnetoplasmadynamic thruster (MPDT). The basic plasma acceleration and power loss mechanisms in each of these devices will be described along with the major plasma physics problems that control the thrust efficiency, stability and lifetime of these devices. We will review the recent advances and remaining questions relevant to the following important problems: macro and micro instabilities and turbulence, anomalous transport, ionization physics, plume divergence (HT and MPDT), current sheet dynamics and permeability (PPT).

  19. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  20. Performance Criteria of Nuclear Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  1. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  2. Multimegawatt nuclear power systems for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  3. A development approach for nuclear thermal propulsion

    SciTech Connect

    Buden, D.

    1992-09-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ``acceptable`` nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  4. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  5. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-11-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  6. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, Dale; Thomassen, Keith; Sovey, Jim; Fontana, Mario

    1992-01-01

    This paper summarizes the findings of a Tri-Agency panel; consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD); charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1 thruster developmental testing facility, (2 thruster lifetime testing facility, (3 dynamic energy conversion development and demonstration facility, and (4 advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualification and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000s.

  7. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  8. Thermal fatigue durability for advanced propulsion materials

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  9. Safety questions relevant to nuclear thermal propulsion

    SciTech Connect

    Buden, D.

    1991-10-15

    Nuclear propulsion is necessary for successful Mars exploration to enhance crew safety and reduce mission costs. Safety concerns are considered by some to be an implements to the use of nuclear thermal rockets for these missions. Therefore, an assessment was made of the various types of possible accident conditions that might occur and whether design or operational solutions exist. With the previous work on the NERVA nuclear rocket, most of the issues have been addressed in some detail. Thus, a large data base exist to use in an agreement. The assessment includes evaluating both ground, launch, space operations and disposal conditions. The conclusion is that design and operational solutions do exist for the safe use of nuclear thermal rockets and that both the environment and crews be protected against harmful radiation. Further, it is concluded that the use of nuclear thermal propulsion will reduce the radiation and mission risks to the Mars crews.

  10. Nuclear propulsion tradeoffs for manned Mars missions

    SciTech Connect

    Walton, L.A.; Malloy, J.D. )

    1991-01-05

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38% to 52% total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion.

  11. Nuclear propulsion tradeoffs for manned Mars missions

    NASA Astrophysics Data System (ADS)

    Walton, Lewis A.; Malloy W Nuclear Technologies, John D.

    1991-01-01

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38% to 52% total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion.

  12. Nuclear propulsion tradeoffs for manned Mars missions

    NASA Astrophysics Data System (ADS)

    Walton, Lewis A.; Malloy, John D.

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38 to 52 percent total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion.

  13. Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis

    SciTech Connect

    Bednarczyk, A.A.

    1989-05-01

    The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.

  14. PEGASUS: a multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements.

  15. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  16. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  17. Advanced supersonic propulsion study, phase 4

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1977-01-01

    Installation characteristics for a Variable Stream Control Engine (VSCE) were studied for three advanced supersonic airplane designs. Sensitivity of the VSCE concept to change in technology projections was evaluated in terms of impact on overall installed performance. Based on these sensitivity results, critical technology requirements were reviewed, resulting in the reaffirmation of the following requirements: low-noise nozzle system; a high performance, low emissions duct burner and main burner; hot section technology; variable geometry components; and propulsion integration features, including an integrated electronic control system.

  18. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  19. Nuclear propulsion system options for Mars missions

    SciTech Connect

    Emrich, W.J. Jr.; Young, A.C. )

    1992-03-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  20. Nuclear propulsion system options for Mars missions

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Young, Archie C.

    1992-01-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  1. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    NASA Astrophysics Data System (ADS)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  2. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  3. The Case of Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.

  4. Nuclear Propulsion using Thin Foiled Fuel

    NASA Astrophysics Data System (ADS)

    Takahashi, H.

    1998-11-01

    A new way to produce plasma for nuclear propulsion is proposed. A thin foiled fuel can be used for converting fission energy to propulsion energy efficiently. The fission products coming out of the thin foil directly ionize the hydrogen molecules which are used for propulsion. Thus very small portion of fission energy deposited in the thin foil, and integrity of the thin foiled fuel can be maintained even in high nuclear power. Fuel material with large thermal fission cross-section is preferable to make thin foiled fuel and the heat deposition in the foil can be reduced. To get high power from the foiled fuel assembly, thermal neutrons which are created out from the assembly can be supplied, or the assembly itself can create the high intensity thermal neutrons by self-multiplication. A flexible design of a highly efficient nuclear propulsion system can be made. The thickness of the foil and the maintenance of the thermo-mechanical integrity can be determined from the fission cross-section and the slowing down power for fission products. The talk discusses the issues related to heat removal from the assembly.

  5. Spacecraft Impacts with Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Oleson, Steven R.

    2000-01-01

    A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.

  6. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  7. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    NASA Technical Reports Server (NTRS)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  8. Accommodation of Nuclear Power and Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.; Bolch, Wesley e.; Thomas, J. Kelley

    1990-01-01

    The use of nuclear systems for propulsion and power are being examined as system options for implementing the lunar and Mars human exploration missions currently being studied by NASA. Systems might include nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles, operating reactors on coorbiting platforms, radioisotope thermoelectric generators, and others. The space station, as a transportation node, would have to store, assemble, launch and refurbish elements containing these systems. Care must be taken to safeguard humans from the radiation imposed by these systems, in addition to the naturally occuring background of the space environment. Key issues need to be identified early to enable their proper consideration in planning activities and the baseline space station design. A study was conducted over the past year with Texas A&M University to identify and explore key issues and quantify findings in a way useful to the Space Station Program.

  9. Fast Track'' nuclear thermal propulsion concept

    SciTech Connect

    Johnson, R.A.; Zweig, H.R. ); Cooper, M.H.; Wett, J. Jr. )

    1993-01-10

    The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

  10. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  11. Evolutionary use of nuclear electric propulsion

    SciTech Connect

    Hack, K.J.; George, J.A.; Riehl, J.P.; Gilland, J.H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed. 26 refs.

  12. Evolutionary use of nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.

  13. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  14. Disposal modes for Mars transfer nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Friedlander, Alan L.

    1991-01-01

    A managed disposal approach is proposed that would place the nuclear stage or vehicle in a highly stable orbit at modest cost to mission performance. The approach requires only a small increase in initial mass in LEO, but should be included in preliminary trajectory design and performance calculations. The mass penalty is expected to be larger for all-up flight profiles, or in cases of high-thrust propulsion systems for the cargo vehicle.

  15. Small low mass advanced PBR's for propulsion

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  16. Z-Pinch fusion-based nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  17. Advanced NSTS propulsion system verification study

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1989-01-01

    The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.

  18. The MAUS nuclear space reactor with ion propulsion system

    NASA Astrophysics Data System (ADS)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  19. Nuclear Propulsion for Space Applications

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2013-01-01

    Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.

  20. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  1. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  2. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  3. Advanced supersonic technology propulsion system study

    NASA Technical Reports Server (NTRS)

    Szeliga, R.; Allan, R. D.

    1974-01-01

    This study had the objectives of determining the most promising conventional and variable cycle engine types; the effect of design cruise Mach number (2.2, 2.7 and 3.2) on a commercial supersonic transport; effect of advanced engine technology on the choice of engine cycle; and effect of utilizing hydrogen as the engine fuel. The technology required for the engines was defined, and the levels of development to ensure availability of this technology in advanced aircraft propulsion systems were assessed. No clearcut best conventional or variable cycle engine was identified. The dry bypass turbojet and the duct burning turbofans were initially selected as the best conventional engines, but later results, utilizing augmentation at takeoff, added the mixed-flow augmented turbofan as a promising contender. The modulating air flow, three-rotor variable cycle engine identified the performance features desired from VCE concepts (elimination of inlet drag and reduction in afterbody drag), but was a very heavy and complex engine.

  4. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  5. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  6. Space Nuclear Propulsion Systems and Applications

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1972-01-01

    The basic principles of the operation of a nuclear rocket engine are reviewed along with a summary of the early history. In addition, the technology status in the nuclear rocket program for development of the flight-rated NERVA engine is described, and applications for this 75,000-pound thrust engine and the results of nuclear stage studies are presented. Advanced research and supporting technology activities in the nuclear rocket program are also summarized.

  7. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  8. Nuclear propulsion apparatus with alternate reactor segments

    DOEpatents

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  9. Contributions Regarding the Aircraft Nuclear Propulsion

    SciTech Connect

    Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian; Stanciu, Virgil; Petre, Carmelia; Precup, Irinel

    2010-01-21

    The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for the nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.

  10. Contributions Regarding the Aircraft Nuclear Propulsion

    NASA Astrophysics Data System (ADS)

    Mitrica, Bogdan; Stanciu, Virgil; Petre, Marian; Dima, Mihai Octavian; Petre, Carmelia; Precup, Irinel

    2010-01-01

    The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for the nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.

  11. Benefits of Nuclear Electric Propulsion for Outer Planet Exploration

    NASA Technical Reports Server (NTRS)

    Kos, Larry; Johnson, Les; Jones, Jonathan; Trausch, Ann; Eberle, Bill; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) offers significant benefits to missions for outer planet exploration. Reaching outer planet destinations, especially beyond Jupiter, is a struggle against time and distance. For relatively near missions, such as a Europa lander, conventional chemical propulsion and NEP offer similar performance and capabilities. For challenging missions such as a Pluto orbiter, neither chemical nor solar electric propulsion are capable while NEP offers acceptable performance. Three missions are compared in this paper: Europa lander, Pluto orbiter, and Titan sample return, illustrating how performance of conventional and advanced propulsion systems vary with increasing difficulty. The paper presents parametric trajectory performance data for NEP. Preliminary mass/performance estimates are provided for a Europa lander and a Titan sample return system, to derive net payloads for NEP. The NEP system delivers payloads and ascent/descent spacecraft to orbit around the target body, and for sample return, delivers the sample carrier system from Titan orbit to an Earth transfer trajectory. A representative scientific payload 500 kg was assumed, typical for a robotic mission. The resulting NEP systems are 100-kWe class, with specific impulse from 6000 to 9000 seconds.

  12. Nuclear pulse propulsion for interplanetary travel

    NASA Astrophysics Data System (ADS)

    Cassenti, Brice N.

    2001-02-01

    Over the last forty years there has been continuous interest in both internal and external pulse propulsion systems. The nuclear devices being considered are now considerably smaller than those initially examined. Pellets are normally in the range from 15 cm down to 2 cm in diameter, and fusion is generally preferred. Detonation can occur using high energy density triggers such as lasers, particle beams or antiprotons. In inertial confinement fusion the energy can be provided using laser beams or particle beams. When antiprotons are considered it is more efficient to annihilate the antiprotons in a fissionable material, and then use the energy from the fission reaction to drive the fusion reaction in the pellet. Finally, it is also possible to include fissionable material that can boost the performance of a fusion system. The early concepts, which used critical mass devices, do not satisfy the ban on nuclear weapons in space, and are only rarely considered today. Concepts based on inertial confinement fusion are heavier than those that use antiprotons for the trigger due to the mass associated with the lasers, or particle beams and their power supplies. Hence, from a performance, and political, point of view the antiproton triggered approach is the most desirable, but it also requires more development. Propulsion systems based on critical mass devices are clearly feasible, so the primary problem is to reduce the size of the explosive devices so that a critical mass is not required. If pulse nuclear fusion propulsion can become a reality then the performance is enough to complete manned missions to the inner planets in weeks and the outer planets in months. .

  13. Space Station propulsion - The Advanced Development Program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  14. Space station propulsion: The advanced development program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  15. Space nuclear power applied to electric propulsion

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.

    1989-01-01

    Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.

  16. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  17. Space nuclear thermal propulsion test facilities accommodation at INEL

    SciTech Connect

    Hill, T.J.; Reed, W.C.; Welland, H.J. )

    1993-01-15

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  18. Advanced Space Propulsion: A Research Perspective

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Cole, John; Rodgers, Steve; Sackheim, Bob

    2002-01-01

    This viewgraph presentation provides information on spacecraft propulsion research. The organizational and management principals needed for the research are stated. The presentation recommends a space propulsion research program. It also states some of the factors which drive research in the field, as well as the desired goals, objectives, and focus of the research.

  19. Advancements Toward Oil-Free Rotorcraft Propulsion

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.

    2010-01-01

    NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.

  20. Advances in Green Cryogenic Solid Propellant Propulsion

    NASA Astrophysics Data System (ADS)

    Lo, R. E.; Adirim, H.; Poller, S.; Glaeser, S.; Schoeyer, H.; Caramelli, F.

    2004-10-01

    The combustion of hydrocarbons with hydrogen peroxide or oxygen based oxidizers is known as the best possible realization of green bipropellants in the realm of conventional propellants. By the nature of these constituents, corresponding rocket motors are either hybrids or bi-liquids. This is advantageous in all applications requiring the merits of these categories, such as variations of the thrust - time profile (throttle-ability up to shut down and restart), or variable propellant loading and mixture ratio variation in liquid bipropellants. However, when it comes to thriving on the simplicity and reliability of solid propellant technology, it takes cryogenic solid propulsion (CSP) as enabling technology to make these normally liquid propellants available for many solid propellant applications, in particular for high thrust Earth-to-orbit boosting. It is obvious that proper CSP propellant selection yields solids that are as "green" as any chemical propellant combination can be. The paper describes recent advances in CSP technology related investigations sponsored by the German Aerospace Centre DLR and the European Space Agency ESA at AI/ICT.

