Science.gov

Sample records for advanced ocean radiometer

  1. Requirements for an Advanced Ocean Radiometer

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; McClain, Charles R.; Ahmad, Ziauddin; Bailey, Sean W.; Barnes, Robert A.; Brown, Steven; Eplee, Robert E.; Franz, Bryan; Holmes, Alan; Monosmith, W. Bryan; Patt, Frederick S.; Stumpf, Richard P.; Turpie, Kevin R.; Werdell, P. Jeremy

    2011-01-01

    This document suggests requirements for an advanced ocean radiometer, such as e.g. the ACE (Aerosol/Cloud/Ecosystem) ocean radiometer. The ACE ocean biology mission objectives have been defined in the ACE Ocean Biology white paper. The general requirements presented therein were chosen as the basis for the requirements provided in this document, which have been transformed into specific, testable requirements. The overall accuracy goal for the advanced ocean radiometer is that the total radiometric uncertainties are 0.5% or smaller for all bands. Specific mission requirements of SeaWiFS, MODIS, and VIIRS were often used as a model for the requirements presented here, which are in most cases more demanding than the heritage requirements. Experience with on-orbit performance and calibration (from SeaWiFS and MODIS) and prelaunch testing (from SeaWiFS, MODIS, and VIIRS) were important considerations when formulating the requirements. This document describes requirements in terms of the science data products, with a focus on qualities that can be verified by prelaunch radiometric characterization. It is expected that a more comprehensive requirements document will be developed during mission formulation

  2. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  3. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  4. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  5. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  6. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to

  7. Measurement of oceanic wind vector using satellite microwave radiometers

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.

    1992-01-01

    A feasibility study of deriving both a wind speed and direction from microwave radiometer measurements of the ocean is presented. The study was based on the Special Sensor Microwave/Imager (SSM/I) measurements in conjunction with buoy reports from the National Data Buoy Center. It was found that the SSM/I minus the buoy wind speed difference is correlated with wind direction due to a wind direction signal in the brightness temperatures. When this wind direction signal is removed the rms difference between the SSM/I and buoy winds reduces to 1.3 m/s. The wind direction signal was used to make global, low-resolution maps of the monthly mean oceanic wind vector.

  8. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  9. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  10. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  11. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    NASA Astrophysics Data System (ADS)

    Hood, R.; Atlas, R.; Bailey, M.; Black, P.; James, M. W.; Johnson, J.; Jones, L.; Miller, T.; Ruf, C.; Uhlhorn, E.

    2008-12-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  12. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    PubMed Central

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity. PMID:22346599

  13. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; Freedman, Adam

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  14. Environmental remote sensing using the advanced very high resolution radiometer (AVHRR). (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the acquisition, processing, and applications of the Advanced Very High Resolution Radiometer (AVHRR) used on polar satellites operated by the National Oceanic and Atmospheric Administration (NOAA) for the Department of Commerce. AVHRR provides global visible and infrared imagery. The cited reports contain information on calibration, registration, and image processing of AVHRR data. Included are reports on AHVRR use in the study of aerosols, atmospheric circulation, agriculture, forest fires, deforestation, sun glint, sedimentation, cloud classification, sea ice, snowmelts, ocean productivity, sea surface temperatures, and vegetation. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  15. Advanced very high resolution radiometer, Mod 2 engineering report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Advanced High Resolution Radiometer, Mod 2 (AVHRR/2) is a modification of the original AVHRR (AVHRR/1) to expand the number of channels from four to five and provide additional sensing in the infrared region. A comparison of the spectral regions employed in the two instruments is given. Three of the channels are the same on both instruments. The difference in instruments is in the long wave IR region where a single channel was replaced by two channels. The modification from AVHRR/1 to AVHRR/2 was done with a minimum of changes. The areas of change are highlighted and the modifications by module are summarized. It is seen that the primary changes are in the relay optics and in the cooler. In this development program only two models are involved. The first model, the Optical Test Model was constructed and tested to prove the performance and structural integrity of the optical system and the modified cooler. The second model constructed is the Protoflight. Only the areas of the AVHRR/2 which were modified from the AVHRR/1 design are discussed.

  16. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Overview

    USGS Publications Warehouse

    ,

    2008-01-01

    The National Aeronautics and Space Administration (NASA) launched Terra, the Earth Observing System's (EOS) flagship satellite platform on December 18, 1999. The polar-orbiting Terra contains five remote sensing instruments, which enable the scientific study and analyses of global terrestrial processes and manifestations of global change. One of the five instruments is the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is built in Japan by a consortium of government, industry, and research groups. It has three spectral bands in the visible near-infrared region (VNIR), six bands in the shortwave infrared region (SWIR), and five bands in the thermal infrared region (TIR), with 15-, 30-, and 90-meter ground resolutions, respectively. This combination of wide spectral coverage and high spatial resolution allows ASTER to discriminate among a wide variety of surface materials. The VNIR subsystem also has a backward-viewing telescope for high-resolution (15-meter) stereoscopic observation in the along-track direction, which facilitates the generation of digital elevation models (DEM).

  17. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)

    2003-01-01

    During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  18. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.

    2003-01-01

    During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  19. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. [North America

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Tucker, C. J.; Dye, D. G.

    1985-01-01

    Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

  20. High-resolution imaging of rain systems with the advanced microwave precipitation radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Hood, Robbie E.; Lafontaine, Frank J.; Smith, Eric A.; Platt, Robert; Galliano, Joe; Griffin, Vanessa L.; Lobl, Elena

    1994-01-01

    An advanced Microwave Precipitation Radiometer (AMPR) has been developed and flown in the NASA ER-2-high-altitude aircraft for imaging various atmospheric and surface processes, primarily the internal structure of rain clouds. The AMPR is a scanning four-frequency total power microwave radiometer that is externally calibrated with high-emissivity warm and cold loads. Separate antenna systems allow the sampling of the 10.7- and 19.35-GHz channels at the same spatial resolution, while the 37.1- and 85.5-GHz channels utilize the same multifrequency feedhorn as the 19.35-GHz channel. Spatial resolutions from an aircraft altitude of 20-km range from 0.6 km at 85.5 GHz to 2.8 km at 19.35 and 10.7 GHz. All channels are sampled every 0.6 km in both along-track and cross-track directions, leading to a contiguous sampling pattern of the 85.5-GHz 3-dB beamwidth footprints, 2.3X oversampling of the 37.1-GHz data, and 4.4X oversampling of the 19.35- and 10.7-GHz data. Radiometer temperature sensitivities range from 0.2 to 0.5 C. Details of the system are described, including two different calibration systems and their effect on the data collected. Examples of oceanic rain systems are presented from Florida and the tropical west Pacific that illustrate the wide variety of cloud water, rainwater, and precipitation-size ice combinations that are observable from aircraft altitudes.

  1. Two-Look Polarimetric (2LP) Microwave Radiometers for Ocean Vector Wind Retrieval

    NASA Astrophysics Data System (ADS)

    Wentz, F. J.; Hilburn, K. A.; Meissner, T.; Brown, S. E.

    2014-12-01

    This talk discusses the future utilization of two-look polarimetric (2LP) microwave radiometers for measuring the ocean surface wind vector. Potentially, these 2LP satellite radiometers offer two advantages over conventional scatterometers: unambiguous wind vector retrievals and low-cost. One concept for a 2LP radiometer is being developed by JPL and is called the Compact Ocean Wind Vector Radiometer (COWVR). A space demonstration of COWVR is planned for 2016 timeframe. To explore the potential of 2LP radiometers, we use the 11 years of WindSat observations as a testbed. We only use that portion of the WindSat swath that has both fore and aft observations. WindSat provides fully polarimetric observations (all four Stokes parameters) at 11, 19, and 37 GHz. This represents 12 independent channels for each of the two azimuth directions. A wind vector retrieval algorithm is developed to fully utilize this wide assortment of information. Since this analysis is based on actual observations, it provides a realistic picture of what to expect from future 2LP radiometers. To our knowledge, this is the first time that the combination of WindSat's fore and aft observations has been fully utilized for wind vector retrievals. In our talk we compare the 2LP wind vector retrieval performance with that of single-look polarimetric radiometers (i.e., WindSat standard product) and scatterometers. We provide basic statistics from a triple collocation between winds from WindSat, QuikScat, and NDBC/PMEL ocean moored buoys. The statistics include the standard deviation of the first ranked ambiguity direction, skill rate, and number of ambiguities. All available data from the common period of operation between WindSat and QuikScat (2003-2009) are used. We characterize the wind direction accuracy as a function of wind speed, and show how 2LP retrievals are able to extend the wind vector accuracy to lower wind speeds than previously considered possible for radiometers.

  2. Microwave radiometer studies of atmospheric water over the oceans, volume 1

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space, shortly followed by the SMMR on Nimbus 7, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, the Scanning Multichannel Microwave/Imager (SMM/I) has provided similar data. A collection of work using this data is presented.

  3. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000).

    PubMed

    Prasad, V Krishna; Anuradha, E; Badarinath, K V S

    2005-09-01

    Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was

  4. Ocean Products from the SMAP Radiometer: Surface Salinity and Wind Speeds

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.; Scott, J. P.

    2015-12-01

    Though designed to measure soil moisture, the SMAP radiometer is an excellent sensor to measure sea surface salinity and sea surface wind speed. It is possible to retrieve both quantities from passive SMAP observations without using the SMAP radar, whose transmitter likely failed in July 2015. With the demise of Aquarius the ability of the SMAP sensor to measure ocean salinity has gained importance. The main part of our presentation discusses the adaption of the Aquarius salinity retrieval algorithm to SMAP. It includes corrections for spurious signals coming from cold space, the galaxy, the sun and the moon as well as sidelobe and cross polarization effects from the SMAP antenna. Based on Aquarius observations, we have developed a radiative transfer model that characterizes the surface emission of a wind roughened ocean. Our surface roughness correction for the SMAP salinity retrieval will use match-ups of SMAP radiometer observations and surface wind speeds from WindSat or SSMIS. Our presentation will also address several important differences between the Aquarius and SMAP sensors that impact the ocean salinity retrievals. The full 360o look capability of SMAP makes it possible to take observations from the forward and backward looking direction basically at the same instance of time. We expect that this two-look capability will strongly aid the salinity retrievals. It will be possible to observe some of the spurious contamination sources like the reflected galaxy or the reflected sun from two different directions. Finally, we will address the capability to measure ocean surface wind speed with the SMAP radiometer. As it has been demonstrated with Aquarius and SMOS the L-band passive ocean surface emission exhibits very good sensitivity to surface wind speeds to at least 35 m/s and it is very little affected by precipitation. This allows the retrieval of ocean surface winds, in particular in storms and even under rainy conditions.

  5. Retrieval of Ocean Surface Windspeed and Rainrate from the Hurricane Imaging Radiometer (HIRAD) Brightness Temperature Observations

    NASA Technical Reports Server (NTRS)

    Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy

    2012-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.

  6. Global Oceanic Precipitation: A Joint View by TOPEX and the TOPEX Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Chen, Ge; Chapron, Bertrand; Tournadre, Jean; Katsaros, Kristina; Vandemark, Douglas

    1997-01-01

    The TOPEX/POSEIDON mission offers the first opportunity to observe rain cells over the ocean by a dual-frequency radar altimeter (TOPEX) and simultaneously observe their natural radiative properties by a three-frequency radiometer (TOPEX microwave radiometer (TMR)). This work is a feasibility study aimed at understanding the capability and potential of the active/passive TOPEX/TMR system for oceanic rainfall detection. On the basis of past experiences in rain flagging, a joint TOPEX/TMR rain probability index is proposed. This index integrates several advantages of the two sensors and provides a more reliable rain estimate than the radiometer alone. One year's TOPEX/TMR data are used to test the performance of the index. The resulting rain frequency statistics show quantitative agreement with those obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS) in the Intertropical Convergence Zone (ITCZ), while qualitative agreement is found for other regions of the world ocean. A recent finding that the latitudinal frequency of precipitation over the Southern Ocean increases steadily toward the Antarctic continent is confirmed by our result. Annual and seasonal precipitation maps are derived from the index. Notable features revealed include an overall similarity in rainfall pattern from the Pacific, the Atlantic, and the Indian Oceans and a general phase reversal between the two hemispheres, as well as a number of regional anomalies in terms of rain intensity. Comparisons with simultaneous Global Precipitation Climatology Project (GPCP) multisatellite precipitation rate and COADS rain climatology suggest that systematic differences also exist. One example is that the maximum rainfall in the ITCZ of the Indian Ocean appears to be more intensive and concentrated in our result compared to that of the GPCP. Another example is that the annual precipitation produced by TOPEX/TMR is constantly higher than those from GPCP and COADS in the extratropical regions of the

  7. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  8. Microwave radiometer studies of atmospheric water over the oceans, volume 2

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since the Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space in July of 1978, shortly followed by the SMMR on Nimbus 7, which operated for almost a decade, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, we have had the Scanning Multichannel Microwave/Imager (SSM/I) instrument on Defense Meteorological Satellites providing similar data. We present a collection of our work performed over the last years of the study.

  9. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument

  10. Observations of oceanic surface-wind fields from the Nimbus-7 microwave radiometer

    NASA Technical Reports Server (NTRS)

    Miller, J. R.; Geyser, J. E.; Chang, A. T. C.; Wilheit, T. T., Jr.

    1982-01-01

    Brightness temperatures from the five-frequency dual-polarized scanning multichannel microwave radiometer (SMMR) on Nimbus 7 have been used to obtain surface wind fields over the ocean. The satellite-derived wind field for 1200Z, Feb. 19, 1979, in the eastern North Pacific has been compared with an operationally generated surface-wind analysis field. Previous point comparisons at selected locations have indicated that satellite winds are accurate to 3 m/sec. The results, although of a preliminary nature, indicate that SMMR-derived winds may be used to determine large-scale wind fields over the ocean, particularly in areas of strong wind gradients such as found in cyclonic systems.

