Science.gov

Sample records for advanced numerical algorithms

  1. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  2. Numerical Study of Equilibrium, Stability, and Advanced Resistive Wall Mode Feedback Algorithms on KSTAR

    NASA Astrophysics Data System (ADS)

    Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2007-11-01

    Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.

  3. Numerical linear algebra algorithms and software

    NASA Astrophysics Data System (ADS)

    Dongarra, Jack J.; Eijkhout, Victor

    2000-11-01

    The increasing availability of advanced-architecture computers has a significant effect on all spheres of scientific computation, including algorithm research and software development in numerical linear algebra. Linear algebra - in particular, the solution of linear systems of equations - lies at the heart of most calculations in scientific computing. This paper discusses some of the recent developments in linear algebra designed to exploit these advanced-architecture computers. We discuss two broad classes of algorithms: those for dense, and those for sparse matrices.

  4. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    In this thesis, we investigate four neighboring topics, all in the general area of numerical methods for solving Partial Differential Equations (PDEs). Topic 1. Radial Basis Functions (RBF) are widely used for multi-dimensional interpolation of scattered data. This methodology offers smooth and accurate interpolants, which can be further refined, if necessary, by clustering nodes in select areas. We show, however, that local refinements with RBF (in a constant shape parameter [varepsilon] regime) may lead to the oscillatory errors associated with the Runge phenomenon (RP). RP is best known in the case of high-order polynomial interpolation, where its effects can be accurately predicted via Lebesgue constant L (which is based solely on the node distribution). We study the RP and the applicability of Lebesgue constant (as well as other error measures) in RBF interpolation. Mainly, we allow for a spatially variable shape parameter, and demonstrate how it can be used to suppress RP-like edge effects and to improve the overall stability and accuracy. Topic 2. Although not as versatile as RBFs, cubic splines are useful for interpolating grid-based data. In 2-D, we consider a patch representation via Hermite basis functions s i,j ( u, v ) = [Special characters omitted.] h mn H m ( u ) H n ( v ), as opposed to the standard bicubic representation. Stitching requirements for the rectangular non-equispaced grid yield a 2-D tridiagonal linear system AX = B, where X represents the unknown first derivatives. We discover that the standard methods for solving this NxM system do not take advantage of the spline-specific format of the matrix B. We develop an alternative approach using this specialization of the RHS, which allows us to pre-compute coefficients only once, instead of N times. MATLAB implementation of our fast 2-D cubic spline algorithm is provided. We confirm analytically and numerically that for large N ( N > 200), our method is at least 3 times faster than the

  5. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    SciTech Connect

    E.A. Belli; G.W. Hammett

    2004-12-17

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.

  6. Numerical Algorithms and Parallel Tasking.

    DTIC Science & Technology

    1984-07-01

    34 Principal Investigator, Virginia Klema, Research Staff, George Cybenko and Elizabeth Ducot . During the period, May 15, 1983 through May 14, 1984...Virginia Klema and Elizabeth Ducot have been supported for four months, and George Cybenko has been supported for one month. During this time system...algorithms or applications is the responsibility of the user. Virginia Klema and Elizabeth Ducot presented a description of the concurrent computing

  7. Trees, bialgebras and intrinsic numerical algorithms

    NASA Technical Reports Server (NTRS)

    Crouch, Peter; Grossman, Robert; Larson, Richard

    1990-01-01

    Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

  8. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  9. Advanced incomplete factorization algorithms for Stiltijes matrices

    SciTech Connect

    Il`in, V.P.

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  10. Stochastic Formal Correctness of Numerical Algorithms

    NASA Technical Reports Server (NTRS)

    Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick

    2009-01-01

    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.

  11. Algorithmic advances in stochastic programming

    SciTech Connect

    Morton, D.P.

    1993-07-01

    Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.

  12. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  13. NAS Applications and Advanced Algorithms

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Biswas, Rupak; VanDerWijngaart, Rob; Kutler, Paul (Technical Monitor)

    1997-01-01

    This paper examines the applications most commonly run on the supercomputers at the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such applications are fundamentally oriented to vector computers, and whether or not they can be efficiently implemented on hierarchical memory machines, such as systems with cache memories and highly parallel, distributed memory systems.

  14. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  15. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  16. Advanced spectral signature discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Cao, Wenjie; Samat, Alim

    2013-05-01

    This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.

  17. Advanced algorithms for information science

    SciTech Connect

    Argo, P.; Brislawn, C.; Fitzgerald, T.J.; Kelley, B.; Kim, W.H.; Mazieres, B.; Roeder, H.; Strottman, D.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). In a modern information-controlled society the importance of fast computational algorithms facilitating data compression and image analysis cannot be overemphasized. Feature extraction and pattern recognition are key to many LANL projects and the same types of dimensionality reduction and compression used in source coding are also applicable to image understanding. The authors have begun developing wavelet coding which decomposes data into different length-scale and frequency bands. New transform-based source-coding techniques offer potential for achieving better, combined source-channel coding performance by using joint-optimization techniques. They initiated work on a system that compresses the video stream in real time, and which also takes the additional step of analyzing the video stream concurrently. By using object-based compression schemes (where an object is an identifiable feature of the video signal, repeatable in time or space), they believe that the analysis is directly related to the efficiency of the compression.

  18. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1982-01-01

    Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.

  19. Numerical Algorithm for Delta of Asian Option.

    PubMed

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options.

  20. Carbon export algorithm advancements in models

    NASA Astrophysics Data System (ADS)

    Çağlar Yumruktepe, Veli; Salihoğlu, Barış

    2015-04-01

    The rate at which anthropogenic CO2 is absorbed by the oceans remains a critical question under investigation by climate researchers. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. Due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. Development of improved algorithms describing carbon export and sequestration, suitable for inclusion in numerical models is an ongoing work. Existing unique algorithms used in the state-of-the art ecosystem models and new experimental results obtained from mesocosm experiments and open ocean observations have been inserted into a common 1D pelagic ecosystem model for testing purposes. The model was implemented to the timeseries stations in the North Atlantic (BATS, PAP and ESTOC) and were evaluated with datasets of carbon export. Targetted topics of algorithms were PFT functional types, grazing and vertical movement of zooplankton, and remineralization, aggregation and ballasting dynamics of organic matter. Ultimately it is intended to feed improved algorithms to the 3D modelling community, for inclusion in coupled numerical models.

  1. A Polynomial Time, Numerically Stable Integer Relation Algorithm

    NASA Technical Reports Server (NTRS)

    Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.

  2. Numerical comparison of Kalman filter algorithms - Orbit determination case study

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Thornton, C. L.

    1977-01-01

    Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.

  3. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  4. Experiences with an adaptive mesh refinement algorithm in numerical relativity.

    NASA Astrophysics Data System (ADS)

    Choptuik, M. W.

    An implementation of the Berger/Oliger mesh refinement algorithm for a model problem in numerical relativity is described. The principles of operation of the method are reviewed and its use in conjunction with leap-frog schemes is considered. The performance of the algorithm is illustrated with results from a study of the Einstein/massless scalar field equations in spherical symmetry.

  5. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1981-01-01

    Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.

  6. An efficient algorithm for numerical airfoil optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1979-01-01

    A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's series approximation to the airfoil characteristics. Compared to previous methods, design efficiency improvements of more than a factor of 2 are demonstrated. If multiple optimizations are performed, the efficiency improvements are more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular application or aerodynamic analysis.

  7. Technical Report: Scalable Parallel Algorithms for High Dimensional Numerical Integration

    SciTech Connect

    Masalma, Yahya; Jiao, Yu

    2010-10-01

    We implemented a scalable parallel quasi-Monte Carlo numerical high-dimensional integration for tera-scale data points. The implemented algorithm uses the Sobol s quasi-sequences to generate random samples. Sobol s sequence was used to avoid clustering effects in the generated random samples and to produce low-discrepancy random samples which cover the entire integration domain. The performance of the algorithm was tested. Obtained results prove the scalability and accuracy of the implemented algorithms. The implemented algorithm could be used in different applications where a huge data volume is generated and numerical integration is required. We suggest using the hyprid MPI and OpenMP programming model to improve the performance of the algorithms. If the mixed model is used, attention should be paid to the scalability and accuracy.

  8. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  9. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  10. Advanced numerics for multi-dimensional fluid flow calculations

    NASA Technical Reports Server (NTRS)

    Vanka, S. P.

    1984-01-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  11. Advanced numerics for multi-dimensional fluid flow calculations

    SciTech Connect

    Vanka, S.P.

    1984-04-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  12. An efficient cuckoo search algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Ong, Pauline; Zainuddin, Zarita

    2013-04-01

    Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.

  13. Multiresolution representation and numerical algorithms: A brief review

    NASA Technical Reports Server (NTRS)

    Harten, Amiram

    1994-01-01

    In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.

  14. Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.

  15. A novel bee swarm optimization algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush

    2010-10-01

    The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.

  16. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  17. Numerical algorithms for the atomistic dopant profiling of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Aghaei Anvigh, Samira

    In this dissertation, we investigate the possibility to use scanning microscopy such as scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) for the "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the discrete effects of random dopant fluctuations (RDF) on SCM and SSRM measurements with nanoscale probes and show that RDF significantly affects the differential capacitance and spreading resistance of the SCM and SSRM measurements if the dimension of the probe is below 50 nm. Then, we develop a mathematical algorithm to compute the spatial coordinates of the ionized impurities in the depletion region using a set of scanning microscopy measurements. The proposed numerical algorithm is then applied to extract the (x, y, z) coordinates of ionized impurities in the depletion region in the case of a few semiconductor materials with different doping configuration. The numerical algorithm developed to solve the above inverse problem is based on the evaluation of doping sensitivity functions of the differential capacitance, which show how sensitive the differential capacitance is to doping variations at different locations. To develop the numerical algorithm we first express the doping sensitivity functions in terms of the Gâteaux derivative of the differential capacitance, use Riesz representation theorem, and then apply a gradient optimization approach to compute the locations of the dopants. The algorithm is verified numerically using 2-D simulations, in which the C-V curves are measured at 3 different locations on the surface of the semiconductor. Although the cases studied in this dissertation are much idealized and, in reality, the C-V measurements are subject to noise and other experimental errors, it is shown that if the differential capacitance is measured precisely, SCM measurements can be potentially used for the "atomistic" profiling of ionized impurities in doped semiconductors.

  18. Determining the Numerical Stability of Quantum Chemistry Algorithms.

    PubMed

    Knizia, Gerald; Li, Wenbin; Simon, Sven; Werner, Hans-Joachim

    2011-08-09

    We present a simple, broadly applicable method for determining the numerical properties of quantum chemistry algorithms. The method deliberately introduces random numerical noise into computations, which is of the same order of magnitude as the floating point precision. Accordingly, repeated runs of an algorithm give slightly different results, which can be analyzed statistically to obtain precise estimates of its numerical stability. This noise is produced by automatic code injection into regular compiler output, so that no substantial programming effort is required, only a recompilation of the affected program sections. The method is applied to investigate: (i) the numerical stability of the three-center Obara-Saika integral evaluation scheme for high angular momenta, (ii) if coupled cluster perturbative triples can be evaluated with single precision arithmetic, (iii) how to implement the density fitting approximation in Møller-Plesset perturbation theory (MP2) most accurately, and (iv) which parts of density fitted MP2 can be safely evaluated with single precision arithmetic. In the integral case, we find a numerical instability in an equation that is used in almost all integral programs. Due to the results of (ii) and (iv), we conjecture that single precision arithmetic can be applied whenever a calculation is done in an orthogonal basis set and excessively long linear sums are avoided.

  19. An algorithm for the numerical solution of linear differential games

    SciTech Connect

    Polovinkin, E S; Ivanov, G E; Balashov, M V; Konstantinov, R V; Khorev, A V

    2001-10-31

    A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented and estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.

  20. Algorithms for the Fractional Calculus: A Selection of Numerical Methods

    NASA Technical Reports Server (NTRS)

    Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.

    2003-01-01

    Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.

  1. Canonical algorithms for numerical integration of charged particle motion equations

    NASA Astrophysics Data System (ADS)

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  2. The development and evaluation of numerical algorithms for MIMD computers

    NASA Technical Reports Server (NTRS)

    Voigt, Robert G.

    1990-01-01

    Two activities were pursued under this grant. The first was a visitor program to conduct research on numerical algorithms for MIMD computers. The program is summarized in the following attachments. Attachment A - List of Researchers Supported; Attachment B - List of Reports Completed; and Attachment C - Reports. The second activity was a workshop on the Control of fluid Dynamic Systems held on March 28 to 29, 1989. The workshop is summarized in attachments. Attachment D - Workshop Summary; and Attachment E - List of Workshop Participants.

  3. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  4. Recent Advancements in Lightning Jump Algorithm Work

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  5. Predictive Lateral Logic for Numerical Entry Guidance Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.

  6. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  7. A numerical algorithm for endochronic plasticity and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Valanis, K. C.; Fan, J.

    1985-01-01

    A numerical algorithm based on the finite element method of analysis of the boundary value problem in a continuum is presented, in the case where the plastic response of the material is given in the context of endochronic plasticity. The relevant constitutive equation is expressed in incremental form and plastic effects are accounted for by the method of an induced pseudo-force in the matrix equations. The results of the analysis are compared with observed values in the case of a plate with two symmetric notches and loaded longitudinally in its own plane. The agreement between theory and experiment is excellent.

  8. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  9. Computing Algorithms for Nuffield Advanced Physics.

    ERIC Educational Resources Information Center

    Summers, M. K.

    1978-01-01

    Defines all recurrence relations used in the Nuffield course, to solve first- and second-order differential equations, and describes a typical algorithm for computer generation of solutions. (Author/GA)

  10. Advanced CHP Control Algorithms: Scope Specification

    SciTech Connect

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  11. Recent advances in numerical analysis of structural eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    A wide range of eigenvalue problems encountered in practical structural engineering analyses is defined, in which the structures are assumed to be discretized by any suitable technique such as the finite-element method. A review of the usual numerical procedures for the solution of such eigenvalue problems is presented and is followed by an extensive account of recently developed eigenproblem solution procedures. Particular emphasis is placed on the new numerical algorithms and associated computer programs based on the Sturm sequence method. Eigenvalue algorithms developed for efficient solution of natural frequency and buckling problems of structures are presented, as well as some eigenvalue procedures formulated in connection with the solution of quadratic matrix equations associated with free vibration analysis of structures. A new algorithm is described for natural frequency analysis of damped structural systems.

  12. Algorithm-Based Fault Tolerance for Numerical Subroutines

    NASA Technical Reports Server (NTRS)

    Tumon, Michael; Granat, Robert; Lou, John

    2007-01-01

    A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.

  13. Advancements to the planogram frequency–distance rebinning algorithm

    PubMed Central

    Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E

    2010-01-01

    In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact

  14. Understanding disordered systems through numerical simulation and algorithm development

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean Michael

    Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising

  15. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  16. Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    PubMed Central

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme. PMID:22408479

  17. The association between symbolic and nonsymbolic numerical magnitude processing and mental versus algorithmic subtraction in adults.

    PubMed

    Linsen, Sarah; Torbeyns, Joke; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert

    2016-03-01

    There are two well-known computation methods for solving multi-digit subtraction items, namely mental and algorithmic computation. It has been contended that mental and algorithmic computation differentially rely on numerical magnitude processing, an assumption that has already been examined in children, but not yet in adults. Therefore, in this study, we examined how numerical magnitude processing was associated with mental and algorithmic computation, and whether this association with numerical magnitude processing was different for mental versus algorithmic computation. We also investigated whether the association between numerical magnitude processing and mental and algorithmic computation differed for measures of symbolic versus nonsymbolic numerical magnitude processing. Results showed that symbolic, and not nonsymbolic, numerical magnitude processing was associated with mental computation, but not with algorithmic computation. Additional analyses showed, however, that the size of this association with symbolic numerical magnitude processing was not significantly different for mental and algorithmic computation. We also tried to further clarify the association between numerical magnitude processing and complex calculation by also including relevant arithmetical subskills, i.e. arithmetic facts, needed for complex calculation that are also known to be dependent on numerical magnitude processing. Results showed that the associations between symbolic numerical magnitude processing and mental and algorithmic computation were fully explained by individual differences in elementary arithmetic fact knowledge.

  18. General advancing front packing algorithm for the discrete element method

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán

    2016-11-01

    A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.

  19. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  20. Recent advances to NEC (Numerical Electromagnetics Code): Applications and validation

    SciTech Connect

    Burke, G.J. )

    1989-03-03

    Capabilities of the antenna modeling code NEC are reviewed and results are presented to illustrate typical applications. Recent developments are discussed that will improve accuracy in modeling electrically small antennas, stepped-radius wires and junctions of tightly coupled wires, and also a new capability for modeling insulated wires in air or earth is described. These advances will be included in a future release of NEC, while for now the results serve to illustrate limitations of the present code. NEC results are compared with independent analytical and numerical solutions and measurements to validate the model for wires near ground and for insulated wires. 41 refs., 26 figs., 1 tab.

  1. Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions

    DTIC Science & Technology

    2007-12-06

    problems studied in this project involve numerically solving partial differential equations with either discontinuous or rapidly changing solutions ...REPORT Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions 14. ABSTRACT 16. SECURITY...discontinuous Galerkin finite element methods, for solving partial differential equations with discontinuous or rapidly changing solutions . Algorithm

  2. A fast algorithm for numerical solutions to Fortet's equation

    NASA Astrophysics Data System (ADS)

    Brumen, Gorazd

    2008-10-01

    A fast algorithm for computation of default times of multiple firms in a structural model is presented. The algorithm uses a multivariate extension of the Fortet's equation and the structure of Toeplitz matrices to significantly improve the computation time. In a financial market consisting of M[not double greater-than sign]1 firms and N discretization points in every dimension the algorithm uses O(nlogn·M·M!·NM(M-1)/2) operations, where n is the number of discretization points in the time domain. The algorithm is applied to firm survival probability computation and zero coupon bond pricing.

  3. Using advanced computer vision algorithms on small mobile robots

    NASA Astrophysics Data System (ADS)

    Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.

    2006-05-01

    The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.

  4. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    SciTech Connect

    Xiu, Dongbin

    2016-06-21

    The focus of the project is the development of mathematical methods and high-performance com- putational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly e cient and scalable numer- ical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  5. Numerical analysis of the V-Y shaped advancement flap.

    PubMed

    Remache, D; Chambert, J; Pauchot, J; Jacquet, E

    2015-10-01

    The V-Y advancement flap is a usual technique for the closure of skin defects. A triangular flap is incised adjacent to a skin defect of rectangular shape. As the flap is advanced to close the initial defect, two smaller defects in the shape of a parallelogram are formed with respect to a reflection symmetry. The height of the defects depends on the apex angle of the flap and the closure efforts are related to the defects height. Andrades et al. 2005 have performed a geometrical analysis of the V-Y flap technique in order to reach a compromise between the flap size and the defects width. However, the geometrical approach does not consider the mechanical properties of the skin. The present analysis based on the finite element method is proposed as a complement to the geometrical one. This analysis aims to highlight the major role of the skin elasticity for a full analysis of the V-Y advancement flap. Furthermore, the study of this technique shows that closing at the flap apex seems mechanically the most interesting step. Thus different strategies of defect closure at the flap apex stemming from surgeon's know-how have been tested by numerical simulations.

  6. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  7. International Symposium on Computational Electronics—Physical Modeling, Mathematical Theory, and Numerical Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yiming

    2007-12-01

    This symposium is an open forum for discussion on the current trends and future directions of physical modeling, mathematical theory, and numerical algorithm in electrical and electronic engineering. The goal is for computational scientists and engineers, computer scientists, applied mathematicians, physicists, and researchers to present their recent advances and exchange experience. We welcome contributions from researchers of academia and industry. All papers to be presented in this symposium have carefully been reviewed and selected. They include semiconductor devices, circuit theory, statistical signal processing, design optimization, network design, intelligent transportation system, and wireless communication. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!

  8. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  9. Advanced defect detection algorithm using clustering in ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  10. Advanced Health Management Algorithms for Crew Exploration Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Jones, Judit

    2005-01-01

    Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.

  11. A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1976-01-01

    The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.

  12. An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization

    PubMed Central

    Choi, Tae Jong; Ahn, Chang Wook; An, Jinung

    2013-01-01

    Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems. PMID:23935445

  13. An adaptive Cauchy differential evolution algorithm for global numerical optimization.

    PubMed

    Choi, Tae Jong; Ahn, Chang Wook; An, Jinung

    2013-01-01

    Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems.

  14. Numerical Algorithms and Mathematical Software for Linear Control and Estimation Theory.

    DTIC Science & Technology

    1985-05-30

    RD -R157 525 NUMERICAL ALGORITHMS AND MATHEMATICAL SOFTWJARE FOR i/i LINEAR CONTROL AND EST..U) MASSACHUSETTS INST OF TECH CAMBRIDGE STATISTICS...PERIOD COVERED"~~ "ia--Dec. 14, 1981-- LD Numerical Algorithms and Mathematical Dec. 13, 1984*Software for Linear Control and 1.0 Estimation Theory...THIS PAGE (Wten Date Entered) .. :..0 70 FINAL REPORT--ARO Grant DAAG29-82-K-0028,"Numerical Algorithms and Mathematical Software for Linear Control and

  15. Numerical Optimization Algorithms and Software for Systems Biology

    SciTech Connect

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  16. Fast Huffman encoding algorithms in MPEG-4 advanced audio coding

    NASA Astrophysics Data System (ADS)

    Brzuchalski, Grzegorz

    2014-11-01

    This paper addresses the optimisation problem of Huffman encoding in MPEG-4 Advanced Audio Coding stan- dard. At first, the Huffman encoding problem and the need of encoding two side info parameters scale factor and Huffman codebook are presented. Next, Two Loop Search, Maximum Noise Mask Ratio and Trellis Based algorithms of bit allocation are briefly described. Further, Huffman encoding optimisation are shown. New methods try to check and change scale factor bands as little as possible to estimate bitrate cost or its change. Finally, the complexity of old and new methods is calculated, compared and measured time of encoding is given.

  17. An application of fast algorithms to numerical electromagnetic modeling

    SciTech Connect

    Bezvoda, V.; Segeth, K.

    1987-03-01

    Numerical electromagnetic modeling by the finite-difference or finite-element methods leads to a large sparse system of linear algebraic equations. Fast direct methods, requiring an order of at most q log q arithmetic operations to solve a system of q equations, cannot easily be applied to such a system. This paper describes the iterative application of a fast method, namely cyclic reduction, to the numerical solution of the Helmholtz equation with a piecewise constant imaginary coefficient of the absolute term in a plane domain. By means of numerical tests the advantages and limitations of the method compared with classical direct methods are discussed. The iterative application of the cyclic reduction method is very efficient if one can exploit a known solution of a similar (e.g., simpler) problem as the initial approximation. This makes cyclic reduction a powerful tool in solving the inverse problem by trial-and-error.

  18. An efficient numerical algorithm for transverse impact problems

    NASA Technical Reports Server (NTRS)

    Sankar, B. V.; Sun, C. T.

    1985-01-01

    Transverse impact problems in which the elastic and plastic indentation effects are considered, involve a nonlinear integral equation for the contact force, which, in practice, is usually solved by an iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein the iterations of the nonlinear problem are separated from the structural response computations. This makes the numerical procedures much simpler and also efficient. The proposed method is applied to some impact problems for which solutions are available, and they are found to be in good agreement. The effect of the magnitude of time increment on the results is also discussed.

  19. Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving

    2014-02-01

    The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.

  20. Numerical comparison of discrete Kalman filter algorithms - Orbit determination case study

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Thornton, C. L.

    1976-01-01

    Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.

  1. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  2. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  3. Numerical optimization design of advanced transonic wing configurations

    NASA Technical Reports Server (NTRS)

    Cosentino, G. B.; Holst, T. L.

    1985-01-01

    A computationally efficient and versatile technique for use in the design of advanced transonic wing configurations has been developed. A reliable and fast transonic wing flow-field analysis program, TWING, has been coupled with a modified quasi-Newton method, unconstrained optimization algorithm, QNMDIF, to create a new design tool. Fully three-dimensional wing designs utilizing both specified wing pressure disributions and drag-to-lift ratio minimization as design objectives are demonstrated. Because of the high computational efficiency of each of the components of the design code, in particular the vectorization of TWING and the high speed of the Cray X-MP vector computer, the computer time required for a typical wing design is reduced by approximately an order of magnitude over previous methods. In the results presented here, this computed wave drag has been used as the quantity to be optimized (minimized) with great success, yielding wing designs with nearly shock-free (zero wave drag) pressure distributions and very reasonable wing section shapes.

  4. Numerical optimization design of advanced transonic wing configurations

    NASA Technical Reports Server (NTRS)

    Cosentino, G. B.; Holst, T. L.

    1984-01-01

    A computationally efficient and versatile technique for use in the design of advanced transonic wing configurations has been developed. A reliable and fast transonic wing flow-field analysis program, TWING, has been coupled with a modified quasi-Newton method, unconstrained optimization algorithm, QNMDIF, to create a new design tool. Fully three-dimensional wing designs utilizing both specified wing pressure distributions and drag-to-lift ration minimization as design objectives are demonstrated. Because of the high computational efficiency of each of the components of the design code, in particular the vectorization of TWING and the high speed of the Cray X-MP vector computer, the computer time required for a typical wing design is reduced by approximately an order of magnitude over previous methods. In the results presented here, this computed wave drag has been used as the quantity to be optimized (minimized) with great success, yielding wing designs with nearly shock-free (zero wave drag) pressure distributions and very reasonable wing section shapes.

  5. Computational Fluid Dynamics. [numerical methods and algorithm development

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  6. A numeric comparison of variable selection algorithms for supervised learning

    NASA Astrophysics Data System (ADS)

    Palombo, G.; Narsky, I.

    2009-12-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( http://sourceforge.net/projects/statpatrec/). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ("Add N Remove R") implemented in SPR.

  7. A bibliography on parallel and vector numerical algorithms

    NASA Technical Reports Server (NTRS)

    Ortega, James M.; Voigt, Robert G.; Romine, Charles H.

    1988-01-01

    This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.

  8. A bibliography on parallel and vector numerical algorithms

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.; Voigt, R. G.

    1987-01-01

    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also.

  9. Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.

    ERIC Educational Resources Information Center

    Jacquot, Raymond G.; And Others

    1985-01-01

    Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)

  10. Fourier analysis of numerical algorithms for the Maxwell equations

    NASA Technical Reports Server (NTRS)

    Liu, Yen

    1993-01-01

    The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.

  11. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm

    NASA Astrophysics Data System (ADS)

    Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.

    2008-07-01

    The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.

  12. A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials

    SciTech Connect

    Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A

    2008-12-04

    We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.

  13. A direct numerical reconstruction algorithm for the 3D Calderón problem

    NASA Astrophysics Data System (ADS)

    Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim

    2011-04-01

    In three dimensions Calderón's problem was addressed and solved in theory in the 1980s in a series of papers, but only recently the numerical implementation of the algorithm was initiated. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conductivity equation and a (non-physical) scattering transform. The resulting reconstruction algorithm is in principle direct and addresses the full non-linear problem immediately. In this paper we will outline the theoretical reconstruction method and describe how the method can be implemented numerically. We will give three different implementations, and compare their performance on a numerical phantom.

  14. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  15. Advanced illumination control algorithm for medical endoscopy applications

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  16. A stable and efficient numerical algorithm for unconfined aquifer analysis

    SciTech Connect

    Keating, Elizabeth; Zyvoloski, George

    2008-01-01

    The non-linearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of forward model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency, and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to solution of Richard's Equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem, as well.

  17. A stable and efficient numerical algorithm for unconfined aquifer analysis.

    PubMed

    Keating, Elizabeth; Zyvoloski, George

    2009-01-01

    The nonlinearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to the solution of Richard's equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table, does not require "dry" cells to convert to inactive cells, and allows recharge to flow through relatively dry cells to the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem as well.

  18. A novel wavefront-based algorithm for numerical simulation of quasi-optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Lou, Zheng; Hu, Jie; Zhou, Kangmin; Zuo, Yingxi; Shi, Shengcai

    2016-11-01

    A novel wavefront-based algorithm for the beam simulation of both reflective and refractive optics in a complicated quasi-optical system is proposed. The algorithm can be regarded as the extension to the conventional Physical Optics algorithm to handle dielectrics. Internal reflections are modeled in an accurate fashion, and coating and flossy materials can be treated in a straightforward manner. A parallel implementation of the algorithm has been developed and numerical examples show that the algorithm yields sufficient accuracy by comparing with experimental results, while the computational complexity is much less than the full-wave methods. The algorithm offers an alternative approach to the modeling of quasi-optical systems in addition to the Geometrical Optics modeling and full-wave methods.

  19. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin–Osher–Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  20. Variationally consistent discretization schemes and numerical algorithms for contact problems

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Barbara

    We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of

  1. A numerical comparison of discrete Kalman filtering algorithms - An orbit determination case study

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1976-01-01

    An improved Kalman filter algorithm based on a modified Givens matrix triangularization technique is proposed for solving a nonstationary discrete-time linear filtering problem. The proposed U-D covariance factorization filter uses orthogonal transformation technique; measurement and time updating of the U-D factors involve separate application of Gentleman's fast square-root-free Givens rotations. Numerical stability and accuracy of the algorithm are compared with those of the conventional and stabilized Kalman filters and the Potter-Schmidt square-root filter, by applying these techniques to a realistic planetary navigation problem (orbit determination for the Saturn approach phase of the Mariner Jupiter-Saturn Mission, 1977). The new algorithm is shown to combine the numerical precision of square root filtering with the efficiency of the original Kalman algorithm.