  1. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  2. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    SciTech Connect

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  3. Nuclear Pulse Propulsion: Orion and Beyond

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Bonometti, J. A.; Morton, P. J.

    2000-01-01

    The race to the Moon dominated manned space Fight during the 1960's. and culminated in Project Apollo. which placed 12 humans on the Moon Unbeknownst to the public at that time, several U.S. Government agencies sponsored a project that could have conceivably, placed 150 people on the Moon and eventually sent crewed expeditions to Mars and the outer Planets. These feats could have possibly been accomplished during, the same period of time as Apollo. and for approximately the same cost. The project. code-named Orion. featured an extraordinary propulsion method known n as Nuclear Pulse The concept is probably as radical today as t was at the down of the space age. However its development appeared to he so promising that it was only by Political and non-technical considerations that it was not used to extend humanity reach throughout the solar system and quite possible to the stars. This paper discusses the rationale for nuclear pulse propulsion and presents a general history of the concept. focusing particularly on Project Orion. It describes some of the reexaminations being done in this area and discusses some of the new ideas that could mitigate many of the political and environmental issues associated with the concept.

  4. Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.

  5. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  6. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  7. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  8. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  9. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    NASA Technical Reports Server (NTRS)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  10. Back to the future - Using nuclear propulsion to go to Mars

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Graham, Scott R.; Harer, Kathleen F.

    1991-01-01

    The status of nuclear rocket propulsion is reviewed and its advantages for a manned Mars mission is examined. Special attention is given to nuclear thermal propulsion. The NASA nuclear propulsion program is reviewed.

  11. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  12. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  13. Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    NASA Technical Reports Server (NTRS)

    Stern, Martin O.

    1992-01-01

    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.

  14. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  15. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  16. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Hannan, Nelson A.; Worley, Brian A.; Walton, James T.; Perkins, Ken R.; Buska, John J.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  17. System model development for nuclear thermal propulsion

    SciTech Connect

    Hannan, N.A.; Worley, B.A.; Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Dobranich, D.

    1992-11-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  18. System model development for nuclear thermal propulsion

    SciTech Connect

    Walton, J.T.; Hannan, N.A.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-10-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented.

  19. Nuclear rockets: High-performance propulsion for Mars

    SciTech Connect

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  20. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  1. Propulsion and Cryogenics Advanced Development (PCAD) Project Propulsion Technologies for the Lunar Lander

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.

    2008-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.

  2. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  3. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  4. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  5. Advanced launch vehicle propulsion at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Several programs are investigating the benefits of advanced propellant and propulsion systems for future launch vehicles and upper stages. The two major research areas are the Metallized Propellants Program and the Advanced Concepts Program. Both of these programs have theoretical and experimental studies underway to determine the system-level performance effects of these propellants on future NASA vehicles.

  6. Nuclear Electric Propulsion for Outer Space Missions

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  7. Nuclear modules for space electric propulsion

    NASA Astrophysics Data System (ADS)

    Difilippo, F. C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  8. Legal Implications of Nuclear Propulsion for Space Objects

    NASA Astrophysics Data System (ADS)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  9. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  10. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  11. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  12. Planning for the Space Exploration Initiative - The nuclear propulsion option

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1991-01-01

    The Space Exploration Initiative includes both lunar and Mars program elements as well as robotic science missions. Space transportation is a primary part of all planning for exploration. The high performance propulsion capabilities of nuclear propulsion offer the potential to reduce substantially the flight times to and from Mars and to reduce the mass launched into low earth orbit.

  13. Nuclear electric ion propulsion for three deep space missions

    NASA Astrophysics Data System (ADS)

    Chiravalle, Vincent P.

    2008-03-01

    Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

  14. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  15. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  16. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  17. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    SciTech Connect

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies.

  18. Use of cermet fueled nuclear reactors for direct nuclear propulsion

    SciTech Connect

    Bhattacharyya, S.K.; Carlson, L.W.; Kuczen, K.D.; Hanan, N.A.; Palmer, R.G.; Von Hoomissen, J.; Chiu, W.; Haaland, R.

    1988-07-01

    There has been a renewal of interest in Direct Nuclear Propulsion (DNP) because of the Air Force Forecast II recommendation for the development of the technology. Several nuclear concepts have been proposed to meet the Direct Nuclear Propulsion challenge. In this paper we will present results of an initial study of the potential of a cermet fueled nuclear system in providing the desired DNP capabilities and featuring a set of unique safety characteristics. The concept of cermet fuel for DNP applications was first developed by ANL and GE working independently more than 20 years ago. The two organizations came to several remarkably consistent conclusions. The present work has consisted of collecting a unified set of design parameters from the set of design results produced in the earlier work. The conclusion of this exercise was that a cermet-fueled DNP design looked extremely promising from performance and safety considerations and that it deserves serious consideration when the decision to develop one or more concepts for DNP is made.

  19. Nuclear safety, legal aspects and policy recommendations for space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.

    2006-07-01

    This paper represents a chapter of the International Astronautical Academy's Cosmic Study on safety, legal and policy aspects of advanced (specifically nuclear) power and propulsions systems; it is divided into several sections. The first section covers a series of findings and develops a set of recommendations for operations of space reactor systems in a safe, environmentally compliant fashion. The second section develops a generic set of hazard scenarios that might be experienced by a space nuclear system with emphasis on different methods under which such a system could be engaged, such as surface power, in-space nuclear electric or nuclear thermal propulsion. The third section develops these into test and analysis efforts that would likely be conducted. Risk areas with engineering judgment set toward frequency and consequences. The fourth section identifies what probable technology limits might be experienced by nuclear propulsion systems and the exploration limitations these technology restrictions might impose. Where the IAA recommends a change, the IAA leadership should be prepared to work with national and international bodies to implement the desired modifications.

  20. Advanced Compatibility Characterization Of AF-M315E With Spacecraft Propulsion System Materials Project

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2014-01-01

    All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.

  1. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  2. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  3. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. A cermet fuel reactor for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  5. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  6. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  7. Advanced computational techniques for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1989-01-01

    Computational Fluid Dynamics (CFD) has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow performance of simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.

  8. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  9. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  10. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  11. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  12. Advanced propulsion concepts study: Comparative study of solar electric propulsion and laser electric propulsion

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1975-01-01

    Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.

  13. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  14. System engineering of a nuclear electric propulsion testbed spacecraft

    NASA Astrophysics Data System (ADS)

    Cameron, G. E.; Herbert, G. A.

    1993-06-01

    A mission concept aimed at evaluating performance of a Russian Space Nuclear Power System (SNPS) and electric thrusters to be consistent with U.S. safety standards is discussed. Solutions of unique nuclear electric propulsion (NEP) problems optimized for the Nuclear Electric Propulsion Test Program (NEPSTP) are considered. The problems include radiation, thermal management, safety, ground processing concerns of a nuclear payload, the launch of an NEP payload, orbital operations, electromagnetic compatibility, contamination, guidance and control, and a power system. Attention is also given to preliminary spacecraft and mission design developed taking into account all aforementioned problems.

  15. A Critical Review of Space Nuclear Power and Propulsion 1984-1993

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    Market: Researchers in nuclear power, physicists, chemical and nuclear engineers, students, and policy makers. The papers in this volume summarize key technological advancements that occurred during the ten years from 1984 to 1993 in such areas as heat pipe technology, fuels, space nuclear safety, dynamic power conversion systems, and advanced radiator technologies for spacecraft power systems. In light of new industry initiatives to form a consortia and the possibility of bi-modal space nuclear power and propulsion systems, this informative volume will be an invaluable reference source.

  16. Nuclear Thermal Propulsion Ground Test History

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start

  17. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  18. Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.; Wadel, Mary F.; Meyer, Michael L.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results.

  19. Advanced Space Propulsion System Flowfield Modeling

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon

    1998-01-01

    Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.

  20. The Economics of Advanced In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  1. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  2. Advanced Power and Propulsion: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes primarily nuclear thermal and nuclear electric technologies, to enable spacecraft and instrument operation and communications, particularly in the outer solar system, where sunlight can no longer be exploited by solar panels. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  3. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  4. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  5. Tutorial on nuclear thermal propulsion safety for Mars

    SciTech Connect

    Buden, D.

    1992-08-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

  6. Tutorial on nuclear thermal propulsion safety for Mars

    SciTech Connect

    Buden, D.

    1992-01-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

  7. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  8. Pellet bed reactor concepts for nuclear propulsion applications

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Pelaccio, Dennis G.; Juhasz, Albert

    1994-11-01

    Pellet bed reactor (PeBR) concepts have been developed for nuclear thermal and nuclear electric propulsion, and bimodal applications. This annular core, fast spectrum reactor offers many desirable design and safety features. These features include high-power density, small reactor size, full retention of fission products, passive decay heat removal, redundancy in reactor control, negative temperature reactivity feedback, ground testing of the fully assembled reactor using electric heating and nonnuclear fuel elements, and the option of fueling on the launch pad or fueling and refueling in orbit. In addition to these features, the concepts for nuclear electric propulsion and for bimodal power and thermal propulsion have no single point failure. The average power density in the reactor for nuclear thermal propulsion ranges from 2.2 to 3.3 MW/I and for a 15-MWe nuclear electric propulsion system the total power system specific mass is about 3.3 kg/kWe. The bimodal-PeBR system concepts offer specific impulse in excess of 650 s, tens of Newtons of thrust, and total system specific power ranging from 11 to 21.9 We/kg at the 10- and 40-kWe levels, respectively.

  9. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  10. Space exploration initiative candidate nuclear propulsion test facilities

    NASA Technical Reports Server (NTRS)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  11. Development of sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'Development of Sensors for Ceramics Components in Advanced Propulsion Systems' program was divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. A summary report of the Phase 2 effort, together with conclusions and recommendations for each of the categories evaluated, has been submitted to NASA. Emittance tests were performed on six materials furnished by NASA Lewis Research Center. Measurements were made of various surfaces at high temperature using a Thermogage emissometer. This report describes the emittance test program and presents a summary of the results.

  12. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  13. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  14. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced

  15. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    NASA Technical Reports Server (NTRS)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  16. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  17. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  18. PEGASUS: A multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; King, D.Q.; Cuta, J.M.; Webb, B.J.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8,5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  19. PEGASUS - A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, E. P.; Cuta, J. M.; Webb, B. J.; King, D. Q.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  20. Multimission nuclear electric propulsion system for outer planet exploration missions

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.

    1981-01-01

    The conceptual design configuration of a nuclear electric propulsion system (NEP) with a multimission capability for both earth orbital and electric propulsion missions is discussed. Two basic types of space reactor power system concepts are analyzed emphasizing conduction coupled and radiation coupled systems, and a radiation coupled thermoelectric panel concept is schematically represented and described in detail. A nuclear-powered 100-kWe surveillance spacecraft concept is presented and the developmental phases are given including cost estimates. In addition, a system is described that seems to have the capability to perform all the outer planet missions.

  1. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  2. Engine cycle design considerations for nuclear thermal propulsion systems

    SciTech Connect

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T. )

    1993-01-20

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown.

  3. Development costs for a nuclear electric propulsion stage.

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Prickett, W. Z.

    1973-01-01

    Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.

  4. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  5. Advanced Electric Propulsion for RLV Launched Geosynchronous Spacecraft

    NASA Technical Reports Server (NTRS)

    Oleson, Steven

    1999-01-01

    Solar Electric Propulsion (SEP) when used for station keeping and final orbit insertion has been shown to increase a geostationary satellite's payload when launched by existing expendable launch vehicles. In the case of reusable launch vehicles or expendable launch vehicles where an upper stage is an expensive option, this methodology can be modified by using the existing on-board apogee chemical system to perform a perigee burn and then letting the electric propulsion system complete the transfer to geostationary orbit. The elimination of upper stages using on-board chemical and electric propulsion systems was thus examined for GEO spacecraft. Launch vehicle step-down from an Atlas IIAR to a Delta 7920 (no upper stage) was achieved using expanded on-board chemical tanks, 40 kW payload power for electric propulsion, and a 60 day elliptical to GEO SEP orbit insertion. Optimal combined chemical and electric trajectories were found using SEPSPOT. While Hall and ion thrusters provided launch vehicle step-down and even more payload for longer insertion times, NH3 arcjets had insufficient performance to allow launch vehicle step-down. Degradation levels were only 5% to 7% for launch step-down cases using advanced solar arrays. Results were parameterized to allow comparisons for future reusable launch vehicles. Results showed that for an 8 W/kg initial power/launch mass power density spacecraft, 50% to 100% more payload can be launched using this method.

  6. Advanced ignition and propulsion technology program

    SciTech Connect

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  7. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    SciTech Connect

    Bruce G. Schnitzler

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as

  8. Towards Run-time Assurance of Advanced Propulsion Algorithms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  9. Nuclear Electric Propulsion for the Exploration of the Outer Planets

    NASA Astrophysics Data System (ADS)

    Noca, M.; Polk, J. E.; Lenard, R.