  11. High altitude airborne remote sensing mission using the advanced microwave precipitation radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Galliano, J.; Platt, R. H.; Spencer, Roy; Hood, Robbie

    1991-01-01

    The advanced microwave precipitation radiometer (AMPR) is an airborne multichannel imaging radiometer used to better understand how the earth's climate structure works. Airborne data results from the October 1990 Florida thunderstorm mission in Jacksonville, FL, are described. AMPR data on atmospheric precipitation in mesoscale storms were retrieved at 10.7, 19.35, 37.1, and 85.5 GHz onboard the ER-2 aircraft at an altitude of 20 km. AMPR's three higher-frequency data channels were selected to operate at the same frequencies as the spaceborne special sensor microwave/imager (SSM/I) presently in orbit. AMPR uses two antennas to receive the four frequencies: the lowest frequency channel uses a 9.7-in aperture lens antennas, while the three higher-frequency channels share a separate 5.3-in aperture lens antenna. The radiometer's temperature resolution performance is summarized.

  12. Visible Infrared Imaging Radiometer Suite (VIIRS) and uncertainty in the ocean color calibration methodology

    NASA Astrophysics Data System (ADS)

    Turpie, Kevin R.; Eplee, Robert E.; Meister, Gerhard

    2015-09-01

    During the first few years of the Suomi National Polar-orbiting Partnership (NPP) mission, the NASA Ocean Color calibration team continued to improve on their approach to the on-orbit calibration of the Visible Infrared Imaging Radiometer Suite (VIIRS). As the calibration was adjusted for changes in ocean band responsitivity, the team also estimated a theoretic residual error in the calibration trends well within a few tenths of a percent, which could be translated into trend uncertainties in regional time series of surface reflectance and derived products, where biases as low as a few tenths of a percent in certain bands can lead to significant effects. This study looks at effects from spurious trends inherent to the calibration and biases that arise between reprocessing efforts because of extrapolation of the timedependent calibration table. With the addition of new models for instrument and calibration system trend artifacts, new calibration trends led to improved estimates of ocean time series uncertainty. Table extrapolation biases are presented for the first time. The results further the understanding of uncertainty in measuring regional and global biospheric trends in the ocean using VIIRS, which better define the roles of such records in climate research.

  13. Mesoscale oceanic response to wind events off central California in spring 1989: CTD surveys and AVHRR imagery. [Conductivity/temperature/depth surveys; Selected Advanced Very High Resolution Radiometer satellite imaging

    SciTech Connect

    Schwing, F.B.; Husby, D.M. ); Garfield, N.; Tracy, D.E. )

    1991-11-01

    Analysis of hydrographic data obtained during juvenile groundfish surveys, in relation to local wind forcing and AVHRR sea-surface temperature imagery, reveals that the oceanic region off central California between Point Reyes and Point Sur in spring 1989 was characterized by complex circulation patterns and considerable temporal and mesoscale variability. The 'spring transition' to upwelling-favorable winds is most clearly evidenced by rapid, large decreases in SST (up to 4-5C) measured at four meteorological buoys. Daily-averaged winds are spatially coherent and oscillate between upwelling-favorable and relaxation conditions at 3-10-day intervals. Persistent upwelling centers near Point Reyes and Point Ano Nuevo were characterized by relatively cool, salty (8-10C, 33.6-34.0 psu) water in the upper 50 m, which is derived from offshore water at depths of 50-100 m. Water-mass analysis reveals that upwelled water is advected equatorward from its source. Some upwelled water is transported into shallow coastal areas and warmed. Alongshelf fronts between relatively warm, low-salinity ([gt]13C, [lt]33.5 psu) offshore water and cool, higher-salinity upwelled water are advected onshore in response to wind relaxation or reversal events: frontal gradients intensify at these times. AVHRR imagery verifies the spatial patterns and complex mesoscale variability of the near-surface patterns observed in the CTD survey data. Eddylike hydrographic features are noted with horizontal scales on the order of the station spacing (10 km). How the complex circulation patterns and intense mesoscale spatial and temporal variability affect the survival and subsequent recruitment of juvenile groundfish is discussed.

  14. Effects of cosine error in irradiance measurements from field ocean color radiometers.

    PubMed

    Zibordi, Giuseppe; Bulgarelli, Barbara

    2007-08-01

    The cosine error of in situ seven-channel radiometers designed to measure the in-air downward irradiance for ocean color applications was investigated in the 412-683 nm spectral range with a sample of three instruments. The interchannel variability of cosine errors showed values generally lower than +/-3% below 50 degrees incidence angle with extreme values of approximately 4-20% (absolute) at 50-80 degrees for the channels at 412 and 443 nm. The intrachannel variability, estimated from the standard deviation of the cosine errors of different sensors for each center wavelength, displayed values generally lower than 2% for incidence angles up to 50 degrees and occasionally increasing up to 6% at 80 degrees. Simulations of total downward irradiance measurements, accounting for average angular responses of the investigated radiometers, were made with an accurate radiative transfer code. The estimated errors showed a significant dependence on wavelength, sun zenith, and aerosol optical thickness. For a clear sky maritime atmosphere, these errors displayed values spectrally varying and generally within +/-3%, with extreme values of approximately 4-10% (absolute) at 40-80 degrees sun zenith for the channels at 412 and 443 nm. Schemes for minimizing the cosine errors have also been proposed and discussed.

  15. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  16. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  17. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  18. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, Christopher S.; Lanyi. G. E.; Naudet, C. J.

    2005-11-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  19. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  20. A multifrequency microwave radiometer of the future

    NASA Technical Reports Server (NTRS)

    Le Vine, D.; Wilheit, T.; Murphy, R.; Swift, C.

    1987-01-01

    The design of the High-Resolution Multifrequency Microwave Radiometer (HMMR), which is to be installed on EOS, is described. The HMMR is to consist of the Advanced Microwave Sounding Unit (AMSU), the Advanced Mechanically Scanned Radiometer (AMSR), and the Electronically Scanned Thinned Array Radiometer (ESTAR). The AMSU is a 20-channel microwave radiometer system designed to measure profiles of atmospheric temperature and humidity and the AMSR is a microwave imager with channels at 6, 10, 18, 21, 37, and 90 GHz for measuring snow cover over land, the age and areal extent of sea ice, the intensity of precipitation over oceans and land, and the amount of water in the atmosphere. ESTAR is an imaging radiometer operating near 1.4 GHz capable of obtaining global maps of surface soil moisture with a spatial resolution of about 10 km. The antenna and signal processing utilized in the ESTAR to achieve the real aperture resolution are examined.

  1. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  2. Development of UHF radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, B. M.; Blume, H. J. C.; Cross, A. E.

    1985-01-01

    A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer.

  3. Life test results for the advanced very high resolution radiometer scanner

    NASA Technical Reports Server (NTRS)

    Lenz, James

    1996-01-01

    The following paper reports the results obtained during a 3.33-year life test on the TIROS Advanced Very High Resolution Radiometer/3 (AVHRR/3) Scanner. The bearing drag torque and lubricant loss over life will be compared to predicted values developed through modeling. The condition of the lubricant at the end of the test will be described and a theory presented to explain the results obtained. The differences (if any) in the predicted and measured values of drag torque and lubricant loss will be discussed and possible reasons for these examined.

  4. Global Climate Monitoring with the EOS PM-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2002-01-01

    The Advanced Microwave Scanning 2 Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called Aqua) in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-II satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM/I and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-II AMSR). The ADEOS-II AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team 3 activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The US Team's products will be archived at the National Snow and Ice Data Center (NSIDC).

  5. Vegetation classification based on Advanced Very High Resolution Radiometer /AVHRR/ satellite imagery

    NASA Technical Reports Server (NTRS)

    Norwine, J.; Greegor, D. H.

    1983-01-01

    Data from the NOAA-6 spacecraft Advanced Very High Resolution Radiometer (AVHRR) were tested for effectiveness for vegetation classification. Vegetation, climatological, and meteorological data were gathered for three days over 12 locations, and the normalized differences between the AVHRR bands 1 and 2 were determined. A vegetative greenness index was compared with a hydrologic factor and vegetation characteristics as measured by ground truth. A multivariate vegetation gradient model was formulated, incorporating AVHRR and climatological data. The hydrologic factor was calculated in terms of the precipitation, evaporation, maximum and minimum temperatures, and the hydrologic capacity. The observations were taken over Texas, which has a wide range of climates. A high correlation was found in the vegetation-HF index. The AVHRR data are concluded to be an effective tool for analysis of vegetation/climate relationships.

  6. Determining coniferous forest cover and forest fragmentation with NOAA-9 advanced very high resolution radiometer data

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.

  7. Global Climate Monitoring with the Eos Pm-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2000-01-01

    The Advanced Microwave Scanning Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called "Aqua") in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-11 satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM[l and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-11 AMSR). The ADEOS-11 AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The U.S. Team's products will be archived at the National Snow and Ice Data Center (NSIDC). Further information about AMSR-E can be obtained at http://www.jzhcc.msfc.nasa.Vov/AMSR.

  8. Spectral transmissometer and radiometer - Design and initial results. [of free drifting experiment in Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Payne, Paul R.; Peck, Wayne

    1988-01-01

    A new solid-state spectral transmissometer and radiometer is described. The radiometer measures upwelling radiance, downwelling irradiance, and beam transmittance from 390 to 750 nm with channel widths of 2.35 nm. The spectrometer consists of a 256 element CCD linear array collecting light dispersed by a reflection grating in a modified Littrow configuration. The spectrometer is time and space-shared among the three signal types. The instrument has been deployed as a free-drifting buoy and in the profiling mode, with data stored internally on a magnetic bubble memory or sent up a conducting cable as desired. Power can be supplied either by a detachable external battery pack or through conducting cable. The instrument has been deployed in the oligotrophic North Pacific Central Gyre and in the eutrophic Straits of Juan de Fuca, and preliminary results for each region are discussed.

  9. Unbiased estimation of oceanic mean rainfall from satellite borne radiometer measurements

    NASA Technical Reports Server (NTRS)

    Mittal, M. C.

    1981-01-01

    The statistical properties of the radar derived rainfall obtained during the GARP Atlantic Tropical Experiment (GATE) are used to derive quantitative estimates of the spatial and temporal sampling errors associated with estimating rainfall from brightness temperature measurements such as would be obtained from a satelliteborne microwave radiometer employing a practical size antenna aperture. A basis for a method of correcting the so called beam filling problem, i.e., for the effect of nonuniformity of rainfall over the radiometer beamwidth is provided. The method presented employs the statistical properties of the observations themselves without need for physical assumptions beyond those associated with the radiative transfer model. The simulation results presented offer a validation of the estimated accuracy that can be achieved and the graphs included permit evaluation of the effect of the antenna resolution on both the temporal and spatial sampling errors.

  10. The Hurricane Imaging Radiometer (HIRAD): Instrument Status and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Bailey, M. C.; Gross, Steven; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative radiometer which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR) [Uhlhorn and Black, 2004]. The HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology [Ruf et al., 1988]. This sensor operates over 4-7 GHz, where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometer [Bettenhausen et al., 2006; Brown et al., 2006]. HIRAD incorporates a new and unique array antenna design along with several technologies successfully demonstrated by the Lightweight Rain Radiometer instrument [Ruf et al., 2002; Ruf and Principe, 2003]. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean winds and rain in hurricane conditions. Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. The Hurricane Imaging Radiometer (HIRAD) is an innovative architecture which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology combined with a a unique array antenna design. The overarching design concept of HIRAD is to combine the multi-frequency C-band observing strategy of the SFMR with STAR technology to

  11. PHOCUS radiometer

    NASA Astrophysics Data System (ADS)

    Nyström, O.; Murtagh, D.; Belitsky, V.

    2012-06-01

    PHOCUS - Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50-110 km. This paper describes the SondRad instrument in the PHOCUS payload, a radiometer comprising two frequency channels (183 GHz and 557 GHz) aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining) clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD) at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend, whereas GARD was responsible for the radiometer optics and calibration systems. The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer, while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and Fast Fourier Transform Spectrometers (FFTS) backends with 67 kHz resolution. The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a continuous wave CW pilot signal calibrating the entire receiving chain, while the intermediate frequency chain (the IF-chain) of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler. The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable resolution over the spectrum, the data set was

  12. PHOCUS radiometer

    NASA Astrophysics Data System (ADS)

    Nyström, O.; Murtagh, D.; Belitsky, V.

    2012-01-01

    PHOCUS - Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50-110 km. This paper describes the SondRad instrument in the PHOCUS payload, the radiometer comprising two frequency channels, 183 GHz and 557 GHz, aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining) clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD) at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend whereas GARD was responsible for the radiometer optics and calibration systems. The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and FFT spectrometer backends with 67 kHz resolution. The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a CW-pilot signal calibrating the entire receiving chain while the IF-chain of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler. The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable resolution over the spectrum, the data set was reduced to 2 × 12 MByte. The first results indicate that the instrument has

  13. Integrating reconstructed scatterometer and advanced very high resolution radiometer data for tropical forest inventory

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1995-11-01

    A scientific effort is currently underway to assess tropical forest degradation and its potential impact on Earth's climate. Because of the large continental regions involved, Advanced Very High Resolution Radiometer (AVHRR) imagery and its derivative vegetation index products with resolutions between 1 and 12 km are typically used to inventory the Earth's equatorial vegetation. Archival AVHRR imagery is also used to obtain a temporal baseline of historical forest extent. Recently however, 50-km Seasat-A Scatterometer (SASS) Ku-band imagery (acquired in 1978) has been reconstructed to approximately equals 4-km resolution, making it a supplement to AVHRR imagery for historical vegetation assessment. In order to test the utility of reconstructed Ku-band scatterometer imagery for this purpose, seasonal AVHRR vegetation index and SASS images of identical resolutions were constructed. Using the imagery, discrimination experiments involving 18 vegetation categories were conducted for a central South America study area. The results of these experiments indicate that AVHRR vegetation- index images are slightly superior to reconstructed SASS images for differentiating between equatorial vegetation classes when used alone. However, combining the scatterometer imagery with the vegetation-index images provides discrimination superior to any other combination of the data sets. Using the two data sets together, 90.3% of the test data could be correctly classified into broad classes of equatorial forest, degraded woodland/forest, woodland/savanna, and caatinga.