  2. Numerical optimization algorithm for rotationally invariant multi-orbital slave-boson method

    NASA Astrophysics Data System (ADS)

    Quan, Ya-Min; Wang, Qing-wei; Liu, Da-Yong; Yu, Xiang-Long; Zou, Liang-Jian

    2015-06-01

    We develop a generalized numerical optimization algorithm for the rotationally invariant multi-orbital slave boson approach, which is applicable for arbitrary boundary constraints of high-dimensional objective function by combining several classical optimization techniques. After constructing the calculation architecture of rotationally invariant multi-orbital slave boson model, we apply this optimization algorithm to find the stable ground state and magnetic configuration of two-orbital Hubbard models. The numerical results are consistent with available solutions, confirming the correctness and accuracy of our present algorithm. Furthermore, we utilize it to explore the effects of the transverse Hund's coupling terms on metal-insulator transition, orbital selective Mott phase and magnetism. These results show the quick convergency and robust stable character of our algorithm in searching the optimized solution of strongly correlated electron systems.

  3. Multislice algorithms revisited: solving the Schrödinger equation numerically for imaging with electrons.

    PubMed

    Wacker, C; Schröder, R R

    2015-04-01

    For a long time, the high-energy approximation was sufficient for any image simulation in electron microscopy. This changed with the advent of aberration correctors that allow high-resolution imaging at low electron energies. To deal with this fact, we present a numerical solution of the exact Schrödinger equation that is novel in the field of electron microscopy. Furthermore, we investigate systematically the advantages and problems of several multislice algorithms, especially the real-space algorithms.

  4. Numerical study of variational data assimilation algorithms based on decomposition methods in atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Antokhin, Pavel

    2016-11-01

    The performance of a variational data assimilation algorithm for a transport and transformation model of atmospheric chemical composition is studied numerically in the case where the emission inventories are missing while there are additional in situ indirect concentration measurements. The algorithm is based on decomposition and splitting methods with a direct solution of the data assimilation problems at the splitting stages. This design allows avoiding iterative processes and working in real-time. In numerical experiments we study the sensitivity of data assimilation to measurement data quantity and quality.

  5. Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation

    SciTech Connect

    Buet, C.; Cordier; Degond, P.; Lemou, M.

    1997-05-15

    We present fast numerical algorithms to solve the nonlinear Fokker-Planck-Landau equation in 3D velocity space. The discretization of the collision operator preserves the properties required by the physical nature of the Fokker-Planck-Landau equation, such as the conservation of mass, momentum, and energy, the decay of the entropy, and the fact that the steady states are Maxwellians. At the end of this paper, we give numerical results illustrating the efficiency of these fast algorithms in terms of accuracy and CPU time. 20 refs., 7 figs.

  6. On the impact of communication complexity in the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  7. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  8. Recent advances in two-phase flow numerics

    SciTech Connect

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  9. Advances in the numerical investigation of the immersion quenching process

    NASA Astrophysics Data System (ADS)

    Zhang, D. S.; Kopun, R.; Kosir, N.; Edelbauer, W.

    2017-01-01

    A numerical investigation of the immersion quenching process is presented in this paper. Immersion quenching is recognized as one of the common ways to achieve the desirable microstructure, and to improve the mechanical properties after thermal treatment. Furthermore it is important to prevent distortion and cracking of the cast parts. Accurate prediction of all three boiling regimes and the heat transfer inside the structure during quenching are important to finally evaluate the residual stresses and deformations of thermally treated parts. Numerical details focus on the handling of the enthalpy with variable specific heat capacity in the solid. For two application cases, comparison between measured and simulated temperatures at different monitoring positions shows very good agreement. The study demonstrates the capability of the present model to overcome the numerical challenges occurring during immersion quenching and it is capable of predicting the complex physics with good accuracy.

  10. Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm.

    PubMed

    Bezdek, J C; Hathaway, R J

    1992-01-01

    R. N. Dave's (1990) version of fuzzy c-shells is an iterative clustering algorithm which requires the application of Newton's method or a similar general optimization technique at each half step in any sequence of iterates for minimizing the associated objective function. An important computational question concerns the accuracy of the solution required at each half step within the overall iteration. The general convergence theory for grouped coordination minimization is applied to this question to show that numerically exact solution of the half-step subproblems in Dave's algorithm is not necessary. One iteration of Newton's method in each coordinate minimization half step yields a sequence obtained using the fuzzy c-shells algorithm with numerically exact coordinate minimization at each half step. It is shown that fuzzy c-shells generates hyperspherical prototypes to the clusters it finds for certain special cases of the measure of dissimilarity used.

  11. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  12. Variational Bayesian approximation with scale mixture prior for inverse problems: A numerical comparison between three algorithms

    NASA Astrophysics Data System (ADS)

    Gharsalli, Leila; Mohammad-Djafari, Ali; Fraysse, Aurélia; Rodet, Thomas

    2013-08-01

    Our aim is to solve a linear inverse problem using various methods based on the Variational Bayesian Approximation (VBA). We choose to take sparsity into account via a scale mixture prior, more precisely a student-t model. The joint posterior of the unknown and hidden variable of the mixtures is approximated via the VBA. To do this approximation, classically the alternate algorithm is used. But this method is not the most efficient. Recently other optimization algorithms have been proposed; indeed classical iterative algorithms of optimization such as the steepest descent method and the conjugate gradient have been studied in the space of the probability densities involved in the Bayesian methodology to treat this problem. The main object of this work is to present these three algorithms and a numerical comparison of their performances.

  13. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    SciTech Connect

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  14. Validation Testing and Numerical Modeling of Advanced Armor Materials

    DTIC Science & Technology

    2012-11-01

    constitutive material strength response with an appropriate yield surface model. The research is sub-divided into three areas: engineering design...and specimen preparation for Taylor impact testing, analytical solution for the dynamic yield strength of the materials used, and numerical modeling...aluminum alloy only. We perform a detailed analysis of the deformed specimen shapes to determine the dynamic yield strength . Additionally, hydrocode

  15. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    nonequilibrium. For example, the plasma transport may transition between rarefied and continuum flow , requiring appropriate models for each case through...AFRL-AFOSR-UK-TR-2011-0023 Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics...2010 4. TITLE AND SUBTITLE Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics 5a

  16. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.

    2016-09-01

    The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.

  17. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    SciTech Connect

    Hajima, Ryoichi

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  18. Stochastic models and numerical algorithms for a class of regulatory gene networks.

    PubMed

    Fournier, Thomas; Gabriel, Jean-Pierre; Pasquier, Jerôme; Mazza, Christian; Galbete, José; Mermod, Nicolas

    2009-08-01

    Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.

  19. Advances and Challenges in Numerical Weather and Climate Prediction

    NASA Astrophysics Data System (ADS)

    Yu, Tsann-Wang

    2010-10-01

    In this review article, the dispersive nature of various waves that exist in the atmosphere is first reviewed. These waves include Rossby waves, Kelvin wave, acoustic wave, internal and external gravity waves and many others, whose intrinsic nature and great relevancy to weather and climate forecasts are described. This paper then describes the latest development in global observations and data analysis and assimilation methodologies. These include three-dimensional and four dimensional variational data assimilation systems that are being used in the world's major operational weather and climate forecasting centers. Some of the recent results in using novel atmospheric satellite and chemical observation data applied to these data assimilation systems and those from the latest development in high resolution modeling and the ensemble forecasting approach in the operational numerical weather forecasting centers are also presented. Finally, problems of inherent errors associated with initial conditions, and those associated with the coupling of dynamics and physics and their related numerical issues in variational data assimilation systems are discussed.

  20. A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients

    SciTech Connect

    Alex, Arne; Delft, Jan von; Kalus, Matthias; Huckleberry, Alan

    2011-02-15

    We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).

  1. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills.

    PubMed

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-09-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record

  2. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    PubMed Central

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930

  3. Advancing x-ray scattering metrology using inverse genetic algorithms

    NASA Astrophysics Data System (ADS)

    Hannon, Adam F.; Sunday, Daniel F.; Windover, Donald; Joseph Kline, R.

    2016-07-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real-space structure in periodic gratings measured using critical dimension small-angle x-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real-space structure of our nanogratings. The study shows that for x-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  4. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  5. Analysis of V-cycle multigrid algorithms for forms defined by numerical quadrature

    SciTech Connect

    Bramble, J.H. . Dept. of Mathematics); Goldstein, C.I.; Pasciak, J.E. . Applied Mathematics Dept.)

    1994-05-01

    The authors describe and analyze certain V-cycle multigrid algorithms with forms defined by numerical quadrature applied to the approximation of symmetric second-order elliptic boundary value problems. This approach can be used for the efficient solution of finite element systems resulting from numerical quadrature as well as systems arising from finite difference discretizations. The results are based on a regularity free theory and hence apply to meshes with local grid refinement as well as the quasi-uniform case. It is shown that uniform (independent of the number of levels) convergence rates often hold for appropriately defined V-cycle algorithms with as few as one smoothing per grid. These results hold even on applications without full elliptic regularity, e.g., a domain in R[sup 2] with a crack.

  6. Particle-In-Cell Multi-Algorithm Numerical Test-Bed

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Yu, P.; Tableman, A.; Decyk, V. K.; Mori, W. B.

    2015-11-01

    We describe a numerical test-bed that allows for the direct comparison of different numerical simulation schemes using only a single code. It is built from the UPIC Framework, which is a set of codes and modules for constructing parallel PIC codes. In this test-bed code, Maxwell's equations are solved in Fourier space in two dimensions. One can readily examine the numerical properties of a real space finite difference scheme by including its operators' Fourier space representations in the Maxwell solver. The fields can be defined at the same location in a simulation cell or can be offset appropriately by half-cells, as in the Yee finite difference time domain scheme. This allows for the accurate comparison of numerical properties (dispersion relations, numerical stability, etc.) across finite difference schemes, or against the original spectral scheme. We have also included different options for the charge and current deposits, including a strict charge conserving current deposit. The test-bed also includes options for studying the analytic time domain scheme, which eliminates numerical dispersion errors in vacuum. We will show examples from the test-bed that illustrate how the properties of some numerical instabilities vary between different PIC algorithms. Work supported by the NSF grant ACI 1339893 and DOE grant DE-SC0008491.

  7. Evaluation of a new parallel numerical parameter optimization algorithm for a dynamical system

    NASA Astrophysics Data System (ADS)

    Duran, Ahmet; Tuncel, Mehmet

    2016-10-01

    It is important to have a scalable parallel numerical parameter optimization algorithm for a dynamical system used in financial applications where time limitation is crucial. We use Message Passing Interface parallel programming and present such a new parallel algorithm for parameter estimation. For example, we apply the algorithm to the asset flow differential equations that have been developed and analyzed since 1989 (see [3-6] and references contained therein). We achieved speed-up for some time series to run up to 512 cores (see [10]). Unlike [10], we consider more extensive financial market situations, for example, in presence of low volatility, high volatility and stock market price at a discount/premium to its net asset value with varying magnitude, in this work. Moreover, we evaluated the convergence of the model parameter vector, the nonlinear least squares error and maximum improvement factor to quantify the success of the optimization process depending on the number of initial parameter vectors.

  8. A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics

    NASA Astrophysics Data System (ADS)

    Fedoseyev, A.; Kansa, E. J.; Tsynkov, S.; Petropavlovskiy, S.; Osintcev, M.; Shumlak, U.; Henshaw, W. D.

    2016-10-01

    We present the implementation of the Lacuna method, that removes a key diffculty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deterio-rate over long times due to the treatment of artificial outer boundaries. We describe a developed universal algorithm and software that correct this problem by employing the Huygens' principle and lacunae of Maxwell's equations. The algorithm provides a temporally uniform guaranteed error bound (no deterioration at all), and the software will enable robust electromagnetic simulations in a high-performance computing environment. The methodology applies to any geometry, any scheme, and any boundary condition. It eliminates the long-time deterioration regardless of its origin and how it manifests itself. In retrospect, the lacunae method was first proposed by V. Ryaben'kii and subsequently developed by S. Tsynkov. We have completed development of an innovative numerical methodology for high fidelity error-controlled modeling of a broad variety of electromagnetic and other wave phenomena. Proof-of-concept 3D computations have been conducted that con-vincingly demonstrate the feasibility and effciency of the proposed approach. Our algorithms are being implemented as robust commercial software tools in a standalone module to be combined with existing numerical schemes in several widely used computational electromagnetic codes.

  9. Numerical algorithms for steady and unsteady incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hafez, Mohammed; Dacles, Jennifer

    1989-01-01

    The numerical analysis of the incompressible Navier-Stokes equations are becoming important tools in the understanding of some fluid flow problems which are encountered in research as well as in industry. With the advent of the supercomputers, more realistic problems can be studied with a wider choice of numerical algorithms. An alternative formulation is presented for viscous incompressible flows. The incompressible Navier-Stokes equations are cast in a velocity/vorticity formulation. This formulation consists of solving the Poisson equations for the velocity components and the vorticity transport equation. Two numerical algorithms for the steady two-dimensional laminar flows are presented. The first method is based on the actual partial differential equations. This uses a finite-difference approximation of the governing equations on a staggered grid. The second method uses a finite element discretization with the vorticity transport equation approximated using a Galerkin approximation and the Poisson equations are obtained using a least squares method. The equations are solved efficiently using Newton's method and a banded direct matrix solver (LINPACK). The method is extended to steady three-dimensional laminar flows and applied to a cubic driven cavity using finite difference schemes and a staggered grid arrangement on a Cartesian mesh. The equations are solved iteratively using a plane zebra relaxation scheme. Currently, a two-dimensional, unsteady algorithm is being developed using a generalized coordinate system. The equations are discretized using a finite-volume approach. This work will then be extended to three-dimensional flows.

  10. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    NASA Astrophysics Data System (ADS)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  11. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    PubMed

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  12. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems

    PubMed Central

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-01-01

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency. PMID:26569247

  13. Advances in dual algorithms and convex approximation methods

    NASA Technical Reports Server (NTRS)

    Smaoui, H.; Fleury, C.; Schmit, L. A.

    1988-01-01

    A new algorithm for solving the duals of separable convex optimization problems is presented. The algorithm is based on an active set strategy in conjunction with a variable metric method. This first order algorithm is more reliable than Newton's method used in DUAL-2 because it does not break down when the Hessian matrix becomes singular or nearly singular. A perturbation technique is introduced in order to remove the nondifferentiability of the dual function which arises when linear constraints are present in the approximate problem.

  14. Parametric effects of CFL number and artificial smoothing on numerical solutions using implicit approximate factorization algorithm

    NASA Technical Reports Server (NTRS)

    Daso, E. O.

    1986-01-01

    An implicit approximate factorization algorithm is employed to quantify the parametric effects of Courant number and artificial smoothing on numerical solutions of the unsteady 3-D Euler equations for a windmilling propeller (low speed) flow field. The results show that propeller global or performance chracteristics vary strongly with Courant number and artificial dissipation parameters, though the variation is such less severe at high Courant numbers. Candidate sets of Courant number and dissipation parameters could result in parameter-dependent solutions. Parameter-independent numerical solutions can be obtained if low values of the dissipation parameter-time step ratio are used in the computations. Furthermore, it is realized that too much artificial damping can degrade numerical stability. Finally, it is demonstrated that highly resolved meshes may, in some cases, delay convergence, thereby suggesting some optimum cell size for a given flow solution. It is suspected that improper boundary treatment may account for the cell size constraint.

  15. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily

    2016-02-01

    The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  16. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  17. Advanced Algorithms for Local Routing Strategy on Complex Networks

    PubMed Central

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K.; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70–90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks. PMID:27434502

  18. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  19. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  20. Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc

    2013-09-01

    Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole–Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.

  1. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization.

    PubMed

    Zhu, Binglian; Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long

    2016-01-01

    This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution.

  2. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization

    PubMed Central

    Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long

    2016-01-01

    This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424

  3. Determining residual reduction algorithm kinematic tracking weights for a sidestep cut via numerical optimization.

    PubMed

    Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I

    2016-12-01

    Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.

  4. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    SciTech Connect

    Luz, Fernando H. P.; Mendes, Tereza

    2010-11-12

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  5. A semi-numerical algorithm for instability of compressible multilayered structures

    NASA Astrophysics Data System (ADS)

    Tang, Shan; Yang, Yang; Peng, Xiang He; Liu, Wing Kam; Huang, Xiao Xu; Elkhodary, Khalil

    2015-07-01

    A computational method is proposed for the analysis and prediction of instability (wrinkling or necking) of multilayered compressible plates and sheets made by metals or polymers under plane strain conditions. In previous works, a basic assumption (or a physical argument) that has been frequently made is that materials are incompressible to simplify mathematical derivations. To account for the compressibility of metals and polymers (the lower Poisson's ratio leads to the more compressible material), we propose a combined semi-numerical algorithm and finite element method for instability analysis. Our proposed algorithm is herein verified by comparing its predictions with published results in literature for thin films with polymer/metal substrates and for polymer/metal systems. The new combined method is then used to predict the effects of compressibility on instability behaviors. Results suggest potential utility for compressibility in the design of multilayered structures.

  6. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    SciTech Connect

    Bu Sunyoung Huang Jingfang Boyer, Treavor H. Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  7. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  8. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  9. Towards Run-time Assurance of Advanced Propulsion Algorithms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  10. New Concepts in Breast Cancer Emerge from Analyzing Clinical Data Using Numerical Algorithms

    PubMed Central

    Retsky, Michael

    2009-01-01

    A small international group has recently challenged fundamental concepts in breast cancer. As a guiding principle in therapy, it has long been assumed that breast cancer growth is continuous. However, this group suggests tumor growth commonly includes extended periods of quasi-stable dormancy. Furthermore, surgery to remove the primary tumor often awakens distant dormant micrometastases. Accordingly, over half of all relapses in breast cancer are accelerated in this manner. This paper describes how a numerical algorithm was used to come to these conclusions. Based on these findings, a dormancy preservation therapy is proposed. PMID:19440287

  11. Numerical arc segmentation algorithm for a radio conference - A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.

  12. Numerical simulation of three-dimensional unsteady vortex flow using a compact vorticity-velocity algorithm

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.; Rose, M. E.; Spall, R. E.

    1987-01-01

    A numerical algorithm is presented which is used to solve the unsteady, fully three-dimensional, incompressible Navier-Stokes equations in vorticity-velocity variables. A discussion of the discrete approximation scheme is presented as well as the solution method used to solve the resulting algebraic set of difference equations. Second order spatial and temporal accuracy is verified through solution comparisons with exact results obtained for steady three-dimensional stagnation point flow and unsteady axisymmetric vortex spin-up. In addition, results are presented for the problem of unsteady bubble-type vortex breakdown with emphasis on internal bubble dynamics and structure.

  13. Model of stacked long Josephson junctions: Parallel algorithm and numerical results in case of weak coupling

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.

    2016-10-01

    We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.

  14. A Flexible Reservation Algorithm for Advance Network Provisioning

    SciTech Connect

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-04-12

    Many scientific applications need support from a communication infrastructure that provides predictable performance, which requires effective algorithms for bandwidth reservations. Network reservation systems such as ESnet's OSCARS, establish guaranteed bandwidth of secure virtual circuits for a certain bandwidth and length of time. However, users currently cannot inquire about bandwidth availability, nor have alternative suggestions when reservation requests fail. In general, the number of reservation options is exponential with the number of nodes n, and current reservation commitments. We present a novel approach for path finding in time-dependent networks taking advantage of user-provided parameters of total volume and time constraints, which produces options for earliest completion and shortest duration. The theoretical complexity is only O(n2r2) in the worst-case, where r is the number of reservations in the desired time interval. We have implemented our algorithm and developed efficient methodologies for incorporation into network reservation frameworks. Performance measurements confirm the theoretical predictions.

  15. Using Advanced Computer Vision Algorithms on Small Mobile Robots

    DTIC Science & Technology

    2006-04-20

    Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working...use in real-time. Test results are shown for a variety of environments. KEYWORDS: robotics, computer vision, car /license plate detection, SIFT...when detecting the make and model of automobiles , SIFT can be used to achieve very high detection rates at the expense of a hefty performance cost when

  16. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  17. Block sparse Cholesky algorithms on advanced uniprocessor computers

    SciTech Connect

    Ng, E.G.; Peyton, B.W.

    1991-12-01

    As with many other linear algebra algorithms, devising a portable implementation of sparse Cholesky factorization that performs well on the broad range of computer architectures currently available is a formidable challenge. Even after limiting our attention to machines with only one processor, as we have done in this report, there are still several interesting issues to consider. For dense matrices, it is well known that block factorization algorithms are the best means of achieving this goal. We take this approach for sparse factorization as well. This paper has two primary goals. First, we examine two sparse Cholesky factorization algorithms, the multifrontal method and a blocked left-looking sparse Cholesky method, in a systematic and consistent fashion, both to illustrate the strengths of the blocking techniques in general and to obtain a fair evaluation of the two approaches. Second, we assess the impact of various implementation techniques on time and storage efficiency, paying particularly close attention to the work-storage requirement of the two methods and their variants.

  18. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  19. A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries

    SciTech Connect

    Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P

    2003-12-15

    We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.

  20. Advanced entry guidance algorithm with landing footprint computation

    NASA Astrophysics Data System (ADS)

    Leavitt, James Aaron

    The design and performance evaluation of an entry guidance algorithm for future space transportation vehicles is presented. The algorithm performs two functions: on-board trajectory planning and trajectory tracking. The planned longitudinal path is followed by tracking drag acceleration, as is done by the Space Shuttle entry guidance. Unlike the Shuttle entry guidance, lateral path curvature is also planned and followed. A new trajectory planning function for the guidance algorithm is developed that is suitable for suborbital entry and that significantly enhances the overall performance of the algorithm for both orbital and suborbital entry. In comparison with the previous trajectory planner, the new planner produces trajectories that are easier to track, especially near the upper and lower drag boundaries and for suborbital entry. The new planner accomplishes this by matching the vehicle's initial flight path angle and bank angle, and by enforcing the full three-degree-of-freedom equations of motion with control derivative limits. Insights gained from trajectory optimization results contribute to the design of the new planner, giving it near-optimal downrange and crossrange capabilities. Planned trajectories and guidance simulation results are presented that demonstrate the improved performance. Based on the new planner, a method is developed for approximating the landing footprint for entry vehicles in near real-time, as would be needed for an on-board flight management system. The boundary of the footprint is constructed from the endpoints of extreme downrange and crossrange trajectories generated by the new trajectory planner. The footprint algorithm inherently possesses many of the qualities of the new planner, including quick execution, the ability to accurately approximate the vehicle's glide capabilities, and applicability to a wide range of entry conditions. Footprints can be generated for orbital and suborbital entry conditions using a pre

  1. Zone Based Hybrid Feature Extraction Algorithm for Handwritten Numeral Recognition of South Indian Scripts

    NASA Astrophysics Data System (ADS)

    Rajashekararadhya, S. V.; Ranjan, P. Vanaja

    India is a multi-lingual multi script country, where eighteen official scripts are accepted and have over hundred regional languages. In this paper we propose a zone based hybrid feature extraction algorithm scheme towards the recognition of off-line handwritten numerals of south Indian scripts. The character centroid is computed and the image (character/numeral) is further divided in to n equal zones. Average distance and Average angle from the character centroid to the pixels present in the zone are computed (two features). Similarly zone centroid is computed (two features). This procedure is repeated sequentially for all the zones/grids/boxes present in the numeral image. There could be some zones that are empty, and then the value of that particular zone image value in the feature vector is zero. Finally 4*n such features are extracted. Nearest neighbor classifier is used for subsequent classification and recognition purpose. We obtained 97.55 %, 94 %, 92.5% and 95.2 % recognition rate for Kannada, Telugu, Tamil and Malayalam numerals respectively.

  2. An advanced algorithm for highway pavement fissure detection

    NASA Astrophysics Data System (ADS)

    Chen, Bei; Cao, Wenlun; He, Yuyao

    2012-04-01

    This paper presents image detection method of pavement crack based on fractal dimension feature and designs self-adapting algorithm of fractal dimension interval of pavement region. Through image pretreatment, calculation of fractal dimension, self-adapting calculation of dimension interval, we obtain the location image of damage pavement. The experimental results of transverse crack, longitudinal crack, net-shaped crack, pit slot are contrast with that of Sobel operator. The results show that they have the similar capability on the representation of crack, but the proposed method is more flexible on the aspect of representation of crack size and calculation of damage ratio.

  3. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  4. Numerical Analysis and Improved Algorithms for Lyapunov-Exponent Calculation of Discrete-Time Chaotic Systems

    NASA Astrophysics Data System (ADS)

    He, Jianbin; Yu, Simin; Cai, Jianping

    2016-12-01

    Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.

  5. A numerical algorithm with preference statements to evaluate the performance of scientists.

    PubMed

    Ricker, Martin

    Academic evaluation committees have been increasingly receptive for using the number of published indexed articles, as well as citations, to evaluate the performance of scientists. It is, however, impossible to develop a stand-alone, objective numerical algorithm for the evaluation of academic activities, because any evaluation necessarily includes subjective preference statements. In a market, the market prices represent preference statements, but scientists work largely in a non-market context. I propose a numerical algorithm that serves to determine the distribution of reward money in Mexico's evaluation system, which uses relative prices of scientific goods and services as input. The relative prices would be determined by an evaluation committee. In this way, large evaluation systems (like Mexico's Sistema Nacional de Investigadores) could work semi-automatically, but not arbitrarily or superficially, to determine quantitatively the academic performance of scientists every few years. Data of 73 scientists from the Biology Institute of Mexico's National University are analyzed, and it is shown that the reward assignation and academic priorities depend heavily on those preferences. A maximum number of products or activities to be evaluated is recommended, to encourage quality over quantity.

  6. Advanced algorithms for radiographic material discrimination and inspection system design

    NASA Astrophysics Data System (ADS)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Deinert, Mark R.

    2016-10-01

    X-ray and neutron radiography are powerful tools for non-invasively inspecting the interior of objects. However, current methods are limited in their ability to differentiate materials when multiple materials are present, especially within large and complex objects. Past work has demonstrated that the spectral shift that X-ray beams undergo in traversing an object can be used to detect and quantify nuclear materials. The technique uses a spectrally sensitive detector and an inverse algorithm that varies the composition of the object until the X-ray spectrum predicted by X-ray transport matches the one measured. Here we show that this approach can be adapted to multi-mode radiography, with energy integrating detectors, and that the Cramér-Rao lower bound can be used to choose an optimal set of inspection modes a priori. We consider multi-endpoint X-ray radiography alone, or in combination with neutron radiography using deuterium-deuterium (DD) or deuterium-tritium (DT) sources. We show that for an optimal mode choice, the algorithm can improve discrimination between high-Z materials, specifically between tungsten and plutonium, and estimate plutonium mass within a simulated nuclear material storage system to within 1%.

  7. Advanced Numerical Imaging Procedure Accounting for Non-Ideal Effects in GPR Scenarios

    NASA Astrophysics Data System (ADS)

    Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco

    2015-04-01

    advanced implementation have also been tested by introducing 'errors' on the knowledge of the background medium permittivity, by simulating the presence of one or more layers, and by choosing different models of the surface roughness. The impact of these issues on the performance of both the conventional procedure and the advanced one will be extensively highlighted and discussed at the conference. [1] G. Valerio et al., "GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach," Plan. Sp. Sci., vol. 62, pp. 31-40, 2012. [2] A. Galli et al., "3D imaging of buried dielectric targets with a tomographic microwave approach applied to GPR synthetic data," Int. J. Antennas Propag., art. ID 610389, 10 pp., 2013 [3] F. Soldovieri et al., "A linear inverse scattering algorithm for realistic GPR applications," Near Surface Geophysics, 5 (1), pp. 29-42, 2007.

  8. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have been conducted with a grid-less three-dimensional space-charge algorithm.

  9. Retrieving LAI and FPAR from MERIS Data With Advanced Algorithms

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.

    2001-01-01

    The primary motivation of this research activity is to document the feasibility of deriving global fields of LAI (leaf area index) and FPAR (fraction of photosynthetically active radiation absorbed by vegetation) from atmosphere corrected ESA (European Space Agency) MERIS (Medium Resolution Imaging Spectrometer) data, validate and evaluate the MERIS LAI and FPAR products by intercomparison with MODIS (Moderate Resolution Imaging Spectrometer) LAI and FPAR products and with field data collected at the EOS Core sites distributed around the world. Our activities during Year 1 (January through December, 2001) have focused on the modification of the MODIS LAI/FPAR algorithm to facilitate its ability to process MERIS data. We considered a related but wider problem, i.e., fusion of biophysical parameters derived from data acquired by spectroradiometers of different spectral bands and different resolutions.