    2001-01-01

    New power and propulsion technology efforts such as the DS-1 ion propulsion system demonstration and renewed interest in space nuclear power sources call for a reassessment of the mission benefits of Nuclear Electric Propulsion (NEP). In this study, a large emphasis has been placed in defining the NEP vehicle configuration and corresponding subsystem elements in order to produce an estimate of the vehicle's payload delivery capability which is as credible as possible. Both a 100 kWe and a 1 MWe system are defined. Various Outer Planet missions are evaluated using NEP, such as a Pluto Orbiter, a Europa Lander and Sample Return, attain/Saturn Sample Return and a Neptune Orbiter. Additional information is contained in the original extended abstract.

  10. SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.

  11. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  12. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  13. Reliability comparison of various nuclear propulsion configurations for Mars mission

    SciTech Connect

    Segna, D.R.; Dagle, J.E.; Lyon, W.F. III

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings, and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): (1) NEP, (2) hybrid NEP/NTP, (3) hybrid with power beaming, and (4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  14. Reliability comparison of various nuclear propulsion configurations for Mars mission

    NASA Astrophysics Data System (ADS)

    Segna, Donald R.; Dagle, Jeffrey E.; Lyon, William F.

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): 1) NEP, 2) hybrid NEP/NTP, 3) hybrid with power beaming, and 4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  15. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  16. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This...

  17. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This...

  18. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  19. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This...

  20. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  1. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  2. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  3. Vehicle configuration options using nuclear propulsion for Mars missions

    SciTech Connect

    Emrich, W.J. Jr. )

    1993-01-20

    The solid core nuclear thermal rocket (NTR) provides an attractive means of providing the propulsive force needed to accomplish a wide array of space missions. With its factor of two or more advantage in Isp over chemical engines, nuclear propulsion provides the opportunity to accomplish space missions which are impractical by other means. This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle bed reactor (PBR) type nuclear engine was chosen as the baseline engine used to conduct the present study because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study baselines a particle bed reactor engine with an engine thrust-to-weight ratio ([similar to]11.5) and a specific impulse of [similar to]950 s. It is shown that a PBR engine of this type will offer distinct advantages over the larger and heavier NERVA type nuclear engines.

  4. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  5. Nuclear electric propulsion mission performance for fast piloted Mars missions

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Dudzinski, L. A.

    1991-01-01

    A mission study aimed at minimizing the time humans would spend in the space environment is presented. The use of nuclear electric propulsion (NEP), when combined with a suitable mission profile, can reduce the trip time to durations competitive with other propulsion systems. Specifically, a split mission profile utilizing an earth crew capture vehicle accounts for a significant portion of the trip time reduction compared to previous studies. NEP is shown to be capable of performing fast piloted missions to Mars at low power levels using near-term technology and is considered to be a viable candidate for these missions.

  6. Nuclear rocket propulsion. NASA plans and progress, FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  7. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  8. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  9. Advanced energy conversion concept for beamed-energy propulsion

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1987-08-01

    Basic research was performed on an innovative power conversion concept for trans atmospheric, beamed energy propulsion: a new class of External Surface Impulse (ESI) thrusters. This advanced thruster principle could be used for atmospheric VTOL, high acceleration, and lateral flight (e.g., short-term cruise) propulsion of Single-Stage-To-Orbit (SSTO) beam-powered shuttlecraft of the next century. Three classes of ESI thrusters were initially examined: (1) simple thermal, (2) electrostatic, and (3) electromagnetic. Beam power wavelengths from 10 cm (microwave) to 0.3 micron (laser) were considered. The subsequent effort concentrated on the simple thermal repetitively-pulsed ESI thrusters, energized with laser power and using air as the working fluid. Laser frequencies were selected because of the relative wealth of experimental data and theoretical research on laser impulse coupling existing in the literature. The first year analytical effort has proven conclusively that such an engine can deliver high levels of thrust-to-beam-power at liftoff (e.g., at least an order of magnitude greater than beam-powered hydrogen-fueled rockets), with infinite specific impulse (decreased only, perhaps, by ablation of the thruster surface). Later along an orbital trajectory, the primary propulsion function would transition to other modes; upon leaving the atmosphere, the SSTO vehicle would continue in a pure rocket mode.

  10. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  11. Recent Advances in Solar Sail Propulsion Systems at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion has the potential to provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn s Space Power Facility at Plum Brook Station Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. The sail designs are robust enough for deployments in a one atmosphere, one gravity environment and are scalable to much larger solar sails - perhaps as large as 150 meters on a side. In addition, computational modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (150 meters) required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum environment testing.

  12. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  13. Application of advanced computational technology to propulsion CFD

    NASA Astrophysics Data System (ADS)

    Szuch, John R.

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid dynamics (ICFM) to a state of practical application for aerospace propulsion system design. This paper presents an overview of efforts underway at NASA Lewis to advance and apply computational technology to ICFM. These efforts include the use of modern, software engineering principles for code development, the development of an AI-based user-interface for large codes, the establishment of a high-performance, data communications network to link ICFM researchers and facilities, and the application of parallel processing to speed up computationally intensive and/or time-critical ICFM problems. A multistage compressor flow physics program is cited as an example of efforts to use advanced computational technology to enhance a current NASA Lewis ICFM research program.

  14. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  15. Advanced Models for Aeroelastic Analysis of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Mahajan, Aparajit

    1996-01-01

    This report describes an integrated, multidisciplinary simulation capability for aeroelastic analysis and optimization of advanced propulsion systems. This research is intended to improve engine development, acquisition, and maintenance costs. One of the proposed simulations is aeroelasticity of blades, cowls, and struts in an ultra-high bypass fan. These ducted fans are expected to have significant performance, fuel, and noise improvements over existing engines. An interface program was written to use modal information from COBSTAN and NASTRAN blade models in aeroelastic analysis with a single rotation ducted fan aerodynamic code.

  16. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  17. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  18. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1997-01-01

    Solar electric propulsion technology is currently being used for geostationary satellite station keeping. Analyses show that electric propulsion technologies can be used to obtain additional increases in payload mass by using them to perform part of the orbit transfer. Three electric propulsion technologies are examined at two power levels for geostationary insertion of an Atlas IIAS class spacecraft. The onboard chemical propulsion apogee engine fuel is reduced in this analysis to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns that will minimize the electric propulsion transfer times. For a 1550-kg Atlas IIAS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150-800 kg are enabled by using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  19. Nuclear Naval Propulsion: A Feasible Proliferation Pathway?

    SciTech Connect

    Swift, Alicia L.

    2014-01-31

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.

  20. A low-alpha nuclear electric propulsion system for lunar and Mars missions

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.

    1992-01-01

    The advantages of using electric propulsion are well-known in the aerospace community. The high specific impulse and, therefore, lower propellant requirements make it a very attractive propulsion option for the Space Exploration Initiative (SEI). Recent studies have shown that nuclear electric propulsion (NEP) is not only attractive for the transport of cargo but that fast piloted missions to Mars are possible as well, with alphas on the order of 7.5 kg/kW. An advanced NEP system with a specific power (alpha) of 2.5 kg/kW or less would significantly enhance the manned mission option of NEP by reducing the trip time even further. This paper describes an advanced system that combines the PEGASUS Drive with systems of the Rotating Multimegawatt Boiling Liquid Metal (RMBLR) power system that was developed as part of the DOE multimegawatt program and just recently declassified. In its original configuration, the PEGASUS Drive was a 10-MWe propulsion system. The RMBLR was a 20-MW electric system. By combining the two, a second-generation PEGASUS Drive can be developed with an alpha less than 2.5 kg/kW. This paper will address the technology advancements incorporated into the PEGASUS Drive, the analysis of a fast piloted mission and an unmanned cargo transport Mars mission, and the integration of laser power beaming to provide surface power.

  1. Mars mission performance enhancement with hybrid nuclear propulsion

    SciTech Connect

    Dagle, J.E.; Noffsinger, K.E.; Segna, D.R.

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  2. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion

    SciTech Connect

    Qualls, A L; Hancock, Emily F

    2011-01-01

    The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

  3. Airbreathing nuclear propulsion: A new look

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    Nuclear-powered air-cushion vehicles using lightweight aircraft-type nuclear powerplants show promise of carrying transoceanic cargo at cost-per-metric-ton-kilometer (cost-per-ton-n mi) rates comparable to railroad rates. These rates are independent of the distance traveled. Cargo rates for nonstop distances of 4000 n mi are expected to be less than one-half those for similar fossil-fueled air-cushion vehicles. For 6000-n mi nonstop distances, the rates are expected to be less than one-sixth as much. There are no fundamental technical reasons why subsonic nuclear aircraft cannot be made to fly successfully if the gross weight is over 1 million lb. Public safety of airborne nuclear powerplants is receiving the greatest attention in low-level experimental and analytical investigations. Idealized model containment vessels which have been impacted on reinforced concrete showed no leaks after impact at velocities to 400 mph. The experiments indicate feasibility of impacting at speeds over 600 mph with no leaks.

  4. Multi-mission nuclear electric propulsion stage design.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Stearns, J. W.

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions. Critical technologies assessed are associated with the development of nuclear electric propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, and technology requirements for NEP stage development. A multimission NEP stage can be developed to perform both multiple geocentric and interplanetary missions for a 1983 launch. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrustors and thermionic reactor and the development of related power conditioning. The resulting NEP stage design provides both inherent reliability and high payload mass capability.

  5. Robotic planetary mission benefits from nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Kelley, James H.; Yen, Chen-Wan

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto). Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, an Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis.

  6. Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Russell, Tiffany E.

    2014-01-01

    The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.

  7. Journey into tomorrow - Developing nuclear propulsion for the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Harer, Kathleen F.; Graham, Scott R.; Bennett, Gary L.

    Nuclear propulsion, either nuclear thermal propulsion or nuclear electric propulsion, offers the potential of reduced trip times and/or reduced mass into low earth orbit, compared to chemical propulsion systems. In addition, the greater performance benefits of nuclear propulsion can provide the added margin for greater operational flexibility, including mission abort options and increased launch windows. During the 1950s and 1960s experimental and analytical studies showed the feasibility of nuclear propulsion. NASA, in cooperation with other agencies and organizations, is currently planning a technology development program for nuclear propulsion. The overall objective is to develop at least one NTP concept and one NEP concept for piloted and robotic (e.g., cargo) missions to Mars.

  8. Journey into tomorrow - Developing nuclear propulsion for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Harer, Kathleen F.; Graham, Scott R.; Bennett, Gary L.

    1992-01-01

    Nuclear propulsion, either nuclear thermal propulsion or nuclear electric propulsion, offers the potential of reduced trip times and/or reduced mass into low earth orbit, compared to chemical propulsion systems. In addition, the greater performance benefits of nuclear propulsion can provide the added margin for greater operational flexibility, including mission abort options and increased launch windows. During the 1950s and 1960s experimental and analytical studies showed the feasibility of nuclear propulsion. NASA, in cooperation with other agencies and organizations, is currently planning a technology development program for nuclear propulsion. The overall objective is to develop at least one NTP concept and one NEP concept for piloted and robotic (e.g., cargo) missions to Mars.

  9. Effective specific impulse of external nuclear pulse propulsion systems

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1972-01-01

    An investigation of a simple self-similar flow model for an external nuclear pulse propulsion system indicates that to achieve the high effective specific impulse of such a system three principal factors are required. The are (1) attaining pulses of optimum energy, (2) attaining good propellant collimation, and (3) using an ablative material for the pusher surface which has high absorptivity for radiant energy at the propellant stagnation temperature.

  10. Nuclear propulsion control and health monitoring

    NASA Technical Reports Server (NTRS)

    Walter, P. B.; Edwards, R. M.

    1993-01-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  11. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  12. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  13. SP-100 nuclear electric propulsion for Mars cargo missions

    NASA Astrophysics Data System (ADS)

    Frisbee, Robert H.; Hoffman, Nathan J.

    1993-06-01

    This paper summarizes an evaluation of mission performance (in terms of vehicle mass and trip time) of the use of the near-term SP-100 reactor technology for nuclear electric propulsion for Mars cargo missions, and of the technology requirements for the propulsion and dynamic power conversion systems of the vehicle. The reactor power system uses dynamic power conversion (Rankine), and the propulsion system uses lithium-propellant magnetoplasmadynamic (MPD) thrusters. Three reactor power modules are used to give a total 'bus' power of 1.7 MWe. The total power, power conditioning, and propulsion systems specific mass is 24.8 kg/kWe; the propellant tankage factor is 2.8 percent. The power conditioning system has an efficiency of 90.2 percent and the MPD thrusters an efficiency (electric-to-jet) of 60 percent at a nominal specific impulse of 5000 lb(f)-s/lb(m). Rankine, Brayton, and Stirling dynamic power conversion systems were compared, and the Rankine was found to give the best performance in terms of smallest specific mass and volume; however, it has the longest development time requirement.