  14. Science Data Processing for the Advanced Microwave Scanning Radiometer: Earth Observing System

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Regner, Kathryn; Conover, Helen; Ashcroft, Peter; Wentz, Frank; Conway, Dawn; Lobl, Elena; Beaumont, Bruce; Hawkins, Lamar; Jones, Steve

    2004-01-01

    The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.

  15. Assessment of Greenland albedo variability from the advanced very high resolution radiometer Polar Pathfinder data set

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne

    2001-12-01

    The advanced very high resolution radiometer Polar Pathfinder (APP) data set is used to examine the variability of the surface albedo over Greenland. Analysis of the APP albedo record from 1981 to 1998 show anomalously low albedo during 1995 and 1998 over most of the ice sheet as compared with the other years. The low albedo encountered during these years suggests that the ice sheet experienced considerable melt in 1995 and 1998, particularly near the western margin of the ice sheet. Conversely, anomalously high albedos were found in 1992 as a result of colder temperatures and hence less melt following the eruption of Mount Pinatubo. The relationship between the annual North Atlantic Oscillation (NAO) index and the mean summer albedo from all the stations reveals a positive correlation of 0.44 and a positive correlation of 0.55 for the southern part of the ice sheet. Therefore variations in the mean summer albedo over Greenland can, in part, be explained by variations in the NAO such that during periods of intensification of the normal mode of the NAO the mean summer albedo is above normal. Trend analysis reveals an overall downward trend in surface albedo from 1981 to 1998, which agrees with recent trends in melt and precipitation. However, the trend was found not to be statistically significant but rather influenced by the low albedo in recent years.

  16. Consistency in the long-term environmental measurements with NOAA: Advanced Very High Resolution Radiometer

    NASA Astrophysics Data System (ADS)

    Ciren, Pubu; Cao, Changyong; Sullivan, Jerry

    2006-08-01

    Lone-term satellite observations, such as Advanced Very High Resolution Radiometer (AVHRR), provide an irreplaceable means in monitoring Earth system through a series of satellites. However, to be able to detect the signal related to climate change, one of the critical requirements is the consistency and stability of calibration among the satellites. Applying Simultaneous Nadir Overpass (SNOs) method (Cao et al., 2002)., we fully accessed instrument-related consistency of AVHRR measurements covering all channels (from visible to IR) and time period from 1978 to 2003. It is seen that the inter-satellite biases in visible channels (channel 1 and 2) show larger inconsistency among satellites especially between NOAA-14 and NOAA-12. The inconsistency is shown as both the large bias and trend in the biases, mostly due to the lack of onboard calibration. Comparatively, the biases in IR channels, i.e., channel 4 and 5 are generally smaller, there are within +/- 1 k. However, the difference in the magnitude of the biases among satellites and the dependence of biases on the scene temperature may affect the quality of long term trend derived from such dataset. Analyses of bias root causes indicate that the effect from the difference in Spectral Response Function may not be large enough to account for the observed biases.

  17. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products

    NASA Astrophysics Data System (ADS)

    Abrams, Michael; Tsu, Hiroji; Hulley, Glynn; Iwao, Koki; Pieri, David; Cudahy, Tom; Kargel, Jeffrey

    2015-06-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 15-channel imaging instrument operating on NASA's Terra satellite. A joint project between the U.S. National Aeronautics and Space Administration and Japan's Ministry of Economy, Trade, and Industry, ASTER has been acquiring data for 15 years, since March 2000. The archive now contains over 2.8 million scenes; for the majority of them, a stereo pair was collected using nadir and backward telescopes imaging in the NIR wavelength. The majority of users require only a few to a few dozen scenes for their work. Studies have ranged over numerous scientific disciplines, and many practical applications have benefited from ASTER's unique data. A few researchers have been able to mine the entire ASTER archive, that is now global in extent due to the long duration of the mission. Six examples of global products are described in this contribution: the ASTER Global Digital Elevation Model (GDEM), the most complete, highest resolution DEM available to all users; the ASTER Emissivity Database (ASTER GED), a global 5-band emissivity map of the land surface; the ASTER Global Urban Area Map (AGURAM), a 15-m resolution database of over 3500 cities; the ASTER Volcano Archive (AVA), an archive of over 1500 active volcanoes; ASTER Geoscience products of the continent of Australia; and the Global Ice Monitoring from Space (GLIMS) project.

  18. Arctic sea ice leads from advanced very high resolution radiometer images

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1995-01-01

    A large number of advanced very high resolution radiometer (AVHRR) images from throughout 1989 are analyzed to determine lead characteristics. The units of analysis are square 200-km cells, and there are 270 such cells in the data set. Clouds are masked manually. Leads determine from images of the potential open water delta, a scaled version of the surface temperature or albedo that weights thin ice by its thermal or brightness impact. The lead fraction is determined as the mean delta, the monthly mean lead fraction ranges from 0.02 in winter to 0.06 in summer in the central Arctic and is near 0.08 in the winter in the peripheral seas. A method of accounting for lead width sampling errors due to the finite sample areas is introduced. In the central Arctic the observed mean lead width for a threshold of delta = 0.1 ranges from 2 or 3 km (near the resolution of the instrument) in the winter to 6 km in the summer. In the peripheral seas it is about 5 km in the winter. Width distributions are often more heavily weighted in the tail than exponential distributions and are well approximated by a power law. The along-track, number density power law N = aw(exp -6) has a mean exponent of b = 1.60 (standard deviation 0.18) and shows some seasonal variability. Mean floe widths in the central Arctic are 40 to 50 km in the winter, dropping to about 10 km in the summer. For floes the power law has a mean exponent of 0.93 and exhibits a clearer annual cycle. Lead orientation is determined with a method based on the direction of maximum extent.

  19. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  20. Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Virtanen, Timo H.; Rodriguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2017-02-01

    Cloud misclassification is a serious problem in the retrieval of aerosol optical depth (AOD), which might considerably bias the AOD results. On the one hand, residual cloud contamination leads to AOD overestimation, whereas the removal of high-AOD pixels (due to their misclassification as clouds) leads to underestimation. To remove cloud-contaminated areas in AOD retrieved from reflectances measured with the (Advanced) Along Track Scanning Radiometers (ATSR-2 and AATSR), using the ATSR dual-view algorithm (ADV) over land or the ATSR single-view algorithm (ASV) over ocean, a cloud post-processing (CPP) scheme has been developed at the Finnish Meteorological Institute (FMI) as described in Kolmonen et al. (2016). The application of this scheme results in the removal of cloud-contaminated areas, providing spatially smoother AOD maps and favourable comparison with AOD obtained from the ground-based reference measurements from the AERONET sun photometer network. However, closer inspection shows that the CPP also removes areas with elevated AOD not due to cloud contamination, as shown in this paper. We present an improved CPP scheme which better discriminates between cloud-free and cloud-contaminated areas. The CPP thresholds have been further evaluated and adjusted according to the findings. The thresholds for the detection of high-AOD regions (> 60 % of the retrieved pixels should be high-AOD (> 0.6) pixels), and cloud contamination criteria for low-AOD regions have been accepted as the default for AOD global post-processing in the improved CPP. Retaining elevated AOD while effectively removing cloud-contaminated pixels affects the resulting global and regional mean AOD values as well as coverage. Effects of the CPP scheme on both spatial and temporal variation for the period 2002-2012 are discussed. With the improved CPP, the AOD coverage increases by 10-15 % with respect to the existing scheme. The validation versus AERONET shows an improvement of the correlation

  1. Computational ocean acoustics: Advances in 3D ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Henrik; Jensen, Finn B.

    2012-11-01

    The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].

  2. Probabilistic approach to cloud and snow detection on Advanced Very High Resolution Radiometer (AVHRR) imagery

    NASA Astrophysics Data System (ADS)

    Musial, J. P.; Hüsler, F.; Sütterlin, M.; Neuhaus, C.; Wunderle, S.

    2014-03-01

    Derivation of probability estimates complementary to geophysical data sets has gained special attention over the last years. Information about a confidence level of provided physical quantities is required to construct an error budget of higher-level products and to correctly interpret final results of a particular analysis. Regarding the generation of products based on satellite data a common input consists of a cloud mask which allows discrimination between surface and cloud signals. Further the surface information is divided between snow and snow-free components. At any step of this discrimination process a misclassification in a cloud/snow mask propagates to higher-level products and may alter their usability. Within this scope a novel probabilistic cloud mask (PCM) algorithm suited for the 1 km × 1 km Advanced Very High Resolution Radiometer (AVHRR) data is proposed which provides three types of probability estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As opposed to the majority of available techniques which are usually based on the decision-tree approach in the PCM algorithm all spectral, angular and ancillary information is used in a single step to retrieve probability estimates from the precomputed look-up tables (LUTs). Moreover, the issue of derivation of a single threshold value for a spectral test was overcome by the concept of multidimensional information space which is divided into small bins by an extensive set of intervals. The discrimination between snow and ice clouds and detection of broken, thin clouds was enhanced by means of the invariant coordinate system (ICS) transformation. The study area covers a wide range of environmental conditions spanning from Iceland through central Europe to northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algorithms. The retrieved PCM cloud classification was compared to the Polar Platform System (PPS) version 2012 and Moderate Resolution Imaging

  3. Assessing coastal plain wetland composition using advanced spaceborne thermal emission and reflection radiometer imagery

    NASA Astrophysics Data System (ADS)

    Pantaleoni, Eva

    Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy

  4. Observations of frozen skin of southern ocean from multifrequency scanning microwave radiometer (MSMR) onboard oceansat - 1

    NASA Astrophysics Data System (ADS)

    Vyas, N.; Bhandari, S.; Dash, M.; Pandey, P.; Khare, N.

    Encircling the Antarctic, Southern Ocean connects all the three oceans of the world with fastest current system found anywhere in the world. The region is thermally very stable and is covered with ice, which has a strong seasonal variability. The sea ice pulsates annually with seasonal migration varying from 4 million square kilometer to 20 million square kilometer during summer and winter respectively. This has strong influence on energy balance of the ocean-ice-atmosphere system, and hence on atmospheric general circulation affecting weather and climate. Sea ice also works as an insulator thus inhibiting the energy flux between ocean and atmosphere. It also influences the ecosystem of the southern ocean, which has rich fish resources with global economic values such as krill and tooth fish. During winter Krill survives on algae found at the under side of the sea ice. The southern ocean is known to have high nutrition but low concentration of chlorophyll-a, which is a proxy of the phytoplankton. It is now understood that iron is the limiting factor as has been shown by various iron fertilization experiments. Passive microwave radiometry from space has been extensively used for the study of sea ice types and concentration in the Arctic and the Antarctic regions. Since late 1970s, data from SMMR and SSM/I have been used to study trends in sea ice extent and area. We have further extended the above studies by using data from OCEANSAT - 1 MSMR. The data, acquired at 18 GHz (H) with 50 kilometer resolution and having a swath of 1360 kilometer and a repeat cycle of 2 days, was processed to generate the brightness temperature maps over the Antarctica for a period of 2 years and the results were analyzed in conjunction with those obtained earlier (since 1978) through the study of SMMR and SSM/I data. Besides strong seasonal variability, our analysis shows an increasing trend in the sea ice extent during the recent years and the rate appears to be accelerating contrary to

  5. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  6. New Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate From the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Buckley, C. D.; Biswas, S.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, Cerese

    2012-01-01

    HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  7. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  8. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  9. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    PubMed

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  10. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's EOS-AMI Platform

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1999-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high spatial resolution, multispectral imager with along-track stereo capabilities scheduled for launch on the first NASA spacecraft of the Earth Observing System (EOS AM-1) in mid-1999.

  11. METSAT information content: Cloud screening and solar correction investigations on the influence of NOAA-6 advanced very high resolution radiometer derived vegetation assessment

    NASA Technical Reports Server (NTRS)

    Mathews, M. L.

    1983-01-01

    The development of the cloud indicator index (CII) for use with METSAT's advanced very high resolution radiometer (AVHRR) is described. The CII is very effective at identification of clouds. Also, explored are different solar correction and standard techniques and the impact of these corrections have on the information content of AVHRR data.

  12. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  13. Observations of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2013-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and at the time of this writing plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  14. Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.

    2012-01-01

    HIRAD flew on the WB-57 over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new Cband radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. (The resulting swath width for a platform at 60,000 feet is roughly 60 km, and resolution for most of the swath is around 2 km.) By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  15. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  16. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.

    2003-01-01

    Evaluation of an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the Mountain Pass, California area indicates that several important lithologic groups can be mapped in areas with good exposure by using spectral-matching techniques. The three visible and six near-infrared bands, which have 15-m and 30-m resolution, respectively, were calibrated by using in situ measurements of spectral reflectance. Calcitic rocks were distinguished from dolomitic rocks by using matched-filter processing in which image spectra were used as references for selected spectral categories. Skarn deposits and associated bright coarse marble were mapped in contact metamorphic zones related to intrusion of Mesozoic and Tertiary granodioritic rocks. Fe-muscovite, which is common in these intrusive rocks, was distinguished from Al-muscovite present in granitic gneisses and Mesozoic granite. Quartzose rocks were readily discriminated, and carbonate rocks were mapped as a single broad unit through analysis of the 90-m resolution, five-band surface emissivity data, which is produced as a standard product at the EROS Data Center. Three additional classes resulting from spectral-angle mapper processing ranged from (1) a broad granitic rock class (2) to predominately granodioritic rocks and (3) a more mafic class consisting mainly of mafic gneiss, amphibolite and variable mixtures of carbonate rocks and silicate rocks. ?? 2002 Elsevier Science Inc. All rights reserved.