  10. Advances in contact algorithms and their application to tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.

    1988-01-01

    Currently used techniques for tire contact analysis are reviewed. Discussion focuses on the different techniques used in modeling frictional forces and the treatment of contact conditions. A status report is presented on a new computational strategy for the modeling and analysis of tires, including the solution of the contact problem. The key elements of the proposed strategy are: (1) use of semianalytic mixed finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) use of perturbed Lagrangian formulation for the determination of the contact area and pressure; and (3) application of multilevel iterative procedures and reduction techniques to generate the response of the tire. Numerical results are presented to demonstrate the effectiveness of a proposed procedure for generating the tire response associated with different Fourier harmonics.

  11. Diagnosis of Pulmonary Tuberculosis: Recent Advances and Diagnostic Algorithms

    PubMed Central

    2015-01-01

    Pulmonary tuberculosis (TB) persists as a great public health problem in Korea. Increases in the overall age of the population and the rise of drug-resistant TB have reinforced the need for rapid diagnostic improvements and new modalities to detect TB and drug-resistant TB, as well as to improve TB control. Standard guidelines and recent advances for diagnosing pulmonary TB are summarized in this article. An early and accurate diagnosis of pulmonary TB should be established using chest X-ray, sputum microscopy, culture in both liquid and solid media, and nucleic acid amplification. Chest computed tomography, histopathological examination of biopsy samples, and new molecular diagnostic tests can be used for earlier and improved diagnoses, especially in patients with smear-negative pulmonary TB or clinically-diagnosed TB and drug-resistant TB. PMID:25861338

  12. Advanced algorithms for radiographic material discrimination and inspection system design

    SciTech Connect

    Gilbert, Andrew J.; McDonald, Benjamin S.; Deinert, Mark R.

    2016-10-01

    X-ray and neutron radiography are powerful tools for non-invasively inspecting the interior of objects. Materials can be discriminated by noting how the radiographic signal changes with variations in the input spectrum or inspection mode. However, current methods are limited in their ability to differentiate when multiple materials are present, especially within large and complex objects. With X-ray radiography, the inability to distinguish materials of a similar atomic number is especially problematic. To overcome these critical limitations, we augmented our existing inverse problem framework with two important expansions: 1) adapting the previous methodology for use with multi-modal radiography and energy-integrating detectors, and 2) applying the Cramer-Rao lower bound to select an optimal set of inspection modes for a given application a priori. Adding these expanded capabilities to our algorithmic framework with adaptive regularization, we observed improved discrimination between high-Z materials, specifically plutonium and tungsten. The combined system can estimate plutonium mass within our simulated system to within 1%. Three types of inspection modes were modeled: multi-endpoint X-ray radiography alone; in combination with neutron radiography using deuterium-deuterium (DD); or in combination with neutron radiography using deuterium-tritium (DT) sources.

  13. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  14. Numerical linked-cluster algorithms. I. Spin systems on square, triangular, and kagomé lattices.

    PubMed

    Rigol, Marcos; Bryant, Tyler; Singh, Rajiv R P

    2007-06-01

    We discuss recently introduced numerical linked-cluster (NLC) algorithms that allow one to obtain temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diagonalization of finite clusters. We present studies of thermodynamic observables for spin models on square, triangular, and kagomé lattices. Results for several choices of clusters and extrapolations methods, that accelerate the convergence of NLCs, are presented. We also include a comparison of NLC results with those obtained from exact analytical expressions (where available), high-temperature expansions (HTE), exact diagonalization (ED) of finite periodic systems, and quantum Monte Carlo simulations. For many models and properties NLC results are substantially more accurate than HTE and ED.

  15. Numerical algorithms for highly oscillatory dynamic system based on commutator-free method

    NASA Astrophysics Data System (ADS)

    Li, Wencheng; Deng, Zichen; Zhang, Suying

    2007-04-01

    In the present paper, an efficiently improved modified Magnus integrator algorithm based on commutator-free method is proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the second-order dynamic systems are transferred to the frame of reference by introducing new variable so that highly oscillatory behaviour inherited from the entries. Then the modified Magnus integrator method based on local linearization is appropriately designed for solving the above new form. And some optimized strategies for reducing the number of function evaluations and matrix operations are also suggested. Finally, several numerical examples for highly oscillatory dynamic systems, such as Airy equation, Bessel equation, Mathieu equation, are presented to demonstrate the validity and effectiveness of the proposed method.

  16. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  17. Analysis of the distribution of pitch angles in model galactic disks - Numerical methods and algorithms

    NASA Technical Reports Server (NTRS)

    Russell, William S.; Roberts, William W., Jr.

    1993-01-01

    An automated mathematical method capable of successfully isolating the many different features in prototype and observed spiral galaxies and of accurately measuring the pitch angles and lengths of these individual features is developed. The method is applied to analyze the evolution of specific features in a prototype galaxy exhibiting flocculent spiral structure. The mathematical-computational method was separated into two components. Initially, the galaxy was partitioned into dense regions constituting features using two different methods. The results obtained using these two partitioning algorithms were very similar, from which it is inferred that no numerical biasing was evident and that capturing of the features was consistent. Standard least-squares methods underestimated the true slope of the cloud distribution and were incapable of approximating an orientation of 45 deg. The problems were overcome by introducing a superior fit least-squares method, developed with the intention of calculating true orientation rather than a regression line.

  18. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate

  19. Physical formulation and numerical algorithm for simulating N immiscible incompressible fluids involving general order parameters

    SciTech Connect

    Dong, S.

    2015-02-15

    We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.

  20. Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC, Version 2.0: User's Manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1987-01-01

    The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and the NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through October 16, 1987. The technical manual describes the NASARC concept and the algorithms which are used to implement it. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions have been incorporated in the Version 2.0 software over prior versions. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit into the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time reducing computer run time.

  1. Numerical arc segmentation algorithm for a radio conference-NASARC (version 2.0) technical manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1987-01-01

    The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of NASARC software development through October 16, 1987. The Technical Manual describes the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operating instructions. Significant revisions have been incorporated in the Version 2.0 software. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit within the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time effecting an overall reduction in computer run time.

  2. Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC (version 4.0) technical manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1988-01-01

    The information contained in the NASARC (Version 4.0) Technical Manual and NASARC (Version 4.0) User's Manual relates to the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbits. Array dimensions within the software were structured to fit within the currently available 12 megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.0) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.

  3. Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC), version 4.0: User's manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1988-01-01

    The information in the NASARC (Version 4.0) Technical Manual (NASA-TM-101453) and NASARC (Version 4.0) User's Manual (NASA-TM-101454) relates to the state of Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbit. Array dimensions within the software were structured to fit within the currently available 12-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.

  4. Advanced numerical analyses for complex thermal-hydraulics in nuclear engineering

    SciTech Connect

    Seiichi Koshizuka; Yoshiaki Oka

    2002-07-01

    Complex thermal-hydraulic phenomena in the nuclear engineering have been solved by advanced numerical analyses based on fundamental governing equations excluding experimental correlations. A new method, called Moving Particle Semi-implicit (MPS) method, is developed as one of the advanced methods. Governing equations are discretized to particle dynamics using particle interaction models. Grids are not necessary. Therefore, complex motion of interfaces can be calculated without grid tangling or numerical diffusion. This is advantageous to multi-fluid and multi-phase thermal-hydraulic problems which emerge in the nuclear engineering. The analyzed problems are vapor explosions, molten core-concrete interaction, fluid-structure interaction, nucleate boiling, transient boiling at reactivity initiated accidents, and the critical Weber number for droplet breakup. These examples show that the MPS method is being useful for direct simulation of complex thermal-hydraulics, particularly multi-phase flows, in the nuclear engineering. (authors)

  5. Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound.

    PubMed

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M; Rajaraman, Prathish K; Heys, Jeffrey J; Belohlavek, Marek

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics.

  6. Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound

    PubMed Central

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M.; Rajaraman, Prathish K.; Heys, Jeffrey J.

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics. PMID:23690874

  7. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties

    NASA Astrophysics Data System (ADS)

    Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.

    2017-03-01

    Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.

  8. An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys

    SciTech Connect

    Becker, R; Stolken, J; Jannetti, C; Bassani, J

    2003-10-16

    Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.

  9. Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization

    NASA Astrophysics Data System (ADS)

    Kitaura, F. S.; Enßlin, T. A.

    2008-09-01

    We address the inverse problem of cosmic large-scale structure reconstruction from a Bayesian perspective. For a linear data model, a number of known and novel reconstruction schemes, which differ in terms of the underlying signal prior, data likelihood and numerical inverse extraregularization schemes are derived and classified. The Bayesian methodology presented in this paper tries to unify and extend the following methods: Wiener filtering, Tikhonov regularization, ridge regression, maximum entropy and inverse regularization techniques. The inverse techniques considered here are the asymptotic regularization, the Jacobi, Steepest Descent, Newton-Raphson, Landweber-Fridman and both linear and non-linear Krylov methods based on Fletcher-Reeves, Polak-Ribière and Hestenes-Stiefel conjugate gradients. The structures of the up-to-date highest performing algorithms are presented, based on an operator scheme, which permits one to exploit the power of fast Fourier transforms. Using such an implementation of the generalized Wiener filter in the novel ARGO software package, the different numerical schemes are benchmarked with one-, two- and three-dimensional problems including structured white and Poissonian noise, data windowing and blurring effects. A novel numerical Krylov scheme is shown to be superior in terms of performance and fidelity. These fast inverse methods ultimately will enable the application of sampling techniques to explore complex joint posterior distributions. We outline how the space of the dark matter density field, the peculiar velocity field and the power spectrum can jointly be investigated by a Gibbs-sampling process. Such a method can be applied for the redshift distortions correction of the observed galaxies and for time-reversal reconstructions of the initial density field.

  10. Numerical study of a finite volume scheme for incompressible Navier-Stokes equations based on SIMPLE-family algorithms

    NASA Astrophysics Data System (ADS)

    Alahyane, M.; Hakim, A.; Raghay, S.

    2017-01-01

    In this work, we present a numerical study of a finite volume scheme based on SIMPLE algorithm for incompressible Navier-Stokes problem. However, this algorithm still not applicable to a large category of problems this could be understood from its stability and convergence, which depends strongly on the parameter of relaxation, in some cases this algorithm could have an unexpected behavior. Therefore, in our work we focus on this particular point to overcome this respected choice of relaxation parameter and to find a sufficient condition for the convergence of the algorithm in general cases. This will be followed by numerical applications in image processing variety of fluid flow problems described by incompressible Navier-Stokes equations.

  11. Advances in Analytical and Numerical Dispersion Modeling of Pollutants Releasing from an Area-source

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Praneeth

    The air quality near agricultural activities such as tilling, plowing, harvesting, and manure application is of main concern because they release fine particulate matter into the atmosphere. These releases are modeled as area-sources in the air quality modeling research. None of the currently available dispersion models relate and incorporate physical characteristics and meteorological conditions for modeling the dispersion and deposition of particulates emitting from such area-sources. This knowledge gap was addressed by developing the advanced analytical and numerical methods for modeling the dispersion of particulate matter. The development, application, and evaluation of new dispersion modeling methods are discussed in detail in this dissertation. In the analytical modeling, a ground-level area source analytical dispersion model known as particulate matter deposition -- PMD was developed for predicting the concentrations of different particle sizes. Both the particle dynamics (particle physical characteristics) and meteorological conditions which have significant effect on the dispersion of particulates were related and incorporated in the PMD model using the formulations of particle gravitational settling and dry deposition velocities. The modeled particle size concentrations of the PMD model were evaluated statistically after applying it to particulates released from a biosolid applied agricultural field. The evaluation of the PMD model using the statistical criteria concluded effective and successful inclusion of dry deposition theory for modeling particulate matter concentrations. A comprehensive review of analytical area-source dispersion models, which do not account for dry deposition and treat pollutants as gases, was conducted and determined three models -- the Shear, the Parker, and the Smith. A statistical evaluation of these dispersion models was conducted after applying them to two different field data sets and the statistical results concluded that

  12. Advanced modularity-specialized label propagation algorithm for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Liu, X.; Murata, T.

    2010-04-01

    A modularity-specialized label propagation algorithm (LPAm) for detecting network communities was recently proposed. This promising algorithm offers some desirable qualities. However, LPAm favors community divisions where all communities are similar in total degree and thus it is prone to get stuck in poor local maxima in the modularity space. To escape local maxima, we employ a multistep greedy agglomerative algorithm (MSG) that can merge multiple pairs of communities at a time. Combining LPAm and MSG, we propose an advanced modularity-specialized label propagation algorithm (LPAm+). Experiments show that LPAm+ successfully detects communities with higher modularity values than ever reported in two commonly used real-world networks. Moreover, LPAm+ offers a fair compromise between accuracy and speed.

  13. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  14. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  15. Advanced Numerical Prediction and Modeling of Tropical Cyclones Using WRF-NMM modeling system

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, S. G.; Rogers, R. F.; Marks, F. D.; Atlas, R.

    2007-12-01

    Dramatic improvement in tropical cyclone track forecasts have occurred through advancements in high quality observations, high speed computers and improvements in dynamical models. Similar advancements now need to be made for tropical cyclone intensity, structure and rainfall prediction. The Weather Research Forecasting Model (WRF) is a general purpose, multi-institutional mesoscale modeling system. A version of the WRF model called the HWRF/WRF-NMM modeling system, developed at the National Center for Environmental Protection (NCEP) was recently adopted for hurricane forecasting (Gopalakrishnan et al, 2006) by the National Hurricane Center (NHC). At the Hurricane Research Division (HRD/AOML/OAR) we are developing and further advancing a research version of this modeling system. This work is done in collaboration with the Developmental Test bed Center (DTC), Boulder, CO, Global Systems division (GSD/ESRL/OAR), Boulder, CO, The Air Resources Laboratory (ARL/OAR), Washington, D.C., the U.S. university community, the Indian Institute of Technology, IIT.Delhi, India, and the India Meteorological Department, New Delhi, India Our modeling effort includes advancing the WRF system for Ensemble Hurricane Forecasting, advancing our understanding of Ensemble-vs- High Resolution Forecasting of Hurricanes, advancing WRF/WRF-NMM with better analysis techniques (e.g. Four Dimensional Data Assimilation) for improving forecasts and above all, advancing our understanding of hurricane processes using a high resolution numerical modeling approach. Examples of some of these applications will be shown here. Reference: NCEP's Two-way-Interactive-Moving-Nest NMM-WRF modeling system for Hurricane Forecasting, S.G. Gopalakrishnan, N. Surgi, R. Tuleya, and Z. Janjic 27th Conference on Hurricanes and Tropical Meteorology, 24- 28 April 2006, Monterey, California.

  16. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  17. Numerical nonwavefront-guided algorithm for expansion or recentration of the optical zone

    NASA Astrophysics Data System (ADS)

    Arba Mosquera, Samuel; Verma, Shwetabh

    2014-08-01

    Complications may arise due to the decentered ablations during refractive surgery, resulting from human or mechanical errors. Decentration may cause over-/under-corrections, with patients complaining about seeing glares and halos after the procedure. Customized wavefront-guided treatments are often used to design retreatment procedures. However, due to the limitations of wavefront sensors in precisely measuring very large aberrations, some extreme cases may suffer when retreated with wavefront-guided treatments. We propose a simple and inexpensive numerical (nonwavefront-guided) algorithm to recenter the optical zone (OZ) and to correct the refractive error with minimal tissue removal. Due to its tissue-saving capabilities, this method can benefit patients with critical residual corneal thickness. Based on the reconstruction of ablation achieved in the first surgical procedure, we calculate a target ablation (by manipulating the achieved OZ) with adequate centration and an OZ sufficient enough to envelope the achieved ablation. The net ablation map for the retreatment procedure is calculated from the achieved and target ablations and is suitable to expand, recenter, and modulate the lower-order refractive components in a retreatment procedure. The results of our simulations suggest minimal tissue removal with OZ centration and expansion. Enlarging the OZ implies correcting spherical aberrations, whereas inducing centration implies correcting coma. This method shows the potential to improve visual outcomes in extreme cases of retreatment, possibly serving as an uncomplicated and inexpensive alternative to wavefront-guided retreatments.

  18. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Astrophysics Data System (ADS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  19. Cell light scattering characteristic numerical simulation research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Zhu, Hao; Weng, Lingdong

    2017-01-01

    In this study, finite-difference time-domain (FDTD) algorithm has been used to work out the cell light scattering problem. Before beginning to do the simulation contrast, finding out the changes or the differences between normal cells and abnormal cells which may be cancerous or maldevelopment is necessary. The preparation of simulation are building up the simple cell model of cell which consists of organelles, nucleus and cytoplasm and setting up the suitable precision of mesh. Meanwhile, setting up the total field scattering field source as the excitation source and far field projection analysis group is also important. Every step need to be explained by the principles of mathematic such as the numerical dispersion, perfect matched layer boundary condition and near-far field extrapolation. The consequences of simulation indicated that the position of nucleus changed will increase the back scattering intensity and the significant difference on the peak value of scattering intensity may result from the changes of the size of cytoplasm. The study may help us find out the regulations based on the simulation consequences and the regulations can be meaningful for early diagnosis of cancers.

  20. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  1. Orthogonal Metal Cutting Simulation Using Advanced Constitutive Equations with Damage and Fully Adaptive Numerical Procedure

    NASA Astrophysics Data System (ADS)

    Saanouni, Kkemais; Labergère, Carl; Issa, Mazen; Rassineux, Alain

    2010-06-01

    This work proposes a complete adaptive numerical methodology which uses `advanced' elastoplastic constitutive equations coupling: thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage and contact with friction, for 2D machining simulation. Fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning the local integration scheme as well as the global resolution strategy and the adaptive remeshing facility are briefly discussed. Applications are made to the orthogonal metal cutting by chip formation and segmentation under high velocity. The interactions between hardening, plasticity, ductile damage and thermal effects and their effects on the adiabatic shear band formation including the formation of cracks are investigated.

  2. Application of numerical optimization to the design of advanced supercritical airfoils

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Hicks, R. M.

    1979-01-01

    An application of numerical optimization to the design of advanced airfoils for transonic aircraft showed that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while minimizing the drag coefficient at the design Mach number. This multiple design-point numerical optimization has been implemented with the use of airfoil shape functions which permit a wide range of attainable profiles during the optimization process. Analytical data for the starting airfoil shape, a single design-point optimized shape, and a double design-point optimized shape are presented. Experimental data obtained in the NASA Ames two-by two-foot wind tunnel are also presented and discussed.

  3. Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Hu, Youjun; Li, Guoqiang; Yang, Wenjun; Zhou, Deng; Ren, Qilong; Gorelenkov, N. N.; Cai, Huishan

    2014-05-15

    Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane.

  4. Advanced Numerical methods for F. E. Simulation of Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Chenot, Jean-Loup; Bernacki, Marc; Fourment, Lionel; Ducloux, Richard

    2010-06-01

    The classical scientific basis for finite element modeling of metal forming processes is first recalled. Several developments in advanced topics are summarized: adaptive and anisotropic remeshing, parallel solving, multi material deformation. More recent researches in numerical analysis are outlined, including multi grid and multi mesh methods, mainly devoted to decrease computation time, automatic optimization method for faster and more effective design of forming processes. The link of forming simulation and structural computations is considered with emphasis on the necessity to predict the final mechanical properties. Finally a brief account of computation at the micro scale level is given.

  5. Advanced Non-Linear Control Algorithms Applied to Design Highly Maneuverable Autonomous Underwater Vehicles (AUVs)

    DTIC Science & Technology

    2007-08-01

    Advanced non- linear control algorithms applied to design highly maneuverable Autonomous Underwater Vehicles (AUVs) Vladimir Djapic, Jay A. Farrell...hierarchical such that an ”inner loop” non- linear controller (outputs the appropriate thrust values) is the same for all mission scenarios while a...library of ”outer-loop” non- linear controllers are available to implement specific maneuvering scenarios. On top of the outer-loop is the mission planner

  6. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    SciTech Connect

    Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea; Koehler, Katrina Elizabeth; Henzl, Vladimir; Henzlova, Daniela; Parker, Robert Francis; Croft, Stephen

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  7. Advanced algorithms for the identification of mixtures using condensed-phase FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Andersson, Greger; Levy, Dustin; Tomczyk, Carol; Zou, Peng; Zuidema, Eric

    2011-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. Advances in instrument portability have made possible the use of FT-IR spectroscopy in emergency response and military field applications. The samples collected in those harsh environments are rarely pure and typically contain multiple chemical species in water, sand, or inorganic matrices. In such critical applications, it is also desired that in addition to broad chemical identification, the user is warned immediately if the sample contains a threat or target class material (i.e. biological, narcotic, explosive). The next generation HazMatID 360 combines the ruggedized design and functionality of the current HazMatID with advanced mixture analysis algorithms. The advanced FT-IR instrument allows effective chemical assessment of samples that may contain one or more interfering materials like water or dirt. The algorithm was the result of years of cumulative experience based on thousands of real-life spectra sent to our ReachBack spectral analysis service by customers in the field. The HazMatID 360 combines mixture analysis with threat detection and chemical hazard classification capabilities to provide, in record time, crucial information to the user. This paper will provide an overview of the software and algorithm enhancements, in addition to examples of improved performance in mixture identification.

  8. Utilization of advanced clutter suppression algorithms for improved standoff detection and identification of radionuclide threats

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Shokhirev, Kirill; Mulhall, Phil; Payne, David; Harris, Bernard

    2014-05-01

    Technology development efforts seek to increase the capability of detection systems in low Signal-to-Noise regimes encountered in both portal and urban detection applications. We have recently demonstrated significant performance enhancement in existing Advanced Spectroscopic Portals (ASP), Standoff Radiation Detection Systems (SORDS) and handheld isotope identifiers through the use of new advanced detection and identification algorithms. The Poisson Clutter Split (PCS) algorithm is a novel approach for radiological background estimation that improves the detection and discrimination capability of medium resolution detectors. The algorithm processes energy spectra and performs clutter suppression, yielding de-noised gamma-ray spectra that enable significant enhancements in detection and identification of low activity threats with spectral target recognition algorithms. The performance is achievable at the short integration times (0.5 - 1 second) necessary for operation in a high throughput and dynamic environment. PCS has been integrated with ASP, SORDS and RIID units and evaluated in field trials. We present a quantitative analysis of algorithm performance against data collected by a range of systems in several cluttered environments (urban and containerized) with embedded check sources. We show that the algorithm achieves a high probability of detection/identification with low false alarm rates under low SNR regimes. For example, utilizing only 4 out of 12 NaI detectors currently available within an ASP unit, PCS processing demonstrated Pd,ID > 90% at a CFAR (Constant False Alarm Rate) of 1 in 1000 occupancies against weak activity (7 - 8μCi) and shielded sources traveling through the portal at 30 mph. This vehicle speed is a factor of 6 higher than was previously possible and results in significant increase in system throughput and overall performance.

  9. An Adaptive Numeric Predictor-corrector Guidance Algorithm for Atmospheric Entry Vehicles. M.S. Thesis - MIT, Cambridge

    NASA Technical Reports Server (NTRS)

    Spratlin, Kenneth Milton

    1987-01-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  10. Advanced Numerical-Algebraic Thinking: Constructing the Concept of Covariation as a Prelude to the Concept of Function

    ERIC Educational Resources Information Center

    Hitt, Fernando; Morasse, Christian

    2009-01-01

    Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…

  11. Numerical Roll Reversal Predictor Corrector Aerocapture and Precision Landing Guidance Algorithms for the Mars Surveyor Program 2001 Missions

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.

    1998-01-01

    This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.

  12. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  13. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  14. Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)

    SciTech Connect

    Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok

    2007-07-01

    A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)

  15. Advanced MHD Algorithm for Solar and Space Science: lst Year Semi Annual Progress Report

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.; Lionello, Roberto

    2003-01-01

    We report progress for the development of MH4D for the first and second quarters of FY2004, December 29, 2002 - June 6, 2003. The present version of MH4D can now solve the full viscous and resistive MHD equations using either an explicit or a semi-implicit time advancement algorithm. In this report we describe progress in the following areas. During the two last quarters we have presented poster at the EGS-AGU-EUG Joint Assembly in Nice, France, April 6-11, 2003, and a poster at the 2003 International Sherwood Theory Conference in Corpus Christi, Texas, April 28-30 2003. In the area of code development, we have implemented the MHD equations and the semi-implicit algorithm. The new features have been tested.

  16. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms

    PubMed Central

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias

    2016-01-01

    Background and Aim Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. Methods We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Results Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. Conclusion The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts. PMID:27936091

  17. Application of two oriented partial differential equation filtering models on speckle fringes with poor quality and their numerically fast algorithms.

    PubMed

    Zhu, Xinjun; Chen, Zhanqing; Tang, Chen; Mi, Qinghua; Yan, Xiusheng

    2013-03-20

    In this paper, we are concerned with denoising in experimentally obtained electronic speckle pattern interferometry (ESPI) speckle fringe patterns with poor quality. We extend the application of two existing oriented partial differential equation (PDE) filters, including the second-order single oriented PDE filter and the double oriented PDE filter, to two experimentally obtained ESPI speckle fringe patterns with very poor quality, and compare them with other efficient filtering methods, including the adaptive weighted filter, the improved nonlinear complex diffusion PDE, and the windowed Fourier transform method. All of the five filters have been illustrated to be efficient denoising methods through previous comparative analyses in published papers. The experimental results have demonstrated that the two oriented PDE models are applicable to low-quality ESPI speckle fringe patterns. Then for solving the main shortcoming of the two oriented PDE models, we develop the numerically fast algorithms based on Gauss-Seidel strategy for the two oriented PDE models. The proposed numerical algorithms are capable of accelerating the convergence greatly, and perform significantly better in terms of computational efficiency. Our numerically fast algorithms are extended automatically to some other PDE filtering models.

  18. Numerical algorithms for estimation and calculation of parameters in modeling pest population dynamics and evolution of resistance.

    PubMed

    Shi, Mingren; Renton, Michael

    2011-10-01

    Computational simulation models can provide a way of understanding and predicting insect population dynamics and evolution of resistance, but the usefulness of such models depends on generating or estimating the values of key parameters. In this paper, we describe four numerical algorithms generating or estimating key parameters for simulating four different processes within such models. First, we describe a novel method to generate an offspring genotype table for one- or two-locus genetic models for simulating evolution of resistance, and how this method can be extended to create offspring genotype tables for models with more than two loci. Second, we describe how we use a generalized inverse matrix to find a least-squares solution to an over-determined linear system for estimation of parameters in probit models of kill rates. This algorithm can also be used for the estimation of parameters of Freundlich adsorption isotherms. Third, we describe a simple algorithm to randomly select initial frequencies of genotypes either without any special constraints or with some pre-selected frequencies. Also we give a simple method to calculate the "stable" Hardy-Weinberg equilibrium proportions that would result from these initial frequencies. Fourth we describe how the problem of estimating the intrinsic rate of natural increase of a population can be converted to a root-finding problem and how the bisection algorithm can then be used to find the rate. We implemented all these algorithms using MATLAB and Python code; the key statements in both codes consist of only a few commands and are given in the appendices. The results of numerical experiments are also provided to demonstrate that our algorithms are valid and efficient.

  19. The role of numerical simulation for the development of an advanced HIFU system

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  20. Advances in methods and algorithms in a modern quantum chemistry program package.

    PubMed

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

  1. Numerical simulation study of the dynamical behavior of the Niedermayer algorithm

    NASA Astrophysics Data System (ADS)

    Girardi, D.; Branco, N. S.

    2010-04-01

    We calculate the dynamic critical exponent for the Niedermayer algorithm applied to the two-dimensional Ising and XY models, for various values of the free parameter E0. For E0 = - 1 we regain the Metropolis algorithm and for E0 = 1 we regain the Wolff algorithm. For - 1 < E0 < 1, we show that the mean size of the clusters of (possibly) turned spins initially grows with the linear size of the lattice, L, but eventually saturates at a given lattice size \\widetilde {L} , which depends on E0. For L\\gt \\widetilde {L} , the Niedermayer algorithm is equivalent to the Metropolis one, i.e., they have the same dynamic exponent. For E0 > 1, the autocorrelation time is always greater than for E0 = 1 (Wolff) and, more important, it also grows faster than a power of L. Therefore, we show that the best choice of cluster algorithm is the Wolff one, when comparing against the Niedermayer generalization. We also obtain the dynamic behavior of the Wolff algorithm: although not conclusively, we propose a scaling law for the dependence of the autocorrelation time on L.

  2. Wind turbine noise measurement using a compact microphone array with advanced deconvolution algorithms

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rakesh C.; Raman, Ganesh; Dougherty, Robert P.

    2014-07-01

    This paper experimentally investigates the noise from a large wind turbine (GE 1.5 MW) with a compact microphone array (OptiNav 24) using advanced deconvolution based beamforming methods, such as DAMAS and CLEAN-SC beamforming algorithms, for data reduction. Our study focuses on the ability of a compact microphone array to successfully locate both mechanical and aerodynamic noise sources on the wind turbine. Several interesting results have emerged from this study: (i) A compact microphone array is sufficient to perform a detailed study on wind turbine noise if advanced deconvolution methods are applied. (ii) Noise sources on the blade and on the nacelle can clearly be separated. (iii) Noise of the blades is dominated by trailing edge noise which is frequency dependent and is distributed along the length of the blade with the dominant noise source closer to the tip of the blade. (iv) The LP and DAMAS algorithms represent the distributed trailing edge noise source better than CLEAN-SC and classical beamforming. (v) Additional tonal noise produced during yawing operation is believed to be radiating from the tower of the wind turbine that acts like a resonator. (vi) Ground reflection is not believed to have a significant effect on noise source location estimates in this study.