  14. Reactor design for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.

    1979-01-01

    The paper analyzes the consequences of heat pipe failures, that resulted in modifications to the basic design of a heat-pipe cooled, fast spectrum nuclear reactor and led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO2 and molybdenum sheets that span the diameter of the core. Design characteristics are presented and compared for two reactors. A conceptual design for a heat exchanger between the core and the thermionic converter assembly is described. This heat exchanger would provide design and fabrication decoupling of these two assemblies.

  15. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  16. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  17. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  18. A fission fragment reactor concept for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Suo-Anttila, Ahti J.; Parma, Edward J.; Pickard, Paul S.; Wright, Steven A.; Vernon, Milton E.

    1992-01-01

    The Space Exploration Initiative requires the development of nuclear thermal and nuclear electric technologies for space propulsion for future Luna and Mars missions. Sandia National Laboratories has proposed a new nuclear thermal propulsion concept that uses fission fragments to directly heat the propellant up to 1000 K or higher above the material temperatures. The concept offers significant advantages over traditional solid-core nuclear rocket concepts because of higher propellent exit temperatures, while at the same time providing for more reliable operation due to lower structure temperatures and lower power densities. The reactor can be operated in either a steady-state or pulsed mode. The steady-state mode provides a high thrust and relatively high specific impulse, as compared to other nuclear thermal concepts. The pulsed mode requires an auxillary radiator for cooling, but has the possibility of achieving very high specific impulses and thrust scaleable to the radiator size. The propellant temperatures are limited only by thermal radiation and transient heat conduction back to the substrate walls.

  19. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  20. Small low mass advanced PBR`s for propulsion

    SciTech Connect

    Powell, J.R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  1. Advanced Plasma Propulsion for Human Missions to Jupiter

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Pearson, J. Boise

    1999-01-01

    This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.

  2. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    SciTech Connect

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs.

  3. High-temperature turbopump assembly for space nuclear thermal propulsion

    SciTech Connect

    Overholt, D.M. )

    1993-01-20

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  4. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  5. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  6. Autocatalytic fission-fusion microexplosions for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2000-12-01

    Autocatalytic fission-fusion microexplosions, mutually amplifying fission and fusion reactions, are proposed for propulsion. Autocatalytic fission-fusion microexplosions can be realized by imploding a shell of uranium 235 (or plutonium) onto a magnetized deuterium-tritium (DT) plasma. After having reached a high temperature, the DT plasma releases fusion neutrons making fission reactions in the fissile shell increasing the implosion velocity which in turn increases the fusion reaction rate until full ignition of the DT plasma. To implode the fissile shell a small amount of high explosive and to magnetize the DT plasma a small auxiliary electric discharge are required. In comparison to nuclear bomb pulse propulsion, the energy released per pulse is much smaller and the efficiency higher. And in comparison to laser- or particle-beam-ignited fusion microexplosions, there is no need for a massive fusion ignition driver.

  7. PEGASUS: A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, Edmund P.; Cuta, Judith M.; Webb, Brent J.; King, David Q.; Patterson, Mike J.; Berkopec, Frank

    1986-01-01

    A propulsion system (PEGASUS) consisting of an electric thruster driven by a multimegawatt nuclear power system is proposed for a manned Mars mission. Magnetoplasmadynamic and mercury-ion thrusters are considered, based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Both thrusters are capable of meeting the mission parameters. Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The power for the PEGASUS system is supplied by a boiling liquid-metal fast reactor. The power system consists of the reactor, reactor shielding, power conditioning subsystems, and heat rejection subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, leaving 1.5 megawatts available for inflight mission applications.

  8. Proposal of Space Reactor for Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Nagata, Hidetaka; Nishiyama, Takaaki; Nakashima, Hideki

    Currently, the solar battery, the chemical cell, and the RI battery are used for the energy source in space. However, it is difficult for them to satisfy requirements for deep space explorations. Therefore, other electric power sources which can stably produce high electric energy output, regardless of distance from the sun, are necessary to execute such missions. Then, we here propose small nuclear reactors as power sources for deep space exploration, and consider a conceptual design of a small nuclear reactor for Nuclear Electric Propulsion System. It is found from nuclear analyses that the Gas-Cooled reactor could not meet the design requirement imposed on the core mass. On the other hand, a light water reactor is found to be a promising alternative to the Gas-Cooled reactor.

  9. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  10. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  11. Advanced Single-Aisle Transport Propulsion Design Options Revisited

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Tong, Michael T.; Haller, William J.

    2013-01-01

    Future propulsion options for advanced single-aisle transports have been investigated in a number of previous studies by the authors. These studies have examined the system level characteristics of aircraft incorporating ultra-high bypass ratio (UHB) turbofans (direct drive and geared) and open rotor engines. During the course of these prior studies, a number of potential refinements and enhancements to the analysis methodology and assumptions were identified. This paper revisits a previously conducted UHB turbofan fan pressure ratio trade study using updated analysis methodology and assumptions. The changes incorporated have decreased the optimum fan pressure ratio for minimum fuel consumption and reduced the engine design trade-offs between minimizing noise and minimizing fuel consumption. Nacelle drag and engine weight are found to be key drivers in determining the optimum fan pressure ratio from a fuel efficiency perspective. The revised noise analysis results in the study aircraft being 2 to 4 EPNdB (cumulative) quieter due to a variety of reasons explained in the paper. With equal core technology assumed, the geared engine architecture is found to be as good as or better than the direct drive architecture for most parameters investigated. However, the engine ultimately selected for a future advanced single-aisle aircraft will depend on factors beyond those considered here.

  12. Advanced rocket propulsion technology assessment for future space transportation

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1982-01-01

    Single-stage and two-stage launch vehicles were evaluated for various levels of propulsion technology and payloads. The evaluation included tradeoffs between ascent flight performance and vehicle sizing that were driven by engine mass, specific impulse, and propellant requirements. Numerous mission, flight, and vehicle-related requirements and constraints were satisfied in the design process. The results showed that advanced technology had a large effect on reducing both single- and two-stage vehicle size. High-pressure hydrocarbon-fueled engines that were burned in parallel with two-position nozzle hydrogen-fueled engines reduced dry mass by 23% for the two-stage vehicle and 28% for the single-stage vehicle as compared to an all-hydrogen-fueled system. The dual-expander engine reduced single-stage vehicle dry mass by 41%. Using advanced technology, the single-stage vehicle became comparable in size and sensitivity to that of the two-stage vehicle for small payloads.

  13. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  14. Probabilistic assessment of space nuclear propulsion system nozzle

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Ball, Richard D.; Chamis, Christos C.

    1994-01-01

    In assessing the reliability of a space nuclear propulsion system (SNPS) nozzle, uncertainties associated with the following design parameters were considered: geometry, boundary conditions, material behavior, and thermal and pressure loads. A preliminary assessment of the reliability was performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a finite-element computer code developed at the NASA Lewis Research Center. The sensitivity of the nozzle reliability to the uncertainties in the random variables was quantified. With respect to the effective stress, preliminary results showed that the nozzle spatial geometry uncertainties have the most significant effect at low probabilities whereas the inner wall temperature has the most significant effect at higher probabilities.

  15. Nuclear Electric Propulsion - A concept for solar system exploration

    NASA Technical Reports Server (NTRS)

    Nagorski, R. P.

    1981-01-01

    The potential of Nuclear Electric Propulsion (NEP) to meet the increasing demands of our planetary space exploration program is examined and evaluated. Based on an assumption of a modest growth beyond current technology, an NEP system is described that provides performance advantage over all competitive technologies. Flight times and available payload mass - as indicators of mission performance - are compared for several mission opportunities of interest. NEP is shown to have a unique capacity for substantial reductions in mission flight times in terms of payloads consistent with the needs of planetary exploration.

  16. Nuclear electric propulsion options for piloted Mars missions

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1993-01-01

    Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.

  17. Propulsion issues, options and trades

    NASA Technical Reports Server (NTRS)

    Forsythe, Doug J.

    1986-01-01

    Several different types of propulsion concepts are discussed: pulsed fission; continuous nuclear fission; chemical; and chemical boost with advanced nuclear fission. Some of the key characteristics of each type are provided, and typical concepts of each are shown.

  18. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  19. Multi-cell thermionic fuel element for nuclear electric power and propulsion system

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yuri V.; Gontar, Alexander S.; Eremin, Stanislav A.; Lapochkin, Nikolai V.; Andreev, Pavel V.; Zhabotinsky, Evgeny E.

    1999-01-01

    Conceptual problems of development of two-mode multi-cell thermionic fuel element (TFE) for nuclear electric power and propulsion system are considered. The results of analysis of the design and TFE output parameters are presented. It is shown that application of advanced high effective materials and technologies provides operating of the TFE in two modes: a) in nominal mode of power generation for power supply of spacecraft payload at operational orbit and b) in forced mode of power generation for power supply of electric thrusters under spacecraft orbit transfer from intermediate to operational one.

  20. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Astrophysics Data System (ADS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    The following paper documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix ``cermet'' fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  1. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  2. Nuclear thermal rocket propulsion application to Mars missions

    NASA Technical Reports Server (NTRS)

    Emrich, W. J., Jr.; Young, A. C.; Mulqueen, J. A.

    1991-01-01

    Options for vehicle configurations are reviewed in which nuclear thermal rocket (NTR) propulsion is used for a reference mission to Mars. The scenario assumes an opposition-class Mars transfer trajectory, a 435-day mission, and the use of a single nuclear engine with 75,000 lbs of thrust. Engine parameters are examined by calculating mission variables for a range of specific impulses and thrust/weight ratios. The reference mission is found to have optimal values of 925 s for the specific impulse and thrust/weight ratios of 4.0 and 0.06 for the engine and total stage ratios respectively. When the engine thrust/weight ratio is at least 4/1 the most critical engine parameter is engine specific impulse for reducing overall stage weight. In the context of this trans-Mars three-burn maneuver the NTR engine with an expander engine cycle is considered a more effective alternative than chemical/aerobrake and other propulsion options.

  3. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  4. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  5. A fission fragment reactor concept for nuclear space propulsion

    NASA Astrophysics Data System (ADS)

    Suo-Anttila, A. J.; Parma, E. J.; Wright, S. A.; Vernon, M. E.; Pickard, P. S.

    1991-10-01

    Sandia National Laboratory (SNL) has proposed a new nuclear thermal propulsion concept that uses fission fragments to directly heat the propellant up to 1000 K or higher above the material temperatures. The concept offers significant advantages over traditional solid core nuclear rocket concepts because of higher propellant exit temperatures while at the same time providing for more reliable operation due to lower structure temperatures and lower power densities. The concept can be operated in either steady state or pulsed modes. The engine consists of tubular modules, each with its own pressure boundary and rocket nozzle. The steady state mode requires a large engine with a reflector for criticality, provides high thrust and high ISP. The pulse mode utilizes a driver reactor for criticality and can be considerably smaller with lower but scaleable thrust. The pulse mode does require an external heat radiator for reactor cooling, which limits its duty cycle.

  6. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  7. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers

    NASA Astrophysics Data System (ADS)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.

    2013-03-01

    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  8. Applications of advanced upper surface blowing propulsive-lift technology

    NASA Technical Reports Server (NTRS)

    Cochrane, J. A.; Riddle, D. W.; Youth, S.

    1982-01-01

    The success of the Quiet Short-Haul Research Aircraft led to studies of this technology for a business jet and a Short-Haul Transport. The studies showed that the Short-Haul Transport could operate from a 762.0-m runway with 95 passengers at low noise levels. Design range was 500 n. mi. but with maximum fuel load the runway length is only increased to 883.9 m while the range is increased to more than 1000 n. mi. Two business jet designs were studied; one design was based on a 457.2-m field length and the other was designed for a 760.0-m field length. The business jet designed for a 457.2-m field length can also be loaded to maximum fuel capacity. In this case the range increases from 500 n. mi. to 1400 n. mi. while the runway length increases from 457.2 m to 632.5 m. The business jet studies showed that the application of advanced propulsive-lift technology to this class aircraft can result in payload-range-speed performance comparable to current aircraft with about one-half the runway length requirement.

  9. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  10. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1995-01-01

    Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  11. The application of nuclear power and propulsion for space exploration missions

    SciTech Connect

    Zubrin, R.M.; Sulmeisters, T.K. )

    1992-07-01

    An approach to integrating nuclear technology into space exploration missions is advanced that is based on conditioning nuclear technology to be broadly applicable across the existing mission set. Two similar baselines are presented for small nuclear thermal rocket (NTR) engines for exploration missions. Small NTR engines are also examined in terms of their use in manned Mars missions, and the Integrated Power and Propulsion Stage (IPPS) is illustrated for providing electric power and direct thermal thrust for a variety of missions. An IPPS is proposed for use in the Titan IV launch, earth orbital missions, and for applications such as instrument delivery and exploration missions. The paper concludes the review of NTR engine technology possibilities by suggesting that the keys to integrating NTR engines are versatility and synergism. 8 refs.

  12. Frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2002-01-01

    The Jet Propulsion Laboratory's Advanced Multi-Mission Operations System system processes data received from deep-space spacecraft, where error rates can be high, bit rates are low, and data is unique precious.