  17. Directional Effects on Land Surface Temperatures Observed from Dual-View Data of the Advanced Along-Track Scanning Radiometer

    NASA Astrophysics Data System (ADS)

    Galve, Joan M.; Coll, Cesar; Niclos, Raquel; Valor, Enric; Sanchez, Juan Manuel

    2016-08-01

    The thermal radiance emitted by heterogeneous, non- isothermal land surfaces depends on the observation and illumination angles and their individual temperatures and emissivities. Therefore, the analysis of the angular variations in equivalent brightness temperature can be used to infer the thermal state of the sample components. The dual-view capability of the Advanced Along-Track Scanning Radiometer (AATSR) can be used to estimate the difference in brightness surface temperature (BST) between the near-simultaneous nadir and forward views in the 11 and 12μm bands. We developed a methodology to obtain the BSTs for the 11 and 12μm bands at nadir and forward views using an accurate single-channel atmospheric correction method on a pixel-by-pixel basis. The methodology was applied to two AATSR scenes over central-east Spain, on August 6, 2005 (daytime and night- time). The average value of the angular BST difference was 3.2K for daytime and 0.8K for night-time in the 11μmband, being similar for the 12μm band.

  18. Calibration of the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer (AVHRR) After Launch

    NASA Technical Reports Server (NTRS)

    Rao, C. R. Nagaraja; Chen, Jianhua

    1993-01-01

    The relative degradation in time of the visible(channel 1: approx.0.58-0.6 microns) and near-infrared(channel 2: approx. O.72-1.1 microns) channels of the Advanced Very High Resolution Radiometer(AVHRR), onboard the NOAA Polar-orbiting Operational Environmental Satellites(POES), has been determined, using the southeastern Libyan desert(21-23 deg N latitude; 28- 29 deg E longitude) as a time-invariant calibration target. A statistical procedure was used on the reflectance data for the two channels from the B3 data of the International Satellite Cloud Climatology Project(ISCCP) to obtain the degradation rates for the AVERRs on NOAA-7, -9, and -11 spacecraft. The degradation rates per year for channels 1 and 2 are respectively: 3.6% and 4.3%(NOAA-7); 5.9% and 3.5%(NOAA-9); and 1.2% and 2.0%(NOAA-11). The use of the degradation rates thus determined, in conjunction with 'absolute' calibrations obtained from congruent aircraft and satellite measurements, in the development of correction algorithms is illustrated with the AVHRR on the NOAA-9 spacecraft.

  19. Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Validation Data Management at the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC)

    NASA Astrophysics Data System (ADS)

    Marquis, M. C.; Paserba, A. M.

    2003-12-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) is supporting the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) validation activity. NSIDC has designed and developed a web portal to data and information collected during NASA's AMSR-E Validation Program: (http://nsidc.org/data/amsr_validation/.) The AMSR-E validation experiments address three disciplines: soil moisture, rainfall and cryospheric validation campaigns. This poster describes all these experiments (past, present and future). NSIDC provides documentation, e.g., user guides, as well as metadata documents (DIFS) submitted to the Global Change Master Directory (GCMD), for all the AMSR-E validation experiments. NSIDC further supports the validation activities by collaborating with the AMSR-E Science Investigator-led Processing System (SIPS) to provide scientists in the field (e.g., Arctic and Antarctic ship and flight campaigns) with quick, easy access to AMSR-E data for their validation experiments. NSIDC provides subsets of reformatted data in a manner most convenient to the validation scientists while they conduct their experiments. The AMSR-E is a mission instrument launched aboard NASA's Aqua Satellite on 4 May 2002. The Aqua mission provides a multi-disciplinary study of the Earth's atmospheric, oceanic, cryospheric, and land processes and their relationship to global change. With six instruments aboard, the Aqua Satellite will travel in a polar, sun-synchronous orbit. NSIDC will archive and distribute all AMSR-E products, including Levels 1A, 2, and 3 data. Users can order Level-1A AMSR-E data beginning 19 June 2003 and Level-2A data beginning 01 September 2003. Other products will be available in March 2004.

  20. The classification of the Arctic Sea ice types and the determination of surface temperature using advanced very high resolution radiometer data

    NASA Technical Reports Server (NTRS)

    Massom, Robert; Comiso, Josefino C.

    1994-01-01

    The accurate quantification of new ice and open water areas and surface temperatures within the sea ice packs is a key to the realistic parameterization of heat, moisture, and turbulence fluxes between ocean and atmosphere in the polar regions. Multispectral NOAA advanced very high resolution radiometer/2 (AVHRR/2) satellite images are analyzed to evaluate how effectively the data can be used to characterize sea ice in the Bering and Greenland seas, both in terms of surface type and physical temperature. The basis of the classification algorithm, which is developed using a late wintertime Bering Sea ice cover data, is that frequency distributions of 10.8- micrometers radiances provide four distinct peaks, represeting open water, new ice, young ice, and thick ice with a snow cover. The results are found to be spatially and temporally consistent. Possible sources of ambiguity, especially associated with wider temporal and spatial application of the technique, are discussed. An ice surface temperature algorithm is developed for the same study area by regressing thermal infrared data from 10.8- and 12.0- micrometers channels against station air temperatures, which are assumed to approximate the skin temperatures of adjacent snow and ice. The standard deviations of the results when compared with in situ data are about 0.5 K over leads and polynyas to about 0.5-1.5 K over thick ice. This study is based upon a set of in situ data limited in scope and coverage. Cloud masks are applied using a thresholding technique that utilizes 3.74- and 10.8- micrometers channel data. The temperature maps produced show coherence with surface features like new ice and leads, and consistency with corresponding surface type maps. Further studies are needed to better understand the effects of both the spatial and temporal variability in emissivity, aerosol and precipitable atmospheric ice particle distribution, and atmospheric temperature inversions.

  1. Airborne full polarization radiometry using the MSFC Advanced Microwave Precipitation Radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Gasiewski, Al J.; Kunkee, D. B.

    1993-01-01

    The applications of vertically and horizontally polarized brightness temperatures in both atmospheric and surface remote sensing have been long recognized by many investigators, particularly those studying SMMR and SSM/I data. Here, the large contrast between the first two Stokes' parameters (T(sub V) and T(sub H)) can be used for detection of sea ice, measurement of ocean surface wind speed, and measurement of cloud and water vapor opacity. High-resolution aircraft data from instruments such as the NASA/MSFC AMPR is crucial for verifying radiative transfer models and developing retrieval algorithms. Currently, the AMPR is outfitted with single-polarization channels at 10, 18, 37 and 85 GHz. To increase its utility, it is proposed that additional orthogonal linearly polarized channels be added to the AMPR. Since the AMPR's feedhorns are already configured for dual orthogonal linearly polarized modes, this would require only a duplication of the currently existing receivers. To circumvent the resulting polarization basis skew caused by the cross-track scanning mechanism, the technique of Electronic Polarization Basis Rotation is proposed to be implemented. Implementation of EPBR requires precise measurement of the third Stokes parameter and will eliminate polarization skew by allowing the feedhorn basis skew angle to be corrected in software. In addition to upgrading AMPR to dual polarization capability (without skew), the modifications will provide an opportunity to demonstrate EPBR on an airborne platform. This is a highly desirable intermediate step prior to satellite implementation.

  2. Preliminary assessment of industrial needs for an advanced ocean technology

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Maher, K. M.; Balon, J. E.; Coyle, A. G.; Henkener, J. A.

    1979-01-01

    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed.

  3. Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer

    SciTech Connect

    Platnick, S.; Twomey, S.

    1994-03-01

    Combustion processes that produce greenhouse gases also increase cloud condensation nuclei (CCN) concentrations, which in turn increase cloud droplet concentrations and thereby cloud albedo. A calculation of cloud susceptibility, defined in this work as the increase in albedo resulting from the addition of one cloud droplet per cubic centimeter (as cloud liquid water content remains constant), is made through the satellite remote sensing of cloud droplet radius and optical thickness. The remote technique uses spectral channels of the Advanced Very High Resolution Radiometer (AVHRR) instrument on board NOAA polar-orbiting satellites. Radiative transfer calculations of reflectance and effective surface and cloud emissivities are made for applicable sun and satellite viewing angles, including azimuth, at various radii and optical thicknesses for each AVHRR channel. Emission in channel 3 (at 3.75 {mu}m) is removed to give the reflected solar component. These calculations are used to infer the radius and optical thickness that best match the satellite measurements. An approximation for the effect of the atmosphere on the signal received by the AVHRR is included in the analysis. Marine stratus clouds, as well as being important modifiers of climate, are cleaner that continental clouds and so likely to be of higher susceptibility. Analysis of several stratus scenes, including some containing ship tracks, supports this expectation. The retrieved range of susceptibilities for all marine stratus clouds studied varied by about two orders of magnitude. This variation implies that climate studies that include possible marine stratus albedo modification from anthropogenic CCN are incomplete without accounting for existing susceptibilities. 54 refs., 10 figs., 1 tab.

  4. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.; Simpson, C.J.

    2005-01-01

    Spectral measurements made in the Mordor Pound, NT, Australia study area using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in the laboratory and in situ show dominantly Al-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra and ferrous-iron and Fe,Mg-OH features in the mafic-ultramafic rock spectra. ASTER ratio images, matched-filter, and spectral-angle mapper processing (SAM) were evaluated for mapping the lithologies. Matched-filter processing in which VNIR + SWIR image spectra were used for reference resulted in 4 felsic classes and 4 mafic-ultramafic classes based on Al-OH or Fe,Mg-OH absorption features and, in some, subtle reflectance differences related to differential weathering and vegetation. These results were similar to those obtained by match-filter analysis of HyMap data from a previous study, but the units were more clearly demarcated in the HyMap image. ASTER TIR spectral emittance data and laboratory emissivity measurements document a wide wavelength range of Si-O spectral features, which reflect the lithological diversity of the Mordor ultramafic complex and adjacent rocks. SAM processing of the spectral emittance data distinguished 2 classes representing the mafic-ultramafic rocks and 4 classes comprising the quartzose to intermediate composition rocks. Utilization of the complementary attributes of the spectral reflectance and spectral emittance data resulted in discrimination of 4 mafic-ultramafic categories; 3 categories of alluvial-colluvial deposits; and a significantly more completely mapped quartzite unit than could be accomplished by using either data set alone. ?? 2005 Elsevier Inc. All rights reserved.

  5. Characteristics of the Alaskan 1-Km Advanced Very High Resolution Radiometer data sets used for analysis of vegetation biophysical properties

    USGS Publications Warehouse

    Markon, Carl J.

    1999-01-01

    In this study, data characteristics for composited, multitemporal Advanced Very High Resolution Radiometer data sets for Alaska were assessed for a 7- year period from 1991 to 1997. This involved consideration of the satellite sensors used, data processing performed, and data set compilation, along with an analysis of acquisition date, solar zenith angle, satellite viewing angle, presence of clouds, and registration accuracy for each year. Each year?s worth of data are available on CD-ROM in byte format. All data sets have an initial start date of April 1, but had varying ending dates (mid-September to late October) because of satellite sensor malfunction or the presence of clouds or snow; no data set extended beyond October 31. Satellite scan angles were summarized in seven categories: data obtained at nadir, data within 30, 40, and 55 degrees of nadir, data greater than 55 degrees off nadir, and proportions of the data representing east or west look angles. Minimum, maximum, and average solar zenith angles were provided for each period. Estimates of cloud cover for each period were based on three tests: reflectance gross cloud test, channel 3 minus channel 4, and channel 4 minus channel 5. Registration accuracy was estimated using a gray-level autocorrelation technique. Results of this investigation indicate that the composited data available on CD-ROM should be useful for a number of different regional assessments of Earth cover properties. However, caution is advised when using these data because (1) loss in precision from the conversion to a byte format, (2) low sun angles and high viewing angles in the September and October data, and (3) registration inaccuracies of 2 to 8 pixels.

  6. Arctic sea ice concentrations from special sensor microwave imager and advanced very high resolution radiometer satellite data

    NASA Technical Reports Server (NTRS)

    Emery, W. J.; Fowler, C.; Maslanik, J.

    1994-01-01

    Nearly coincident data from the special sensor microwave imager (SSM/I) and the advanced very high resolution radiometer (AVHRR) are used to compute and compare Arctic sea ice concentrations for different regions and times of the year. To help determine overall accuracies and to highlight sources of differences between passive microwave, optical wavelength, and thermal wavelength data, ice concentrations are estimated using two operational SSM/I ice concentration algorithms and with visible- and thermal-infrared wavelength AVHRR data. All algorithms capture the seasonal patterns of ice growth and melt. The ranges of differences fall within the general levels of uncertainty expected for each method and are similar to previous accuracy estimates. The estimated ice concentrations are all highly correlated, with uniform biases, although differences between individual pairs of observations can be large. On average, the NASA Team algorithm yielded 5% higher ice concentrations than the Bootstrap algorithm, while during nonmelt periods the two SSM/I algorithms agree to within 0.5%. These seasonal differences are consistent with the ways that the 19-GHz and 37-GHz microwave channels are used in the algorithms. When compared to the AVHRR-derived ice concentrations, the Team-algorithm results are more similar on average in terms of correlation and mean differences. However, the Team algorithm underestimates concentrations relative to the AVHRR output by 6% during cold months and overestimates by 3% during summer. Little seasonal difference exists between the Bootstrap and AVHRR results, with a mean difference of about 5%. Although the mean differences are less between the SSM/I-derived concentrations and concentrations estimated using AVHRR channel 1, the correlations appear substantially better between the SSM/I data and concentrations derived from AVHRR channel 4, particularly for the Team algorithm output.