  3. An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers

    SciTech Connect

    Balman, Mehmet; Kosar, Tevfik

    2010-05-20

    Scientific applications and experimental facilities generate massive data sets that need to be transferred to remote collaborating sites for sharing, processing, and long term storage. In order to support increasingly data-intensive science, next generation research networks have been deployed to provide high-speed on-demand data access between collaborating institutions. In this paper, we present a practical model for online data scheduling in which data movement operations are scheduled in advance for end-to-end high performance transfers. In our model, data scheduler interacts with reservation managers and data transfer nodes in order to reserve available bandwidth to guarantee completion of jobs that are accepted and confirmed to satisfy preferred time constraint given by the user. Our methodology improves current systems by allowing researchers and higher level meta-schedulers to use data placement as a service where theycan plan ahead and reserve the scheduler time in advance for their data movement operations. We have implemented our algorithm and examined possible techniques for incorporation into current reservation frameworks. Performance measurements confirm that the proposed algorithm is efficient and scalable.

  4. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

    SciTech Connect

    Carey, G.F.; Young, D.M.

    1993-12-31

    The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

  5. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  6. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light.

    PubMed

    Bor, E; Turduev, M; Kurt, H

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  7. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    PubMed Central

    Bor, E.; Turduev, M.; Kurt, H.

    2016-01-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060

  8. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    NASA Astrophysics Data System (ADS)

    Bor, E.; Turduev, M.; Kurt, H.

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  9. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  10. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    PubMed Central

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials. PMID:28074876

  11. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    NASA Astrophysics Data System (ADS)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  12. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.

    PubMed

    Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe

    2017-01-11

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  13. Advances in numerical solutions to integral equations in liquid state theory

    NASA Astrophysics Data System (ADS)

    Howard, Jesse J.

    Solvent effects play a vital role in the accurate description of the free energy profile for solution phase chemical and structural processes. The inclusion of solvent effects in any meaningful theoretical model however, has proven to be a formidable task. Generally, methods involving Poisson-Boltzmann (PB) theory and molecular dynamic (MD) simulations are used, but they either fail to accurately describe the solvent effects or require an exhaustive computation effort to overcome sampling problems. An alternative to these methods are the integral equations (IEs) of liquid state theory which have become more widely applicable due to recent advancements in the theory of interaction site fluids and the numerical methods to solve the equations. In this work a new numerical method is developed based on a Newton-type scheme coupled with Picard/MDIIS routines. To extend the range of these numerical methods to large-scale data systems, the size of the Jacobian is reduced using basis functions, and the Newton steps are calculated using a GMRes solver. The method is then applied to calculate solutions to the 3D reference interaction site model (RISM) IEs of statistical mechanics, which are derived from first principles, for a solute model of a pair of parallel graphene plates at various separations in pure water. The 3D IEs are then extended to electrostatic models using an exact treatment of the long-range Coulomb interactions for negatively charged walls and DNA duplexes in aqueous electrolyte solutions to calculate the density profiles and solution thermodynamics. It is found that the 3D-IEs provide a qualitative description of the density distributions of the solvent species when compared to MD results, but at a much reduced computational effort in comparison to MD simulations. The thermodynamics of the solvated systems are also qualitatively reproduced by the IE results. The findings of this work show the IEs to be a valuable tool for the study and prediction of

  14. Artificial algae algorithm with multi-light source for numerical optimization and applications.

    PubMed

    Uymaz, Sait Ali; Tezel, Gulay; Yel, Esra

    2015-12-01

    Artificial algae algorithm (AAA), which is one of the recently developed bio-inspired optimization algorithms, has been introduced by inspiration from living behaviors of microalgae. In AAA, the modification of the algal colonies, i.e. exploration and exploitation is provided with a helical movement. In this study, AAA was modified by implementing multi-light source movement and artificial algae algorithm with multi-light source (AAAML) version was established. In this new version, we propose the selection of a different light source for each dimension that is modified with the helical movement for stronger balance between exploration and exploitation. These light sources have been selected by tournament method and each light source are different from each other. This gives different solutions in the search space. The best of these three light sources provides orientation to the better region of search space. Furthermore, the diversity in the source space is obtained with the worst light source. In addition, the other light source improves the balance. To indicate the performance of AAA with new proposed operators (AAAML), experiments were performed on two different sets. Firstly, the performance of AAA and AAAML was evaluated on the IEEE-CEC'13 benchmark set. The second set was real-world optimization problems used in the IEEE-CEC'11. To verify the effectiveness and efficiency of the proposed algorithm, the results were compared with other state-of-the-art hybrid and modified algorithms. Experimental results showed that the multi-light source movement (MLS) increases the success of the AAA.

  15. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms

    PubMed Central

    Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709

  16. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms.

    PubMed

    Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.

  17. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    ERIC Educational Resources Information Center

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic…

  18. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  19. A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU)

    NASA Astrophysics Data System (ADS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Daniel; Heymsfield, Gerald

    2015-09-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and most recently, the Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sensor. This led to climatologies of hail frequency from TMI and AMSR-E, however, limitations included geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. NOAA and EUMETSAT have been operating the Advanced Microwave Sounding Unit (AMSU-A and -B) and the Microwave Humidity Sounder (MHS) on several operational satellites since 1998: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 h, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz, one at 157 GHz, and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental US for a 10-year period (2000-2009). Compared with the surface observations, the algorithm detects approximately 40% of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology based on all available AMSU observations during 2000-2011 that is stratified in several ways

  20. An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Li, Tiexiang; Huang, Tsung-Ming; Lin, Wen-Wei; Wang, Jenn-Nan

    2017-03-01

    We propose an efficient eigensolver for computing densely distributed spectra of the two-dimensional transmission eigenvalue problem (TEP), which is derived from Maxwell’s equations with Tellegen media and the transverse magnetic mode. The governing equations, when discretized by the standard piecewise linear finite element method, give rise to a large-scale quadratic eigenvalue problem (QEP). Our numerical simulation shows that half of the positive eigenvalues of the QEP are densely distributed in some interval near the origin. The quadratic Jacobi–Davidson method with a so-called non-equivalence deflation technique is proposed to compute the dense spectrum of the QEP. Extensive numerical simulations show that our proposed method processes the convergence efficiently, even when it needs to compute more than 5000 desired eigenpairs. Numerical results also illustrate that the computed eigenvalue curves can be approximated by nonlinear functions, which can be applied to estimate the denseness of the eigenvalues for the TEP.

  1. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    SciTech Connect

    Dahlin, J.-E.; Scheffel, J.

    2005-06-15

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55, 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.

  2. Research on Numerical Algorithms for the Three Dimensional Navier-Stokes Equations. I. Accuracy, Convergence & Efficiency.

    DTIC Science & Technology

    1979-09-01

    ithm for Computational Fluid Dynamics," Ph.D. Dissertation, Univ. of Tennessee, Report ESM 78-1, 1978. 18. Thames, F. C., Thompson , J . F ., and Mastin...C. W., "Numerical Solution of the Navier-Stokes Equations for Arbitrary Two-Dimensional Air- foils," NASA SP-347, 1975. 19. Thompson , J . F ., Thames...Number of Arbitrary Two-Dimensional Bodies," NASA CR-2729, 1976. 20. Thames, F. C., Thompson , J . F ., Mastin, C. W., and Walker, R. L., "Numerical

  3. Scanning of wind turbine upwind conditions: numerical algorithm and first applications

    NASA Astrophysics Data System (ADS)

    Calaf, Marc; Cortina, Gerard; Sharma, Varun; Parlange, Marc B.

    2014-11-01

    Wind turbines still obtain in-situ meteorological information by means of traditional wind vane and cup anemometers installed at the turbine's nacelle, right behind the blades. This has two important drawbacks: 1-turbine misalignment with the mean wind direction is common and energy losses are experienced; 2-the near-blade monitoring does not provide any time to readjust the profile of the wind turbine to incoming turbulence gusts. A solution is to install wind Lidar devices on the turbine's nacelle. This technique is currently under development as an alternative to traditional in-situ wind anemometry because it can measure the wind vector at substantial distances upwind. However, at what upwind distance should they interrogate the atmosphere? A new flexible wind turbine algorithm for large eddy simulations of wind farms that allows answering this question, will be presented. The new wind turbine algorithm timely corrects the turbines' yaw misalignment with the changing wind. The upwind scanning flexibility of the algorithm also allows to track the wind vector and turbulent kinetic energy as they approach the wind turbine's rotor blades. Results will illustrate the spatiotemporal evolution of the wind vector and the turbulent kinetic energy as the incoming flow approaches the wind turbine under different atmospheric stability conditions. Results will also show that the available atmospheric wind power is larger during daytime periods at the cost of an increased variance.

  4. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Explicit Numerical Algorithm for Modeling Incompressible Approach Flow

    DTIC Science & Technology

    1989-03-01

    by Colorado State University, Fort Collins, CO, for US Army Engineer Waterways Experiment Station, Vicksburg, MS. Thompson , J . F . 1983 (Mar). "A...Waterways Experiment Station, Vicksburg, MS. Thompson , J . F ., and Bernard, R. S. 1985 (Aug). "WESSEL: Code for Numerical Simulation of Two-Dimensional Time

  5. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  6. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  7. Quantitative (177)Lu SPECT imaging using advanced correction algorithms in non-reference geometry.

    PubMed

    D'Arienzo, M; Cozzella, M L; Fazio, A; De Felice, P; Iaccarino, G; D'Andrea, M; Ungania, S; Cazzato, M; Schmidt, K; Kimiaei, S; Strigari, L

    2016-12-01

    Peptide receptor therapy with (177)Lu-labelled somatostatin analogues is a promising tool in the management of patients with inoperable or metastasized neuroendocrine tumours. The aim of this work was to perform accurate activity quantification of (177)Lu in complex anthropomorphic geometry using advanced correction algorithms. Acquisitions were performed on the higher (177)Lu photopeak (208keV) using a Philips IRIX gamma camera provided with medium-energy collimators. System calibration was performed using a 16mL Jaszczak sphere surrounded by non-radioactive water. Attenuation correction was performed using μ-maps derived from CT data, while scatter and septal penetration corrections were performed using the transmission-dependent convolution-subtraction method. SPECT acquisitions were finally corrected for dead time and partial volume effects. Image analysis was performed using the commercial QSPECT software. The quantitative SPECT approach was validated on an anthropomorphic phantom provided with a home-made insert simulating a hepatic lesion. Quantitative accuracy was studied using three tumour-to-background activity concentration ratios (6:1, 9:1, 14:1). For all acquisitions, the recovered total activity was within 12% of the calibrated activity both in the background region and in the tumour. Using a 6:1 tumour-to-background ratio the recovered total activity was within 2% in the tumour and within 5% in the background. Partial volume effects, if not properly accounted for, can lead to significant activity underestimations in clinical conditions. In conclusion, accurate activity quantification of (177)Lu can be obtained if activity measurements are performed with equipment traceable to primary standards, advanced correction algorithms are used and acquisitions are performed at the 208keV photopeak using medium-energy collimators.

  8. Advanced model of eddy-current NDE inverse problem with sparse grid algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Liming; Sabbagh, Harold A.; Sabbagh, Elias H.; Murphy, R. Kim; Bernacchi, William

    2017-02-01

    In model-based inverse problem, some unknown parameters need to be estimated. These parameters are used not only to characterize the physical properties of cracks, but also to describe the position of the probes (such as lift off and angles) in the calibration. After considering the effect of the position of the probes in the inverse problem, the accuracy of the inverse result will be improved. With increasing the number of the parameters in the inverse problems, the burden of calculations will increase exponentially in the traditional full grid method. The sparse grid algorithm, which was introduced by Sergey A. Smolyak, was used in our work. With this algorithm, we obtain a powerful interpolation method that requires significantly fewer support nodes than conventional interpolation on a full grid. In this work, we combined sparse grid toolbox TASMANIAN, which is produced by Oak Ridge National Laboratory, and professional eddy-current NDE software, VIC-3D R◯, to solve a specific inverse problem. An advanced model based on our previous one is used to estimate length and depth of the crack, lift off and two angles of the position of probes. Considering the calibration process, pseudorandom noise is considered in the model and statistical behavior is discussed.

  9. Time controlled descent guidance algorithm for simulation of advanced ATC systems

    NASA Technical Reports Server (NTRS)

    Lee, H. Q.; Erzberger, H.

    1983-01-01

    Concepts and computer algorithms for generating time controlled four dimensional descent trajectories are described. The algorithms were implemented in the air traffic control simulator and used by experienced controllers in studies of advanced air traffic flow management procedures. A time controlled descent trajectory comprises a vector function of time, including position, altitude, and heading, that starts at the initial position of the aircraft and ends at touchdown. The trajectory provides a four dimensional reference path which will cause an aircraft tracking it to touchdown at a predetermined time with a minimum of fuel consumption. The problem of constructing such trajectories is divided into three subproblems involving synthesis of horizontal, vertical, and speed profiles. The horizontal profile is constructed as a sequence of turns and straight lines passing through a specified set of waypoints. The vertical profile consists of a sequence of level flight and constant descent angle segments defined by altitude waypoints. The speed profile is synthesized as a sequence of constant Mach number, constant indicated airspeed, and acceleration/deceleration legs. It is generated by integrating point mass differential equations of motion, which include the thrust and drag models of the aircraft.

  10. New Advanced Source Identification Algorithm (ASIA-NEW) for radiation monitors with plastic detectors

    SciTech Connect

    Stavrov, Andrei; Yamamoto, Eugene

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well. (authors)

  11. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    SciTech Connect

    Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  12. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua

    2014-12-01

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  13. Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.

    1991-01-01

    The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.

  14. Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha

    We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

  15. Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.

  16. A block matching-based registration algorithm for localization of locally advanced lung tumors

    SciTech Connect

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2014-04-15

    Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy. Methods: Small (1 cm{sup 3}), nonoverlapping image subvolumes (“blocks”) were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4–7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration. Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%–100%) in the initial bony alignment to 91% ± 8% (range: 56%–100%;p < 0

  17. Properties of the numerical algorithms for problems of quantum information technologies: Benefits of deep analysis

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, Andrey; Khamitov, Kamil; Teplov, Alexey; Voevodin, Vadim; Voevodin, Vladimir

    2016-10-01

    In recent years, quantum information technologies (QIT) showed great development, although, the way of the implementation of QIT faces the serious difficulties, some of which are challenging computational tasks. This work is devoted to the deep and broad analysis of the parallel algorithmic properties of such tasks. As an example we take one- and two-qubit transformations of a many-qubit quantum state, which are the most critical kernels of many important QIT applications. The analysis of the algorithms uses the methodology of the AlgoWiki project (algowiki-project.org) and consists of two parts: theoretical and experimental. Theoretical part includes features like sequential and parallel complexity, macro structure, and visual information graph. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia) and includes the analysis of locality and memory access, scalability and the set of more specific dynamic characteristics of realization. This approach allowed us to obtain bottlenecks and generate ideas of efficiency improvement.

  18. Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water

    NASA Astrophysics Data System (ADS)

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Mancosu, Pietro; Cozzi, Luca

    2011-05-01

    This corrigendum intends to clarify some important points that were not clearly or properly addressed in the original paper, and for which the authors apologize. The original description of the first Acuros algorithm is from the developers, published in Physics in Medicine and Biology by Vassiliev et al (2010) in the paper entitled 'Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams'. The main equations describing the algorithm reported in our paper, implemented as the 'Acuros XB Advanced Dose Calculation Algorithm' in the Varian Eclipse treatment planning system, were originally described (for the original Acuros algorithm) in the above mentioned paper by Vassiliev et al. The intention of our description in our paper was to give readers an overview of the algorithm, not pretending to have authorship of the algorithm itself (used as implemented in the planning system). Unfortunately our paper was not clear, particularly in not allocating full credit to the work published by Vassiliev et al on the original Acuros algorithm. Moreover, it is important to clarify that we have not adapted any existing algorithm, but have used the Acuros XB implementation in the Eclipse planning system from Varian. In particular, the original text of our paper should have been as follows: On page 1880 the sentence 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008, 2010). Acuros XB builds upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were adapted especially for external photon beam dose calculations' should be corrected to 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008). A new algorithm called Acuros, developed by the Transpire Inc. group, was

  19. Algorithm for direct numerical simulation of emulsion flow through a granular material

    NASA Astrophysics Data System (ADS)

    Zinchenko, Alexander Z.; Davis, Robert H.

    2008-08-01

    A multipole-accelerated 3D boundary-integral algorithm capable of modelling an emulsion flow through a granular material by direct multiparticle-multidrop simulations in a periodic box is developed and tested. The particles form a random arrangement at high volume fraction rigidly held in space (including the case of an equilibrium packing in mechanical contact). Deformable drops (with non-deformed diameter comparable with the particle size) squeeze between the particles under a specified average pressure gradient. The algorithm includes recent boundary-integral desingularization tools especially important for drop-solid and drop-drop interactions, the Hebeker representation for solid particle contributions, and unstructured surface triangulations with fixed topology. Multipole acceleration, with two levels of mesh node decomposition (entire drop/solid surfaces and "patches"), is a significant improvement over schemes used in previous, purely multidrop simulations; it remains efficient at very high resolutions ( 104- 105 triangular elements per surface) and has no lower limitation on the number of particles or drops. Such resolutions are necessary in the problem to alleviate lubrication difficulties, especially for near-critical squeezing conditions, as well as using ˜104 time steps and an iterative solution at each step, both for contrast and matching viscosities. Examples are shown for squeezing of 25-40 drops through an array of 9-14 solids, with the total volume fraction of 70% for particles and drops. The flow rates for the drop and continuous phases are calculated. Extensive convergence testing with respect to program parameters (triangulation, multipole truncation, etc.) is made.

  20. An efficient algorithm for numerical computations of continuous densities of states

    NASA Astrophysics Data System (ADS)

    Langfeld, K.; Lucini, B.; Pellegrini, R.; Rago, A.

    2016-06-01

    In Wang-Landau type algorithms, Monte-Carlo updates are performed with respect to the density of states, which is iteratively refined during simulations. The partition function and thermodynamic observables are then obtained by standard integration. In this work, our recently introduced method in this class (the LLR approach) is analysed and further developed. Our approach is a histogram free method particularly suited for systems with continuous degrees of freedom giving rise to a continuum density of states, as it is commonly found in lattice gauge theories and in some statistical mechanics systems. We show that the method possesses an exponential error suppression that allows us to estimate the density of states over several orders of magnitude with nearly constant relative precision. We explain how ergodicity issues can be avoided and how expectation values of arbitrary observables can be obtained within this framework. We then demonstrate the method using compact U(1) lattice gauge theory as a show case. A thorough study of the algorithm parameter dependence of the results is performed and compared with the analytically expected behaviour. We obtain high precision values for the critical coupling for the phase transition and for the peak value of the specific heat for lattice sizes ranging from 8^4 to 20^4. Our results perfectly agree with the reference values reported in the literature, which covers lattice sizes up to 18^4. Robust results for the 20^4 volume are obtained for the first time. This latter investigation, which, due to strong metastabilities developed at the pseudo-critical coupling of the system, so far has been out of reach even on supercomputers with importance sampling approaches, has been performed to high accuracy with modest computational resources. This shows the potential of the method for studies of first order phase transitions. Other situations where the method is expected to be superior to importance sampling techniques are pointed

  1. A fast algorithm for Direct Numerical Simulation of natural convection flows in arbitrarily-shaped periodic domains

    NASA Astrophysics Data System (ADS)

    Angeli, D.; Stalio, E.; Corticelli, M. A.; Barozzi, G. S.

    2015-11-01

    A parallel algorithm is presented for the Direct Numerical Simulation of buoyancy- induced flows in open or partially confined periodic domains, containing immersed cylindrical bodies of arbitrary cross-section. The governing equations are discretized by means of the Finite Volume method on Cartesian grids. A semi-implicit scheme is employed for the diffusive terms, which are treated implicitly on the periodic plane and explicitly along the homogeneous direction, while all convective terms are explicit, via the second-order Adams-Bashfort scheme. The contemporary solution of velocity and pressure fields is achieved by means of a projection method. The numerical resolution of the set of linear equations resulting from discretization is carried out by means of efficient and highly parallel direct solvers. Verification and validation of the numerical procedure is reported in the paper, for the case of flow around an array of heated cylindrical rods arranged in a square lattice. Grid independence is assessed in laminar flow conditions, and DNS results in turbulent conditions are presented for two different grids and compared to available literature data, thus confirming the favorable qualities of the method.

  2. Perinatal Depression Algorithm: A Home Visitor Step-by-Step Guide for Advanced Management of Perinatal Depressive Symptoms

    ERIC Educational Resources Information Center

    Laszewski, Audrey; Wichman, Christina L.; Doering, Jennifer J.; Maletta, Kristyn; Hammel, Jennifer

    2016-01-01

    Early childhood professionals do many things to support young families. This is true now more than ever, as researchers continue to discover the long-term benefits of early, healthy, nurturing relationships. This article provides an overview of the development of an advanced practice perinatal depression algorithm created as a step-by-step guide…

  3. A Nested Genetic Algorithm for the Numerical Solution of Non-Linear Coupled Equations in Water Quality Modeling

    NASA Astrophysics Data System (ADS)

    García, Hermes A.; Guerrero-Bolaño, Francisco J.; Obregón-Neira, Nelson

    2010-05-01

    Due to both mathematical tractability and efficiency on computational resources, it is very common to find in the realm of numerical modeling in hydro-engineering that regular linearization techniques have been applied to nonlinear partial differential equations properly obtained in environmental flow studies. Sometimes this simplification is also made along with omission of nonlinear terms involved in such equations which in turn diminishes the performance of any implemented approach. This is the case for example, for contaminant transport modeling in streams. Nowadays, a traditional and one of the most common used water quality model such as QUAL2k, preserves its original algorithm, which omits nonlinear terms through linearization techniques, in spite of the continuous algorithmic development and computer power enhancement. For that reason, the main objective of this research was to generate a flexible tool for non-linear water quality modeling. The solution implemented here was based on two genetic algorithms, used in a nested way in order to find two different types of solutions sets: the first set is composed by the concentrations of the physical-chemical variables used in the modeling approach (16 variables), which satisfies the non-linear equation system. The second set, is the typical solution of the inverse problem, the parameters and constants values for the model when it is applied to a particular stream. From a total of sixteen (16) variables, thirteen (13) was modeled by using non-linear coupled equation systems and three (3) was modeled in an independent way. The model used here had a requirement of fifty (50) parameters. The nested genetic algorithm used for the numerical solution of a non-linear equation system proved to serve as a flexible tool to handle with the intrinsic non-linearity that emerges from the interactions occurring between multiple variables involved in water quality studies. However because there is a strong data limitation in

  4. A numerical algorithm to propagate navigation error covariance matrices associated with generalized strapdown inertial measurement units

    NASA Technical Reports Server (NTRS)

    Weir, Kent A.; Wells, Eugene M.

    1990-01-01

    The design and operation of a Strapdown Navigation Analysis Program (SNAP) developed to perform covariance analysis on spacecraft inertial-measurement-unit (IMU) navigation errors are described and demonstrated. Consideration is given to the IMU modeling subroutine (with user-specified sensor characteristics), the data input procedures, state updates and the simulation of instrument failures, the determination of the nominal trajectory, the mapping-matrix and Monte Carlo covariance-matrix propagation methods, and aided-navigation simulation. Numerical results are presented in tables for sample applications involving (1) the Galileo/IUS spacecraft from its deployment from the Space Shuttle to a point 10 to the 8th ft from the center of the earth and (2) the TDRS-C/IUS spacecraft from Space Shuttle liftoff to a point about 2 h before IUS deployment. SNAP is shown to give reliable results for both cases, with good general agreement between the mapping-matrix and Monte Carlo predictions.

  5. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction

    PubMed Central

    Dehghani, Hamid; Eames, Matthew E.; Yalavarthy, Phaneendra K.; Davis, Scott C.; Srinivasan, Subhadra; Carpenter, Colin M.; Pogue, Brian W.; Paulsen, Keith D.

    2009-01-01

    SUMMARY Diffuse optical tomography, also known as near infrared tomography, has been under investigation, for non-invasive functional imaging of tissue, specifically for the detection and characterization of breast cancer or other soft tissue lesions. Much work has been carried out for accurate modeling and image reconstruction from clinical data. NIRFAST, a modeling and image reconstruction package has been developed, which is capable of single wavelength and multi-wavelength optical or functional imaging from measured data. The theory behind the modeling techniques as well as the image reconstruction algorithms is presented here, and 2D and 3D examples are presented to demonstrate its capabilities. The results show that 3D modeling can be combined with measured data from multiple wavelengths to reconstruct chromophore concentrations within the tissue. Additionally it is possible to recover scattering spectra, resulting from the dominant Mie-type scatter present in tissue. Overall, this paper gives a comprehensive over view of the modeling techniques used in diffuse optical tomographic imaging, in the context of NIRFAST software package. PMID:20182646

  6. Genetic algorithm for design and manufacture optimization based on numerical simulations applied to aeronautic composite parts

    SciTech Connect

    Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.

    2010-06-15

    A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.

  7. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  8. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, K.-M.; Hu, M.-H.; Hung, C.-T.; Wu, J.-S.; Hwang, F.-N.; Chen, Y.-S.; Cheng, G.

    2012-12-01

    Development of a hybrid numerical algorithm which couples weakly with the gas flow model (GFM) and the plasma fluid model (PFM) for simulating an atmospheric-pressure plasma jet (APPJ) and its acceleration by two approaches is presented. The weak coupling between gas flow and discharge is introduced by transferring between the results obtained from the steady-state solution of the GFM and cycle-averaged solution of the PFM respectively. Approaches of reducing the overall runtime include parallel computing of the GFM and the PFM solvers, and employing a temporal multi-scale method (TMSM) for PFM. Parallel computing of both solvers is realized using the domain decomposition method with the message passing interface (MPI) on distributed-memory machines. The TMSM considers only chemical reactions by ignoring the transport terms when integrating temporally the continuity equations of heavy species at each time step, and then the transport terms are restored only at an interval of time marching steps. The total reduction of runtime is 47% by applying the TMSM to the APPJ example presented in this study. Application of the proposed hybrid algorithm is demonstrated by simulating a parallel-plate helium APPJ impinging onto a substrate, which the cycle-averaged properties of the 200th cycle are presented. The distribution patterns of species densities are strongly correlated by the background gas flow pattern, which shows that consideration of gas flow in APPJ simulations is critical.

  9. Advanced Discontinuous Galerkin Algorithms and First Open-Field Line Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Hakim, A.; Shi, E. L.

    2016-10-01

    New versions of Discontinuous Galerkin (DG) algorithms have interesting features that may help with challenging problems of higher-dimensional kinetic problems. We are developing the gyrokinetic code Gkeyll based on DG. DG also has features that may help with the next generation of Exascale computers. Higher-order methods do more FLOPS to extract more information per byte, thus reducing memory and communications costs (which are a bottleneck at exascale). DG uses efficient Gaussian quadrature like finite elements, but keeps the calculation local for the kinetic solver, also reducing communication. Sparse grid methods might further reduce the cost significantly in higher dimensions. The inner product norm can be chosen to preserve energy conservation with non-polynomial basis functions (such as Maxwellian-weighted bases), which can be viewed as a Petrov-Galerkin method. This allows a full- F code to benefit from similar Gaussian quadrature as used in popular δf gyrokinetic codes. Consistent basis functions avoid high-frequency numerical modes from electromagnetic terms. We will show our first results of 3 x + 2 v simulations of open-field line/SOL turbulence in a simple helical geometry (like Helimak/TORPEX), with parameters from LAPD, TORPEX, and NSTX. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  10. Real-space, mean-field algorithm to numerically calculate long-range interactions

    NASA Astrophysics Data System (ADS)

    Cadilhe, A.; Costa, B. V.

    2016-02-01

    Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.

  11. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  12. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George Em

    2014-11-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been

  13. Advanced numerical methods for three dimensional two-phase flow calculations

    SciTech Connect

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  14. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm

    NASA Astrophysics Data System (ADS)

    Church, Jonathan R.

    New condensed matter metrologies are being used to probe ever smaller length scales. In support of the diverse field of materials research synchrotron based spectroscopies provide sub-micron spatial resolutions and a breadth of photon wavelengths for scientific studies. For electronic materials the thinnest layers in a complementary metal-oxide-semiconductor (CMOS) device have been reduced to just a few nanometers. This raises concerns for layer uniformity, complete surface coverage, and interfacial quality. Deposition processes like chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been shown to deposit the needed high-quality films for the requisite thicknesses. However, new materials beget new chemistries and, unfortunately, unwanted side-reactions and by-products. CVD/ALD tools and chemical precursors provided by our collaborators at Air Liquide utilized these new chemistries and films were deposited for which novel spectroscopic characterization methods were used. The second portion of the thesis focuses on fading and decomposing paint pigments in iconic artworks. Efforts have been directed towards understanding the micro-environments causing degradation. Hard X-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy X-ray photoelectron spectroscopy (VKE-XPS) are advanced XPS techniques capable of elucidating both chemical environments and electronic band structures in sub-surface regions of electronic materials. HAXPES has been used to study the electronic band structure in a typical CMOS structure; it will be shown that unexpected band alignments are associated with the presence of electronic charges near a buried interface. Additionally, a computational modeling algorithm, Bayes-Sim, was developed to reconstruct compositional depth profiles (CDP) using VKE-XPS data sets; a subset algorithm also reconstructs CDP from angle-resolved XPS data. Reconstructed CDP produced by Bayes-Sim were most strongly correlated to the real

  15. A review of recent advances in numerical simulations of microscale fuel processor for hydrogen production

    NASA Astrophysics Data System (ADS)

    Holladay, J. D.; Wang, Y.