  13. J. Preston Layton 1919-1992: A guiding light in nuclear space power and propulsion

    NASA Astrophysics Data System (ADS)

    Brill, Yvonne C.

    An eventful, highly productive career ended with the death of James Preston ("Pres") Layton in December 1992. His career in rockets, which spanned 50 years, is a chronology of developments in the U.S. space program. Layton was instrumental in the development of rocket technologies ranging from the first jet-assisted take off (JATO) boosters used on aircraft to space nuclear power and propulsion. His work on JATOs, during World War II, involved both testing of solid-fueled units on naval aircraft in the Pacific and developing advanced liquid-fueled systems at the U.S. Naval Academy's laboratory under the direction of Robert H. Goddard, the father of American rocketry. It was Goddard who inspired Layton to devote his life to rocketry. In 1948, as chief of propulsion for the Glenn L. Martin company, he became crew chief in charge of testing the first big U.S. rocket, the Viking series. Layton subsequently joined the research faculty at Princeton University where he served from 1951 to 1976, taking a brief leave in 1955 to earn a Masters Degree at Purdue University under the direction of Maurice Zucrow, another American rocket pioneer. As Chief Engineer of Princeton's Guggenheim Jet Propulsion Center, he created the nation's foremost university rocket research facilities, where he conducted the first experimental evaluation of liquid ozone as a rocket propellant. Later Layton led Princeton's Advanced Systems and Mission Analysis Laboratory, which conducted pioneering studies of space nuclear power and propulsion systems. During this period, at the Lawrence Livermore National Laboratory (on leave from Princeton), Layton helped develop and test the world's first and only nuclear ram-rocket. During his career, Layton performed many responsible consulting tasks for industry and government in the U.S.A. and abroad. He was chief technical consultant to Mathematica, Inc., whose analyses formed the basis for the current Space Shuttle design. He conducted an AIAA assessment of

  14. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  15. Overview of materials technologies for space nuclear power and propulsion

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  16. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  17. An airline study of advanced technology requirements for advanced high speed commercial engines. 3: Propulsion system requirements

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.

  18. Near-Earth Object Interception Using Nuclear Thermal Rock Propulsion

    SciTech Connect

    X-L. Zhang; E. Ball; L. Kochmanski; S. D. Howe

    2011-02-01

    Planetary defense has drawn wide study: despite the low probability of a large-scale impact, its consequences would be disastrous. The study presented here evaluates available protection strategies to identify bottlenecks limiting the scale of near-Earth object that could be deflected, using cutting-edge and near-future technologies. It discusses the use of a nuclear thermal rocket (NTR) as a propulsion device for delivery of thermonuclear payloads to deflect or destroy a long-period comet on a collision course with Earth. A ‘worst plausible scenario’ for the available warning time (10 months) and comet approach trajectory are determined, and empirical data are used to make an estimate of the payload necessary to deflect such a comet. Optimizing the tradeoff between early interception and large deflection payload establishes the ideal trajectory for an interception mission to follow. The study also examines the potential for multiple rocket launch dates. Comparison of propulsion technologies for this mission shows that NTR outperforms other options substantially. The discussion concludes with an estimate of the comet size (5 km) that could be deflected usingNTRpropulsion, given current launch capabilities.

  19. Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; White, S.; Patton, B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.

    2003-01-01

    This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.

  20. Recent advances in low-thrust propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1988-01-01

    The NASA low-thrust propulsion technology program is aimed at providing high performance options to a broad class of near-term and future missions. Major emphases of the program are on storable and hydrogen/oxygen low-thrust chemical, low-power (auxiliary) electrothermal, and high-power electric propulsion. This paper represents the major accomplishments of the program and discusses their impact.

  1. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  2. Applications of nuclear reactor power systems to electric propulsion missions.

    NASA Technical Reports Server (NTRS)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  3. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  4. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  5. Preliminary analysis of three cycles for nuclear propulsion of aircraft

    NASA Technical Reports Server (NTRS)

    Humble, L V; Wachtl, W W; Doyle, R B

    1950-01-01

    A preliminary study was made of the feasibility of three cycles for nuclear propulsion of aircraft: a direct-air-turbojet, a binary liquid-metal turbojet, and a helium compressor jet. All three cycles appeared feasible for flight at a Mach number of 0.9 and altitudes up to 50,000 feet; the liquid-metal cycle appeared feasible for flight at a Mach number of 1.5. The air and helium cycles resulted in heavier aircraft than did the liquid-metal cycle, particularly at a Mach number of 1.5. The relative advantage of the liquid-metal cycle became greater as the flight speed and altitude increased, and as the reactor wall temperature decreased.

  6. Advanced Nuclear Fuel Cycle Options

    SciTech Connect

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  7. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    NASA Technical Reports Server (NTRS)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  8. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube

  9. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harrold P., Jr.; Doughty, Glen E.

    1993-01-01

    An increase in Isp for nuclear thermal propulsion systems is desirable for reducing the propellant requirements and cost of future applications, such as the Mars Transfer Vehicle. Several previous design studies have suggested that the Isp could be increased substantially with hydrogen dissociation/recombination. Hydrogen molecules (H2), at high temperatures and low pressures, will dissociate to monatomic hydrogen (H). The reverse process (i.e., formation of H2 from H) is exothermic. The exothermic energy in a nozzle increases the kinetic energy and therefore, increases the Isp. The low pressure nuclear thermal propulsion system (LPNTP) system is expected to maximize the hydrogen dissociation/recombination and Isp by operating at high chamber temperatures and low chamber pressures. The process involves hydrogen flow through a high temperature, low pressure fission reactor, and out a nozzle. The high temperature (approximately 3000 K) of the hydrogen in the reactor is limited by the temperature limits of the reactor material. The minimum chamber pressure is about 1 atm because lower pressures decrease the engines thrust to weight ratio below acceptable limits. This study assumes that hydrogen leaves the reactor and enters the nozzle at the 3000 K equilibrium dissociation level. Hydrogen dissociation in the reactor does not affect LPNTP performance like dissociation in traditional chemical propulsion systems, because energy from the reactor resupplies energy lost due to hydrogen dissociation. Recombination takes place in the nozzle due primarily to a drop in temperature as the Mach number increases. However, as the Mach number increases beyond the nozzle throat, the static pressure and density of the flow decreases and minimizes the recombination. The ideal LPNTP Isp at 3000 K and 10 psia is 1160 seconds due to the added energy from fast recombination rates. The actual Isp depends on the finite kinetic reaction rates which affect the amount of monatomic hydrogen

  10. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  11. Advances in computational design and analysis of airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  12. Comments on dual-mode nuclear space power and propulsion system concepts

    NASA Technical Reports Server (NTRS)

    Layton, J. Preston; Grey, Jerry

    1991-01-01

    Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.

  13. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were

  14. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    SciTech Connect

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  15. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  16. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  17. A NEPtune/Triton Vision Mission Using Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Bienstock, B.; Atkinson, D. H.; Baines, K.; Mahaffy, P.; Atreya, S.; Stern, A.; Steffes, P.; Wright, M.; Ball Collaboration; Boeing Collaboration

    2005-08-01

    The giant planets of the outer solar system divide into two distinct classes: the ``Gas Giants" Jupiter and Saturn, and the ``Ice Giants" Uranus and Neptune. While the Gas Giants primarily comprise hydrogen and helium, the Ice Giants appear fundamentally different, containing significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Comparisons of the internal structure and overall composition of the Gas and Ice Giants will yield valuable insights into the processes that formed our solar system and possibly extrasolar systems. By 2012 detailed studies of the chemical and physical properties of Jupiter and Saturn will have been completed by the Pioneer, Voyager, Galileo, Cassini, and Juno missions. A Neptune Orbiter with Probes mission would deliver the corresponding key data for an Ice Giant. Such a mission to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars has been studied. Power and propulsion would be provided using nuclear electric propulsion (NEP) technologies. This ambitious mission requires a number of technical issues be investigated and resolved, including: (1) developing a reasonable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for Triton, small icy satellite, and ring science, (2) giant-planet atmospheric probe thermal protection system (TPS) design, (3) deep probe design including pressure vessel, seals, windows, penetrations and inlets, (4) deep probe telecommunications through Neptune's dense and absorbing atmosphere, 5) Triton lander design to conduct extended surface science, and (6) defining an appropriate suite of science instruments for the Orbiter, Probes and Landers to explore the depths of the Neptune atmosphere, magnetic field, Triton, and the icy satellites utilizing the ample mass and power

  18. Advances in adaptive structures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Garba, John A.

    1993-01-01

    Future proposed NASA missions with the need for large deployable or erectable precision structures will require solutions to many technical problems. The Jet Propulsion Laboratory (JPL) is developing new technologies in Adaptive Structures to meet these challenges. The technology requirements, approaches to meet the requirements using Adaptive Structures, and the recent JPL research results in Adaptive Structures are described.

  19. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  20. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Olsen, Charles S.; Welland, Henry; Abraschoff, James; Thoms, Kenneth

    1993-01-01

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  1. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    SciTech Connect

    Olsen, C.S.; Welland, H.; Abraschoff, J. ); Thoms, K. )

    1993-01-15

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  2. Engine System Model Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  3. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    A number of recent assessments have confirmed the results of several earlier studies that Nuclear Thermal Propulsion (NTP) is a leading technology for human exploration of Mars. It is generally acknowledged that NTP provides the best prospects for the transportation of humans to Mars in the 2030's. Its high Isp coupled with the high thrusts achievable, allow reasonable trip times, thereby alleviating concerns about space radiation and "claustrophobia" effects. NASA has embarked on the latest phase of the development of NTP systems, and is adopting an affordable approach in response to the pressure of the times. The affordable strategy is built on maximizing the use of the large NTP technology base developed in the 1950's and 60's. The fact that the NTP engines were actually demonstrated to work as planned, is a great risk reduction feature in its development. The strategy utilizes non-nuclear testing to the fullest extent possible, and uses focused nuclear tests for the essential qualification and certification tests. The perceived cost risk of conducting the ground tests is being addressed by considering novel testing approaches. This includes the use of boreholes to contain radioactive effluents, and use of fuel with very high retention capability for fission products. The use of prototype flight tests is being considered as final steps in the development prior to undertaking human flight missions. In addition to the technical issues, plans are being prepared to address the institutional and political issues that need to be considered in this major venture. While the development and deployment of NTP system is not expected to be cheap, the value of the system will be very high, and amortized over the many missions that it enables and enhances, the imputed costs will be very reasonable. Using the approach outlined, NASA and its partners, currently the DOE, and subsequently industry, have a good chance of creating a sustained development program leading to human

  4. A Neptune Vision Mission using Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Bienstock, B.; Baines, K. H.; Mahaffey, P.; Steffes, P.; Atreya, S.; Stern, A.; Wright, M.; Boeing; Ball Aerospace

    2004-11-01

    The giant planets of the outer solar system divide into two distinct classes: the ``gas giants" Jupiter and Saturn, primarily comprising hydrogen and helium; and the ``ice giants" Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, extrasolar systems. By 2012, Pioneer, Voyager, Galileo, Cassini, and possibly a New Frontiers Jupiter mission will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune mission would deliver the corresponding key data for an ice giant planet. A Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars is being examined. Additional targets include Neptune's enigmatic ring system, Triton, Nereid, and the other icy satellites of Neptune. Power and propulsion would be provided using nuclear electric technologies. Such an ambitious mission requires a number of technical issues be investigated and resolved, including: (1) giant-planet atmospheric probe thermal protection system (TPS) design, (2) descent probe design including seals, windows, penetrations and inlets, and pressure vessel, (3) probe telecommunications through the dense and absorbing Neptunian atmosphere, (4) developing a realizable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for detailed measurements of Triton and the other icy satellites as well as ring science, (5) and, within NEP mass and power constraints, defining an appropriate suite of science instruments to explore the depths of the Neptune atmosphere, magnetic field, Triton, and

  5. A Neptune/Triton Vision Mission Using Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Steffes, P.; Bienstock, B.; Atkinson, D. H.; Baines, K.; Mahaffey, P.; Atreya, S.; Stern, A.; Wright, M.

    2004-12-01

    The giant planets of the outer solar system divide into two distinct classes: the `gas giants' Jupiter and Saturn, primarily comprising hydrogen and helium; and the `ice giants' Uranus and Neptune that are believed to contain significant amounts of the heavier elements including oxygen, nitrogen, carbon, and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, extrasolar systems. By 2012, Pioneer, Voyager, Galileo, Cassini, and possibly a New Frontiers Jupiter mission will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune mission would deliver the corresponding key data for an ice giant planet. A Neptune Orbiter with Probes mission utilizing nuclear electric propulsion (NEP) to study Triton, Nereid, the other icy satellites of Neptune, Neptune's system of rings, and the deep Neptune atmosphere to pressures ranging from several hundred bars to possibly several kilobars is being examined. Power and propulsion would be provided using nuclear electric technologies. Such an ambitious mission requires a number of technical issues be investigated and resolved, including: (1) developing a realizable mission design that allows proper targeting and timing of the entry probe(s) while offering adequate opportunities for detailed measurements of Triton, the other icy satellites and ring science, (2) giant-planet atmospheric probe thermal protection system (TPS) design, (3) descent probe design including seals, windows, penetrations and inlets, and pressure vessel, (4) probe telecommunications through the dense and absorbing Neptunian atmosphere, and (5) within NEP mass and power constraints, defining an appropriate suite of science instruments to explore the depths of the Neptune atmosphere, magnetic field, Triton, and the icy satellites. Another driving factor in

  6. Report of the Nuclear Propulsion Mission Analysis, Figures of Merit Subpanel: Quantifiable figures of merit for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.