  7. Advancing the First World Ocean Assessment

    NASA Astrophysics Data System (ADS)

    Tirpak, Elizabeth; Halpern, David

    2013-04-01

    World Ocean Assessment (WOA) regional workshops enlist expertise for the WOA Pool of Experts, update regional knowledge on the marine environment, and build capacity to conduct assessments and benefit from assessments. WOA was described in Eos (93(50), 521, doi:10.1029/2012EO500001). For the Wider Caribbean Region (WCR) Workshop, the United States Mission to the United Nations (UN) invited all UN missions, in accordance with WOA guidelines. The WCR workshop attracted 94 people from 32 countries with a wide range of expertise, including ocean, fishery, and biodiversity sciences; living and nonliving resource management; and capacity building. Attendees represented academia, governments, industry, and nongovernmental organizations.

  8. The Radiometer

    ERIC Educational Resources Information Center

    Stern, David P.

    1970-01-01

    The often observed and misunderstood phenomenon of movement of black and white vanes in toy radiometers under illumination is discussed in a generalized non-mathematical manner. Effects of light pressure, low gas density, friction, heat, and motion are illustrated. (JM)

  9. Current status of the global change observation mission - water SHIZUKU (GCOM-W) and the advanced microwave scanning radiometer 2 (AMSR2) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Kachi, Misako; Kasahara, Marehito

    2016-10-01

    Japan Aerospace Exploration Agency (JAXA) launched the Global Change Observation Mission - Water (GCOM-W) or "SHIZUKU" in 18 May 2012 (JST) from JAXA's Tanegashima Space Center. The GCOM-W satellite joins to NASA's A-train orbit since June 2012, and its observation is ongoing. The GCOM-W satellite carries the Advanced Microwave Scanning Radiometer 2 (AMSR2). The AMSR2 is a multi-frequency, total-power microwave radiometer system with dual polarization channels for all frequency bands, and successor microwave radiometer to the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) loaded on the NASA's Aqua satellite. The AMSR-E kept observation in the slower rotation speed (2 rotations per minute) for cross-calibration with AMSR2 since December 2012, its operation ended in December 2015. The AMSR2 is designed almost similarly as the AMSR-E. The AMSR2 has a conical scanning system with large-size offset parabolic antenna, a feed horn cluster to realize multi-frequency observation, and an external calibration system with two temperature standards. However, some important improvements are made. For example, the main reflector size of the AMSR2 is expanded to 2.0 m to observe the Earth's surface in higher spatial resolution, and 7.3-GHz channel is newly added to detect radio frequency interferences at 6.9 GHz. In this paper, we present a recent topic for the AMSR2 (i.e., RFI detection performances) and the current operation status of the AMSR2.

  10. A multispectral cloud type identification method developed for tropical ocean areas with Nimbus-3 MRIR measurements. [Medium Resolution Infrared Radiometer

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Neff, R. A.; Holub, R. J.

    1976-01-01

    A four-channel multispectral cloud type identification technique is developed on the basis of Nimbus-3 Resolution Infrared Radiometer (MRIR) measurements, with the four channels being spectrally located at 0.2-4.0, 6.5-7, 10-11, and 20-23 microns. The technique requires the use of a radiative transfer model with information on the vertical temperature and moisture profiles and climatological knowledge of the upper boundaries of cloud surfaces associated with expected cloud types within a given area. Experimental verification of the technique indicates that deletion of the 20-23 micron channel has no adverse effect on method capability, and that the 6.5-7 micron channel alone is well suited for successful mapping of the areas where cirrus is reasonably dense, while indicating the regions where cirrus is not present.

  11. Retrieval of ocean surface parameters from the scanning multifrequency microwave radiometer (SMMR) on the Nimbus-7 satellite

    SciTech Connect

    Wilheit, T.T.; Chang, E.; Gatlin, J.; Greaves, J.; Han, D.; Krupp, B.M.; Milman, A.S.

    1984-03-01

    Sea-surface temperature retrievals have been tested on 2 months of Nimbus-7 scanning multichannel microwave radiometer data. Using the prelaunch versions of the instrument calibration and geophysical parameter retrieval algorithms the initial results were poor. Improved algorithms produced substantially better results. It appears that at least for the night-Southern Hemisphere portion of the Nimbus-7 orbit, a rms measurement accuracy of 1.45/sup 0/C has been achieved. Similar tests with wind speed retrievals yield an accuracy of 2.7 m/s rms with no substantial differences between day and night measurements but limited by availability of surface observations to the Northern Hemisphere. Moreover, it appears that the retrieved wind speed is more nearly related to the square of the wind observed at the surface than to the wind itself.

  12. Broadband radiometer

    DOEpatents

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  13. Broadband radiometer

    DOEpatents

    Cannon, Theodore W.

    1994-01-01

    A broadband radiometer including (a) an optical integrating sphere having a enerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.

  14. Advancing Ocean Monitoring Near Coral Reefs

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  15. Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Advanced Microwave Scanning Radiometer Data Products for National Drought Monitor Decision Support

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    Drought effects are either direct or indirect depending on location, population, and regional economic vitality. Common direct effects of drought are reduced crop, rangeland, and forest productivity; increased fire hazard; reduced water levels; increased livestock and wildlife mortality rates; and damage to wildlife and fish habitat. Indirect impacts follow on the heels of direct impacts. For example, a reduction in crop, rangeland, and forest productivity may result in reduced income for farmers and agribusiness, increased prices for food and timber, unemployment, reduced tax revenues, increased crime, foreclosures on bank loans to farmers and businesses, migration, and disaster relief programs. In the United States alone, drought is estimated to result in annual losses of between $6 - 8 billion. Recent sustained drought in the United States has made decision-makers aware of the impacts of climate change on society and environment. The eight major droughts that occurred in the United States between 1980 and 1999 accounted for the largest percentage of weather-related monetary losses. Monitoring drought and its impact that occurs at a variety of scales is an important government activity -- not only nationally but internationally as well. The NDMC (National Drought Mitigation Center) and the USDA (U.S. Department of Agriculture) RMA (Risk Management Agency) have partnered together to develop a DM-DSS (Drought Monitoring Decision Support System). This monitoring system will be an interactive portal that will provide users the ability to visualize and assess drought at all levels. This candidate solution incorporates atmospherically corrected VIIRS data products, such as NDVI (Normalized Difference Vegetation Index) and Ocean SST (sea surface temperature), and AMSR-E soil moisture data products into two NDMC vegetation indices -- VegDRI (Vegetation Drought Response Index) and VegOUT (Vegetation Outlook) -- which are then input into the DM-DSS.

  16. Resolution Enhancement of Spaceborne Radiometer Images

    NASA Technical Reports Server (NTRS)

    Krim, Hamid

    2001-01-01

    Our progress over the last year has been along several dimensions: 1. Exploration and understanding of Earth Observatory System (EOS) mission with available data from NASA. 2. Comprehensive review of state of the art techniques and uncovering of limitations to be investigated (e.g. computational, algorithmic ...). and 3. Preliminary development of resolution enhancement algorithms. With the advent of well-collaborated satellite microwave radiometers, it is now possible to obtain long time series of geophysical parameters that are important for studying the global hydrologic cycle and earth radiation budget. Over the world's ocean, these radiometers simultaneously measure profiles of air temperature and the three phases of atmospheric water (vapor, liquid, and ice). In addition, surface parameters such as the near surface wind speed, the sea surface temperature, and the sea ice type and concentration can be retrieved. The special sensor microwaves imager SSM/I has wide application in atmospheric remote sensing over the ocean and provide essential inputs to numerical weather-prediction models. SSM/I data has also been used for land and ice studies, including snow cover classification measurements of soil and plant moisture contents, atmospheric moisture over land, land surface temperature and mapping polar ice. The brightness temperature observed by SSM/I is function of the effective brightness temperature of the earth's surface and the emission scattering and attenuation of the atmosphere. Advanced Microwave Scanning Radiometer (AMSR) is a new instrument that will measure the earth radiation over the spectral range from 7 to 90 GHz. Over the world's ocean, it will be possible to retrieve the four important geographical parameters SST, wind speed, vertically integrated water vapor, vertically integrated cloud liquid water L.

  17. [Research advances in methyl bromide in the ocean].

    PubMed

    Du, Hui-na; Xie, Wen-xia; Cui, Yu-qian; Chen, Jian-lei; Ye, Si-yuan

    2014-12-01

    Methyl bromide is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of methyl bromide, not only the source of atmospheric methyl bromide, but also the sink. Therefore, developing the chemical research of the soluble methyl bromide in the ocean, will not only have a certain guiding significance to the atmospheric ozone layer protection, but also provide a theoretical basis for estimating methyl bromide's contribution to the global environmental change on global scale. This paper reviewed the research advances on methyl bromide in the ocean, from the aspects of the biogeochemical cycle of methyl bromide in the ocean, the analysis and determination method, the concentration distribution, the sea-to-air flux and its sources and sinks in the atmosphere. Some deficiencies in the current studies were put forward, and the directions of the future studies were prospected.

  18. Airborne Observation of Ocean Surface Roughness Variations Using a Combination of Microwave Radiometer and Reflectometer Systems: The Second Virginia Offshore (Virgo II) Experiment

    DTIC Science & Technology

    2014-03-06

    katzberg (Snasa.gov Abstract—Airborne and satellite retrieval of Sea Surface Salinity ( SSS ) using L-band micronave radiometers requires accurate...combined an L-band micronave radiometer for retrieving SSS , with L- and S-band reflectometer systems for retrieving SSR descriptors including Mean Square...from the reflectometers to correct the brightness temperatures observed by the L-band radiometer, and produce more accurate SSS retrievals. Here we

  19. PAU-SA: a synthetic aperture interferometric radiometer test bed for potential improvements in future missions.

    PubMed

    Ramos-Perez, Isaac; Camps, Adriano; Bosch-Lluis, Xavi; Rodriguez-Alvarez, Nereida; Valencia-Domènech, Enric; Park, Hyuk; Forte, Giuseppe; Vall-Llosera, Merce

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA). Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA) instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS), the Precipitation and All-weather Temperature and Humidity (PATH) and the Geostationary Interferometric Microwave Sounder (GIMS). Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS's design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  20. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  1. Advances in a distributed approach for ocean model data interoperability

    USGS Publications Warehouse

    Signell, Richard P.; Snowden, Derrick P.

    2014-01-01

    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  2. Optical depths of semi-transparent cirrus clouds over oceans from CALIPSO infrared radiometer and lidar measurements, and an evaluation of the lidar multiple scattering factor

    NASA Astrophysics Data System (ADS)

    Garnier, A.; Pelon, J.; Vaughan, M. A.; Winker, D. M.; Trepte, C. R.; Dubuisson, P.

    2015-02-01

    This paper provides a detailed evaluation of cloud absorption optical depths retrieved at 12.05 μm and comparisons to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite. The blackbody radiance taken in the IIR Version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. IIR infrared absorption optical depths are then compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent 2-way transmittance through the cloud. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40% as the temperature at the layer centroid altitude decreases from 240 to 200 K. This behavior is explained by variations of the multiple scattering factor ηT to be applied to correct the measured transmittance, which is taken equal to 0.6 in the CALIOP Version 3 algorithm, and which is found here to vary with temperature (and hence cloud particle size) from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.

  3. Classification of simulated and actual NOAA-6 AVHRR data for hydrologic land-surface feature definition. [Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1982-01-01

    An examination of the possibilities of using Landsat data to simulate NOAA-6 Advanced Very High Resolution Radiometer (AVHRR) data on two channels, as well as using actual NOAA-6 imagery, for large-scale hydrological studies is presented. A running average was obtained of 18 consecutive pixels of 1 km resolution taken by the Landsat scanners were scaled up to 8-bit data and investigated for different gray levels. AVHRR data comprising five channels of 10-bit, band-interleaved information covering 10 deg latitude were analyzed and a suitable pixel grid was chosen for comparison with the Landsat data in a supervised classification format, an unsupervised mode, and with ground truth. Landcover delineation was explored by removing snow, water, and cloud features from the cluster analysis, and resulted in less than 10% difference. Low resolution large-scale data was determined useful for characterizing some landcover features if weekly and/or monthly updates are maintained.

  4. Estimation of surface energy balance from radiant surface temperature and NOAA AVHRR sensor reflectances over agricultural and native vegetation. [AVHRR (advanced very high resolution radiometer)

    SciTech Connect

    Huang Xinmei; Lyons, T.J. ); Smith, R.C.G. ); Hacker, J.M.; Schwerdtfeger, P. )

    1993-08-01

    A model is developed to evaluate surface heat flux densities using the radiant surface temperature and red and near-infrared reflectances from the NOAA Advanced Very High Resolution Radiometer sensor. Net radiation is calculated from an empirical formulation and albedo estimated from satellite observations. Infrared surface temperature is corrected to aerodynamic surface temperature in estimating the sensible heat flux and the latent flux is evaluated as the residual of the surface energy balance. When applied to relatively homogeneous agricultural and native vegetation, the model yields realistic estimates of sensible and latent heat flux density in the surface layer for cases where either the sensible or latent flux dominates. 29 refs., 10 figs., 3 tabs.