    2015-05-01

    Microscale (<5 W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer's small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems and help guide the further improvements. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol's low reforming temperature and high conversion, although, there are several methane fueled systems. The increased computational power and more complex codes have led to improved accuracy of numerical simulations. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included plate reactors, microchannel reactors, and annulus reactors for both wash-coated and packed bed systems.

  16. Clinical Accuracy of a Continuous Glucose Monitoring System With an Advanced Algorithm

    PubMed Central

    Bailey, Timothy S.; Chang, Anna; Christiansen, Mark

    2014-01-01

    Background: We assessed the performance of a modified Dexcom G4 Platinum system with an advanced algorithm, in comparison with frequent venous samples measured on a laboratory reference (YSI) during a clinic session and in comparison to self-monitored blood glucose (SMBG) during home use. Methods: Fifty-one subjects with diabetes were enrolled in a prospective multicenter study. Subjects wore 1 sensor for 7-day use and participated in one 12-hour in-clinic session on day 1, 4, or 7 to collect YSI reference venous glucose every 15 minutes and capillary SMBG test every 30 minutes. Carbohydrate consumption and insulin dosing and timing were manipulated to obtain data in low and high glucose ranges. Results: In comparison with the laboratory reference method (n = 2,263) the system provided a mean and median absolute relative differences (ARD) of 9.0% and 7.0%, respectively. The mean absolute difference for CGM was 6.4 mg/dL when the YSIs were within hypoglycemia ranges (≤ 70 mg/dL). The percentage in the clinically accurate Clarke error grid A zone was 92.4% and in the benign error B zone was 7.1%. Majority of the sensors (73%) had an aggregated MARD in reference to YSI ≤ 10%. The MARD of CGM-SMBG for home use was 11.3%. Conclusions: The study showed that the point and rate accuracy, clinical accuracy, reliability, and consistency over the duration of wear and across glycemic ranges were superior to current commercial real-time CGM systems. The performance of this CGM is reaching that of a self-monitoring blood glucose meter in real use environment. PMID:25370149

  17. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm.

    PubMed

    Bailey, Timothy S; Chang, Anna; Christiansen, Mark

    2015-03-01

    We assessed the performance of a modified Dexcom G4 Platinum system with an advanced algorithm, in comparison with frequent venous samples measured on a laboratory reference (YSI) during a clinic session and in comparison to self-monitored blood glucose (SMBG) during home use. Fifty-one subjects with diabetes were enrolled in a prospective multicenter study. Subjects wore 1 sensor for 7-day use and participated in one 12-hour in-clinic session on day 1, 4, or 7 to collect YSI reference venous glucose every 15 minutes and capillary SMBG test every 30 minutes. Carbohydrate consumption and insulin dosing and timing were manipulated to obtain data in low and high glucose ranges. In comparison with the laboratory reference method (n = 2,263) the system provided a mean and median absolute relative differences (ARD) of 9.0% and 7.0%, respectively. The mean absolute difference for CGM was 6.4 mg/dL when the YSIs were within hypoglycemia ranges (≤ 70 mg/dL). The percentage in the clinically accurate Clarke error grid A zone was 92.4% and in the benign error B zone was 7.1%. Majority of the sensors (73%) had an aggregated MARD in reference to YSI ≤ 10%. The MARD of CGM-SMBG for home use was 11.3%. The study showed that the point and rate accuracy, clinical accuracy, reliability, and consistency over the duration of wear and across glycemic ranges were superior to current commercial real-time CGM systems. The performance of this CGM is reaching that of a self-monitoring blood glucose meter in real use environment.

  18. Design and Initial In-Water Testing of Advanced Non-Linear Control Algorithms onto an Unmanned Underwater Vehicle (UUV)

    DTIC Science & Technology

    2007-10-01

    Design and initial in-water testing of advanced non- linear control algorithms onto an Unmanned Underwater Vehicle (UUV) Vladimir Djapic Unmanned...attitude or translating in a direction different from that of the surface. Non- linear controller that compensates for non-linear forces (such as drag...loop” non- linear controller (outputs the appropriate thrust values) is the same for all mission scenarios while an appropriate ”outer-loop” non

  19. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  20. Multi-damage detection with embedded ultrasonic structural radar algorithm using piezoelectric wafer active sensors through advanced signal processing

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor

    2005-05-01

    The embedded ultrasonic structural radar (EUSR) algorithm was developed by using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. EUSR has been verified to be effective for detecting a single crack either at a broadside or at an offside position. In this research, advanced signal processing techniques were included to enhance inspection image quality and detect multiple damage. The signal processing methods include discrete wavelet transform for signal denoising, short-time Fourier transform and continuous wavelet transform for time-frequency analysis, continuous wavelet transform for frequency filtering, and Hilbert transform for envelope extraction. All these signal processing modules were implemented by developing a graphical user-friendly interface program in LabVIEW. The paper starts with an introduction of embedded ultrasonic structural radar algorithm, followed with the theoretical aspect of the phased array signal processing method. Then, the mathematical algorithms for advanced signal processing are introduced. In the end, laboratory experimental results are presented to show how efficiently the improved EUSR works. The results are analyzed and EUSR is concluded to have been improved by using the advanced signal processing techniques. The improvements include: 1) EUSR is able to provide better image of the specimen under monitoring; 2) it is able to detect multi-damage such as several cracks; 3) it is able to identify different damage types.

  1. Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine

    NASA Astrophysics Data System (ADS)

    Bahrami, Saeed; Doulati Ardejani, Faramarz; Baafi, Ernest

    2016-05-01

    In this study, hybrid models are designed to predict groundwater inflow to an advancing open pit mine and the hydraulic head (HH) in observation wells at different distances from the centre of the pit during its advance. Hybrid methods coupling artificial neural network (ANN) with genetic algorithm (GA) methods (ANN-GA), and simulated annealing (SA) methods (ANN-SA), were utilised. Ratios of depth of pit penetration in aquifer to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the HH in the observation wells to the distance of observation wells from the centre of the pit were used as inputs to the networks. To achieve the objective two hybrid models consisting of ANN-GA and ANN-SA with 4-5-3-1 arrangement were designed. In addition, by switching the last argument of the input layer with the argument of the output layer of two earlier models, two new models were developed to predict the HH in the observation wells for the period of the mining process. The accuracy and reliability of models are verified by field data, results of a numerical finite element model using SEEP/W, outputs of simple ANNs and some well-known analytical solutions. Predicted results obtained by the hybrid methods are closer to the field data compared to the outputs of analytical and simple ANN models. Results show that despite the use of fewer and simpler parameters by the hybrid models, the ANN-GA and to some extent the ANN-SA have the ability to compete with the numerical models.

  2. Numerical Algorithms & Parallel Tasking.

    DTIC Science & Technology

    1985-09-12

    senior personnel have been supported under this contract: Virginia Klema, principal investigator (3.5 months), Elizabeth Ducot (2.25 months), and George...CONCURRENT ENVIRONMENT Elizabeth R. Ducot The purpose of this note is twofold. The first is to present the mechanisms by which a user activates and describes

  3. Static Analysis Numerical Algorithms

    DTIC Science & Technology

    2016-04-01

    abstract domain provides (1) an abstract type to represent concrete program states, and (2) abstract functions to represent the effect of concrete ...state-changing actions. Rather than simulate the concrete program, abstract interpretation uses abstract domains to construct and simulate an...On the other hand, the abstraction does allow us to cheaply compute some kinds of information about the concrete program. In the example, we can

  4. A review of recent advances of numerical simulations of microscale fuel processors for hydrogen production

    SciTech Connect

    Holladay, Jamelyn D.; Wang, Yong

    2015-05-01

    Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer’s small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol’s low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.

  5. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm.

    PubMed

    Baez, M L; Borzi, R A

    2017-02-08

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along [Formula: see text], and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, [Formula: see text] and [Formula: see text]. This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of 'strings' of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along [Formula: see text] there are only three different stable phases at zero temperature.

  6. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    NASA Astrophysics Data System (ADS)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  7. Advanced Algorithms and Automation Tools for Discrete Ordinates Methods in Parallel Environments

    SciTech Connect

    Alireza Haghighat

    2003-05-07

    This final report discusses major accomplishments of a 3-year project under the DOE's NEER Program. The project has developed innovative and automated algorithms, codes, and tools for solving the discrete ordinates particle transport method efficiently in parallel environments. Using a number of benchmark and real-life problems, the performance and accuracy of the new algorithms have been measured and analyzed.

  8. Advances in robotics: Algorithmic and geometric aspects of robotics. Volume 1

    SciTech Connect

    Schwartz, J.T.; Yap, C.K.

    1986-01-01

    This book examines the latest contributions of engineering, applied physics, and computer science to robotics. The volume explores the applications of algorithm design and computational geometry to automatic planning and control functions. Topics considered include computational geometry, algorithmic motion planning, the approximation and decomposition of shapes, Voronoi diagrams, wire frames, and the reconstruction of objects.

  9. A real-time implementation of an advanced sensor failure detection, isolation, and accommodation algorithm

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Merrill, W. C.

    1983-01-01

    A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.

  10. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  11. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    NASA Technical Reports Server (NTRS)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  12. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    SciTech Connect

    Mazzolani, Federico M.

    2008-07-08

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the development of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements.

  13. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Xing, Z. W.; Bao, J.; Song, B. Y.

    2010-04-01

    Hot forming is a new way to manufacture complex-shaped components of advanced high-strength steel (AHSS) sheet with a minimum of spring-back. Numerical simulation is an effective way to examine the hot-forming process, particularly to determine thermal and thermo-mechanical characteristics and their dependencies on temperature, strain and strain rate. The flow behavior of the 22MnB5 AHSS is investigated through hot tensile tests. A 3D finite element (FE) model of hot-stamping process for the [InlineMediaObject not available: see fulltext.] shaped part is built under the ABAQUS/Explicit environment based on the solutions of several key problems, such as treatment of contact between blank and tools, determination of material characteristics and meshing, etc. Numerical simulation is carried out to investigate the influence of blank holder force (BHF) and die gap on the hot-forming process for the [InlineMediaObject not available: see fulltext.] shaped part. Numerical results show the FE model is effective in simulation of hot-forming process. Large BHF reduces the amount of spring-back and improves the contact of flange with tools while avoiding cracking of stamped part. Die gap has a considerable influence on the distribution of temperature on side walls; the larger the die gap, higher is the temperature on the sidewall of [InlineMediaObject not available: see fulltext.] shaped part.

  14. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    NASA Astrophysics Data System (ADS)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-05-01

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank-Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. Subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.

  15. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  16. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    SciTech Connect

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.

  17. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms.

    PubMed

    Dawood, Mohammad; Buther, Florian; Jiang, Xiaoyi; Schafers, Klaus P

    2008-08-01

    The problem of motion is well known in positron emission tomography (PET) studies. The PET images are formed over an elongated period of time. As the patients cannot hold breath during the PET acquisition, spatial blurring and motion artifacts are the natural result. These may lead to wrong quantification of the radioactive uptake. We present a solution to this problem by respiratory-gating the PET data and correcting the PET images for motion with optical flow algorithms. The algorithm is based on the combined local and global optical flow algorithm with modifications to allow for discontinuity preservation across organ boundaries and for application to 3-D volume sets. The superiority of the algorithm over previous work is demonstrated on software phantom and real patient data.

  18. Numerical simulation of the reactive flow in advanced (HSR) combustors using KIVA-2

    NASA Technical Reports Server (NTRS)

    Winowich, Nicholas S.

    1991-01-01

    Recent work has been done with the goal of establishing ultralow emission aircraft gas turbine combustors. A significant portion of the effort is the development of three dimensional computational combustor models. The KIVA-II computer code which is based on the Implicit Continuous Eulerian Difference mesh Arbitrary Lagrangian Eulerian (ICED-ALE) numerical scheme is one of the codes selected by NASA to achieve these goals. This report involves a simulation of jet injection through slanted slots within the Rich burn/Quick quench/Lean burn (RQL) baseline experimental rig. The RQL combustor distinguishes three regions of combustion. This work specifically focuses on modeling the quick quench mixer region in which secondary injection air is introduced radially through 12 equally spaced slots around the mixer circumference. Steady state solutions are achieved with modifications to the KIVA-II program. Work currently underway will evaluate thermal mixing as a function of injection air velocity and angle of inclination of the slots.

  19. Numerical simulation of fine blanking process using fully coupled advanced constitutive equations with ductile damage

    NASA Astrophysics Data System (ADS)

    Labergere, C.; Saanouni, K.; Benafia, S.; Galmiche, J.; Sulaiman, H.

    2013-05-01

    This paper presents the modelling and adaptive numerical simulation of the fine blanking process. Thermodynamically-consistent constitutive equations, strongly coupled with ductile damage, together with specific boundary conditions (particular command of forces on blank holder and counterpunch) are presented. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine and connected with an adaptive 2D remeshing procedure. The different material parameters are identified for the steel S600MC using experimental tensile tests conducted until the final fracture. A parametric study aiming to examine the sensitivity of the process parameters (die radius, clearance die/punch) to the punch force and fracture surfaces topology (convex zone, sheared zone, fracture zone and the burr).

  20. Evaluation of Temperature Gradient in Advanced Automated Directional Solidification Furnace (AADSF) by Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1996-01-01

    A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).

  1. Recent advances in methods for numerical solution of O.D.E. initial value problems

    NASA Technical Reports Server (NTRS)

    Bui, T. D.; Oppenheim, A. K.; Pratt, D. T.

    1984-01-01

    In the mathematical modeling of physical systems, it is often necessary to solve an initial value problem (IVP), consisting of a system of ordinary differential equations (ODE). A typical program produces approximate solutions at certain mesh points. Almost all existing codes try to control the local truncation error, while the user is really interested in controlling the true or global error. The present investigation provides a review of recent advances regarding the solution of the IVP, giving particular attention to stiff systems. Stiff phenomena are customarily defined in terms of the eigenvalues of the Jacobian. There are, however, some difficulties connected with this approach. It is pointed out that an estimate of the Lipschitz constant proves to be a very practical way to determine the stiffness of a problem.

  2. Towards Algorithmic Advances for Solving Stackelberg Games: Addressing Model Uncertainties and Massive Game Scale-up

    DTIC Science & Technology

    2015-02-04

    SECURITY CLASSIFICATION OF: This project opens up a brand new area of research that fuses two separate subareas of game theory: algorithmic game theory...and behavioral game theory. More specifically, game -theoretic algorithms have been deployed by several security agencies, allowing them to generate...optimal randomized schedules against adversaries who may exploit predictability. However, one key challenge in applying game theory to solving real

  3. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings.

    PubMed

    Dessì, Alessia; Pani, Danilo; Raffo, Luigi

    2014-08-01

    Non-invasive fetal electrocardiography is still an open research issue. The recent publication of an annotated dataset on Physionet providing four-channel non-invasive abdominal ECG traces promoted an international challenge on the topic. Starting from that dataset, an algorithm for the identification of the fetal QRS complexes from a reduced number of electrodes and without any a priori information about the electrode positioning has been developed, entering into the top ten best-performing open-source algorithms presented at the challenge.In this paper, an improved version of that algorithm is presented and evaluated exploiting the same challenge metrics. It is mainly based on the subtraction of the maternal QRS complexes in every lead, obtained by synchronized averaging of morphologically similar complexes, the filtering of the maternal P and T waves and the enhancement of the fetal QRS through independent component analysis (ICA) applied on the processed signals before a final fetal QRS detection stage. The RR time series of both the mother and the fetus are analyzed to enhance pseudoperiodicity with the aim of correcting wrong annotations. The algorithm has been designed and extensively evaluated on the open dataset A (N = 75), and finally evaluated on datasets B (N = 100) and C (N = 272) to have the mean scores over data not used during the algorithm development. Compared to the results achieved by the previous version of the algorithm, the current version would mark the 5th and 4th position in the final ranking related to the events 1 and 2, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. On dataset A, the algorithm achieves 0.982 median sensitivity and 0.976 median positive predictivity.

  4. Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders

    PubMed Central

    Gabler, Hampton C.; Hinch, John

    2008-01-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234

  5. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    PubMed Central

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-01-01

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  6. A review on recent advances in numerical modelling of bone cutting.

    PubMed

    Marco, Miguel; Rodríguez-Millán, Marcos; Santiuste, Carlos; Giner, Eugenio; Henar Miguélez, María

    2015-04-01

    Common practice of surgical treatments in orthopaedics and traumatology involves cutting processes of bone. These operations introduce risk of thermo-mechanical damage, since the threshold of critical temperature producing thermal osteonecrosis is very low. Therefore, it is important to develop predictive tools capable of simulating accurately the increase of temperature during bone cutting, being the modelling of these processes still a challenge. In addition, the prediction of cutting forces and mechanical damage is also important during machining operations. As the accuracy of simulations depends greatly on the proper choice of the thermo-mechanical properties, an essential part of the numerical model is the constitutive behaviour of the bone tissue, which is considered in different ways in the literature. This paper focuses on the review of the main contributions in modelling of bone cutting with special attention to the bone mechanical behaviour. The aim is to give the reader a complete vision of the approaches commonly presented in the literature in order to help in the development of accurate models for bone cutting.

  7. Advanced numerical techniques for accurate unsteady simulations of a wingtip vortex

    NASA Astrophysics Data System (ADS)

    Ahmad, Shakeel

    A numerical technique is developed to simulate the vortices associated with stationary and flapping wings. The Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations are used over an unstructured grid. The present work assesses the locations of the origins of vortex generation, models those locations and develops a systematic mesh refinement strategy to simulate vortices more accurately using the URANS model. The vortex center plays a key role in the analysis of the simulation data. A novel approach to locating a vortex center is also developed referred to as the Max-Max criterion. Experimental validation of the simulated vortex from a stationary NACA0012 wing is achieved. The tangential velocity along the core of the vortex falls within five percent of the experimental data in the case of the stationary NACA0012 simulation. The wing surface pressure coefficient also matches with the experimental data. The refinement techniques are then focused on unsteady simulations of pitching and dual-mode wing flapping. Tip vortex strength, location, and wing surface pressure are analyzed. Links to vortex behavior and wing motion are inferred. Key words: vortex, tangential velocity, Cp, vortical flow, unsteady vortices, URANS, Max-Max, Vortex center

  8. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

    PubMed

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-08-13

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs.

  9. [Adequacy of clinical interventions in patients with advanced and complex disease. Proposal of a decision making algorithm].

    PubMed

    Ameneiros-Lago, E; Carballada-Rico, C; Garrido-Sanjuán, J A; García Martínez, A

    2015-01-01

    Decision making in the patient with chronic advanced disease is especially complex. Health professionals are obliged to prevent avoidable suffering and not to add any more damage to that of the disease itself. The adequacy of the clinical interventions consists of only offering those diagnostic and therapeutic procedures appropriate to the clinical situation of the patient and to perform only those allowed by the patient or representative. In this article, the use of an algorithm is proposed that should serve to help health professionals in this decision making process.

  10. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  11. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  12. Numerical and experimental evaluation of the impact performance of advanced high-strength steel sheets based on a damage model

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Park, Taejoon; Kim, Dongun; Kim, Chongmin; Chung, Kwansoo

    2010-06-01

    The impact performance in a Charpy impact test was experimentally and numerically studied for the advanced high-strength steel sheets (AHSS) TWIP940 and TRIP590 as well as the high-strength grade known as 340R. To characterize the mechanical properties, uni-axial simple tension tests were conducted to determine the anisotropic properties and strain rate sensitivities of these materials. In particular, the high-speed strain-rate sensitivity of TRIP590 and 340R (rate sensitive) was also characterized to account for the high strain rates involved in the Charpy impact test. To evaluate fracture behavior in the Charpy impact test, a new damage model including a triaxiality-dependent fracture criterion and hardening behavior with stiffness deterioration was introduced. The model was calibrated via numerical simulations and experiments involving simple tension and V-notch tests. The new damage model along with the anisotropic yield function Hill 1948 was incorporated into the ABAQUS/Explicit FEM code, which performed reasonably well to predict the impact energy absorbed during the Charpy impact test.

  13. Optimization of fiber grating couplers on SOI using advanced search algorithms.

    PubMed

    Wohlfeil, Benjamin; Zimmermann, Lars; Petermann, Klaus

    2014-06-01

    A one-dimensional fiber grating coupler is derived from a waveguide with random etches using implementations of particle swarm and genetic algorithms. The resulting gratings yield a theoretical coupling efficiency of up to 1.1 dB and prompt clear design rules for the layout of highly efficient fiber grating couplers.

  14. Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Biedron, R. T.; Luckring, J. M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.

  15. Implementation of advanced feedback control algorithms for controlled resonant magnetic perturbation physics studies on EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2011-06-01

    The EXTRAP T2R feedback system (active coils, sensor coils and controller) is used to study and develop new tools for advanced control of the MHD instabilities in fusion plasmas. New feedback algorithms developed in EXTRAP T2R reversed-field pinch allow flexible and independent control of each magnetic harmonic. Methods developed in control theory and applied to EXTRAP T2R allow a closed-loop identification of the machine plant and of the resistive wall modes growth rates. The plant identification is the starting point for the development of output-tracking algorithms which enable the generation of external magnetic perturbations. These algorithms will then be used to study the effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics. It will be shown that the stationary RMP can induce oscillations in the amplitude and jumps in the phase of the rotating TM. It will be shown that the RMP strongly affects the magnetic island position.

  16. Advanced Suspension and Control Algorithm for U.S. Army Ground Vehicles

    DTIC Science & Technology

    2013-04-01

    torque convertor characteristics, and transmission gear ratios and efficiencies. A representative TruckSim tactical vehicle model (modified High...different type of nonlinear control algorithm, called single experiment–multiple pulses , was also considered and developed using Matlab/Simulink. This...vibration to the vehicle body. This effect indicates that the controllable dynamic force range, defined as the ratio of the field-on damping force

  17. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  18. Dynamic statistical optimization of GNSS radio occultation bending angles: an advanced algorithm and its performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-01-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS) based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically-varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAMP and COSMIC measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction in random errors (standard deviations) of optimized bending angles down to about two-thirds of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; (4) produces realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well characterized and high-quality atmospheric profiles over the entire stratosphere.

  19. Dynamically Resolved Simulation of Atmospheric Features and Turbulence Using Advanced Models and Adaptive Algorithms

    DTIC Science & Technology

    2008-10-30

    the dissipation rate of the variance of potential temperature and e is the dissipat ion rate of the variance of velocity or turbulent kinetic energy ...structure function Cn2, a quantitative measure of atmospheric optical turbulence. These four equations are used to model the turbulence kinetic energy , the...NWP Numerical weather Prediction PBL Planetary boundary layer PPM Piecewise parabolic method SGS Subgrid scale TKE Turbulent kinetic energy UTC

  20. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  1. Treatment algorithm based on the multivariate survival analyses in patients with advanced hepatocellular carcinoma treated with trans-arterial chemoembolization

    PubMed Central

    Prajapati, Hasmukh J.

    2017-01-01

    Purpose To develop the treatment algorithm from multivariate survival analyses (MVA) in patients with Barcelona clinic liver cancer (BCLC) C (advanced) Hepatocellular carcinoma (HCC) patients treated with Trans-arterial Chemoembolization (TACE). Methods Consecutive unresectable and non-tranplantable patients with advanced HCC, who received DEB TACE were studied. A total of 238 patients (mean age, 62.4yrs) was included in the study. Survivals were analyzed according to different parameters from the time of the 1st DEB TACE. Kaplan Meier and Cox Proportional Hazard model were used for survival analysis. The SS was constructed from MVA and named BCLC C HCC Prognostic (BCHP) staging system (SS). Results Overall median survival (OS) was 16.2 months. In HCC patients with venous thrombosis (VT) of large vein [main portal vein (PV), right or left PV, hepatic vein, inferior vena cava] (22.7%) versus small vein (segmental/subsegmental PV) (9.7%) versus no VT had OSs of 6.4 months versus 20 months versus 22.8 months respectively (p<0.001). On MVA, the significant independent prognostic factors (PFs) of survival were CP class, eastern cooperative oncology group (ECOG) performance status (PS), single HCC<5 cm, site of VT, metastases, serum creatinine and serum alpha-feto protein. Based on these PFs, the BCHP staging system was constructed. The OSs of stages I, II and III were 28.4 months, 11.8 months and 2.4 months accordingly (p<0.001). The treatment plan was proposed according to the different stages. Conclusion On MVA of patients with advanced HCC treated with TACE, significant independent prognostic factors (PFs) of survival were CP class, ECOG PS, single HCC<5 cm or others, site of VT, metastases, serum creatinine and serum alpha-feto protein. New BCHP SS was proposed based on MVA data to identify the suitable advanced HCC patients for TACE treatments. PMID:28170405

  2. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  3. A joint numerical and experimental study of the jet of an aircraft engine installation with advanced techniques

    NASA Astrophysics Data System (ADS)

    Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.

    2012-01-01

    This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.

  4. Critical Appraisal of Acuros XB and Anisotropic Analytic Algorithm Dose Calculation in Advanced Non-Small-Cell Lung Cancer Treatments

    SciTech Connect

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Cozzi, Luca

    2012-08-01

    Purpose: To assess the clinical impact of the Acuros XB algorithm (implemented in the Varian Eclipse treatment-planning system) in non-small-cell lung cancer (NSCLC) cases. Methods and Materials: A CT dataset of 10 patients presenting with advanced NSCLC was selected and contoured for planning target volume, lungs, heart, and spinal cord. Plans were created for 6-MV and 15-MV beams using three-dimensional conformal therapy, intensity-modulated therapy, and volumetric modulated arc therapy with RapidArc. Calculations were performed with Acuros XB and the Anisotropic Analytical Algorithm. To distinguish between differences coming from the different heterogeneity management and those coming from the algorithm and its implementation, all the plans were recalculated assigning Hounsfield Unit (HU) = 0 (Water) to the CT dataset. Results: Differences in dose distributions between the two algorithms calculated in Water were <0.5%. This suggests that the differences in the real CT dataset can be ascribed mainly to the different heterogeneity management, which is proven to be more accurate in the Acuros XB calculations. The planning target dose difference was stratified between the target in soft tissue, where the mean dose was found to be lower for Acuros XB, with a range of 0.4% {+-} 0.6% (intensity-modulated therapy, 6 MV) to 1.7% {+-} 0.2% (three-dimensional conformal therapy, 6 MV), and the target in lung tissue, where the mean dose was higher for 6 MV (from 0.2% {+-} 0.2% to 1.2% {+-} 0.5%) and lower for 15 MV (from 0.5% {+-} 0.5% to 2.0% {+-} 0.9%). Mean doses to organs at risk presented differences up to 3% of the mean structure dose in the worst case. No particular or systematic differences were found related to the various modalities. Calculation time ratios between calculation time for Acuros XB and the Anisotropic Analytical Algorithm were 7 for three-dimensional conformal therapy, 5 for intensity-modulated therapy, and 0.2 for volumetric modulated arc therapy

  5. Sensitivity derivatives for advanced CFD algorithm and viscous modelling parameters via automatic differentiation

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Newman, Perry A.; Haigler, Kara J.

    1993-01-01

    The computational technique of automatic differentiation (AD) is applied to a three-dimensional thin-layer Navier-Stokes multigrid flow solver to assess the feasibility and computational impact of obtaining exact sensitivity derivatives typical of those needed for sensitivity analyses. Calculations are performed for an ONERA M6 wing in transonic flow with both the Baldwin-Lomax and Johnson-King turbulence models. The wing lift, drag, and pitching moment coefficients are differentiated with respect to two different groups of input parameters. The first group consists of the second- and fourth-order damping coefficients of the computational algorithm, whereas the second group consists of two parameters in the viscous turbulent flow physics modelling. Results obtained via AD are compared, for both accuracy and computational efficiency with the results obtained with divided differences (DD). The AD results are accurate, extremely simple to obtain, and show significant computational advantage over those obtained by DD for some cases.

  6. Facilitation of Third-party Development of Advanced Algorithms for Explosive Detection Using Workshops and Grand Challenges

    SciTech Connect

    Martz, H E; Crawford, C R; Beaty, J S; Castanon, D

    2011-02-15

    The US Department of Homeland Security (DHS) has requirements for future explosive detection scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. The purposes of this presentation are to review DHS's objectives for involving third parties in the development of advanced algorithms and then to discuss how these objectives are achieved using workshops and grand challenges. Terrorists are still trying and they are getting more sophisticated. There is a need to increase the number of smart people working on homeland security. Augmenting capabilities and capacities of system vendors with third-parties is one tactic. Third parties can be accessed via workshops and grand challenges. Successes have been achieved to date. There are issues that need to be resolved to further increase third party involvement.

  7. Treatment algorithm in 2014 for advanced non-small cell lung cancer: therapy selection by tumour histology and molecular biology.