    1991-01-01

    The results of an inquiry by the Nuclear Propulsion Mission Analysis, Figures of Merit subpanel are given. The subpanel was tasked to consider the question of what are the appropriate and quantifiable parameters to be used in the definition of an overall figure of merit (FoM) for Mars transportation system (MTS) nuclear thermal rocket engines (NTR). Such a characterization is needed to resolve the NTR engine design trades by a logical and orderly means, and to provide a meaningful method for comparison of the various NTR engine concepts. The subpanel was specifically tasked to identify the quantifiable engine parameters which would be the most significant engine factors affecting an overall FoM for a MTS and was not tasked with determining 'acceptable' or 'recommended' values for the identified parameters. In addition, the subpanel was asked not to define an overall FoM for a MTS. Thus, the selection of a specific approach, applicable weighting factors, to any interrelationships, for establishing an overall numerical FoM were considered beyond the scope of the subpanel inquiry.

  7. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  8. Advancements in Dense Plasma Focus (DPF) for Space Propulsion

    SciTech Connect

    Thomas, Robert; Yang Yang; Miley, G.H.; Mead, F.B.

    2005-02-06

    The development of a dense plasma focus (DPF) propulsion device using p-11B is described. A propulsion system of this type is attractive because of its high thrust-to-weight ratio capabilities at high specific impulses. From a fuel standpoint, p-11B is advantageous because of the aneutronic nature of the reaction, which is favorable for the production of thrust since the charged particles can be channeled by a magnetic field. Different fusion mechanisms are investigated and their implication to the p-11B reaction is explored. Three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ratio ({approx}20), an order of magnitude higher pinch lifetime, and the reflection and absorption of at least 50% radiation. Moreover, a power re-circulation method with high efficiency must be available for the relatively low Q value of the DPF fusion reactor. A possible direct energy conversion scheme using magnetic field compression is discussed. DPF parameters are estimated for thrust levels of 1000 kN and 500 kN, and possible propulsion applications are discussed, along with developmental issues.

  9. Electric thruster models for multimegawatt nuclear electric propulsion mission design

    SciTech Connect

    Leifer, S.D.; Blandino, J.J.; Sercel, J.C. )

    1991-01-05

    Three types of electric thrusters currently under development at JPL have potential to support future missions which utilize multimegawatt nuclear electric propulsion. These electric thrusters are the electron bombardment ion thruster, the magnetoplasmadynamic (MPD) thruster, and the electron-cyclotron-resonance (ECR) thruster. The electron bombardment ion thruster is a relatively mature technology which has been developed for operation at kilowatt power levels but will require new development for application in the multimegawatt regime. The MPD engine represents a technology which may be very well suited to steady-state multimegawatt applications but which has been limited to sub-scale (100's of kW) and pulsed (MW) testing thus far. The ECR plasma engine represents a class of very promising new concepts which are still in the basic research phase of development, but which may possess important fundamental advantages over other electric thruster technologies. In this paper, models of these thrusters are described and used to make projections of thruster specific mass, efficiency, and power handling capacity for operation in the multimegawatt regime.

  10. Electric thruster models for multimegawatt nuclear electric propulsion mission design

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Blandino, John J.; Sercel, Joel C.

    1991-01-01

    Three types of electric thrusters currently under development at JPL have potential to support future missions which utilize multimegawatt nuclear electric propulsion. These electric thrusters are the electron bombardment ion thruster, the magnetoplasmadynamic (MPD) thruster, and the electron-cyclotron-resonance (ECR) thruster. The electron bombardment ion thruster is a relatively mature technology which has been developed for operation at kilowatt power levels but will require new development for application in the multimegawatt regime. The MPD engine represents a technology which may be very well suited to steady-state multimegawatt applications but which has been limited to sub-scale (100's of kW) and pulsed (MW) testing thus far. The ECR plasma engine represents a class of very promising new concepts which are still in the basic research phase of development, but which may possess important fundamental advantages over other electric thruster technologies. Models of these thrusters are described and used to make projections of thrusters specific mass, efficiency, and power handling capacity for operation in the multimegawatt regime.

  11. Power conditioning system modelling for nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Metcalf, Kenneth J.

    1993-11-01

    NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.

  12. Power Conditioning System Modelling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    1993-01-01

    NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.

  13. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  14. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  15. A New Capability for Nuclear Thermal Propulsion Design

    NASA Astrophysics Data System (ADS)

    Amiri, Benjamin W.; Kapernick, Richard J.; Sims, Bryan T.; Simpson, Steven P.

    2007-01-01

    This paper describes a new capability for Nuclear Thermal Propulsion (NTP) design that has been developed, and presents the results of some analyses performed with this design tool. The purpose of the tool is to design to specified mission and material limits, while maximizing system thrust to weight. The head end of the design tool utilizes the ROCket Engine Transient Simulation (ROCETS) code to generate a system design and system design requirements as inputs to the core analysis. ROCETS is a modular system level code which has been used extensively in the liquid rocket engine industry for many years. The core design tool performs high-fidelity reactor core nuclear and thermal-hydraulic design analysis. At the heart of this process are two codes TMSS-NTP and NTPgen, which together greatly automate the analysis, providing the capability to rapidly produce designs that meet all specified requirements while minimizing mass. A PERL based command script, called CORE DESIGNER controls the execution of these two codes, and checks for convergence throughout the process. TMSS-NTP is executed first, to produce a suite of core designs that meet the specified reactor core mechanical, thermal-hydraulic and structural requirements. The suite of designs consists of a set of core layouts and, for each core layout specific designs that span a range of core fuel volumes. NTPgen generates MCNPX models for each of the core designs from TMSS-NTP. Iterative analyses are performed in NTPgen until a reactor design (fuel volume) is identified for each core layout that meets cold and hot operation reactivity requirements and that is zoned to meet a radial core power distribution requirement.

  16. A New Capability for Nuclear Thermal Propulsion Design

    SciTech Connect

    Amiri, Benjamin W.; Kapernick, Richard J.; Sims, Bryan T.; Simpson, Steven P.

    2007-01-30

    This paper describes a new capability for Nuclear Thermal Propulsion (NTP) design that has been developed, and presents the results of some analyses performed with this design tool. The purpose of the tool is to design to specified mission and material limits, while maximizing system thrust to weight. The head end of the design tool utilizes the ROCket Engine Transient Simulation (ROCETS) code to generate a system design and system design requirements as inputs to the core analysis. ROCETS is a modular system level code which has been used extensively in the liquid rocket engine industry for many years. The core design tool performs high-fidelity reactor core nuclear and thermal-hydraulic design analysis. At the heart of this process are two codes TMSS-NTP and NTPgen, which together greatly automate the analysis, providing the capability to rapidly produce designs that meet all specified requirements while minimizing mass. A PERL based command script, called CORE DESIGNER controls the execution of these two codes, and checks for convergence throughout the process. TMSS-NTP is executed first, to produce a suite of core designs that meet the specified reactor core mechanical, thermal-hydraulic and structural requirements. The suite of designs consists of a set of core layouts and, for each core layout specific designs that span a range of core fuel volumes. NTPgen generates MCNPX models for each of the core designs from TMSS-NTP. Iterative analyses are performed in NTPgen until a reactor design (fuel volume) is identified for each core layout that meets cold and hot operation reactivity requirements and that is zoned to meet a radial core power distribution requirement.

  17. Space nuclear power system and the design of the nuclear electric propulsion OTV

    NASA Technical Reports Server (NTRS)

    Buden, D.; Garrison, P. W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kWe to 1 MWe output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  18. Space nuclear power system and the design of the nuclear electric propulsion OTV

    SciTech Connect

    Buden, D.; Garrison, P.W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  19. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  20. Technology requirements for advanced earth orbital transportation systems. Volume 3: Summary report - dual mode propulsion

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The impact of dual-mode propulsion on cost-effective technology requirements for advanced earth-orbital transportation systems is considered. Additional objectives were to determine the advantages of the best dual mode concept relative to the LO2/LH2 concept of the basic study. Normal technology requirements applicable to horizontal take-off and landing single-stage-to-orbit systems utilizing dual mode rocket propulsion were projected to the 1985 time period. These technology projections were then incorporated in a vehicle parametric design analysis for two different operational concepts of a dual mode propulsion system. The resultant performance, weights and costs of each concept were compared. The selected propulsion concept was evaluated to confirm the parametric trending/scaling of weights and to optimize the configuration.

  1. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  2. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    SciTech Connect

    Bennion, K.; Thornton, M.

    2010-04-01

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

  3. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  4. Development of advanced seals for space propulsion turbomachinery

    SciTech Connect

    Hendricks, R.C.; Liang, A.D.; Childs, D.W.; Proctor, M.P.

    1992-04-01

    Current activities in seals for space propulsion turbomachinery that the NASA Lewis Research Center sponsors are surveyed. The overall objective is to provide the designer and researcher with the concepts and the data to control seal dynamics and leakage. Included in the program are low-leakage seals, such as the brush seal, the 'ceramic rope' seal, low-leakage seals for liquid oxygen turbopumps, face seals for two phase flow, and swirl brakes for stability. Two major efforts are summarized: a seal dynamics in rotating machinery and an effort in seal code development.

  5. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  6. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M. S.; Rogers, F.

    2013-10-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  7. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Elsperman, M. S.; Klaus, K.; Rogers, F.

    2013-12-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  8. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect

    Howe, S. ); Borowski, S. . Lewis Research Center); Motloch, C. ); Helms, I. ); Diaz, N.; Anghaie, S. ); Latham, T. (United

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  9. Electric propulsion applications enabled by space nuclear power

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Brewer, L.; Gore, R.

    1989-01-01

    Electric propulsion promises the advantage of providing high Isp's for placing payloads into their assigned orbits. This translates into heavier payloads using a given lift capability or, conversely, the use of smaller boosters. To accomplish this, high electric powers are required. Space reactor power systems such as SP-100 enable this technology. The electric propulsion requirements needed, namely, their power requirements and the resulting payload masses and time-to-orbit, are shown. Also indicated are the missions most benefitting from the use of electric propulsion. An Interim Reference Mission is described, synthesizing the results shown, for demonstration purposes.

  10. Advanced Deuterium Fusion Rocket Propulsion for Manned Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion can there be refuelled. To obtain a high thrust with high specific impulse favours the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of a propulsion system in space would be very high, but it can also be developed on Earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, making obsolete the ignition of deuterium-tritium with a laser, where 80% of the energy goes into neutrons, this would also mean a breakthrough in fusion research, and therefore would justify the large development costs.

  11. Power processing unit options for high powered nuclear electric propulsion using MPD thrusters

    SciTech Connect

    Krauthamer, S.; Frisbee, R.H.; Das, R.S.L. |

    1995-12-31

    An electric propulsion vehicle designed to transport cargo in support of a piloted expedition to Mars will require electrical power in the range of megawatts. This paper summarizes an evaluation of various megawatt-class power processing unit (PPU) design and technology options for high-power nuclear electric propulsion (NEP) vehicles using turboalternators and advanced magnetoplasmadynamic (MPD) thrusters. A baseline system uses a low-voltage turboalternator, rectifiers and thrusters. However, there are other options. Four such design and technology options with the potential of improving overall system efficiency and reducing cabling mass are analyzed. The first option uses high-voltage AC from a wye-connected turboalternator and a step-down transformer, the second option uses a six-phase star-connected turboalternator instead of the wye-connected alternator in the baseline configuration, the third option uses PPU rectifier electronics located near the thrusters with a remotely-located radiator, and the fourth option uses cryogenic power conversion electronics and cabling to reduce losses. It is found that the third option has the potential of providing maximum overall power conversion efficiency and reducing mass. Presently, the fourth option appears to have maximum complexity of design and implementation, is costly, and is somewhat uncertain even through it can be the most attractive option in the future.

  12. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability

  13. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    SciTech Connect

    Ballard, Richard O.

    2006-01-20

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

  14. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  15. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented `Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Ballard, Richard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the ``Fundamental Root Causes'' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

  16. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Niederauer, G.F.; Remp, K.; Rice, J.W.; Sholtis, J.A.

    1992-09-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  17. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H. ); Sawyer, J.C. Jr. ); Bari, R.A. ); Brown, N.W. ); Cullingford, H.S.; Hardy, A.C. (National Aeronautics and Space Administ

    1992-01-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  18. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    NASA Technical Reports Server (NTRS)

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  19. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Sawyer, J. C., Jr.; Bari, Robert A.; Brown, Neil W.; Cullingford, Hatice S.; Hardy, Alva C.; Lee, James H.; Mcculloch, William H.; Niederauer, George F.; Remp, Kerry

    1992-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  20. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect

    Marshall, A.C.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Lee, J.H.; Mcculloch, W.H.; Niederauer, G.F.; Remp, K. NASA, Washington Brookhaven National Laboratory, Upton, NY General Electric Co., San Jose, CA NASA, Johnson Space Center, Houston, Tn L

    1992-07-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed. 9 refs.