  5. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  6. Slope adjustment of runoff curve number (CN) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) for Kuantan River Basin

    NASA Astrophysics Data System (ADS)

    Akbari, Abolghasem

    2015-10-01

    The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and landuse information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and many more. The Sharply-Williams and Hank methods was used to adjust CN values provided in standard table of TR-55. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) is used to derive slope map with spatial resolution of 30 m for Kuantan River Basin (KRB). The two investigated method stretches the conventional CN domain to the lower values. The study shows a successful application of remote sensing data and GIS tools in hydrological studies. The result of this work can be used for rainfall-runoff simulation and flood modeling in KRB.

  7. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  8. Sea Surface Current Estimates off Central California as Derived from Enhanced AVHRR (Advanced Very High Resolution Radiometer) Infrared Images.

    DTIC Science & Technology

    1987-09-01

    guidance and support throughout the thesis process . 6 I. INTRODUCTION The ocean is a complex system with movement and variability in the temporal and spatial...Monere ...... .... . ........... Isrn Ic IV. SATELLITE DATA PRE- PROCESSING AND IR IMAGE ENHANCEMENT The feature tracking technique used in this thesis ...I~ t0 a Its ~LS I 9 9 9 9 9 -9-9 I BAVAL NSTSRAIUATE SCHOOL Mutre, Clienia FLE CM DTlCSELECTE m 10 OVHD * THESIS a MW#=~ cumaur RST IMATIS OFT CAL

  9. An Update on Oceanic Precipitation Rate and its Zonal Distribution in Light of Advanced Observations from Space

    NASA Technical Reports Server (NTRS)

    Behrangi, Ali; Stephens, Graeme; Adler, Robert F.; Huffman, George J.; Lambrigsten, Bjorn; Lebstock, Matthew

    2014-01-01

    This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation rate using complementary information from advanced precipitation measuring sensors and provides an independent reference to assess current precipitation products. Precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR) were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist, precipitation estimates from Aqua's Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM, and Aqua platforms (this estimate is abbreviated to MCTA), the authors' estimate for 3-yr (2007-09) nearglobal (80degS-80degN) oceanic mean precipitation rate is approx. 2.94mm/day. This new estimate of mean global ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) value (2.68mm/day) and about 4% higher than that of the Global Precipitation Climatology Project (GPCP; 2.82mm/day). Furthermore, MCTA suggests distinct differences in the zonal distribution of precipitation rate from that depicted in GPCPand CMAP, especially in the Southern Hemisphere.

  10. Seven-year phenological record of the Alaskan ecoregions derived from advanced very high resolution radiometer normalized difference vegetation index data

    USGS Publications Warehouse

    Markon, Carl J.

    2001-01-01

    Seasonal properties of vegetation covering northern boreal and arctic landscapes are considered important as input to numerous climate change studies. In this study, multitemporal phenological characteristics of Alaskan vegetation were studied for the State as a whole, and 19 of 20 ecoregions were studied using seasonally truncated, composited advanced very high resolution radiometer derived normalized difference vegetation index (NDVI) data. Phenological characteristics included four temporal and six greenness metrics derived for each year from 1991 to 1997. Temporal metrics included date of onset of greenness, last day of greenness, date of maximum greenness, and total days of greenness. Greenness metrics consisted of NDVI values recorded during the onset and last day of greenness, maximum greenness, mean greenness for the growing season, and estimated rates of greenup and greendown in the spring and autumn, respectively. Results indicated that over many areas of Alaska there was a trend toward earlier onset of greenness each spring from 1992 to 1997, but the last day of greenness in the autumn was roughly the same. Earlier greenup dates in the spring resulted in a lengthened growing season greenup of up to 20 days in some areas of Alaska from 1992 to 1997. Climate data, however, did not always corroborate these findings. In general, greenness values dropped from 1991 to 1992 and then increased from 1992 to 1997. Values obtained after 1991 may have been affected by atmospheric perturbations owing to the 1991 Mt. Pinatubo eruption and lasting until at least 1997.

  11. Linkages Between Global Vegetation and Climate: An Analysis Based on NOAA Advanced Very High Resolution Radiometer Data. Degree awarded by Vrije Universiteit, Amsterdam, Netherlands

    NASA Technical Reports Server (NTRS)

    Los, Sietse Oene

    1998-01-01

    A monthly global 1 degree by 1 degree data set from 1982 until 1990 was derived from data collected by the Advanced Very High Resolution Radiometer on board the NOAA 7, 9, and 11 satellites. This data set was used to study the interactions between variations in climate and variations in the "greenness" of vegetation. Studies with the Colorado State University atmospheric general circulation model coupled to the Simple Biosphere model showed a large sensitivity of the hydrological balance to changes in vegetation at low latitudes. The depletion of soil moisture as a result of increased vegetation density provided a negative feedback in an otherwise positive association between increased vegetation, increased evaporation, and increased precipitation proposed by Charney and coworkers. Analysis of climate data showed, at temperate to high latitudes, a positive association between variation in land surface temperature, sea surface temperature and vegetation greenness. At low latitudes the data indicated a positive association between variations in sea surface temperature, rainfall and vegetation greenness. The variations in mid- to high latitude temperatures affected the global average greenness and this could provide an explanation for the increased carbon uptake by the terrestrial surface over the past couple of decades.

  12. Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 1 O.9-microm channels.

    PubMed

    Ou, S C; Liou, K N; Gooch, W M; Takano, Y

    1993-04-20

    We develop a retrieval scheme by using advanced very-high-resolution radiometer (AVHRR) 3.7- and 10.9-microm data to compute simultaneously the temperature, optical depth, and mean effective ice-crystal size for cirrus clouds. The methodology involves the numerical solution of a set of nonlinear algebraic equations derived from the theory of radiative transfer. The solution requires the correlation of emissivities of two channels in terms of the effective extinction ratio. The dependence of this ratio on ice-crystal size distribution is examined by using an adding-doubling radiative transfer program. Investigation of the effects of cirrus parameters on upwelling radiances reveals that the brightnesstemperature difference between the two channels becomes larger for colder cirrus and smaller ice-crystal sizes. We apply the current retrieval scheme to satellite data collected at 0930 UTC, 28 October 1986, over the region of the First International Satellite Cloud Climatology Project Regional Experiment CirrusIntesive Field Observation. We select the data over an area (~ 44 degrees N, 92 degrees W) near Fort McCoy, Wisconsin, for analysis. The retrieved cirrus heights compare reasonably well with lidar measurements taken at Fort McCoy 2 h after a satellite overpass at the target region. The retrieved mean effective crystal size is close to that derived from in situ aircraft measurements over Madison, Wisconsin, six hours after a satellite overpass.

  13. Advanced Very High Resolution Radiometer (AVHRR) data evaluation for use in monitoring vegetation. Volume 1: Channels 1 and 2

    NASA Technical Reports Server (NTRS)

    Horvath, N. C.; Gray, T. I.; Mccrary, D. G. (Principal Investigator)

    1982-01-01

    Data from the National Oceanic and Atmospheric Administration satellite system (NOAA-6 satellite) were analyzed to study their nonmeteorological uses. A file of charts, graphs, and tables was created form the products generated. It was found that the most useful data lie between pixel numbers 400 and 2000 on a given scan line. The analysis of the generated products indicates that the Gray-McCrary Index can discern vegetation and associated daily and seasonal changes. The solar zenith-angle correction used in previous studies was found to be a useful adjustment to the index. The METSAT system seems best suited for providing large-area analyses of surface features on a daily basis.

  14. Digital simulation of dynamic processes in radiometer systems. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    The development and application of several computer programs for simulating different classes of microwave radiometers are described. The programs are dynamic in nature, and they may be used to determine the instantaneous behavior of system variables as a function of time. Some of the programs employ random variable models in the simulations so that the statistical nature of the results may be investigated. The programs have been developed to utilize either the Continuous System Modeling Program or the Advanced Continuous System Language. The validity of most of the programs was investigated using statistical tests, and the results show excellent correlation with theoretical predictions. The programs are currently being used in the investigation of new design techniques for microwave radiometers.

  15. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will

  16. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The program covered the design, construction, and test of a Breadboard Model, Engineering Model, Protoflight Model, Mechanical/Structural Model, and a Life Test Model. Special bench test and calibration equipment was also developed for use on the program. Initially, the instrument was to operate from a 906 n.mi. orbit and be thermally isolated from the spacecraft. The Breadboard Model and the Mechanical/Structural Model were designed and built to these requirements. The spacecraft altitude was changed to 450 n.mi., IFOVs and spectral characteristics were modified, and spacecraft interfaces were changed. The final spacecraft design provided a temperature-controlled Instrument Mounting Platform (IMP) to carry the AVHRR and other instruments. The design of the AVHRR was modified to these new requirements and the modifications were incorporated in the Engineering Model. The Protoflight Model and the Flight Models conform to this design.

  17. Satellite oceanic remote sensing; Advances in Geophysics. Volume 27

    SciTech Connect

    Saltzman, B.

    1985-01-01

    Oceanic remote sensing by several NASA sponsored satellite systems is described, and the results of these measurements are discussed. Papers are presented on the Seasat, Nimbus-7, and TIROS-N observations; analysis and interpretation of altimeter sea echo; oceanic surface winds; surface and internal ocean wave observations; and microwave wind and rain observations in severe tropical and midlatitude marine storms. Consideration is given to sea surface temperature determinations, ocean color measurements, observations of the polar regions from satellites using active and passive microwave techniques, precipitation in tropical cyclones, and living marine resources applications. Additional papers provide details of the remote sensors involved in these oceanic studies, details of the Seasat validation program, and a summary of the data availability.

  18. Analysis of simulated advanced spaceborne thermal emission and reflection (ASTER) radiometer data of the Iron Hill, Colorado, study area for mapping lithologies

    NASA Astrophysics Data System (ADS)

    Rowan, Lawrence C.

    1998-12-01

    The advanced spaceborne thermal emission and reflection (ASTER) radiometer was designed to record reflected energy in nine channels with 15 or 30 m resolution, including stereoscopic images, and emitted energy in five channels with 90 m resolution from the NASA Earth Observing System AMI platform. A simulated ASTER data set was produced for the Iron Hill, Colorado, study area by resampling calibrated, registered airborne visible/infrared imaging spectrometer (AVIRIS) data, and thermal infrared multispectral scanner (TIMS) data to the appropriate spatial and spectral parameters. A digital elevation model was obtained to simulate ASTER-derived topographic data. The main lithologic units in the area are granitic rocks and felsite into which a carbonatite stock and associated alkalic igneous rocks were intruded; these rocks are locally covered by Jurassic sandstone, Tertiary rhyolitic tuff, and colluvial deposits. Several methods were evaluated for mapping the main lithologic units, including the unsupervised classification and spectral curve-matching techniques. In the five thermalinfrared (TIR) channels, comparison of the results of linear spectral unmixing and unsupervised classification with published geologic maps showed that the main lithologic units were mapped, but large areas with moderate to dense tree cover were not mapped in the TIR data. Compared to TIMS data, simulated ASTER data permitted slightly less discrimination in the mafic alkalic rock series, and carbonatite was not mapped in the TIMS nor in the simulated ASTER TIR data. In the nine visible and near-infrared channels, unsupervised classification did not yield useful results, but both the spectral linear unmixing and the matched filter techniques produced useful results, including mapping calcitic and dolomitic carbonatite exposures, travertine in hot spring deposits, kaolinite in argillized sandstone and tuff, and muscovite in sericitized granite and felsite, as well as commonly occurring illite

  19. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system

    USGS Publications Warehouse

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.

    2003-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost

  20. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1994-01-01

    We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the

  1. Techniques for Facilitating the Registration and Rectification of Satellite Data with Examples Using Data from the Advanced Very High Resolution Radiometer and the Landsat Multispectral Scanner.

    NASA Astrophysics Data System (ADS)

    Hayes, Ladson

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes work relating to the mapping of digital satellite image data from its inherent geometry to the geometry of a different reference system. The reference system chosen may correspond to that of a different satellite image, or a map projection. The advantage of this process is that the information contained in the satellite image data may be related to a known reference. Use of information from the Advanced High Resolution Radiometer (AVHRR) on the TIROS-N series of polar-orbiting meteorological satellites for the provision of land cover information is reviewed. The data derived from this satellite is available every day. Attention is given to the use of vegetation indices derived from various combinations of the red and near infrared wavelengths of the AVHRR and the AVHRR is compared with the Landsat Multi-Spectral Scanner (MSS) which has been the instrument commonly associated with land cover studies employing satellite information. Results are provided of direct comparisons of AVHRR and Landsat data gathered over parts of Scotland and Africa. These comparisons represent an attempt to evaluate the utility of AVHRR data for the provision of land cover information over large areas, ground sampling not being possible. Special attention is given to the normalised difference vegetation index. An attempt at mapping within the intertidal zone of the Tay Estuary, Scotland is described as an example of rectifying a series of satellite images to a common projection. The land-water interface was identified in five Landsat MSS scenes, each corresponding to a different state of the tide, and was mapped to provide a bathymetric impression of the intertidal zone. Automation of the procedures for the registration and rectification of satellite data is described. The variable geometry of AVHRR data presents special problems to the automation of this process particularly if optimal

  2. Analysis of simulated advanced spaceborne thermal emission and reflection (ASTER) radiometer data of the Iron Hill, Colorado, study area for mapping lithologies

    USGS Publications Warehouse

    Rowan, L.C.