    PubMed

    Manegold, Christian

    2014-09-01

    The availability of antineoplastic monoclonal antibodies, small molecules and newer cytotoxics such as pemetrexed, the EGFR-tyrosine kinase inhibitors erlotinib, gefitinib, afatinib as well as the anti-angiogenic bevacizumab and the ALK-inhibitor crizotinib has recently changes the treatment algorithm of advanced non-small cell lung cancer. Decision making in 2014 is characterized by customizing therapy, by selecting a specific therapeutic regimen based on the histotype and the genotype of the tumour. This refers to first-line induction therapy and maintenance therapy as well, but also to subsequent lines of therapy since anti-neoplastic drugs and regimens used upfront clinically influence the selection of agents/regimes considered for second-/third-line treatment. Consequently, therapy customization through tumour histology and molecular markers has significantly influenced the work of pathologists around the globe and the process of obtaining an extended therapeutically relevant tumour diagnosis. Not only histological sub-typing became standard but molecular information is also considered of increasing importance for treatment selection. Routine molecular testing in certified laboratories must be established, and the diagnostic process should ideally be performed under the guidance of evidence based recommendation. The process of investigating and implementing medical targeting in lung cancer therefore, requires advanced diagnostic techniques and expertise and because of its large dimension is costly and influenced by the limitation of financial and clinical resources.

  8. An advanced shape-fitting algorithm applied to quadrupedal mammals: improving volumetric mass estimates

    PubMed Central

    Brassey, Charlotte A.; Gardiner, James D.

    2015-01-01

    Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new ‘alpha shapes’ (α-shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α-shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α, determining the refinement of fit. For a given skeleton, a range of α-shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α-shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error (r2=0.975, m.s.e.=0.025). When applied to the woolly mammoth (Mammuthus primigenius) and giant ground sloth (Megatherium americanum), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α-shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons. PMID:26361559

  9. An advanced shape-fitting algorithm applied to quadrupedal mammals: improving volumetric mass estimates.

    PubMed

    Brassey, Charlotte A; Gardiner, James D

    2015-08-01

    Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new 'alpha shapes' (α-shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α-shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α, determining the refinement of fit. For a given skeleton, a range of α-shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α-shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error (r (2)=0.975, m.s.e.=0.025). When applied to the woolly mammoth (Mammuthus primigenius) and giant ground sloth (Megatherium americanum), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α-shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons.

  10. Advanced order management in ERM systems: the tic-tac-toe algorithm

    NASA Astrophysics Data System (ADS)

    Badell, Mariana; Fernandez, Elena; Puigjaner, Luis

    2000-10-01

    The concept behind improved enterprise resource planning systems (ERP) systems is the overall integration of the whole enterprise functionality into the management systems through financial links. Converting current software into real management decision tools requires crucial changes in the current approach to ERP systems. This evolution must be able to incorporate the technological achievements both properly and in time. The exploitation phase of plants needs an open web-based environment for collaborative business-engineering with on-line schedulers. Today's short lifecycles of products and processes require sharp and finely tuned management actions that must be guided by scheduling tools. Additionally, such actions must be able to keep track of money movements related to supply chain events. Thus, the necessary outputs require financial-production integration at the scheduling level as proposed in the new approach of enterprise management systems (ERM). Within this framework, the economical analysis of the due date policy and its optimization become essential to manage dynamically realistic and optimal delivery dates with price-time trade-off during the marketing activities. In this work we propose a scheduling tool with web-based interface conducted by autonomous agents when precise economic information relative to plant and business actions and their effects are provided. It aims to attain a better arrangement of the marketing and production events in order to face the bid/bargain process during e-commerce. Additionally, management systems require real time execution and an efficient transaction-oriented approach capable to dynamically adopt realistic and optimal actions to support marketing management. To this end the TicTacToe algorithm provides sequence optimization with acceptable tolerances in realistic time.

  11. Numerical and structural aberrations in advanced neuroblastoma tumours by CGH analysis; survival correlates with chromosome 17 status

    PubMed Central

    Cunsolo, C Lo; Bicocchi, M P; Petti, A R; Tonini, G P

    2000-01-01

    Rapid tumour progression in neuroblastoma is associated with MYCN amplification, deletion of the short arm of chromosome 1 and gain of 17q. However, patients with advanced disease without MYCN amplification and/or 1p deletion have a very poor outcome too, which suggests other genetic defects may predict an unfavourable prognosis. We employed CGH to study 22 tumours of patients at stages 3 and 4 over one year of age (6 and 16 cases respectively). Patients were divided in groups (A) long-term survivors and (B) short-term survivors. CGH showed a total of 226 chromosome imbalances (110 in group A and 116 in group B). The neuroblastoma cells of long-term survivors showed a preponderance of numerical aberrations (54%vs 43%); particularly gains of entire chromosomes 1 (P< 0.03), 7 (P< 0.04) and 19 (P< 0.05). An extra copy of 17 was detected in 6/8 (75%) samples of group A and only 1/14 (7%) samples of group B (P< 0.002). Conversely, tumours of patients who died from disease progression displayed a higher frequency of structural abnormalities (43%vs 35%), including loss of 1p, 9p, 11q, 15q and 18q and gain of 12q, although the difference was not significant (P= 0.24). Unbalanced gain of 17q was detected in 8/14 (57%) tumours of group B and only 1/8 (13%) tumours of group A (P< 0.05). The peculiar genetic difference observed in the tumours of long and short-term survivors may have prognostic relevance. © 2000 Cancer Research Campaign PMID:11044353

  12. A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy

    NASA Astrophysics Data System (ADS)

    Motheau, E.; Abraham, J.

    2016-05-01

    A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP&FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.

  13. A Numerical Algorithm to Calculate the Pressure Distribution of the TPS Front End Due to Desorption Induced by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Sheng, I. C.; Kuan, C. K.; Chen, Y. T.; Yang, J. Y.; Hsiung, G. Y.; Chen, J. R.

    2010-06-01

    The pressure distribution is an important aspect of a UHV subsystem in either a storage ring or a front end. The design of the 3-GeV, 400-mA Taiwan Photon Source (TPS) foresees outgassing induced by photons and due to a bending magnet and an insertion device. An algorithm to calculate the photon-stimulated absorption (PSD) due to highly energetic radiation from a synchrotron source is presented. Several results using undulator sources such as IU20 are also presented, and the pressure distribution is illustrated.

  14. Middle atmosphere project: A radiative heating and cooling algorithm for a numerical model of the large scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Wehrbein, W. M.; Leovy, C. B.

    1981-01-01

    A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.

  15. Theory of axially symmetric cusped focusing: numerical evaluation of a Bessoid integral by an adaptive contour algorithm

    NASA Astrophysics Data System (ADS)

    Kirk, N. P.; Connor, J. N. L.; Curtis, P. R.; Hobbs, C. A.

    2000-07-01

    A numerical procedure for the evaluation of the Bessoid canonical integral J({x,y}) is described. J({x,y}) is defined, for x and y real, by eq1 where J0(·) is a Bessel function of order zero. J({x,y}) plays an important role in the description of cusped focusing when there is axial symmetry present. It arises in the diffraction theory of aberrations, in the design of optical instruments and of highly directional microwave antennas and in the theory of image formation for high-resolution electron microscopes. The numerical procedure replaces the integration path along the real t axis with a more convenient contour in the complex t plane, thereby rendering the oscillatory integrand more amenable to numerical quadrature. The computations use a modified version of the CUSPINT computer code (Kirk et al 2000 Comput. Phys. Commun. at press), which evaluates the cuspoid canonical integrals and their first-order partial derivatives. Plots and tables of J({x,y}) and its zeros are presented for the grid -8.0≤x≤8.0 and -8.0≤y≤8.0. Some useful series expansions of J({x,y}) are also derived.

  16. On the use of advanced numerical models for the evaluation of dosimetric parameters and the verification of exposure limits at workplaces.

    PubMed

    Catarinucci, L; Tarricone, L

    2009-12-01

    With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.

  17. Approximate learning algorithm in Boltzmann machines.

    PubMed

    Yasuda, Muneki; Tanaka, Kazuyuki

    2009-11-01

    Boltzmann machines can be regarded as Markov random fields. For binary cases, they are equivalent to the Ising spin model in statistical mechanics. Learning systems in Boltzmann machines are one of the NP-hard problems. Thus, in general we have to use approximate methods to construct practical learning algorithms in this context. In this letter, we propose new and practical learning algorithms for Boltzmann machines by using the belief propagation algorithm and the linear response approximation, which are often referred as advanced mean field methods. Finally, we show the validity of our algorithm using numerical experiments.

  18. Construction of an extended invariant for an arbitrary ordinary differential equation with its development in a numerical integration algorithm.

    PubMed

    Fukuda, Ikuo; Nakamura, Haruki

    2006-02-01

    For an arbitrary ordinary differential equation (ODE), a scheme for constructing an extended ODE endowed with a time-invariant function is here proposed. This scheme enables us to examine the accuracy of the numerical integration of an ODE that may itself have had no invariant. These quantities are constructed by referring to the Nosé-Hoover molecular dynamics equation and its related conserved quantity. By applying this procedure to several molecular dynamics equations, the conventional conserved quantity individually defined in each dynamics can be reproduced in a uniform, generalized way; our concept allows a transparent outlook underlying these quantities and ideas. Developing the technique, for a certain class of ODEs we construct a numerical integrator that is not only explicit and symmetric, but preserves a unit Jacobian for a suitably defined extended ODE, which also provides an invariant. Our concept is thus to simply build a divergence-free extended ODE whose solution is just a lift-up of the original ODE, and to constitute an efficient integrator that preserves the phase-space volume on the extended system. We present precise discussions about the general mathematical properties of the integrator and provide specific conditions that should be incorporated for practical applications.

  19. Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales

    SciTech Connect

    Kollias, Pavlos

    2016-09-06

    This the final report for the DE-SC0007096 - Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales - PI: Pavlos Kollias. The final report outline the main findings of the research conducted using the aforementioned award in the area of cloud research from the cloud scale (10-100 m) to the mesoscale (20-50 km).

  20. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  1. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    NASA Astrophysics Data System (ADS)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  2. Parallel Newton-Krylov-Schwarz algorithms for the three-dimensional Poisson-Boltzmann equation in numerical simulation of colloidal particle interactions

    NASA Astrophysics Data System (ADS)

    Hwang, Feng-Nan; Cai, Shang-Rong; Shao, Yun-Long; Wu, Jong-Shinn

    2010-09-01

    We investigate fully parallel Newton-Krylov-Schwarz (NKS) algorithms for solving the large sparse nonlinear systems of equations arising from the finite element discretization of the three-dimensional Poisson-Boltzmann equation (PBE), which is often used to describe the colloidal phenomena of an electric double layer around charged objects in colloidal and interfacial science. The NKS algorithm employs an inexact Newton method with backtracking (INB) as the nonlinear solver in conjunction with a Krylov subspace method as the linear solver for the corresponding Jacobian system. An overlapping Schwarz method as a preconditioner to accelerate the convergence of the linear solver. Two test cases including two isolated charged particles and two colloidal particles in a cylindrical pore are used as benchmark problems to validate the correctness of our parallel NKS-based PBE solver. In addition, a truly three-dimensional case, which models the interaction between two charged spherical particles within a rough charged micro-capillary, is simulated to demonstrate the applicability of our PBE solver to handle a problem with complex geometry. Finally, based on the result obtained from a PC cluster of parallel machines, we show numerically that NKS is quite suitable for the numerical simulation of interaction between colloidal particles, since NKS is robust in the sense that INB is able to converge within a small number of iterations regardless of the geometry, the mesh size, the number of processors. With help of an additive preconditioned Krylov subspace method NKS achieves parallel efficiency of 71% or better on up to a hundred processors for a 3D problem with 5 million unknowns.

  3. Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms

    DOE PAGES

    LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; ...

    2015-12-14

    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less

  4. Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms

    SciTech Connect

    LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan -Wen; Millis, Andrew J.; Prokof’ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo -Xiao; Zhu, Zhenyue; Gull, Emanuel

    2015-12-14

    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.

  5. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  6. An Advance Reservation-Based Co-allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-Guaranteed Grids

    NASA Astrophysics Data System (ADS)

    Takefusa, Atsuko; Nakada, Hidemoto; Kudoh, Tomohiro; Tanaka, Yoshio

    Co-allocation of performance-guaranteed computing and network resources provided by several administrative domains is one of the key issues for constructing a QoS-guaranteed Grid. We propose an advance reservation-based co-allocation algorithm for both computing and network resources on a QoS-guaranteed Grid, modeled as an integer programming (IP) problem. The goal of our algorithm is to create reservation plans satisfying user resource requirements as an on-line service. Also the algorithm takes co-allocation options for user and resource administrator issues into consideration. We evaluate the proposed algorithm with extensive simulation, in terms of both functionality and practicality. The results show: The algorithm enables efficient co-allocation of both computing and network resources provided by multiple domains, and can reflect reservation options for resource administrators issues as a first step. The calculation times needed for selecting resources using an IP solver are acceptable for an on-line service.

  7. Numerical Modeling for Hole-Edge Cracking of Advanced High-Strength Steels (AHSS) Components in the Static Bend Test

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem

    2011-08-01

    Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.

  8. An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts

    PubMed Central

    Li, Jiaosheng; Zhong, Liyun; Liu, Shengde; Zhou, Yunfei; Xu, Jie; Tian, Jindong; Lu, Xiaoxu

    2017-01-01

    In phase-shifting interferometry with unknown phase shifts, a normalization and orthogonalization phase-shifting algorithm (NOPSA) is proposed to achieve phase retrieval. The background of interferogram is eliminated through using the orthogonality of complex sinusoidal function; and the influence of phase shifts deviation on accuracy of phase retrieval is avoided through both normalization and orthogonalization processing. Compared with the current algorithms with unknown phase shifts, the proposed algorithm reveals significantly faster computation speed, higher accuracy, better stability and non-sensitivity of phase shifts deviation. PMID:28290494

  9. An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts

    NASA Astrophysics Data System (ADS)

    Li, Jiaosheng; Zhong, Liyun; Liu, Shengde; Zhou, Yunfei; Xu, Jie; Tian, Jindong; Lu, Xiaoxu

    2017-03-01

    In phase-shifting interferometry with unknown phase shifts, a normalization and orthogonalization phase-shifting algorithm (NOPSA) is proposed to achieve phase retrieval. The background of interferogram is eliminated through using the orthogonality of complex sinusoidal function; and the influence of phase shifts deviation on accuracy of phase retrieval is avoided through both normalization and orthogonalization processing. Compared with the current algorithms with unknown phase shifts, the proposed algorithm reveals significantly faster computation speed, higher accuracy, better stability and non-sensitivity of phase shifts deviation.

  10. A Phase Field Model of Deformation Twinning: Nonlinear Theory and Numerical Simulations

    DTIC Science & Technology

    2011-03-01

    numerical solutions require advanced computational methods such as level sets [18] for resolution of surfaces of discontinuity. Continuum phase field...conditions (28). Strong forms derived in Sections 2.4 and 3.3 are not needed by the numerical algorithms . Addressed in what follows are the following kinds of...inclusions in Fig. 3) because the algorithm seeks energy minima rather than saddle points. Recall that the total free energy is a non-convex functional

  11. Advanced Modeling System for Optimization of Wind Farm Layout and Wind Turbine Sizing Using a Multi-Level Extended Pattern Search Algorithm

    SciTech Connect

    DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick

    2016-07-01

    This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at each turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.

  12. SU-E-T-313: The Accuracy of the Acuros XB Advanced Dose Calculation Algorithm for IMRT Dose Distributions in Head and Neck

    SciTech Connect

    Araki, F; Onizuka, R; Ohno, T; Tomiyama, Y; Hioki, K

    2014-06-01

    Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction for AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MCalgorithms, ie: 0.700 MeV for MC, 0.711 MeV for AXB11, and 1.011 MeV for AXB 10. Since the AAA algorithm is based on the dose kernel of water, the doses in regions for air, bone, and aluminum considerably became higher than those of AXB and MC. The pass rates of the gamma analysis for IMRT dose distributions in head and neck were similar to those of MC in order of AXB11

  13. Evaluation of the Advanced-Canopy-Atmosphere-Surface Algorithm (ACASA Model) Using Eddy Covariance Technique Over Sparse Canopy

    NASA Astrophysics Data System (ADS)

    Marras, S.; Spano, D.; Sirca, C.; Duce, P.; Snyder, R.; Pyles, R. D.; Paw U, K. T.

    2008-12-01

    Land surface models are usually used to quantify energy and mass fluxes between terrestrial ecosystems and atmosphere on micro- and regional scales. One of the most elaborate land surface models for flux modelling is the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) model, which provides micro-scale as well as regional-scale fluxes when imbedded in a meso-scale meteorological model (e.g., MM5 or WRF). The model predicts vegetation conditions and changes with time due to plant responses to environment variables. In particular, fluxes and profiles of heat, water vapor, carbon and momentum within and above canopy are estimated using third-order equations. It also estimates turbulent profiles of velocity, temperature, humidity within and above canopy, and CO2 fluxes are estimated using a combination of Ball-Berry and Farquhar equations. The ACASA model is also able to include the effects of water stress on stomata, transpiration and CO2 assimilation. ACASA model is unique because it separates canopy domain into twenty atmospheric layers (ten layers within the canopy and ten layers above the canopy), and the soil is partitioned into fifteen layers of variable thickness. The model was mainly used over dense canopies in the past, so the aim of this work was to test the ACASA model over a sparse canopy as Mediterranean maquis. Vegetation is composed by sclerophyllous species of shrubs that are always green, with leathery leaves, small height, with a moderately sparse canopy, and that are tolerant at water stress condition. Eddy Covariance (EC) technique was used to collect continuous data for more than 3 years period. Field measurements were taken in a natural maquis site located near Alghero, Sardinia, Italy and they were used to parameterize and validate the model. The input values were selected by running the model several times varying the one parameter per time. A second step in the parameterization process was the simultaneously variation of some parameters

  14. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  15. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm.

    PubMed

    Zhu, Xin-Guang; de Sturler, Eric; Long, Stephen P

    2007-10-01

    The distribution of resources between enzymes of photosynthetic carbon metabolism might be assumed to have been optimized by natural selection. However, natural selection for survival and fecundity does not necessarily select for maximal photosynthetic productivity. Further, the concentration of a key substrate, atmospheric CO(2), has changed more over the past 100 years than the past 25 million years, with the likelihood that natural selection has had inadequate time to reoptimize resource partitioning for this change. Could photosynthetic rate be increased by altered partitioning of resources among the enzymes of carbon metabolism? This question is addressed using an "evolutionary" algorithm to progressively search for multiple alterations in partitioning that increase photosynthetic rate. To do this, we extended existing metabolic models of C(3) photosynthesis by including the photorespiratory pathway (PCOP) and metabolism to starch and sucrose to develop a complete dynamic model of photosynthetic carbon metabolism. The model consists of linked differential equations, each representing the change of concentration of one metabolite. Initial concentrations of metabolites and maximal activities of enzymes were extracted from the literature. The dynamics of CO(2) fixation and metabolite concentrations were realistically simulated by numerical integration, such that the model could mimic well-established physiological phenomena. For example, a realistic steady-state rate of CO(2) uptake was attained and then reattained after perturbing O(2) concentration. Using an evolutionary algorithm, partitioning of a fixed total amount of protein-nitrogen between enzymes was allowed to vary. The individual with the higher light-saturated photosynthetic rate was selected and used to seed the next generation. After 1,500 generations, photosynthesis was increased substantially. This suggests that the "typical" partitioning in C(3) leaves might be suboptimal for maximizing the light

  16. Numerical Study of the Impact of Resonant Magnetic Perturbations on Recycling Sources In Advanced Divertor Configurations of NSTX-U

    NASA Astrophysics Data System (ADS)

    Waters, Ian; Flesch, Kurt; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Soukhanovskii, Vsevolod

    2016-10-01

    Explorations are under way to optimize the magnetic topology in the plasma edge of NSTX-U with the goal of improving neutral and impurity fueling and exhaust. Advanced divertor configurations combined with resonant magnetic perturbation (RMP) fields are being considered to improve peak heat and particle loads, stabilize edge instabilities, adjust plasma refueling, and control impurity transport. In this study, the EMC3-EIRENE fluid plasma and kinetic neutral transport code is used to investigate snowflake divertor configurations with and without RMP fields. Analysis of the edge recycling sources show that RMP fields induce a transition from a linear recycling regime into a high recycling regime at densities that are lower than in non-perturbed cases. This transition is also accompanied by a shift in the spatial distribution of these recycling sources and neutral atoms, and is impacted by the strength of the perturbations. An overview of results from different standard and snowflake divertor configurations will be presented. This work was funded by the Department of Energy under Grant DE-SC0012315.

  17. Advanced Tsunami Numerical Simulations and Energy Considerations by use of 3D-2D Coupled Models: The October 11, 1918, Mona Passage Tsunami

    NASA Astrophysics Data System (ADS)

    López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio

    2015-06-01

    The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.

  18. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems.

    PubMed

    Loukriz, Abdelhamid; Haddadi, Mourad; Messalti, Sabir

    2016-05-01

    Improvement of the efficiency of photovoltaic system based on new maximum power point tracking (MPPT) algorithms is the most promising solution due to its low cost and its easy implementation without equipment updating. Many MPPT methods with fixed step size have been developed. However, when atmospheric conditions change rapidly , the performance of conventional algorithms is reduced. In this paper, a new variable step size Incremental Conductance IC MPPT algorithm has been proposed. Modeling and simulation of different operational conditions of conventional Incremental Conductance IC and proposed methods are presented. The proposed method was developed and tested successfully on a photovoltaic system based on Flyback converter and control circuit using dsPIC30F4011. Both, simulation and experimental design are provided in several aspects. A comparative study between the proposed variable step size and fixed step size IC MPPT method under similar operating conditions is presented. The obtained results demonstrate the efficiency of the proposed MPPT algorithm in terms of speed in MPP tracking and accuracy.

  19. Numerical Modeling for Springback Predictions by Considering the Variations of Elastic Modulus in Stamping Advanced High-Strength Steels (AHSS)

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Kimchi, Menachem

    2011-08-01

    This paper presents a numerical modeling approach for predicting springback by considering the variations of elastic modulus on springback in stamping AHSS. Various stamping tests and finite-element method (FEM) simulation codes were used in this study. The cyclic loading-unloading tensile tests were conducted to determine the variations of elastic modulus for dual-phase (DP) 780 sheet steel. The biaxial bulge test was used to obtain plastic flow stress data. The non-linear reduction of elastic modulus for increasing the plastic strain was formulated by using the Yoshida model that was implemented in FEM simulations for springback. To understand the effects of material properties on springback, experiments were conducted with a simple geometry such as U-shape bending and the more complex geometry such as the curved flanging and S-rail stamping. Different measurement methods were used to confirm the final part geometry. Two different commercial FEM codes, LS-DYNA and DEFORM, were used to compare the experiments. The variable elastic modulus improved springback predictions in U-shape bending and curved flanging tests compared to FEM with the constant elastic modulus. However, in S-rail stamping tests, both FEM models with the isotropic hardening model showed limitations in predicting the sidewall curl of the S-rail part after springback. To consider the kinematic hardening and Bauschinger effects that result from material bending-unbending in S-rail stamping, the Yoshida model was used for FEM simulation of S-rail stamping and springback. The FEM predictions showed good improvement in correlating with experiments.

  20. An advanced retrieval algorithm for greenhouse gases using polarization information measured by GOSAT TANSO-FTS SWIR I: Simulation study

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Yoshida, Y.; Uchino, O.; Morino, I.; Yokota, T.

    2016-11-01

    We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.

  1. A New Full-Field Digital Mammography System with and without the Use of an Advanced Post-Processing Algorithm: Comparison of Image Quality and Diagnostic Performance

    PubMed Central

    Ahn, Hye Shin; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    Objective To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. Materials and Methods During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Results Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. Conclusion The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software. PMID:24843234

  2. Towards Direct Numerical Simulation of mass and energy fluxes at the soil-atmospheric interface with advanced Lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Krafczyk, Manfred; Geier, Martin; Schönherr, Martin

    2014-05-01

    The quantification of soil evaporation and of soil water content dynamics near the soil surface are critical in the physics of land-surface processes on many scales and are dominated by multi-component and multi-phase mass and energy fluxes between the ground and the atmosphere. Although it is widely recognized that both liquid and gaseous water movement are fundamental factors in the quantification of soil heat flux and surface evaporation, their computation has only started to be taken into account using simplified macroscopic models. As the flow field over the soil can be safely considered as turbulent, it would be natural to study the detailed transient flow dynamics by means of Large Eddy Simulation (LES [1]) where the three-dimensional flow field is resolved down to the laminar sub-layer. Yet this requires very fine resolved meshes allowing a grid resolution of at least one order of magnitude below the typical grain diameter of the soil under consideration. In order to gain reliable turbulence statistics, up to several hundred eddy turnover times have to be simulated which adds up to several seconds of real time. Yet, the time scale of the receding saturated water front dynamics in the soil is on the order of hours. Thus we are faced with the task of solving a transient turbulent flow problem including the advection-diffusion of water vapour over the soil-atmospheric interface represented by a realistic tomographic reconstruction of a real porous medium taken from laboratory probes. Our flow solver is based on the Lattice Boltzmann method (LBM) [2] which has been extended by a Cumulant approach similar to the one described in [3,4] to minimize the spurious coupling between the degrees of freedom in previous LBM approaches and can be used as an implicit LES turbulence model due to its low numerical dissipation and increased stability at high Reynolds numbers. The kernel has been integrated into the research code Virtualfluids [5] and delivers up to 30% of the

  3. SU-E-T-317: Dosimetric Evaluation of Acuros XB Advanced Dose Calculation Algorithm in Head and Neck Patients

    SciTech Connect

    Faught, A; Wu, Q

    2015-06-15

    Purpose: The Acuros XB photon dose calculation algorithm is a newly implemented calculation technique within the Eclipse treatment planning system using deterministic solutions to the linear Boltzmann transport equations. The goal of this study is to assess the clinical impact of dose differences arising from a retrospective comparison of calculations performed using the Analytical Anisotropic Algorithm (AAA) and Acuros XB on patients. Methods: Ten head and neck patients receiving intensity modulated radiation therapy were selected as a pilot study. Initial evaluation was based on the percentage of the planning target volume (PTV) covered by the prescription dose, minimum dose within the PTV, and dose differences in critical structures. For patients receiving boost plans, dosimetric evaluations were performed on the plan sum of the primary and boost plans. Results: Among the ten patients there were a total of 21 PTVs corresponding to primary and boost volumes. Using the same normalization within Eclipse, the average percentage of the PTVs receiving the prescription dose were 95.6% for AAA and Acuros XB. The average minimum doses within the PTVs, expressed as a percentage of the prescription to the volume, were 82.3% and 83.6% for AAA and Acuros XB respectively. Neither comparison showed differences with statistical significance when subjected to a paired t-test. Statistical significance was found in the average difference of the maximum dose for the mandible (242.5cGy, p=0.0005) and cord with a 5mm radial expansion (105.0cGy, p=0.0005) and in the median dose for the left parotid (25.0cGy, p=0.0423) and oral cavity (36.3cGy, p=0.002). Conclusion: The Acuros XB dose calculation algorithm did not exhibit significant differences in PTV coverage when compared to the AAA algorithm. Significant differences in critical structures are likely attributed to the structures proximity to high atomic number materials or air cavities, regions of known difficulty for the AAA

  4. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    USGS Publications Warehouse

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  5. Algorithm development

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Lomax, Harvard

    1987-01-01

    The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.

  6. Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1997-01-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.

  7. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    NASA Astrophysics Data System (ADS)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  8. Advancements of in-flight mass moment of inertia and structural deflection algorithms for satellite attitude simulators

    NASA Astrophysics Data System (ADS)

    Wright, Jonathan W.

    Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.

  9. Final Progress Report: Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    SciTech Connect

    Fox-Rabinovitz, M; Cote, J

    2009-06-05

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.

  10. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.

  11. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  12. The BR eigenvalue algorithm

    SciTech Connect

    Geist, G.A.; Howell, G.W.; Watkins, D.S.

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  13. Advanced Control Algorithms for Compensating the Phase Distortion Due to Transport Delay in Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, simulation transport delay remains a problem. New approaches for compensating the transport delay in a flight simulator have been developed and are presented in this report. The lead/lag filter, the McFarland compensator and the Sobiski/Cardullo state space filter are three prominent compensators. The lead/lag filter provides some phase lead, while introducing significant gain distortion in the same frequency interval. The McFarland predictor can compensate for much longer delay and cause smaller gain error in low frequencies than the lead/lag filter, but the gain distortion beyond the design frequency interval is still significant, and it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo predictor, a state space filter, can compensate the longest delay with the least gain distortion among the three, it has remained in laboratory use due to several limitations. The first novel compensator is an adaptive predictor that makes use of the Kalman filter algorithm in a unique manner. In this manner the predictor can accurately provide the desired amount of prediction, while significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors, this report illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator s control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Theoretical analyses of data from offline

  14. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  15. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    NASA Astrophysics Data System (ADS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  16. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    SciTech Connect

    Razali, Azhani Mohd Abdullah, Jaafar

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  17. High-order hydrodynamic algorithms for exascale computing

    SciTech Connect

    Morgan, Nathaniel Ray

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  18. Real breakthrough in detection of radioactive sources by portal monitors with plastic detectors and New Advanced Source Identification Algorithm (ASIA-New)

    SciTech Connect

    Stavrov, Andrei; Yamamoto, Eugene

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the Rapiscan company. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co- 57, Ba-133 and other). New variant of ASIA is based on physical principles, a phenomenological approach and analysis of some important parameter changes during the vehicle passage through the monitor control area. Thanks to this capability main advantage of new system is that this system can be easily installed into any RPM with plastic detectors. Taking into account that more than 4000 RPM has been installed worldwide their upgrading by ASIA-New may significantly increase probability of detection and verification of radioactive sources even masked by NORM. This algorithm was tested for 1,395 passages of different

  19. Advanced three-dimensional dynamic analysis by boundary element methods

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahma, S.