  1. Advanced Propulsion System Studies in High Speed Research

    NASA Technical Reports Server (NTRS)

    Zola, Charles L.

    2000-01-01

    Propulsion for acceptable supersonic passenger transport aircraft is primarily impacted by the very high jet noise characteristics of otherwise attractive engines. The mixed flow turbofan, when equipped with a special ejector nozzle seems to be the best candidate engine for this task of combining low jet noise with acceptable flight performance. Design, performance, and operation aspects of mixed flow turbofans are discussed. If the special silencing nozzle is too large, too heavy, or not as effective as expected, alternative concepts in mixed flow engines should be examined. Presented herein is a brief summary of efforts performed under cooperative agreement NCC3-193. Three alternative engine concepts, conceived during this study effort, are herein presented and their limitations and potentials are described. These three concepts intentionally avoid the use of special silencing nozzles and achieve low jet noise by airflow augmentation of the engine cycle.

  2. The Role of Numerical Simulation in Advancing Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Turchi, P. J.; Mikellides, P. G.; Mikellides, I. G.

    1999-11-01

    Plasma thrusters often involve a complex set of interactions among several distinct physical processes. While each process can yield to separate mathematical representation, their combination generally requires numerical simulation. We have extended and used the MACH2 code successfully to simulate both self-field and applied-field magnetoplasmadynamic thrusters and, more recently, ablation-fed pulsed plasma microthrusters. MACH2 provides a framework in which to compute 2-1/2 dimensional, unsteady, MHD flows in two-temperature LTE. It couples to several options for electrical circuitry and allows access to both analytic formulas and tabular values for material properties and transport coefficients, including phenomenological models for anomalous transport. Even with all these capabilities, however, successful modeling demands comparison with experiment and with analytic solutions in idealized limits, and careful combination of MACH2 results with separate physical reasoning. Although well understood elsewhere in plasma physics, the strengths and limitations of numerical simulation for plasma propulsion needs further discussion.

  3. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  4. Precious bits: frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2001-01-01

    The Jet Propulsion Laboratory's (JPL) Advanced Multi-Mission Operations System (AMMOS) system processes data received from deep-space spacecraft, where error rates are high, bit rates are low, and every bit is precious. Frame synchronization and data extraction as performed by AMMOS enhanced data acquisition and reliability for maximum data return and validity.

  5. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  6. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    NASA Technical Reports Server (NTRS)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  7. Requirements for a common nuclear propulsion and power reactor for human exploration missions to Mars

    NASA Astrophysics Data System (ADS)

    Cataldo, Robert L.; Borowski, Stanley K.

    1998-01-01

    Requirements for propulsion and power systems capable of achieving a safe, reliable, robust and affordable human Mars exploration mission have been identified. Nuclear systems have been identified that can meet the challenges of short trip times, reduced number of launch vehicles, potential for ``all propulsive'' maneuvers, abundant in-space power and low mass, volume and deployed area, and energy rich surface power. Reduced total systems cost will also be mandatory to achieve affordable human exploration of Mars. Hence, it is desirable to design a space propulsion and surface power reactor with the greatest degree of commonality as possible with the goal of reducing total system costs.

  8. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  9. Requirements for a common nuclear propulsion and power reactor for human exploration missions to Mars

    SciTech Connect

    Cataldo, Robert L.; Borowski, Stanley K.

    1998-01-15

    Requirements for propulsion and power systems capable of achieving a safe, reliable, robust and affordable human Mars exploration mission have been identified. Nuclear systems have been identified that can meet the challenges of short trip times, reduced number of launch vehicles, potential for 'all propulsive' maneuvers, abundant in-space power and low mass, volume and deployed area, and energy rich surface power. Reduced total systems cost will also be mandatory to achieve affordable human exploration of Mars. Hence, it is desirable to design a space propulsion and surface power reactor with the greatest degree of commonality as possible with the goal of reducing total system costs.

  10. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  11. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  12. Overview of Advanced Space Propulsion Activities in the Space Environmental Effects Team at MSFC

    NASA Technical Reports Server (NTRS)

    Edwards, David; Carruth, Ralph; Vaughn, Jason; Schneider, Todd; Kamenetzky, Rachel; Gray, Perry

    2000-01-01

    Exploration of our solar system, and beyond, requires spacecraft velocities beyond our current technological level. Technologies addressing this limitation are numerous. The Space Environmental Effects (SEE) Team at the Marshall Space Flight Center (MSFC) is focused on three discipline areas of advanced propulsion; Tethers, Beamed Energy, and Plasma. This presentation will give an overview of advanced propulsion related activities in the Space Environmental Effects Team at MSFC. Advancements in the application of tethers for spacecraft propulsion were made while developing the Propulsive Small Expendable Deployer System (ProSEDS). New tether materials were developed to meet the specifications of the ProSEDS mission and new techniques had to be developed to test and characterize these tethers. Plasma contactors were developed, tested and modified to meet new requirements. Follow-on activities in tether propulsion include the Air-SEDS activity. Beamed energy activities initiated with an experimental investigation to quantify the momentum transfer subsequent to high power, 5J, ablative laser interaction with materials. The next step with this experimental investigation is to quantify non-ablative photon momentum transfer. This step was started last year and will be used to characterize the efficiency of solar sail materials before and after exposure to Space Environmental Effects (SEE). Our focus with plasma, for propulsion, concentrates on optimizing energy deposition into a magnetically confined plasma and integration of measurement techniques for determining plasma parameters. Plasma confinement is accomplished with the Marshall Magnetic Mirror (M3) device. Initial energy coupling experiments will consist of injecting a 50 amp electron beam into a target plasma. Measurements of plasma temperature and density will be used to determine the effect of changes in magnetic field structure, beam current, and gas species. Experimental observations will be compared to

  13. Advanced nuclear precleaner

    SciTech Connect

    Wright, S.R.

    1997-10-01

    This Phase II Small Business Innovation Research (SBIR) program`s goal is to develop a dynamic, self-cleaning air precleaner for high-efficiency particulate air (HEPA) filtration systems that would extend significantly the life of HEPA filter banks by reducing the particulate matter that causes filter fouling and increased pack pressure. HEPA filters are widely used in DOE, Department of Defense, and a variety of commercial facilities. InnovaTech, Inc. (Formerly Micro Composite materials Corporation) has developed a proprietary dynamic separation device using a concept called Boundary Layer Momentum Transfer (BLMT) to extract particulate matter from fluid process streams. When used as a prefilter in the HVAC systems or downstream of waste vitrifiers in nuclear power plants, fuel processing facilities, and weapons decommissioning factories, the BLMT filter will dramatically extend the service life and increase the operation efficiency of existing HEPA filtration systems. The BLMT filter is self cleaning, so there will be no degraded flow or increased pressure drop. Because the BLMT filtration process is independent of temperature, it can be designed to work in ambient, medium, or high-temperature applications. During Phase II, the authors are continuing development of the computerized flow simulation model to include turbulence and incorporate expansion into a three-dimensional model that includes airflow behavior inside the filter housing before entering the active BLMT device. A full-scale (1000 ACFM) prototype filter is being designed to meet existing HEPA filter standards and will be fabricated for subsequent testing. Extensive in-house testing will be performed to determine a full range of performance characteristics. Final testing and evaluation of the prototype filter will be conducted at a DOE Quality Assurance Filter Test Station.

  14. The “Flying Carpet” concept: A possible alternative to nuclear space propulsion

    NASA Astrophysics Data System (ADS)

    Meyer, Rudolf X.

    2006-05-01

    This paper examines the potential performance of a new concept for very high specific impulse propulsion for scientific explorations beyond the solar system. The concept is based on an ultra-light weight solar-electric membrane that is deployed, stretched, stabilized, and oriented by small electric thrusters at its corners. The potential performance is found to be greatly superior to what can be achieved by multiple planetary flybys. The concept is viewed as an alternative to nuclear space propulsion.

  15. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    The potential capability of NTP is game changing for space exploration. A first generation NCPS could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Near-term NCPS systems would provide a foundation for the development of significantly more advanced, higher performance systems. John F. Kennedy made his historic special address to Congress on the importance of space on May 25, 1961, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. John F. Kennedy also made a second request, "Secondly... accelerate development of the Rover nuclear rocket. This gives promise of some day providing a means for even more exciting and ambitious exploration of space, perhaps beyond the Moon, perhaps to the very end of the solar system itself." The investment in the Rover nuclear rocket program provided the foundation of technology that gives us assurance for greater performing rockets that are capable of taking us further into space. Combined with current technologies, the vision to go beyond the Moon and to the very end of the solar system can be realized with space nuclear propulsion and power.

  16. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined for this report. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, SSME Upper Stage Use, CERs for Liquid Propellant Rocket Engines, Advanced Low Cost Engines, and Tripropellant Comparison Study. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume I of this report.

  17. Evaluation of High-Power Solar Electric Propulsion using Advanced Ion, Hall, MPD, and PIT Thrusters for Lunar and Mars Cargo Missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    This paper presents the results of mission analyses that expose the advantages and disadvantages of high-power (MWe-class) Solar Electric Propulsion (SEP) for Lunar and Mars Cargo missions that would support human exploration of the Moon and Mars. In these analyses, we consider SEP systems using advanced Ion thrusters (the Xenon [Xe] propellant Herakles), Hall thrusters (the Bismuth [Bi] propellant Very High Isp Thruster with Anode Layer [VHITAL], magnetoplasmadynamic (MPD) thrusters (the Lithium [Li] propellant Advanced Lithium-Fed, Applied-field Lorentz Force Accelerator (ALFA2), and pulsed inductive thruster (PIT) (the Ammonia [NH3] propellant Nuclear-PIT [NuPIT]). The analyses include comparison of the advanced-technology propulsion systems (VHITAL, ALFA2, and NuPIT) relative to state-of-theart Ion (Herakles) propulsion systems and quantify the unique benefits of the various technology options such as high power-per-thruster (and/or high power-per-thruster packaging volume), high specific impulse (Isp), high-efficiency, and tankage mass (e.g., low tankage mass due to the high density of bismuth propellant). This work is based on similar analyses for Nuclear Electric Propulsion (NEP) systems.

  18. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    SciTech Connect

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  19. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  20. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  1. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    SciTech Connect

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-07-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  2. Recent Advances in Nuclear Cardiology.

    PubMed

    Lee, Won Woo

    2016-09-01

    Nuclear cardiology is one of the major fields of nuclear medicine practice. Myocardial perfusion studies using single-photon emission computed tomography (SPECT) have played a crucial role in the management of coronary artery diseases. Positron emission tomography (PET) has also been considered an important tool for the assessment of myocardial viability and perfusion. However, the recent development of computed tomography (CT)/magnetic resonance imaging (MRI) technologies and growing concerns about the radiation exposure of patients remain serious challenges for nuclear cardiology. In response to these challenges, remarkable achievements and improvements are currently in progress in the field of myocardial perfusion imaging regarding the applicable software and hardware. Additionally, myocardial perfusion positron emission tomography (PET) is receiving increasing attention owing to its unique capability of absolute myocardial blood flow estimation. An F-18-labeled perfusion agent for PET is under clinical trial with promising interim results. The applications of F-18 fluorodeoxyglucose (FDG) and F-18 sodium fluoride (NaF) to cardiovascular diseases have revealed details on the basic pathophysiology of ischemic heart diseases. PET/MRI seems to be particularly promising for nuclear cardiology in the future. Restrictive diseases, such as cardiac sarcoidosis and amyloidosis, are effectively evaluated using a variety of nuclear imaging tools. Considering these advances, the current challenges of nuclear cardiology will become opportunities if more collaborative efforts are devoted to this exciting field of nuclear medicine. PMID:27540423

  3. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  4. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  5. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  6. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  7. Advanced Power and Propulsion: Insuring Human Survival and Productivity in Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    2001-01-01

    Dr. Chang-Diaz gave an intriguing presentation of his research in advanced rocket propulsion and its relevance for planning and executing crewed deep space explorations. Though not necessarily exclusively Martian, his thrust looks critically at future Mars missions. Initially Dr. Chang-Diaz showed the time constraints of Mars missions due to orbital mechanics and our present chemically powered rocket technology. Since essentially all the energy required to place current generation spacecraft into a Martian trajectory must be expended in the early minutes of a flight, most of such a mission is spent in free-fall drift, captive to the gravitational forces among Earth, the Sun, and Mars. The simple physics of such chemically powered missions requires nearly a year in transit for each direction of a Mars mission. And the optimal orientations of Earth and Mars for rendezvous require further time on or around Mars to await return. These extensions of mission duration place any crew under a three-fold jeopardy: (1) physiological deconditioning (which in some aspects is still unknown and unpreventable), (2) psychological stress, and (3) ionizing radiation. This latter risk is due to exposure of crew members for extended time to the highly unpredictable and potentially lethal radiations of open space. Any gains in shortening mission duration would reap equivalent or greater benefits for these crew concerns. Dr. Chang-Diaz has applied his training and expertise (Ph.D. from Massachusetts Institute of Technology in applied plasma physics) toward development of continuous rocket propulsion which would offer great time advantages in travel, and also more launch options than are now available. He clearly explained the enormous gains from a relatively low thrust accelerative force applied essentially continuously versus the high, but short-lived propulsion of present chemical rockets. In fact, such spacecraft could be powered throughout the mission, accelerating to approximately

  8. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  9. A comparison of Nuclear Thermal Propulsion concepts - Results of a workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    A Nuclear Thermal Propulsion Workshop, co-sponsored by NASA, DOE and DOD, was held in Cleveland, Ohio on July 10-12, 1990. The workshop was to provide a database of nuclear propulsion concepts and technologies to assist in planning a nuclear propulsion project, identify high priority activities to be initiated early, and to provide cost and schedule estimates for development of concepts to technology readiness level 6 - full system verification in a simulated environment. Sixteen concepts were presented to Technology Review Panels (TRP), and discussed. Each concept was compared to a baseline manned Mars mission. A preliminary comparison of ratings made by the TRP's is presented herein for mission benefit, safety, technical risk, and development cost.