    1998-01-01

    The advanced spaceborne thermal emission and reflection (ASTER) radiometer was designed to record reflected energy in nine channels with 15 or 30 m resolution, including stereoscopic images, and emitted energy in five channels with 90 m resolution from the NASA Earth Observing System AM1 platform. A simulated ASTER data set was produced for the Iron Hill, Colorado, study area by resampling calibrated, registered airborne visible/infrared imaging spectrometer (AVIRIS) data, and thermal infrared multispectral scanner (TIMS) data to the appropriate spatial and spectral parameters. A digital elevation model was obtained to simulate ASTER-derived topographic data. The main lithologic units in the area are granitic rocks and felsite into which a carbonatite stock and associated alkalic igneous rocks were intruded; these rocks are locally covered by Jurassic sandstone, Tertiary rhyolitic tuff, and colluvial deposits. Several methods were evaluated for mapping the main lithologic units, including the unsupervised classification and spectral curve-matching techniques. In the five thermal-infrared (TIR) channels, comparison of the results of linear spectral unmixing and unsupervised classification with published geologic maps showed that the main lithologic units were mapped, but large areas with moderate to dense tree cover were not mapped in the TIR data. Compared to TIMS data, simulated ASTER data permitted slightly less discrimination in the mafic alkalic rock series, and carbonatite was not mapped in the TIMS nor in the simulated ASTER TIR data. In the nine visible and near-infrared channels, unsupervised classification did not yield useful results, but both the spectral linear unmixing and the matched filter techniques produced useful results, including mapping calcitic and dolomitic carbonatite exposures, travertine in hot spring deposits, kaolinite in argillized sandstone and tuff, and muscovite in sericitized granite and felsite, as well as commonly occurring illite

  3. High solar intensity radiometer

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Spisz, E. W.

    1972-01-01

    Silicon solar cells are used to measure visible radiant energy and radiation intensities to 20 solar constants. Future investigations are planned for up to 100 solar constants. Radiometer is small, rugged, accurate and inexpensive.

  4. Ultra Stable Microwave Radiometers for Future Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Tanner, Alan B.; Pellerano, Fernando A.; Horgan, Kevin A.

    2005-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius will measure global sea surface salinity with 100-km spatial resolution every 8 days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than 0.1 K over 8 days. This three-year research program on ultra stable radiometers has addressed the radiometer requirements and configuration necessary to achieve this objective for Aquarius and future ocean salinity missions. The system configuration and component performance have been evaluated with radiometer testbeds at both JPL and GSFC. The research has addressed several areas including component characterization as a function of temperature, a procedure for the measurement and correction for radiometer system non-linearity, noise diode calibration versus temperature, low noise amplifier performance over voltage, and temperature control requirements to achieve the required stability. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability. This report also presents the results of the radiometer test program, a detailed radiometer noise model, and details of the operational switching sequence optimization that can be used to achieve the low noise and stability requirements. Many of the results of this research have been incorporated into the Aquarius radiometer design and will allow this instrument to achieve its goals.

  5. Advances in large-scale ocean dynamics from a decade of satellite altimetric measurement of ocean surface topography

    NASA Astrophysics Data System (ADS)

    Fu, L.; Menard, Y.

    The past decade has seen the most intensive observations of the global ocean surface topography from satellite altimeters. The Joint U.S./France TOPEX/Poseidon (T/P) Mission has become the longest radar mission ever flown in space, providing the most accurate measurements for the study of ocean dynamics since October, 1992. The European Space Agency's ERS-1 and -2 Mission also provided altimetric observations from 1991 -2000. The combined data from T/P and ERS provide a synergistic description of the global ocean variability with higher resolution and greater coverage than the individual missions. Major advances in large -scale ocean dynamics from these observations will be reviewed in the presentation, including the evolution of the El Niño Southern Oscillation cycles as well as the emerging decadal variability, the various roles of wind forcing in large -scale ocean variability, assimilation of altimeter data by ocean general circulation models, global sea level rise, internal tides and internal gravity waves

  6. NASA and U.S. Geological Survey Long-Term Archive for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    NASA Astrophysics Data System (ADS)

    Abrams, M.; Meyer, D. F.

    2013-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-channel optical imaging instrument on NASA's Terra spacecraft. ASTER is a joint project between Japan's Ministry of Economy, Trade and Industry; and U.S. National Aeronautics and Space Administration. Since its launch in December, 1999, ASTER has acquired over 2.4 million multispectral images. The Level 0 data are sent to Japan by NASA, where they are processed to Level 1A (reconstructed, unprocessed instrument data with geometric and radiometric parameters attached). A copy of the L1A data is sent to the U.S. to the Land Processes Distributed Active Archive Center (LPDAAC), operated for NASA by the U.S. Geological Survey (USGS) at the EROS Center. The joint US/Japan ASTER Science Team (AST) has provided algorithms to produce 14 Level 1, Level 2, and Level 3 products. The duplicate data distribution systems in Japan and the U.S. create these products 'on-demand' as users submit data requests. Only the L0 and L1A data are archived. After the termination of the mission, the USGS has the responsibility for creating, managing and distributing ASTER data products from a Long-Term Archive (LTA). In cooperation with the LPDAAC, the U.S. AST discussed various scenarios on how the LTA should operate. The two leading plans considered were: (1) duplicating the 'on-demand' system, fulfilling user requests as they arrived; this would require a high level of technical support for algorithm/software maintenance, user services to answer questions, hardware maintenance, and in general, was quite labor-intensive; (2) creating a static archive of all of the data products for every one of the L1A image granules; the LPDAAC would produce each of the 14 higher level data products from every L1A image currently archived. Users would order data products from this greatly expanded archive, with little human intervention. In both cases, complete documentation would be available to users, detailing the

  7. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2015-02-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of -0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite

  8. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    PubMed Central

    Ramos-Perez, Isaac; Camps, Adriano; Bosch-Lluis, Xavi; Rodriguez-Alvarez, Nereida; Valencia-Domènech, Enric; Park, Hyuk; Forte, Giuseppe; Vall-llosera, Merce

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA). Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA) instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS), the Precipitation and All-weather Temperature and Humidity (PATH) and the Geostationary Interferometric Microwave Sounder (GIMS). Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS's design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions. PMID:22969371

  9. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.

  10. Aquarius Radiometer Status

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Piepmeier, J. R.; Dinnat, E. P.; de Matthaeis, P.; Utku, C.; Abraham, S.; Lagerloef, G.S.E.; Meissner, T.; Wentz, F.

    2014-01-01

    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results.

  11. Stable radiometal antibody immunoconjugates

    DOEpatents

    Mease, Ronnie C.; Srivastava, Suresh C.; Gestin, Jean-Francois

    1994-01-01

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials.

  12. Stable radiometal antibody immunoconjugates

    DOEpatents

    Mease, R.C.; Srivastava, S.C.; Gestin, J.F.

    1994-08-02

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials. No Drawings

  13. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  14. Observations of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S.; Jones, W. L.; Johnson, J.; Farrar, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, Peter G.

    2013-01-01

    HIRAD is a new technology developed by NASA/MSFC, in partnership with NOAA and the Universities of Central Florida, Michigan, and Alabama-Huntsville. HIRAD is designed to measure wind speed and rain rate over a wide swath in heavy-rain, strong-wind conditions. HIRAD is expected to eventually fly routinely on unmanned aerial vehicles (UAVs) such as Global Hawk over hurricanes threatening the U.S. coast and other Atlantic basin areas, and possibly in the Western Pacific as well. HIRAD first flew on GRIP in 2010 and is part of the 2012-14 NASA Hurricane and Severe Storm Sentinel (HS3) mission on the Global Hawk, a high-altitude UAV. The next-generation HIRAD will include wind direction observations, and the technology can eventually be used on a satellite platform to extend the dynamical range of Ocean Surface Wind (OSV) observations from space.

  15. Advancing Knowledge of Anoxic Systems of the World Ocean

    NASA Astrophysics Data System (ADS)

    Neretin, Lev N.; Jørgensen, Bo Barker; Polikarpov, Igor G.

    2004-02-01

    Life on Earth emerged under anaerobic conditions. Many fundamental biochemical and metabolic pathways evolved before the atmosphere contained oxygen. At present, anaerobic (anoxic) conditions in marine milieu are generally restricted to sediments and to basins isolated from oxygenated deep-sea circulation. Enhanced oxygen consumption by organic matter decomposition and slow downward mixing and diffusion of dissolved oxygen from the surface waters can lead to oxygen deficiency in the water column in highly productive waters, forming the Oxygen Minimum Zone (OMZ). Bottom waters of coastal upwelling regions are frequently exposed to anaerobic conditions owing to extremely high primary productivity. In the past, such conditions in the water column may have developed more readily; for example, in the mid-Cretaceous. Oceanic anoxic events (OAE) were episodes of globally enhanced organic carbon burial that have significantly affected global climate by reducing atmospheric CO2.

  16. A review of advances in deep-ocean Raman spectroscopy.

    PubMed

    Zhang, Xin; Kirkwood, William J; Walz, Peter M; Peltzer, Edward T; Brewer, Peter G

    2012-03-01

    We review the rapid progress made in the applications of Raman spectroscopy to deep-ocean science. This is made possible by deployment of instrumentation on remotely operated vehicles used for providing power and data flow and for precise positioning on targets of interest. Early prototype systems have now been replaced by compact and robust units that have been deployed well over 100 times on an expeditionary basis over a very wide range of ocean depths without failure. Real-time access to the spectra obtained in the vehicle control room allows for expedition decision making. Quantification of some of the solutes in seawater or pore waters observed in the spectra is made possible by self-referencing to the ubiquitous ν(2) water bending peak. The applications include detection of the structure and composition of complex thermogenic gas hydrates both occurring naturally on the sea floor and in controlled sea floor experiments designed to simulate the growth of such natural systems. New developments in the ability to probe the chemistry of sediment pore waters in situ, long thought impossible candidates for Raman study due to fluorescence observed in recovered samples, have occurred. This permits accurate measurement of the abundance of dissolved methane and sulfide in sediment pore waters. In areas where a high gas flux is observed coming out of the sediments a difference of about ×30 between in situ Raman measurement and the quantity observed in recovered cores has been found. New applications under development include the ability to address deep-sea biological processes and the ability to survey the sea floor chemical conditions associated with potential sub-sea geologic CO(2) disposal in abandoned oil and gas fields.

  17. Mapping technologically and economically important materials at lunar and terrestrial sites using Moon Mineralogy Mapper (M3) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    NASA Astrophysics Data System (ADS)

    Standart, Douglas Laurence

    the samples were collected. A least-squares regression to the ilmenite vs. 1-μm absorption data is then used to predict ilmenite concentrations of mare basalts from M3 spectra. Using this methodology, we built ilmenite maps for the following nearside mare: western Mare Imbrium; southern Oceanus Procellarum; eastern Mare Nubium; Mare Serenitatis; and Tranquillitatis. Based on the concentrations of Th and ilmenite associated with the eruptions, we determined that at least three eruption episodes of mare basalts occurred, each with different geochemical signatures. In addition we identified late stage (<3.1 Gya) ilmenite- and Th-rich basalts within the PKT, which we suggest were supplied by the arrival of a KREEP-, and ilmenite-rich plume that formed at the core-mantle boundary after ilmenite-rich and KREEP-rich melts sank into the mantle. However, areas outside of PKT, such as Tranquillitatis and Serenatatis, do not exhibit both high KREEP and high ilmenite concentrations. Instead, early stage basaltic eruptions---consisting of low-Th, ilmenite-rich basalts are present at Mare Tranquillitatis and Th- and ilmenite-poor basalts are present at Serenitatis. We propose two possible scenarios to explain this. In the first, the Ti-rich but Th-poor mare basalts would have erupted after (or during) a degree-1 downwelling that affected the nearby PKT early in lunar history. In the second scenario, the Ti-rich but Th-poor mare basalts would have erupted prior to the degree-1 downwelling. Project III: Alunite (KAl3(SO4) 2(OH)6) is a sulfate mineral that is commonly found in argillic alteration zones of porphyry and epithermal systems, and in other supergene enriched mineral deposits. Using ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data, we target spectral features associated with hydroxyl (OH-) and sulfate (SO42-). Previous studies have used OH- absorptions near 2.2 μm to target alunite, but their methods can confuse alunite with carbonates, detrital

  18. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  19. Millimeter radiometer system technology

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Swanson, P. N.

    1989-01-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  20. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  1. Multibeam 1.4-GHz Pushbroom Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Roland W.; Bailey, Marion C.; Harrington, Richard F.; Hearn, Chase P.; Wells, John G., Jr.; Stanley, William L.

    1990-01-01

    Airborne prototype of multiple-beam pushbroom microwave radiometer (PBMR) developed to advance radiometric technology necessary for remote sensing of geophysical parameters. Instrument used in several joint Langley Research Center/United States Department of Agriculture soil-moisture flight experiments in Virginia, Texas, and California. Data from experiments used to modify, develop, and verify algorithms used to predict soil moisture from remote-sensing measurements. Image data useful in study of effects of characters of beams on radiometer imaging data.

  2. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.

  3. A comparison of sea ice parameters computed from Advanced Very High Resolution Radiometer and Landsat satellite imagery and from airborne passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Emery, W. J.; Radebaugh, M.; Fowler, C. W.; Cavalieri, D.; Steffen, K.

    1991-01-01

    AVHRR-derived sea ice parameters from the Bering Sea are compared with those computed from nearly coincident (within 6 hr) Landsat MSS imagery and from the Aircraft Multichannel Microwave Radiometer (AMMR) flown on the NASA DC-8 in order to evaluate the accuracy and reliability of AVHRR-mapped sea-ice concentration and ice edge. Mean ice-concentration differences between AVHRR near-infrared (channel 2) and Landsat MSS data ranged from -0.8 to 1.8 percent with a mean value of 0.5 percent; rms differences ranged from 6.8 to 17.7 percent. Mean differences were larger for AVHRR thermal infrared (channel 4) ice concentrations ranging from -2.2 to 8.4 percent with rms differences from 8.6 to 26.8 percent. Mean differences between AVHRR channel 2 concentrations and the AMMR data ranged from -19.7 to 18.9 percent, while rms values went from 17.0 to 44.8 percent.