    1985-01-01

    Advanced formulations of boundary element method for periodic, transient transform domain and transient time domain solution of three-dimensional solids have been implemented using a family of isoparametric boundary elements. The necessary numerical integration techniques as well as the various solution algorithms are described. The developed analysis has been incorporated in a fully general purpose computer program BEST3D which can handle up to 10 subregions. A number of numerical examples are presented to demonstrate the accuracy of the dynamic analyses.

  20. IMPROVED GROUND TRUTH IN SOUTHERN ASIA USING IN-COUNTRY DATA, ANALYST WAVEFORM REVIEW, AND ADVANCED ALGORITHMS

    SciTech Connect

    Engdahl, Eric, R.; Bergman, Eric, A.; Myers, Stephen, C.; Ryall, Floriana

    2009-06-19

    respective errors. This is a significant advance, as outliers and future events with apparently anomalous depths can be readily identified and, if necessary, further investigated. The patterns of reliable focal depth distributions have been interpreted in the context of Middle Eastern active tectonics. Most earthquakes in the Iranian continental lithosphere occur in the upper crust, less than about 25-30 km in depth, with the crustal shortening produced by continental collision apparently accommodated entirely by thickening and distributed deformation rather than by subduction of crust into the mantle. However, intermediate-depth earthquakes associated with subducted slab do occur across the central Caspian Sea and beneath the Makran coast. A multiple-event relocation technique, specialized to use different kinds of near-source data, is used to calibrate the locations of 24 clusters containing 901 events drawn from the seismicity catalog. The absolute locations of these clusters are fixed either by comparing the pattern of relocated earthquakes with mapped fault geometry, by using one or more cluster events that have been accurately located independently by a local seismic network or aftershock deployment, by using InSAR data to determine the rupture zone of shallow earthquakes, or by some combination of these near-source data. This technique removes most of the systematic bias in single-event locations done with regional and teleseismic data, resulting in 624 calibrated events with location uncertainties of 5 km or better at the 90% confidence level (GT590). For 21 clusters (847 events) that are calibrated in both location and origin time we calculate empirical travel times, relative to a standard 1-D travel time model (ak135), and investigate event to station travel-time anomalies as functions of epicentral distance and azimuth. Substantial travel-time anomalies are seen in the Iran region which make accurate locations impossible unless observing stations are at very short

  1. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum-Liu-Tesche equation

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Tian, Jinshou; Wu, Shengli; He, Jiai; Liu, Zhen

    2016-10-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum-Liu-Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  2. A frictional sliding algorithm for liquid droplets

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    2016-12-01

    This work presents a new frictional sliding algorithm for liquid menisci in contact with solid substrates. In contrast to solid-solid contact, the liquid-solid contact behavior is governed by the contact line, where a contact angle forms and undergoes hysteresis. The new algorithm admits arbitrary meniscus shapes and arbitrary substrate roughness, heterogeneity and compliance. It is discussed and analyzed in the context of droplet contact, but it also applies to liquid films and solids with surface tension. The droplet is modeled as a stabilized membrane enclosing an incompressible medium. The contact formulation is considered rate-independent such that hydrostatic conditions apply. Three distinct contact algorithms are needed to describe the cases of frictionless surface contact, frictionless line contact and frictional line contact. For the latter, a predictor-corrector algorithm is proposed in order to enforce the contact conditions at the contact line and thus distinguish between the cases of advancing, pinning and receding. The algorithms are discretized within a monolithic finite element formulation. Several numerical examples are presented to illustrate the numerical and physical behavior of sliding droplets.

  3. Numerical simulation of wall-bounded turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Moin, P.

    1982-01-01

    Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included. Previously announced in STAR as N82-28577

  4. Numerical simulation of wall-bounded turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Moin, P.

    1982-01-01

    Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included.

  5. Advanced algorithms for distributed fusion

    NASA Astrophysics Data System (ADS)

    Gelfand, A.; Smith, C.; Colony, M.; Bowman, C.; Pei, R.; Huynh, T.; Brown, C.

    2008-03-01

    The US Military has been undergoing a radical transition from a traditional "platform-centric" force to one capable of performing in a "Network-Centric" environment. This transformation will place all of the data needed to efficiently meet tactical and strategic goals at the warfighter's fingertips. With access to this information, the challenge of fusing data from across the batttlespace into an operational picture for real-time Situational Awareness emerges. In such an environment, centralized fusion approaches will have limited application due to the constraints of real-time communications networks and computational resources. To overcome these limitations, we are developing a formalized architecture for fusion and track adjudication that allows the distribution of fusion processes over a dynamically created and managed information network. This network will support the incorporation and utilization of low level tracking information within the Army Distributed Common Ground System (DCGS-A) or Future Combat System (FCS). The framework is based on Bowman's Dual Node Network (DNN) architecture that utilizes a distributed network of interlaced fusion and track adjudication nodes to build and maintain a globally consistent picture across all assets.

  6. Introduction to Numerical Methods

    SciTech Connect

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  7. Predicting regional emissions and near-field air concentrations of soil fumigants using modest numerical algorithms: a case study using 1,3-dichloropropene.

    PubMed

    Cryer, S A; van Wesenbeeck, I J; Knuteson, J A

    2003-05-21

    Soil fumigants, used to control nematodes and crop disease, can volatilize from the soil application zone and into the atmosphere to create the potential for human inhalation exposure. An objective for this work is to illustrate the ability of simple numerical models to correctly predict pesticide volatilization rates from agricultural fields and to expand emission predictions to nearby air concentrations for use in the exposure component of a risk assessment. This work focuses on a numerical system using two U.S. EPA models (PRZM3 and ISCST3) to predict regional volatilization and nearby air concentrations for the soil fumigant 1,3-dichloropropene. New approaches deal with links to regional databases, seamless coupling of emission and dispersion models, incorporation of Monte Carlo sampling techniques to account for parametric uncertainty, and model input sensitivity analysis. Predicted volatility flux profiles of 1,3-dichloropropene (1,3-D) from soil for tarped and untarped fields were compared against field data and used as source terms for ISCST3. PRZM3 can successfully estimate correct order of magnitude regional soil volatilization losses of 1,3-D when representative regional input parameters are used (soil, weather, chemical, and management practices). Estimated 1,3-D emission losses and resulting air concentrations were investigated for five geographically diverse regions. Air concentrations (15-day averages) are compared with the current U.S. EPA's criteria for human exposure and risk assessment to determine appropriate setback distances from treated fields. Sensitive input parameters for volatility losses were functions of the region being simulated.

  8. Improved Antishock Air-Gap Control Algorithm with Acceleration Feedforward Control for High-Numerical Aperture Near-Field Storage System Using Solid Immersion Lens

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Gon; Shin, Won-Ho; Hwang, Hyun-Woo; Jeong, Jun; Park, Kyoung-Su; Park, No-Cheol; Yang, Hyunseok; Park, Young-Pil; Moo Park, Jin; Son, Do Hyeon; Kyo Seo, Jeong; Choi, In Ho

    2010-08-01

    A near-field storage system using a solid immersion lens (SIL) has been studied as a high-density optical disc drive system. The major goal of this research is to improve the robustness of the air-gap controller for a SIL-based near-field recording (NFR) system against dynamic disturbances, such as external shocks. The servo system is essential in near-field (NF) technology because the nanogap distance between the SIL and the disc is 50 nm or less. Also, the air-gap distance must be maintained without collision between the SIL and the disc to detect a stable gap error and read-out signals when an external shock is applied. Therefore, we propose an improved air-gap control algorithm using only an acceleration feedforward controller (AFC) to maintain the air-gap distance without contact for a 4.48 G at 10 ms shock. Thus, the antishock control performance for the SIL-based NF storage system in the presence of external shocks is markedly improved. Furthermore, to enhance the performance of the antishock air-gap control, we use the AFC with a double disturbance observer and a dead-zone nonlinear controller. As a result, the air-gap distance is maintained without contact for a 6.56 G@10 ms shock.

  9. Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis

    ERIC Educational Resources Information Center

    Bernaards, Coen A.; Jennrich, Robert I.

    2005-01-01

    Almost all modern rotation of factor loadings is based on optimizing a criterion, for example, the quartimax criterion for quartimax rotation. Recent advancements in numerical methods have led to general orthogonal and oblique algorithms for optimizing essentially any rotation criterion. All that is required for a specific application is a…

  10. Robust sampling-sourced numerical retrieval algorithm for optical energy loss function based on log-log mesh optimization and local monotonicity preserving Steffen spline

    NASA Astrophysics Data System (ADS)

    Maglevanny, I. I.; Smolar, V. A.

    2016-01-01

    We introduce a new technique of interpolation of the energy-loss function (ELF) in solids sampled by empirical optical spectra. Finding appropriate interpolation methods for ELFs poses several challenges. The sampled ELFs are usually very heterogeneous, can originate from various sources thus so called "data gaps" can appear, and significant discontinuities and multiple high outliers can be present. As a result an interpolation based on those data may not perform well at predicting reasonable physical results. Reliable interpolation tools, suitable for ELF applications, should therefore satisfy several important demands: accuracy and predictive power, robustness and computational efficiency, and ease of use. We examined the effect on the fitting quality due to different interpolation schemes with emphasis on ELF mesh optimization procedures and we argue that the optimal fitting should be based on preliminary log-log scaling data transforms by which the non-uniformity of sampled data distribution may be considerably reduced. The transformed data are then interpolated by local monotonicity preserving Steffen spline. The result is a piece-wise smooth fitting curve with continuous first-order derivatives that passes through all data points without spurious oscillations. Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points. It is found that proposed technique gives the most accurate results and also that its computational time is short. Thus, it is feasible using this simple method to address practical problems associated with interaction between a bulk material and a moving electron. A compact C++ implementation of our algorithm is also presented.

  11. Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational

    DOE PAGES

    Ellison, C. L.; Burby, J. W.; Qin, H.

    2015-11-01

    One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of themore » conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].« less

  12. Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational

    SciTech Connect

    Ellison, C. L.; Burby, J. W.; Qin, H.

    2015-11-01

    One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of the conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].

  13. Numerical methods in control

    NASA Astrophysics Data System (ADS)

    Mehrmann, Volker; Xu, Hongguo

    2000-11-01

    We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.

  14. Fast Numerical Methods for Stochastic Partial Differential Equations

    DTIC Science & Technology

    2016-04-15

    uncertainty quantification. In the last decade much progress has been made in the construction of numerical algorithms to efficiently solve SPDES with...applicable SPDES with efficient numerical methods. This project is intended to address the numerical analysis as well as algorithm aspects of SPDES. Three...differential equations. Our work contains algorithm constructions, rigorous error analysis, and extensive numerical experiments to demonstrate our algorithm

  15. Numerical modeling of late Glacial Laurentide advance of ice across Hudson Strait: Insights into terrestrial and marine geology, mass balance, and calving flux

    USGS Publications Warehouse

    Pfeffer, W.T.; Dyurgerov, M.; Kaplan, M.; Dwyer, J.; Sassolas, C.; Jennings, A.; Raup, B.; Manley, W.

    1997-01-01

    A time-dependent finite element model was used to reconstruct the advance of ice from a late Glacial dome on northern Quebec/Labrador across Hudson Strait to Meta Incognita Peninsula (Baffin Island) and subsequently to the 9.9-9.6 ka 14C Gold Cove position on Hall Peninsula. Terrestrial geological and geophysical information from Quebec and Labrador was used to constrain initial and boundary conditions, and the model results are compared with terrestrial geological information from Baffin Island and considered in the context of the marine event DC-0 and the Younger Dryas cooling. We conclude that advance across Hudson Strait from Ungava Bay to Baffin Island is possible using realistic glacier physics under a variety of reasonable boundary conditions. Production of ice flux from a dome centered on northeastern Quebec and Labrador sufficient to deliver geologically inferred ice thickness at Gold Cove (Hall Peninsula) appears to require extensive penetration of sliding south from Ungava Bay. The discharge of ice into the ocean associated with advance and retreat across Hudson Strait does not peak at a time coincident with the start of the Younger Dryas and is less than minimum values proposed to influence North Atlantic thermohaline circulation; nevertheless, a significant fraction of freshwater input to the North Atlantic may have been provided abruptly and at a critical time by this event.

  16. Variational Algorithms for Drift and Collisional Guiding Center Dynamics

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2014-10-01

    The simulation of guiding center test particle dynamics in the upcoming generation of magnetic confinement devices requires novel numerical methods to obtain the necessary long-term numerical fidelity. Geometric algorithms, which retain conserved quantities in the numerical time advances, are well-known to exhibit excellent long simulation time behavior. Due to the non-canonical Hamiltonian structure of the guiding center equations of motion, it is only recently that geometric algorithms have been developed for guiding center dynamics. This poster will discuss and compare several families of variational algorithms for application to 3-D guiding center test particle studies, while benchmarking the methods against standard Runge-Kutta techniques. Time-to-solution improvements using GPGPU hardware will be presented. Additionally, collisional dynamics will be incorporated into the structure-preserving guiding center algorithms for the first time. Non-Hamiltonian effects, such as polarization drag and simplified stochastic operators, can be incorporated using a Lagrange-d'Alembert variational principle. The long-time behavior of variational algorithms which include dissipative dynamics will be compared against standard techniques. This work was supported by DOE Contract DE-AC02-09CH11466.

  17. "Recognizing Numerical Constants"

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Craw, James M. (Technical Monitor)

    1995-01-01

    The advent of inexpensive, high performance computer and new efficient algorithms have made possible the automatic recognition of numerically computed constants. In other words, techniques now exist for determining, within certain limits, whether a computed real or complex number can be written as a simple expression involving the classical constants of mathematics. In this presentation, some of the recently discovered techniques for constant recognition, notably integer relation detection algorithms, will be presented. As an application of these methods, the author's recent work in recognizing "Euler sums" will be described in some detail.

  18. Concurrent Computing: Numerical Algorithms and Some Applications.

    DTIC Science & Technology

    1986-07-15

    determinant of the harmonic frequencies This result was obtained via a combination of relationships using classical trigonometric moment theory and...component, the out put management subsystem, is the most problem dependent. Current plans call for the design of basic tools for displaying results which...will be augmented as particular applications are tried. During this same time period, we plan to establish a network linking the project’s concurrent

  19. Automated Vectorization of Decision-Based Algorithms

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  20. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  1. Hindi Numerals.

    ERIC Educational Resources Information Center

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  2. Denoising of gravitational wave signals via dictionary learning algorithms

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Marquina, Antonio; Font, José A.; Ibáñez, José M.

    2016-12-01

    Gravitational wave astronomy has become a reality after the historical detections accomplished during the first observing run of the two advanced LIGO detectors. In the following years, the number of detections is expected to increase significantly with the full commissioning of the advanced LIGO, advanced Virgo and KAGRA detectors. The development of sophisticated data analysis techniques to improve the opportunities of detection for low signal-to-noise-ratio events is, hence, a most crucial effort. In this paper, we present one such technique, dictionary-learning algorithms, which have been extensively developed in the last few years and successfully applied mostly in the context of image processing. However, to the best of our knowledge, such algorithms have not yet been employed to denoise gravitational wave signals. By building dictionaries from numerical relativity templates of both binary black holes mergers and bursts of rotational core collapse, we show how machine-learning algorithms based on dictionaries can also be successfully applied for gravitational wave denoising. We use a subset of signals from both catalogs, embedded in nonwhite Gaussian noise, to assess our techniques with a large sample of tests and to find the best model parameters. The application of our method to the actual signal GW150914 shows promising results. Dictionary-learning algorithms could be a complementary addition to the gravitational wave data analysis toolkit. They may be used to extract signals from noise and to infer physical parameters if the data are in good enough agreement with the morphology of the dictionary atoms.

  3. On the numeric integration of dynamic attitude equations

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Yan, Y.; Grossman, Robert

    1992-01-01

    We describe new types of numerical integration algorithms developed by the authors. The main aim of the algorithms is to numerically integrate differential equations which evolve on geometric objects, such as the rotation group. The algorithms provide iterates which lie on the prescribed geometric object, either exactly, or to some prescribed accuracy, independent of the order of the algorithm. This paper describes applications of these algorithms to the evolution of the attitude of a rigid body.

  4. Frontiers in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Evans, Charles R.; Finn, Lee S.; Hobill, David W.

    2011-06-01

    Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics

  5. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  6. Parallel algorithms for unconstrained optimizations by multisplitting

    SciTech Connect

    He, Qing

    1994-12-31

    In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.

  7. Numerical anomalies mimicking physical effects

    SciTech Connect

    Menikoff, R.

    1995-09-01

    Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the ``excess wall heating`` in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.

  8. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  9. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  10. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most

  11. Application of a Fully Numerical Guidance to Mars Aerocapture

    NASA Technical Reports Server (NTRS)

    Matz, Daniel A.; Lu, Ping; Mendeck, Gavin F.; Sostaric, Ronald R.

    2017-01-01

    An advanced guidance algorithm, Fully Numerical Predictor-corrector Aerocapture Guidance (FNPAG), has been developed to perform aerocapture maneuvers in an optimal manner. It is a model-based, numerical guidance that benefits from requiring few adjustments across a variety of different hypersonic vehicle lift-to-drag ratios, ballistic co-efficients, and atmospheric entry conditions. In this paper, FNPAG is first applied to the Mars Rigid Vehicle (MRV) mid lift-to-drag ratio concept. Then the study is generalized to a design map of potential Mars aerocapture missions and vehicles, ranging from the scale and requirements of recent robotic to potential human and precursor missions. The design map results show the versatility of FNPAG and provide insight for the design of Mars aerocapture vehicles and atmospheric entry conditions to achieve desired performance.

  12. Numerical solution of plasma fluid equations using locally refined grids

    SciTech Connect

    Colella, P., LLNL

    1997-01-26

    This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results.

  13. Automatic numerical integration methods for Feynman integrals through 3-loop

    NASA Astrophysics Data System (ADS)

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Olagbemi, O.

    2015-05-01

    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities.

  14. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  15. Quantum Algorithms

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.

  16. Algorithms and Libraries

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our inquiry into algorithms and applications that would benefit by latency tolerant approach to algorithm building, including the construction of new algorithms where appropriate. In a multithreaded execution, when a processor reaches a point where remote memory access is necessary, the request is sent out on the network and a context--switch occurs to a new thread of computation. This effectively masks a long and unpredictable latency due to remote loads, thereby providing tolerance to remote access latency. We began to develop standards to profile various algorithm and application parameters, such as the degree of parallelism, granularity, precision, instruction set mix, interprocessor communication, latency etc. These tools will continue to develop and evolve as the Information Power Grid environment matures. To provide a richer context for this research, the project also focused on issues of fault-tolerance and computation migration of numerical algorithms and software. During the initial phase we tried to increase our understanding of the bottlenecks in single processor performance. Our work began by developing an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. Based on the results we achieved in this study we are planning to study other architectures of interest, including development of cost models, and developing code generators appropriate to these architectures.

  17. Numerical Optimization

    DTIC Science & Technology

    1992-12-01

    fisica matematica . ABSTRACT - We consider a new method for the numerical solution both of non- linear systems of equations and of cornplementauity... Matematica , Serie V11 Volume 9 , Roma (1989), 521-543 An Inexact Continuous Method for the Solution of Large Systems of Equations and Complementarity...34 - 00185 Roma - Italy APPENDIX 2 A Quadratically Convergent Method for Unear Programming’ Stefano Herzel Dipartimento di Matematica -G. Castelnuovo

  18. Extending HPF for advanced data parallel applications

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Mehrotra, Piyush; Zima, Hans

    1994-01-01

    The stated goal of High Performance Fortran (HPF) was to 'address the problems of writing data parallel programs where the distribution of data affects performance'. After examining the current version of the language we are led to the conclusion that HPF has not fully achieved this goal. While the basic distribution functions offered by the language - regular block, cyclic, and block cyclic distributions - can support regular numerical algorithms, advanced applications such as particle-in-cell codes or unstructured mesh solvers cannot be expressed adequately. We believe that this is a major weakness of HPF, significantly reducing its chances of becoming accepted in the numeric community. The paper discusses the data distribution and alignment issues in detail, points out some flaws in the basic language, and outlines possible future paths of development. Furthermore, we briefly deal with the issue of task parallelism and its integration with the data parallel paradigm of HPF.

  19. Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: optimization of treatment algorithms for locally advanced pancreatic cancer

    PubMed Central

    2013-01-01

    Background In radiation oncology recurrence analysis is an important part in the evaluation process and clinical quality assurance of treatment concepts. With the example of 9 patients with locally advanced pancreatic cancer we developed and validated interactive analysis tools to support the evaluation workflow. Methods After an automatic registration of the radiation planning CTs with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence and the distance between the boost and recurrence volume. We calculated the percentage of the recurrence volume within the 80%-isodose volume and compared it to the location of the recurrence within the boost volume, boost + 1 cm, boost + 1.5 cm and boost + 2 cm volumes. Results Recurrence analysis of 9 patients demonstrated that all recurrences except one occurred within the defined GTV/boost volume; one recurrence developed beyond the field border/outfield. With the defined distance volumes in relation to the recurrences, we could show that 7 recurrent lesions were within the 2 cm radius of the primary tumor. Two large recurrences extended beyond the 2 cm, however, this might be due to very rapid growth and/or late detection of the tumor progression. Conclusion The main goal of using automatic analysis tools is to reduce time and effort conducting clinical analyses. We showed a first approach and use of a semi-automated workflow for recurrence analysis, which will be continuously optimized. In conclusion, despite the limitations of the automatic calculations we contributed to in-house optimization of subsequent study concepts based on an improved and validated target volume definition. PMID:24499557

  20. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-09-30

    Advanced Digital Signal Processing for Hybrid Lidar William D. Jemison Clarkson University [Technical Section Technical Objectives The technical...objective of this project is the development and evaluation of various digital signal processing (DSP) algorithms that will enhance hybrid lidar ...algorithm as shown in Figure 1. Hardware Platform for Algorithm Implementation + Underwater Channel Characteristics ^ Lidar DSP Algorithm Figure

  1. Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Numerical technique increases the efficiencies of the numerical methods involving Toeplitz matrices by reducing the number of multiplications required by an N-order Toeplitz matrix from N-cubed to N-squared multiplications. Some efficient algorithms are given.

  2. Final Progress Report submitted via the DOE Energy Link (E-Link) in June 2009 [Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    SciTech Connect

    Fox-Rabinovitz, M; Cote, J

    2009-10-09

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. The results of the successful SGMIP multi-model ensemble simulations of the U.S. climate are available at the SGMIP web site (http://essic.umd.edu/~foxrab/sgmip.html) and through the link to the WMO/WCRP/WGNE web site: http://collaboration.cmc.ec.gc.ca/science/wgne. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and

  3. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented.

  4. An algorithm for segmenting range imagery

    SciTech Connect

    Roberts, R.S.

    1997-03-01

    This report describes the technical accomplishments of the FY96 Cross Cutting and Advanced Technology (CC&AT) project at Los Alamos National Laboratory. The project focused on developing algorithms for segmenting range images. The image segmentation algorithm developed during the project is described here. In addition to segmenting range images, the algorithm can fuse multiple range images thereby providing true 3D scene models. The algorithm has been incorporated into the Rapid World Modelling System at Sandia National Laboratory.

  5. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  6. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  7. Petascale algorithms for reactor hydrodynamics.

    SciTech Connect

    Fischer, P.; Lottes, J.; Pointer, W. D.; Siegel, A.

    2008-01-01

    We describe recent algorithmic developments that have enabled large eddy simulations of reactor flows on up to P = 65, 000 processors on the IBM BG/P at the Argonne Leadership Computing Facility. Petascale computing is expected to play a pivotal role in the design and analysis of next-generation nuclear reactors. Argonne's SHARP project is focused on advanced reactor simulation, with a current emphasis on modeling coupled neutronics and thermal-hydraulics (TH). The TH modeling comprises a hierarchy of computational fluid dynamics approaches ranging from detailed turbulence computations, using DNS (direct numerical simulation) and LES (large eddy simulation), to full core analysis based on RANS (Reynolds-averaged Navier-Stokes) and subchannel models. Our initial study is focused on LES of sodium-cooled fast reactor cores. The aim is to leverage petascale platforms at DOE's Leadership Computing Facilities (LCFs) to provide detailed information about heat transfer within the core and to provide baseline data for less expensive RANS and subchannel models.

  8. Why is Boris Algorithm So Good?

    SciTech Connect

    et al, Hong Qin

    2013-03-03

    Due to its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. Despite its popularity, up to now there has been no convincing explanation why the Boris algorithm has this advantageous feature. In this letter, we provide an answer to this question. We show that the Boris algorithm conserves phase space volume, even though it is not symplectic. The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas.

  9. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  10. Revised numerical wrapper for PIES code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel; Reiman, Allan; Monticello, Donald

    2015-11-01

    A revised external numerical wrapper has been developed for the Princeton Iterative Equilibrium Solver (PIES code), which is capable of calculating 3D MHD equilibria with islands. The numerical wrapper has been demonstrated to greatly improve the rate of convergence in numerous cases corresponding to equilibria in the TFTR device where magnetic islands are present. The numerical wrapper makes use of a Jacobian-free Newton-Krylov solver along with adaptive preconditioning and a sophisticated subspace-restricted Levenberg-Marquardt backtracking algorithm. The details of the numerical wrapper and several sample results are presented.

  11. Numerical recipes, The art of scientific computing

    SciTech Connect

    Press, W.H.; Flannery, B.P.; Teukolsky, S.; Vetterling, W.T.

    1986-01-01

    Seventeen chapter are divided into 130 sections provide a self-contained treatment that derives, critically discusses, and actually implements over 200 of the most important numerical algorithms for scientific work. Each algorithm is presented both in FORTRAN and Pascal, with the source programs printed in the book itself. The scope of Numerical Recipes ranges from standard areas of numerical analysis (linear algebra, differential equations, roots) through subjects useful to signal processing (Fourier methods, filtering), data analysis (least squares, robust fitting, statistical functions), simulation (random deviates and Monte Carlo). The routines themselves are available for a wide variety of different computers, from personal computers to mainframes, and are largely portable among different machines.

  12. Programming the gradient projection algorithm

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1983-01-01

    The gradient projection method of numerical optimization which is applied to problems having linear constraints but nonlinear objective functions is described and analyzed. The algorithm is found to be efficient and thorough for small systems, but requires the addition of auxiliary methods and programming for large scale systems with severe nonlinearities. In order to verify the theoretical results a digital computer is used to simulate the algorithm.

  13. Scheduling algorithms

    NASA Astrophysics Data System (ADS)

    Wolfe, William J.; Wood, David; Sorensen, Stephen E.

    1996-12-01

    This paper discusses automated scheduling as it applies to complex domains such as factories, transportation, and communications systems. The window-constrained-packing problem is introduced as an ideal model of the scheduling trade offs. Specific algorithms are compared in terms of simplicity, speed, and accuracy. In particular, dispatch, look-ahead, and genetic algorithms are statistically compared on randomly generated job sets. The conclusion is that dispatch methods are fast and fairly accurate; while modern algorithms, such as genetic and simulate annealing, have excessive run times, and are too complex to be practical.

  14. Haplotyping algorithms

    SciTech Connect

    Sobel, E.; Lange, K.; O`Connell, J.R.

    1996-12-31

    Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.

  15. Numerical computation of transonic flow governed by the full-potential equation

    NASA Technical Reports Server (NTRS)

    Holst, T. L.

    1983-01-01

    Numerical solution techniques for solving transonic flow fields governed by the full potential equation are discussed. In a general sense relaxation schemes suitable for the numerical solution of elliptic partial differential equations are presented and discussed with emphasis on transonic flow applications. The presentation can be divided into two general categories: An introductory treatment of the basic concepts associated with the numerical solution of elliptic partial differential equations and a more advanced treatment of current procedures used to solve the full potential equation for transonic flow fields. The introductory material is presented for completeness and includes a brief introduction (Chapter 1), governing equations (Chapter 2), classical relaxation schemes (Chapter 3), and early concepts regarding transonic full potential equation algorithms (Chapter 4).

  16. Modular algorithm concept evaluation tool (MACET) sensor fusion algorithm testbed

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Williams, Bradford D.; Talele, Sunjay E.; Amphay, Sengvieng A.