  10. Unique mission options available with a megawatt-class nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; McCauley, L.A.; Christian, J.L.; Gomez, M.A.; Wong, W.A.

    1988-10-01

    The advantages of using electric propulsion systems are well-known in the aerospace community with the most common being its high specific impulse, lower propellant requirements, and lower system mass. But these advantages may not be as important as the overall unique mission options electric propulsion makes possible, especially if the system is powered by a megawatt-class nuclear electric power source. Although the lack of suitable electric power systems has been a major drawback to electric propulsion, recent efforts have shown megawatt-class nuclear electric power systems are feasible and could be available by the turn of the century. Coupling this with the resurgence in interest in free-space electromagnetic transmission of energy and technology developments in this area provide a whole new aspect to the view of electric propulsion. The propulsion system now has a second mission function that may be of more value than the well understood benefits of electric propulsion; that is providing large quantities of prime power in support of a broad spectrum of mission tasks. 30 refs., 9 figs.

  11. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    SciTech Connect

    King, D.B.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models. {copyright} {ital 1997 American Institute of Physics.}

  12. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    SciTech Connect

    King, Donald B.; Marshall, Albert C.

    1997-01-10

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I and C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  13. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  14. Advanced propulsion engine assessment based on a cermet reactor

    NASA Astrophysics Data System (ADS)

    Parsley, Randy C.

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  15. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  16. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  17. Propulsion and navigation within the advancing monolayer sheet

    NASA Astrophysics Data System (ADS)

    Kim, Jae Hun; Serra-Picamal, Xavier; Tambe, Dhananjay T.; Zhou, Enhua H.; Park, Chan Young; Sadati, Monirosadat; Park, Jin-Ah; Krishnan, Ramaswamy; Gweon, Bomi; Millet, Emil; Butler, James P.; Trepat, Xavier; Fredberg, Jeffrey J.

    2013-09-01

    As a wound heals, or a body plan forms, or a tumour invades, observed cellular motions within the advancing cell swarm are thought to stem from yet to be observed physical stresses that act in some direct and causal mechanical fashion. Here we show that such a relationship between motion and stress is far from direct. Using monolayer stress microscopy, we probed migration velocities, cellular tractions and intercellular stresses in an epithelial cell sheet advancing towards an island on which cells cannot adhere. We found that cells located near the island exert tractions that pull systematically towards this island regardless of whether the cells approach the island, migrate tangentially along its edge, or paradoxically, recede from it. This unanticipated cell-patterning motif, which we call kenotaxis, represents the robust and systematic mechanical drive of the cellular collective to fill unfilled space.

  18. Nuclear Thermal Propulsion Technology - Summary of FY 1991 Interagency Panel Planning

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Stanley, Marland

    1991-01-01

    An Interagency (NASA/DOE/DOD) technical panel has been working in 1991 to evaluate nuclear thermal propulsion (NTP) concepts on a consistent basis, and to continue technology development project planning for a joint project in nuclear propulsion for Space Exploration Initiative (SEI). This paper summarizes the efforts of the panel to date and summarizes the technology plans defined for NTP. Concepts were categorized based on probable technology readiness data, and innovative 'proof-of-concept' tests and analyses were defined. While further studies will be required to provide a consistent comparison of all of the NTP concepts, the current status of the studies is presented.

  19. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    NASA Technical Reports Server (NTRS)

    George, Jeffrey

    2014-01-01

    Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.

  20. Design of a direct nuclear propulsion system for a resupply mission to Phobos

    NASA Technical Reports Server (NTRS)

    Frymire, R.; Martinez, R.

    1989-01-01

    For a long-term mission in space, a propulsion system with a high specific impulse and low mass must be designed. The system must also be safe in terms of human lives and must be cost efficient to a degree. The main focus is to design a direct nuclear propulsion system for a resupply mission to Phobos from an orbiting Earth space station and return. The design considered is an annular, packed particle bed nuclear reactor with hydrogen used as the reflector, moderator, coolant, and propellant. The use of hydrogen in all these areas helps reduce the total mass, since the amount of hydrogen required is only that needed for propulsion. The mass of hydrogen required for propulsion is reduced by using a direct nuclear propulsion system with a high specific impulse relative to a hydrogen oxygen system. Certain calculations were not looked at in great detail. This included the aerospace details of the mission. Most of the numbers for this section were found in tables and taken to be correct without extensive calculations. The main objective of the project was to study the thermohydraulic and neutronic aspects of the reactor.

  1. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 3

    NASA Technical Reports Server (NTRS)

    Levak, Daniel

    1993-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.

  2. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  3. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  4. Development of Sensors for Ceramic Components in Advanced Propulsion Systems. Phase 2; Temperature Sensor Systems Evaluation

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.

  5. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  6. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  7. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the

  8. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  9. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  10. Advanced Propulsion Systems Study for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Mount, R.

    2003-01-01

    This study defines a family of advanced technology Stratified Charge Rotary Engines (SCRE) appropriate for the enablement of the development of a new generation of general aviation aircraft. High commonality, affordability, and environmental compatibility are considerations influencing the family composition and ratings. The SCRE family is comprised of three engines in the 70 Series (40 cu in. displacement per rotor), i.e. one, two, and four rotor and two engines in the 170 Series (105 cu in. displacement per rotor), i.e., two and four rotor. The two rotor engines are considered the primary engines in each series. A wide power range is considered covering 125 to 2500 HP through growth and compounding/dual pac considerations. Mission requirements, TBO, FAA Certification, engine development cycles, and costs are examined. Comparisons to current and projected reciprocating and turbine engine configurations in the 125 to 1000 HP class are provided. Market impact, estimated sales, and U.S. job creation (R&D, manufacturing and infractures) are examined.

  11. Heat pipe radiation cooling of advanced hypersonic propulsion system components

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Keddy, M.; Merrigan, M. A.; Silverstein, C. C.

    1991-01-01

    Heat transfer, heat pipe, and system studies were performed to assess the newly proposed heat pipe radiation cooling (HPRC) concept. With an HPRC system, heat is removed from the ramburner and nozzle of a hypersonic aircraft engine by a surrounding, high-temperature, heat pipe nacelle structure, transported to nearby external surfaces, and rejected to the environment by thermal radiation. With HPRC, the Mach number range available for using hydrocarbon fuels for aircraft operation extends into the Mach 4 to Mach 6 range, up from the current limit of about Mach 4. Heat transfer studies using a newly developed HPRC computer code determine cooling system and ramburner and nozzle temperatures, heat loads, and weights for a representative combined-cycle engine cruising at Mach 5 at 80,000 ft altitude. Heat pipe heat transport calculations, using the Los Alamos code HTPIPE, reveal that adequate heat trasport capability is available using molybdenum-lithium heat pipe technology. Results show that the HPRC system radiator area is limited in size to the ramburner-nozzle region of the engine nacelle; reasonable system weights are expected; hot section temperatures are consistent with advanced structural materials development goals; and system impact on engine performance is minimal.

  12. Numerical analysis of a nuclear fuel element for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Schutzenhofer, Luke

    1991-01-01

    A computational fluid dynamics model with porosity and permeability formulations in the transport equations has been developed to study the concept of nuclear thermal propulsion through the analysis of a pulsed irradiation of a particle bed element (PIPE). The numerical model is a time-accurate pressure-based formulation. An adaptive upwind scheme is employed for spatial discretization. The upwind scheme is based on second- and fourth-order central differencing with adaptive artificial dissipation. Multiblocked porosity regions have been formulated to model the cold frit, particle bed, and hot frit. Multiblocked permeability regions have been formulated to describe the flow shaping effect from the thickness-varying cold frit. Computational results for several zero-power density PIPEs and an elevated-particle-temperature PIPE are presented. The implications of the computational results are discussed.

  13. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  14. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Restrictions on certain maritime nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY:...

  15. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  16. Nuclear power propulsion complex with the turbomachine energy conversion for long interplanetary expeditions

    SciTech Connect

    Koroteev, A.S.; Semenov, V.F.; Vatel, M.N. ); Pavshoock, V.A. ); Sakovich, V.A. )

    1991-01-01

    This paper presents an overview of soviet planning for manned and unmanned missions to Mars. The feasibility of designing a propulsion system based on a nuclear power reactor with a turbomachine converter of 50 MW electric power is discussed. The problems related to radiation shielding are presented.(AIP)

  17. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  18. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  19. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that

  20. Nuclear Propulsion for Space, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Schwenk, Francis C.

    The operation of nuclear rockets with respect both to rocket theory and to various fuels is described. The development of nuclear reactors for use in nuclear rocket systems is provided, with the Kiwi and NERVA programs highlighted. The theory of fuel element and reactor construction and operation is explained with particular reference to rocket…

  1. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    SciTech Connect

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-04

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal conditions.

  2. Blazing the trailway - Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1991-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for outer space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  3. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  4. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.

    1994-01-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems

  5. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    NASA Astrophysics Data System (ADS)

    Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems

  6. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  7. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    SciTech Connect

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power.

  8. Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.

    2011-01-01

    Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.

  9. Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft

    NASA Technical Reports Server (NTRS)

    Ernest, D. M.

    1982-01-01

    Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.

  10. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  11. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  12. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  13. Evaluation of high-performance space nuclear electric generators for electric propulsion application

    NASA Astrophysics Data System (ADS)

    Woodcock, Gordon

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concepts. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles arc compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered. .

  14. Propulsion Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  15. Design and Development of the MITEE-B Bi-Modal Nuclear Propulsion Engine

    NASA Astrophysics Data System (ADS)

    Paniagua, John C.; Powell, James R.; Maise, George

    2003-01-01

    Previous studies of compact, ultra-lightweight high performance nuclear thermal propulsion engines have concentrated on systems that only deliver high thrust. However, many potential missions also require substantial amounts of electric power. Studies of a new, very compact and lightweight bi-modal nuclear engine that provides both high propulsive thrust and high electric power for planetary science missions are described. The design is a modification of the MITEE nuclear thermal engine concept that provided only high propulsive thrust. In the new design, MITEE-B, separate closed cooling circuits are incorporated into the reactor, which transfers useful amounts of thermal energy to a small power conversion system that generates continuous electric power over the full life of the mission, even when the engine is not delivering propulsive thrust. Two versions of the MITEE-B design are described and analyzed. Version 1 generates 1 kW(e) of continuous power for control of the spacecraft, sensors, data transmission, etc. This power level eliminates the need for RTG's on missions to the outer planets, and allowing considerably greater operational capability for the spacecraft. This, plus its high thrust and high specific impulse propulsive capabilities, makes MITEE-B very attractive for such missions. In Version 2, of MITEE-B, a total of 20 kW(e) is generated, enabling the use of electric propulsion. The combination of high open cycle propulsion thrust (20,000 Newtons) with a specific impulse of ~1000 seconds for short impulse burns, and long term (months to years), electric propulsion greatly increases MITEE's ΔV capability. Version 2 of MITEE-B also enables the production and replenishment of H2 propellant using in-situ resources, such as electrolysis of water from the ice sheet on Europa and other Jovian moons. This capability would greatly increase the ΔV available for certain planetary science missions. The modifications to the MITEE multiple pressure tube

  16. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  17. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  18. Overview of nuclear MHD power conversion for multi-megawatt electric propulsion

    NASA Astrophysics Data System (ADS)

    Smith, Blair M.; Knight, Travis W.; Anghaie, Samim

    2001-02-01

    An overview of recent research findings on space applications of nuclear magnetohydrodynamic (MHD) power for generation of multi klbf electric thrust at thousands of seconds of specific impulse is presented. The high operating temperatures of the nuclear MHD system and potential for direct coupling of the output power to the electric thruster system are characterizing features that allow for design of ultracompact and ultralight nuclear electric propulsion systems. Order of magnitude figures for some mission-critical parameters are collated from various engineering analyses. Specific mass and specific impulse values highlight the inherent benefits of further research and development investment in MHD power. .

  19. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  20. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.