    1995-07-01

    Target acquisition in a high clutter environment in all-weather at any time of day represents a much needed capability for the air-to-surface strike mission. A considerable amount of the research at the Armament Directorate at Wright Laboratory, Advanced Guidance Division WL/MNG, has been devoted to exploring various seeker technologies, including multi-spectral sensor fusion, that may yield a cost efficient system with these capabilities. Critical elements of any such seekers are the autonomous target acquisition and tracking algorithms. These algorithms allow the weapon system to operate independently and accurately in realistic battlefield scenarios. In order to assess the performance of the multi-spectral sensor fusion algorithms being produced as part of the seeker technology development programs, the Munition Processing Technology Branch of WL/MN is developing an algorithm testbed. This testbed consists of the Irma signature prediction model, data analysis workstations, such as the TABILS Analysis and Management System (TAMS), and the Modular Algorithm Concept Evaluation Tool (MACET) algorithm workstation. All three of these components are being enhanced to accommodate multi-spectral sensor fusion systems. MACET is being developed to provide a graphical interface driven simulation by which to quickly configure algorithm components and conduct performance evaluations. MACET is being developed incrementally with each release providing an additional channel of operation. To date MACET 1.0, a passive IR algorithm environment, has been delivered. The second release, MACET 1.1 is presented in this paper using the MMW/IR data from the Advanced Autonomous Dual Mode Seeker (AADMS) captive flight demonstration. Once completed, the delivered software from past algorithm development efforts will be converted to the MACET library format, thereby providing an on-line database of the algorithm research conducted to date.

  17. Mathematical and Numerical Techniques in Energy and Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ewing, R. E.

    Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms

  18. Advanced Algorithms and Statistics for MOS Surveys

    NASA Astrophysics Data System (ADS)

    Bolton, A. S.

    2016-10-01

    This paper presents an individual view on the current state of computational data processing and statistics for inference and discovery in multi-object spectroscopic surveys, supplemented by a historical perspective and a few present-day applications. It is more op-ed than review, and hopefully more readable as a result.

  19. Numerical and measured data from the 3D salt canopy physical modeling project

    SciTech Connect

    Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.

    1997-11-01

    The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.

  20. Cuba: Multidimensional numerical integration library

    NASA Astrophysics Data System (ADS)

    Hahn, Thomas

    2016-08-01

    The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

  1. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.

    PubMed

    Hou, Lin; Wang, Lin; Berg, Arthur; Qian, Minping; Zhu, Yunping; Li, Fangting; Deng, Minghua

    2012-01-01

    The goal of network clustering algorithms detect dense clusters in a network, and provide a first step towards the understanding of large scale biological networks. With numerous recent advances in biotechnologies, large-scale genetic interactions are widely available, but there is a limited understanding of which clustering algorithms may be most effective. In order to address this problem, we conducted a systematic study to compare and evaluate six clustering algorithms in analyzing genetic interaction networks, and investigated influencing factors in choosing algorithms. The algorithms considered in this comparison include hierarchical clustering, topological overlap matrix, bi-clustering, Markov clustering, Bayesian discriminant analysis based community detection, and variational Bayes approach to modularity. Both experimentally identified and synthetically constructed networks were used in this comparison. The accuracy of the algorithms is measured by the Jaccard index in comparing predicted gene modules with benchmark gene sets. The results suggest that the choice differs according to the network topology and evaluation criteria. Hierarchical clustering showed to be best at predicting protein complexes; Bayesian discriminant analysis based community detection proved best under epistatic miniarray profile (EMAP) datasets; the variational Bayes approach to modularity was noticeably better than the other algorithms in the genome-scale networks.

  2. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  3. Comprehensive eye evaluation algorithm

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.

    2016-03-01

    In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.

  4. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  5. Rapid implementation of advanced constitutive models

    NASA Astrophysics Data System (ADS)

    Starman, Bojan; Halilovič, Miroslav; Vrh, Marko; Štok, Boris

    2013-12-01

    This paper presents a methodology based on the NICE integration scheme [1, 2] for simple and rapid numerical implementation of a class of plasticity constitutive models. In this regard, an algorithm is purposely developed for the implementation of newly developed advanced constitutive models into explicit finite element framework. The methodology follows the organization of the problem state variables into an extended form, which allows the constitutive models' equations to be organized in such a way, that the algorithm can be optionally extended with minimal effort to integrate also evolution equations related to a description of other specific phenomena, such as damage, distortional hardening, phase transitions, degradation etc. To confirm simplicity of the program implementation, computational robustness, effectiveness and improved accuracy of the implemented integration algorithm, a deep drawing simulation of the cylindrical cup is considered as the case study, performed in ABAQUS/Explicit. As a fairly complex considered model, the YLD2004-18p model [3, 4] is first implemented via external subroutine VUMAT. Further, to give additional proof of the simplicity of the proposed methodology, a combination of the YLD2004-18p model and Gurson-Tvergaard-Needleman model (GTN) is considered. As demonstrated, the implementation is really obtained in a very simple way.

  6. Numerical simulation of evaporating liquid jet in crossflow

    NASA Astrophysics Data System (ADS)

    Soteriou, Marios; Li, Xiaoyi

    2014-11-01

    Atomization of liquid fuel jets by cross-flowing air is critical to combustor performance. Ability to experimentally probe the fundamentals of this multiscale two phase flows has been hampered by limitations in experimental techniques and the challenges posed by operating conditions. Direct numerical simulation has recently emerged as a promising alternative due to advances in computer hardware and numerical methods. Using this approach, we recently demonstrated the ability to reproduce the physics of atomization of a liquid jet in cross-flow (LJIC) under ambient conditions. In this work we consider this flow in a high temperature environment. The inclusion of evaporation is the major new element. The numerical approach employs the CLSVOF method to capture the liquid-gas interface. Interface evaporation is solved directly with proper treatment of interface conditions and reproduces the relevant species/temperature fields there. A Lagrangian droplet tracking approach is used for the small droplets which are transferred from the Eulerian phase and evaporate using a traditional d2 law model. Other key algorithms of the massively parallelized solver include a ghost fluid method, a multi-grid preconditioned conjugate gradient approach and an adaptive mesh refinement technique. The overall method is verified using canonical problems. Simulations of evaporating LJIC point to the significant effect that evaporation has on the evolution of this flow and elucidate the downstream fuel species patterns.

  7. Approximation algorithms

    PubMed Central

    Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.

    1997-01-01

    Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525

  8. New pole placement algorithm - Polynomial matrix approach

    NASA Technical Reports Server (NTRS)

    Shafai, B.; Keel, L. H.

    1990-01-01

    A simple and direct pole-placement algorithm is introduced for dynamical systems having a block companion matrix A. The algorithm utilizes well-established properties of matrix polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the corresponding matrix polynomial. This involves only matrix additions and multiplications without requiring matrix inversion. A numerical example is given for the purpose of illustration.

  9. Alocomotino Control Algorithm for Robotic Linkage Systems

    SciTech Connect

    Dohner, Jeffrey L.

    2016-10-01

    This dissertation describes the development of a control algorithm that transitions a robotic linkage system between stabilized states producing responsive locomotion. The developed algorithm is demonstrated using a simple robotic construction consisting of a few links with actuation and sensing at each joint. Numerical and experimental validation is presented.

  10. Applications of the DA based normal form algorithm on parameter-dependent perturbations

    NASA Astrophysics Data System (ADS)

    Weisskopf, Adrian

    Many advanced models in physics use a simpler system as the foundation upon which problemspecific perturbation terms are added. There are many mathematical methods in perturbation theory which attempt to solve or at least approximate the solution for the advanced model based on the solution of the unperturbed system. The analytical approaches have the advantage that their approximation is an algebraic expression relating all involved quantities in the calculated solution up to a certain order. However, the complexity of the calculation often increases drastically with the number of iterations, variables, and parameters considered. On the other hand, the computer-based numerical approaches are fast once implemented, but their results are only numerical approximations without a symbolic form. A numerical integrator, for example, takes the initial values and integrates the ordinary differential equation up to the requested final state and yields the result as specific numbers. Therefore, no algebraic expression, much less a parameter dependence within the solution is given. The method presented in this work is based on the differential algebra (DA) framework, which was first developed to its current extent by Martin Berz et. al [3, 4, 5]. The used DA Normal Form Algorithm is an advancement by Martin Berz from the first arbitrary order algorithm by Forest, Berz, and Irwin [13], which was based on an DA-Lie approach. Both structures are already implemented in COSY INFINITY [18] documented in [7, 16, 17]. The result of the presented method is a numerically calculated algebraic expression of the solution up to an arbitrary truncation order. This method combines the effectiveness and automatic calculation of a computer-based numerical approximation and the algebraic relation between the involved quantities.

  11. Numerical simulation of heat exchanger

    SciTech Connect

    Sha, W.T.

    1985-01-01

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers.

  12. Evolving evolutionary algorithms using linear genetic programming.

    PubMed

    Oltean, Mihai

    2005-01-01

    A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

  13. Numerical Continuation of Hamiltonian Relative Periodic Orbits

    NASA Astrophysics Data System (ADS)

    Wulff, Claudia; Schebesch, Andreas

    2008-08-01

    The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years, there has been rapid progress in the development of a bifurcation theory for dynamical systems with structure, such as symmetry or symplecticity. But as yet, there are few results on the numerical computation of those bifurcations. The methods we present in this paper are a first step toward a systematic numerical analysis of generic bifurcations of Hamiltonian symmetric periodic orbits and relative periodic orbits (RPOs). First, we show how to numerically exploit spatio-temporal symmetries of Hamiltonian periodic orbits. Then we describe a general method for the numerical computation of RPOs persisting from periodic orbits in a symmetry breaking bifurcation. Finally, we present an algorithm for the numerical continuation of non-degenerate Hamiltonian relative periodic orbits with regular drift-momentum pair. Our path following algorithm is based on a multiple shooting algorithm for the numerical computation of periodic orbits via an adaptive Poincaré section and a tangential continuation method with implicit reparametrization. We apply our methods to continue the famous figure eight choreography of the three-body system. We find a relative period doubling bifurcation of the planar rotating eight family and compute the rotating choreographies bifurcating from it.

  14. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  15. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  16. Benchmarking monthly homogenization algorithms

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  17. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    SciTech Connect

    Chartier, Timothy P.

    2011-03-08

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.

  18. A class of coning algorithms based on a half-compressed structure.

    PubMed

    Tang, Chuanye; Chen, Xiyuan

    2014-08-06

    Aiming to advance the coning algorithm performance of strapdown inertial navigation systems, a new half-compressed coning correction structure is presented. The half-compressed algorithm structure is analytically proven to be equivalent to the traditional compressed structure under coning environments. The half-compressed algorithm coefficients allow direct configuration from traditional compressed algorithm coefficients. A type of algorithm error model is defined for coning algorithm performance evaluation under maneuver environment conditions. Like previous uncompressed algorithms, the half-compressed algorithm has improved maneuver accuracy and retained coning accuracy compared with its corresponding compressed algorithm. Compared with prior uncompressed algorithms, the formula for the new algorithm coefficients is simpler.

  19. Numerical taxonomy on data: Experimental results

    SciTech Connect

    Cohen, J.; Farach, M.

    1997-12-01

    The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.

  20. A Comparison of Two Skip Entry Guidance Algorithms

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.; Putnam, Zachary R.

    2007-01-01

    The Orion capsule vehicle will have a Lift-to-Drag ratio (L/D) of 0.3-0.35. For an Apollo-like direct entry into the Earth's atmosphere from a lunar return trajectory, this L/D will give the vehicle a maximum range of about 2500 nm and a maximum crossrange of 216 nm. In order to y longer ranges, the vehicle lift must be used to loft the trajectory such that the aerodynamic forces are decreased. A Skip-Trajectory results if the vehicle leaves the sensible atmosphere and a second entry occurs downrange of the atmospheric exit point. The Orion capsule is required to have landing site access (either on land or in water) inside the Continental United States (CONUS) for lunar returns anytime during the lunar month. This requirement means the vehicle must be capable of flying ranges of at least 5500 nm. For the L/D of the vehicle, this is only possible with the use of a guided Skip-Trajectory. A skip entry guidance algorithm is necessary to achieve this requirement. Two skip entry guidance algorithms have been developed: the Numerical Skip Entry Guidance (NSEG) algorithm was developed at NASA/JSC and PredGuid was developed at Draper Laboratory. A comparison of these two algorithms will be presented in this paper. Each algorithm has been implemented in a high-fidelity, 6 degree-of-freedom simulation called the Advanced NASA Technology Architecture for Exploration Studies (ANTARES). NASA and Draper engineers have completed several monte carlo analyses in order to compare the performance of each algorithm in various stress states. Each algorithm has been tested for entry-to-target ranges to include direct entries and skip entries of varying length. Dispersions have been included on the initial entry interface state, vehicle mass properties, vehicle aerodynamics, atmosphere, and Reaction Control System (RCS). Performance criteria include miss distance to the target, RCS fuel usage, maximum g-loads and heat rates for the first and second entry, total heat load, and control

  1. In Praise of Numerical Computation

    NASA Astrophysics Data System (ADS)

    Yap, Chee K.

    Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.

  2. RADFLO physics and algorithms

    SciTech Connect

    Symbalisty, E.M.D.; Zinn, J.; Whitaker, R.W.

    1995-09-01

    This paper describes the history, physics, and algorithms of the computer code RADFLO and its extension HYCHEM. RADFLO is a one-dimensional, radiation-transport hydrodynamics code that is used to compute early-time fireball behavior for low-altitude nuclear bursts. The primary use of the code is the prediction of optical signals produced by nuclear explosions. It has also been used to predict thermal and hydrodynamic effects that are used for vulnerability and lethality applications. Another closely related code, HYCHEM, is an extension of RADFLO which includes the effects of nonequilibrium chemistry. Some examples of numerical results will be shown, along with scaling expressions derived from those results. We describe new computations of the structures and luminosities of steady-state shock waves and radiative thermal waves, which have been extended to cover a range of ambient air densities for high-altitude applications. We also describe recent modifications of the codes to use a one-dimensional analog of the CAVEAT fluid-dynamics algorithm in place of the former standard Richtmyer-von Neumann algorithm.

  3. The Hip Restoration Algorithm

    PubMed Central

    Stubbs, Allston Julius; Atilla, Halis Atil

    2016-01-01

    Summary Background Despite the rapid advancement of imaging and arthroscopic techniques about the hip joint, missed diagnoses are still common. As a deep joint and compared to the shoulder and knee joints, localization of hip symptoms is difficult. Hip pathology is not easily isolated and is often related to intra and extra-articular abnormalities. In light of these diagnostic challenges, we recommend an algorithmic approach to effectively diagnoses and treat hip pain. Methods In this review, hip pain is evaluated from diagnosis to treatment in a clear decision model. First we discuss emergency hip situations followed by the differentiation of intra and extra-articular causes of the hip pain. We differentiate the intra-articular hip as arthritic and non-arthritic and extra-articular pain as surrounding or remote tissue generated. Further, extra-articular hip pain is evaluated according to pain location. Finally we summarize the surgical treatment approach with an algorithmic diagram. Conclusion Diagnosis of hip pathology is difficult because the etiologies of pain may be various. An algorithmic approach to hip restoration from diagnosis to rehabilitation is crucial to successfully identify and manage hip pathologies. Level of evidence: V. PMID:28066734

  4. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  5. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  6. Analytical and variational numerical methods for unstable miscible displacement flows in porous media

    NASA Astrophysics Data System (ADS)

    Scovazzi, Guglielmo; Wheeler, Mary F.; Mikelić, Andro; Lee, Sanghyun

    2017-04-01

    The miscible displacement of one fluid by another in a porous medium has received considerable attention in subsurface, environmental and petroleum engineering applications. When a fluid of higher mobility displaces another of lower mobility, unstable patterns - referred to as viscous fingering - may arise. Their physical and mathematical study has been the object of numerous investigations over the past century. The objective of this paper is to present a review of these contributions with particular emphasis on variational methods. These algorithms are tailored to real field applications thanks to their advanced features: handling of general complex geometries, robustness in the presence of rough tensor coefficients, low sensitivity to mesh orientation in advection dominated scenarios, and provable convergence with fully unstructured grids. This paper is dedicated to the memory of Dr. Jim Douglas Jr., for his seminal contributions to miscible displacement and variational numerical methods.

  7. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    SciTech Connect

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  8. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  9. Algorithms for radio networks with dynamic topology

    NASA Astrophysics Data System (ADS)

    Shacham, Nachum; Ogier, Richard; Rutenburg, Vladislav V.; Garcia-Luna-Aceves, Jose

    1991-08-01

    The objective of this project was the development of advanced algorithms and protocols that efficiently use network resources to provide optimal or nearly optimal performance in future communication networks with highly dynamic topologies and subject to frequent link failures. As reflected by this report, we have achieved our objective and have significantly advanced the state-of-the-art in this area. The research topics of the papers summarized include the following: efficient distributed algorithms for computing shortest pairs of disjoint paths; minimum-expected-delay alternate routing algorithms for highly dynamic unreliable networks; algorithms for loop-free routing; multipoint communication by hierarchically encoded data; efficient algorithms for extracting the maximum information from event-driven topology updates; methods for the neural network solution of link scheduling and other difficult problems arising in communication networks; and methods for robust routing in networks subject to sophisticated attacks.

  10. PyTrilinos: Recent Advances in the Python Interface to Trilinos

    SciTech Connect

    Spotz, William F.

    2012-01-01

    PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of the underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.

  11. Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of Improved Algorithms and Multiscale...a wide range of scales through use of accurate numerical methods and high- performance computational algorithms . The tool will be applied to study...dissipation. OBJECTIVES The primary objective is to enhance the capabilities of the SUNTANS model through development of algorithms to study

  12. An algorithm for the automatic synchronization of Omega receivers

    NASA Technical Reports Server (NTRS)

    Stonestreet, W. M.; Marzetta, T. L.

    1977-01-01

    The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.

  13. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  14. Numerical pole assignment by eigenvalue Jacobian inversion

    NASA Technical Reports Server (NTRS)

    Sevaston, George E.

    1986-01-01

    A numerical procedure for solving the linear pole placement problem is developed which operates by the inversion of an analytically determined eigenvalue Jacobian matrix. Attention is given to convergence characteristics and pathological situations. It is not concluded that the algorithm developed is suitable for computer-aided control system design with particular reference to the scan platform pointing control system for the Galileo spacecraft.

  15. Numerical Methods for Initial Value Problems.

    DTIC Science & Technology

    1980-07-01

    of general multistep methods for ordinary differential equations a4 to implement an efficient algorithm for the solution of stiff equations . Still...integral equations II. Roundoff error for variants of Gaussian elimination III. Multistep methods for ordinary differential equations IV. Multi-grid...62 -! Paige III. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS ....... 63 1. Equivalent Forms of Multistep

  16. The Texas Children's Medication Algorithm Project: Revision of the Algorithm for Pharmacotherapy of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Pliszka, Steven R.; Crismon, M. Lynn; Hughes, Carroll W.; Corners, C. Keith; Emslie, Graham J.; Jensen, Peter S.; McCracken, James T.; Swanson, James M.; Lopez, Molly

    2006-01-01

    Objective: In 1998, the Texas Department of Mental Health and Mental Retardation developed algorithms for medication treatment of attention-deficit/hyperactivity disorder (ADHD). Advances in the psychopharmacology of ADHD and results of a feasibility study of algorithm use in community mental health centers caused the algorithm to be modified and…

  17. Numerical Relativity's Contributions to Theoretical Astrophysics, and Its Path Forward

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah

    2015-04-01

    In the extreme violence of merger and mass accretion, compact objects like black holes, neutron stars, and white dwarfs are thought to launch some of the most luminous outbursts of electromagnetic, neutrino, and gravitational wave energy in the Universe. Modeling these systems realistically remains a central problem in theoretical astrophysics, due to two key challenges. First, the emission mechanisms often stem from magnetized flows and dynamical gravitational fields spanning many orders of magnitude in lengthscale and timescale, from the strong-field region near compact objects, to the often magnetically-dominated, weak-field regions far away. Second, the equations governing the dynamics are highly complex and nonlinear, including the full general relativistic field equations as coupled to the equations of radiation general relativistic magnetohydrodynamics. I will review some of the current progress in developing numerical relativity codes that robustly and efficiently solve these equations (or some subset thereof) on non-uniform numerical grids to capture the multi-scale nature of compact object merger and mass accretion. Some key results from such codes will also be explored, providing examples of how numerical relativity has advanced theoretical astrophysics. Though these results are highly interesting, they often rely on extremely computationally expensive simulations that lack the accuracy and physical realism required for complete theoretical models. Thus, although numerical relativity simulations have begun to address key astrophysical questions, large gaps in our understanding remain. Bridging these gaps will require a continued focus on adding more physics to our simulations, as well as development of more computationally-efficient formulations of the equations and the algorithms for solving them.

  18. Numerical Aspects of Solving Differential Equations: Laboratory Approach for Students.

    ERIC Educational Resources Information Center

    Witt, Ana

    1997-01-01

    Describes three labs designed to help students in a first course on ordinary differential equations with three of the most common numerical difficulties they might encounter when solving initial value problems with a numerical software package. The goal of these labs is to help students advance to independent work on common numerical anomalies.…

  19. Examination of Numerical Integration Accuracy and Modeling for GRACE-FO and GRACE-II

    NASA Astrophysics Data System (ADS)

    McCullough, C.; Bettadpur, S.

    2012-12-01

    As technological advances throughout the field of satellite geodesy improve the accuracy of satellite measurements, numerical methods and algorithms must be able to keep pace. Currently, the Gravity Recovery and Climate Experiment's (GRACE) dual one-way microwave ranging system can determine changes in inter-satellite range to a precision of a few microns; however, with the advent of laser measurement systems nanometer precision ranging is a realistic possibility. With this increase in measurement accuracy, a reevaluation of the accuracy inherent in the linear multi-step numerical integration methods is necessary. Two areas where this can be a primary concern are the ability of the numerical integration methods to accurately predict the satellite's state in the presence of numerous small accelerations due to operation of the spacecraft attitude control thrusters, and due to small, point-mass anomalies on the surface of the Earth. This study attempts to quantify and minimize these numerical errors in an effort to improve the accuracy of modeling and propagation of these perturbations; helping to provide further insight into the behavior and evolution of the Earth's gravity field from the more capable gravity missions in the future.

  20. ANALYSIS OF A NUMERICAL SOLVER FOR RADIATIVE TRANSPORT EQUATION.

    PubMed

    Gao, Hao; Zhao, Hongkai

    2013-01-01

    We analyze a numerical algorithm for solving radiative transport equation with vacuum or reflection boundary condition that was proposed in [4] with angular discretization by finite element method and spatial discretization by discontinuous Galerkin or finite difference method.

  1. Alternating-direction implicit numerical solution of the time-dependent, three-dimensional, single fluid, resistive magnetohydrodynamic equations

    SciTech Connect

    Finan, C.H. III

    1980-12-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.

  2. The quiet revolution of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  3. Universality in numerical computations with random data.

    PubMed

    Deift, Percy A; Menon, Govind; Olver, Sheehan; Trogdon, Thomas

    2014-10-21

    The authors present evidence for universality in numerical computations with random data. Given a (possibly stochastic) numerical algorithm with random input data, the time (or number of iterations) to convergence (within a given tolerance) is a random variable, called the halting time. Two-component universality is observed for the fluctuations of the halting time--i.e., the histogram for the halting times, centered by the sample average and scaled by the sample variance, collapses to a universal curve, independent of the input data distribution, as the dimension increases. Thus, up to two components--the sample average and the sample variance--the statistics for the halting time are universally prescribed. The case studies include six standard numerical algorithms as well as a model of neural computation and decision-making. A link to relevant software is provided for readers who would like to do computations of their own.

  4. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management

    NASA Astrophysics Data System (ADS)

    Kourakos, George; Mantoglou, Aristotelis

    2013-02-01

    SummaryThe demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms.

  5. An operator splitting algorithm for the three-dimensional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Khan, Liaqat Ali; Liu, Philip L.-F.

    1998-09-01

    Operator splitting algorithms are frequently used for solving the advection-diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection-diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems.

  6. Numerical recipes for mold filling simulation

    SciTech Connect

    Kothe, D.; Juric, D.; Lam, K.; Lally, B.

    1998-07-01

    Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.

  7. Halftoning and Image Processing Algorithms

    DTIC Science & Technology

    1999-02-01

    screening techniques with the quality advantages of error diffusion in the half toning of color maps, and on color image enhancement for halftone ...image quality. Our goals in this research were to advance the understanding in image science for our new halftone algorithm and to contribute to...image retrieval and noise theory for such imagery. In the field of color halftone printing, research was conducted on deriving a theoretical model of our

  8. Performance Comparison Of Evolutionary Algorithms For Image Clustering

    NASA Astrophysics Data System (ADS)

    Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.

    2014-09-01

    Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.

  9. Runtime support for parallelizing data mining algorithms

    NASA Astrophysics Data System (ADS)

    Jin, Ruoming; Agrawal, Gagan

    2002-03-01

    With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.

  10. Some nonlinear space decomposition algorithms

    SciTech Connect

    Tai, Xue-Cheng; Espedal, M.

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  11. Advanced servomanipulator development

    SciTech Connect

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  12. Lagrangian model of zooplankton dispersion: numerical schemes comparisons and parameter sensitivity tests

    NASA Astrophysics Data System (ADS)

    Qiu, Zhongfeng; Doglioli, Andrea M.; He, Yijun; Carlotti, Francois

    2011-03-01

    This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion: numerical schemes and time steps. Firstly, we compared three numerical schemes using idealized circulations. Results show that the precisions of the advanced Adams-Bashfold-Moulton (ABM) method and the Runge-Kutta (RK) method were in the same order and both were much higher than that of the Euler method. Furthermore, the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption. We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm. Secondly, we performed a sensitivity test for time steps, using outputs of the hydrodynamic model, Symphonie. Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields. The method introduced by Oliveira et al. in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models, at least when only considering advection.

  13. Numerical estimation of densities

    NASA Astrophysics Data System (ADS)

    Ascasibar, Y.; Binney, J.

    2005-01-01

    We present a novel technique, dubbed FIESTAS, to estimate the underlying density field from a discrete set of sample points in an arbitrary multidimensional space. FIESTAS assigns a volume to each point by means of a binary tree. Density is then computed by integrating over an adaptive kernel. As a first test, we construct several Monte Carlo realizations of a Hernquist profile and recover the particle density in both real and phase space. At a given point, Poisson noise causes the unsmoothed estimates to fluctuate by a factor of ~2 regardless of the number of particles. This spread can be reduced to about 1dex (~26 per cent) by our smoothing procedure. The density range over which the estimates are unbiased widens as the particle number increases. Our tests show that real-space densities obtained with an SPH kernel are significantly more biased than those yielded by FIESTAS. In phase space, about 10 times more particles are required in order to achieve a similar accuracy. As a second application we have estimated phase-space densities in a dark matter halo from a cosmological simulation. We confirm the results of Arad, Dekel & Klypin that the highest values of f are all associated with substructure rather than the main halo, and that the volume function v(f) ~f-2.5 over about four orders of magnitude in f. We show that a modified version of the toy model proposed by Arad et al. explains this result and suggests that the departures of v(f) from power-law form are not mere numerical artefacts. We conclude that our algorithm accurately measures the phase-space density up to the limit where discreteness effects render the simulation itself unreliable. Computationally, FIESTAS is orders of magnitude faster than the method based on Delaunay tessellation that Arad et al. employed, making it practicable to recover smoothed density estimates for sets of 109 points in six dimensions.

  14. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    SciTech Connect

    Not Available

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  15. Efficient simultaneous image deconvolution and upsampling algorithm for low-resolution microwave sounder data

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yanovsky, Igor; Yin, Wotao

    2015-01-01

    Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multipliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the outstanding performance of the proposed method.

  16. Numerical treatment of shocks in unsteady potential flow computation

    NASA Astrophysics Data System (ADS)

    Schippers, H.

    1985-04-01

    For moving shocks in unsteady transonic potential flow, an implicit fully-conservative finite-difference algorithm is presented. It is based on time-linearization and mass-flux splitting. For the one-dimensional problem of a traveling shock-wave, this algorithm is compared with the method of Goorjian and Shankar. The algorithm was implemented in the computer program TULIPS for the computation of transonic unsteady flow about airfoils. Numerical results for a pitching ONERA M6 airfoil are presented.

  17. Algorithmic chemistry

    SciTech Connect

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  18. Contour Error Map Algorithm

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  19. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  20. Extremal polynomials and methods of optimization of numerical algorithms

    SciTech Connect

    Lebedev, V I

    2004-10-31

    Chebyshev-Markov-Bernstein-Szegoe polynomials C{sub n}(x) extremal on [-1,1] with weight functions w(x)=(1+x){sup {alpha}}(1- x){sup {beta}}/{radical}(S{sub l}(x)) where {alpha},{beta}=0,1/2 and S{sub l}(x)={pi}{sub k=1}{sup m}(1-c{sub k}T{sub l{sub k}}(x))>0 are considered. A universal formula for their representation in trigonometric form is presented. Optimal distributions of the nodes of the weighted interpolation and explicit quadrature formulae of Gauss, Markov, Lobatto, and Rado types are obtained for integrals with weight p(x)=w{sup 2}(x)(1-x{sup 2}){sup -1/2}. The parameters of optimal Chebyshev iterative methods reducing the error optimally by comparison with the initial error defined in another norm are determined. For each stage of the Fedorenko-Bakhvalov method iteration parameters are determined which take account of the results of the previous calculations. Chebyshev filters with weight are constructed. Iterative methods of the solution of equations containing compact operators are studied.