  4. Detection of Rain-on-Snow (ROS) Events Using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Weather Station Observations

    NASA Astrophysics Data System (ADS)

    Ryan, E. M.; Brucker, L.; Forman, B. A.

    2015-12-01

    During the winter months, the occurrence of rain-on-snow (ROS) events can impact snow stratigraphy via generation of large scale ice crusts, e.g., on or within the snowpack. The formation of such layers significantly alters the electromagnetic response of the snowpack, which can be witnessed using space-based microwave radiometers. In addition, ROS layers can hinder the ability of wildlife to burrow in the snow for vegetation, which limits their foraging capability. A prime example occurred on 23 October 2003 in Banks Island, Canada, where an ROS event is believed to have caused the deaths of over 20,000 musk oxen. Through the use of passive microwave remote sensing, ROS events can be detected by utilizing observed brightness temperatures (Tb) from AMSR-E. Tb observed at different microwave frequencies and polarizations depends on snow properties. A wet snowpack formed from an ROS event yields a larger Tb than a typical dry snowpack would. This phenomenon makes observed Tb useful when detecting ROS events. With the use of data retrieved from AMSR-E, in conjunction with observations from ground-based weather station networks, a database of estimated ROS events over the past twelve years was generated. Using this database, changes in measured Tb following the ROS events was also observed. This study adds to the growing knowledge of ROS events and has the potential to help inform passive microwave snow water equivalent (SWE) retrievals or snow cover properties in polar regions.

  5. The Radiometer Atmospheric Cubesat Experiment

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of < 9.5 dB. The noise figure is dominated by the insertion loss of the Dicke switch which at these frequencies are > 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures < 4 dB. The gain and noise figure variation over temperature is approximately 0.55 dB/K. The NEDT of the system is < 1K, and on orbit performance is expected to improve due to the thermal environment. The current system is configured for direct detection to reduce power consumption by eliminating the need for a local oscillator. A 2012 NASA CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  6. Steady state thermal radiometers

    NASA Technical Reports Server (NTRS)

    Loose, J. D. (Inventor)

    1974-01-01

    A radiometer is described operating in a vacuum under steady state conditions. The front element is an aluminum sheet painted on the outer side with black or other absorptive material of selected characteristics. A thermocouple is bonded to the inner side of the aluminum sheet. That is backed by highly insulative layers of glass fiber and crinkled, aluminized Mylar polyester. Those layers are backed with a sturdy, polyester sheet, and the entire lamination is laced together by nylon cords. The device is highly reliable in that it does not drift out of calibration, and is significantly inexpensive.

  7. Portable Diagnostic Radiometer.

    DTIC Science & Technology

    1985-07-01

    noise. The single-throw-double-pole switch is usually realized with an electronically- switched , latching ferrite circulator; however, at these...R2. Dl, D2 and R2 are then displayed on the liquid crystal display. The Q lines are next set to switch the latching switches into the 800 MHz...operation is basically as follows: On start- up, the CPU resets the Q line (P1-6) which sets the latching switches (see Fig. 18) to the 4 GHz radiometer

  8. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    formation • Provide the necessary data to allow ocean- atmosphere -ice interactions and pancake ice growth at the advancing ice edge, including waves, to be...oxygen isotope data were also completed (see publications); these published results will provide background and methodology for anticipated studies...analytical modeling simulations of ice-wave interaction. Peter Guest/Chris Fairall’s project will provide atmospheric forcing data to inform analysis of

  9. On the Long-Term Stability of Microwave Radiometers Using Noise Diodes for Calibration

    NASA Technical Reports Server (NTRS)

    Brown, Shannon T.; Desai, Shailen; Lu, Wenwen; Tanner, Alan B.

    2007-01-01

    Results are presented from the long-term monitoring and calibration of the National Aeronautics and Space Administration Jason Microwave Radiometer (JMR) on the Jason-1 ocean altimetry satellite and the ground-based Advanced Water Vapor Radiometers (AWVRs) developed for the Cassini Gravity Wave Experiment. Both radiometers retrieve the wet tropospheric path delay (PD) of the atmosphere and use internal noise diodes (NDs) for gain calibration. The JMR is the first radiometer to be flown in space that uses NDs for calibration. External calibration techniques are used to derive a time series of ND brightness for both instruments that is greater than four years. For the JMR, an optimal estimator is used to find the set of calibration coefficients that minimize the root-mean-square difference between the JMR brightness temperatures and the on-Earth hot and cold references. For the AWVR, continuous tip curves are used to derive the ND brightness. For the JMR and AWVR, both of which contain three redundant NDs per channel, it was observed that some NDs were very stable, whereas others experienced jumps and drifts in their effective brightness. Over the four-year time period, the ND stability ranged from 0.2% to 3% among the diodes for both instruments. The presented recalibration methodology demonstrates that long-term calibration stability can be achieved with frequent recalibration of the diodes using external calibration techniques. The JMR PD drift compared to ground truth over the four years since the launch was reduced from 3.9 to - 0.01 mm/year with the recalibrated ND time series. The JMR brightness temperature calibration stability is estimated to be 0.25 K over ten days.

  10. Radiometer system requirements for microwave remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Juang, Jeng-Nan

    1990-01-01

    An area of increasing interest is the establishment of a significant research program in microwave remote sensing from satellites, particularly geosynchronous satellites. Due to the relatively small resolution cell sizes, a severe requirement is placed on beam efficiency specifications for the radiometer antenna. Geostationary satellite microwave radiometers could continuously monitor several important geophysical parameters over the world's oceans. These parameters include the columnar content of atmospheric liquid water (both cloud and rain) and water vapor, air temperature profiles, and possibly sea surface temperature. Two principle features of performance are of concern. The first is the ability of the radiometer system to resolve absolute temperatures with a very small absolute error, a capability that depends on radiometer system stability, on frequency bandwidth, and on footprint dwell time. The second is the ability of the radiometer to resolve changes in temperature from one resolution cell to the next when these temperatures are subject to wide variation over the overall field-of-view of the instrument. Both of these features are involved in the use of the radiometer data to construct high-resolution temperature maps with high absolute accuracy.

  11. Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.

    2012-01-01

    In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.

  12. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  13. Miniature Extreme Ultraviolet Solar Radiometers

    NASA Astrophysics Data System (ADS)

    McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.

    2015-12-01

    Free-standing zone plates for use in EUV solar radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total solar irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their small size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for small CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.

  14. Radiant Temperature Nulling Radiometer

    NASA Technical Reports Server (NTRS)

    Ryan, Robert (Inventor)

    2003-01-01

    A self-calibrating nulling radiometer for non-contact temperature measurement of an object, such as a body of water, employs a black body source as a temperature reference, an optomechanical mechanism, e.g., a chopper, to switch back and forth between measuring the temperature of the black body source and that of a test source, and an infrared detection technique. The radiometer functions by measuring radiance of both the test and the reference black body sources; adjusting the temperature of the reference black body so that its radiance is equivalent to the test source; and, measuring the temperature of the reference black body at this point using a precision contact-type temperature sensor, to determine the radiative temperature of the test source. The radiation from both sources is detected by an infrared detector that converts the detected radiation to an electrical signal that is fed with a chopper reference signal to an error signal generator, such as a synchronous detector, that creates a precision rectified signal that is approximately proportional to the difference between the temperature of the reference black body and that of the test infrared source. This error signal is then used in a feedback loop to adjust the reference black body temperature until it equals that of the test source, at which point the error signal is nulled to zero. The chopper mechanism operates at one or more Hertz allowing minimization of l/f noise. It also provides pure chopping between the black body and the test source and allows continuous measurements.

  15. Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from advanced very high resolution radiometer satellite imagery.

    PubMed

    Estrada-Peña, A

    1998-11-01

    Geostatistics (cokriging) was used to model the cross-correlated information between satellite-derived vegetation and climate variables and the distribution of the tick Ixodes scapularis (Say) in the Nearctic. Output was used to map the habitat suitability for I. scapularis on a continental scale. A data base of the localities where I. scapularis was collected in the United States and Canada was developed from a total of 346 published and geocoded records. This data base was cross-correlated with satellite pictures from the advanced very high resolution radiometer sensor obtained from 1984 to 1994 on the Nearctic at 10-d intervals, with a resolution of 8 km per pixel. Eight climate and vegetation variables were tabulated from this imagery. A cokriging system was generated to exploit satellite-derived data and to estimate the distribution of I. scapularis. Results obtained using 2 vegetation (standard NDVI) and 4 temperature variables closely agreed with actual records of the tick, with a sensitivity of 0.97 and a specificity of 0.89, with 6 and 4% of false-positive and false-negative sites, respectively. Such statistical analysis can be used to guide field work toward the correct interpretation of the distribution limits of I. scapularis and can also be used to make predictions about the impact of global change on tick range.

  16. Inter-Satellite Calibration Linkages for the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 Spacecraft. Revised

    NASA Technical Reports Server (NTRS)

    NagarajaRao, C. R.; Chen, J.

    1996-01-01

    The post-launch degradation of the visible (channel 1: 0.58- 068 microns) and near-infrared (channel 2: approx. 0.72 - l.l microns) channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-7, -9, and -11 Polar-orbiting Operational Environmental Satellites (POES) was estimated using the south-eastern part of the Libyan Desert as a radiometrically stable calibration target. The relative annual degradation rates, in per cent, for the two channels are, respectively: 3.6 and 4.3 (NOAA-7); 5.9 and 3.5 (NOAA-9); and 1.2 and 2.0 (NOAA-11). Using the relative degradation rates thus determined, in conjunction with absolute calibrations based on congruent path aircraft/satellite radiance measurements over White Sands, New Mexico (USA), the variation in time of the absolute gain or slope of the AVHRR on NOAA-9 was evaluated. Inter-satellite calibration linkages were established, using the AVHRR on NOAA-9 as a normalization standard. Formulae for the calculation of calibrated radiances and albedos (AVHRR usage), based on these interlinkages, are given for the three AVHRRs.

  17. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer.

    PubMed

    Estrada-Peña, A

    1999-02-01

    Remote sensing based on NOAA (National Oceanographic and Atmosphere Administration) satellite imagery was used, together with geostatistics (cokriging) to model the correlation between the temperature and vegetation variables and the distribution of the cattle tick, Boophilus microplus (Canestrini), in the Neotropical region. The results were used to map the B. microplus habitat suitability on a continental scale. A database of B. microplus capture localities was used, which was tabulated with the AVHRR (Advanced Very High Resolution Radiometer) images from the NOAA satellite series. They were obtained at 10 days intervals between 1983 and 1994, with an 8 km resolution. A cokriging system was generated to extrapolate the results. The data for habitat suitability obtained through two vegetation and four temperature variables were strongly correlated with the known distribution of B. microplus (sensitivity 0.91; specificity 0.88) and provide a good estimation of the tick habitat suitability. This model could be used as a guide to the correct interpretation of the distribution limits of B. microplus. It can be also used to prepare eradication campaigns or to make predictions about the effects of global change on the distribution of the parasite.

  18. Multiband radiometer for field research

    NASA Technical Reports Server (NTRS)

    Robinson, B. F.; Bauer, M. E.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.

    1979-01-01

    A multiband radiometer for field research with 8 bands between 0.4 and 12.5 micrometers is described. The data acquisition system will record the results from the radiometer, a precision radiation thermometer, and ancillary sources. The radiometer and data handling systems will be adaptable to helicopter, truck, to tripod platforms; the system will also be suitable for portable hand-held operation. The general characteristics of this system are that it will be (1) inexpensive to acquire, maintain, and operate, (2) simple to calibrate, (3) complete with data handling hardware and software, and (4) well-documented for use by researchers.

  19. Radiometers Optimize Local Weather Prediction

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  20. Digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Stanley, W. D.; Harrington, R. F.

    1980-01-01

    A microprocessor based digital signal processing unit has been proposed to replace analog sections of a microwave radiometer. A brief introduction to the radiometer system involved and a description of problems encountered in the use of digital techniques in radiometer design are discussed. An analysis of the digital signal processor as part of the radiometer is then presented.

  1. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  2. HELIOS dual swept frequency radiometer

    NASA Technical Reports Server (NTRS)

    White, J. R.

    1975-01-01

    The HELIOS dual swept frequency radiometer, used in conjunction with a dipole antenna, was designed to measure electromagnetic radiation in space. An engineering prototype was fabricated and tested on the HELIOS spacecraft. Two prototypes and two flight units were fabricated and three of the four units were integrated into the HELIOS spacecraft. Two sets of ground support equipment were provided for checkout of the radiometer.

  3. GPM Plans for Radiometer Intercalibration

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Stout, John; Chou, Joyce

    2011-01-01

    The international Global Precipitation Measurement (GPM) mission led by NASA and JAXA is planned as a multi-radiometer constellation mission. A key mission component is the ability to intercalibrate the Tb from the partner constellation radiometers and create inter-calibrated, mission consistent Tc. One of the enabling strategies for this approach is the launching of a joint NASA/JAXA core satellite which contains a JAXA/NICT provided dual precipitation radar and a NASA provided Microwave Imaging passive radiometer. The observations from these instruments on the core satellite provide the opportunity to develop a transfer reference standard that can then be applied across the partner provided constellation radiometers that enables the creation of mission consistent brightness temperatures. The other aspect of the strategy is the development of a community consensus intercalibration algorithm that will be applied to the Tb observations from partner radiometers and create the best calibrated Tc. Also described is the development of the framework in which the inter-calibration is included in the final algorithm. A part of the latter effort has been the development of a generic, logical structure which can be applied across radiometer types and which guarantees the user community that key information for using Tc properly is recorded. Key

  4. A survey of ATL-compatible radiometer antennas

    NASA Technical Reports Server (NTRS)

    Love, A. W.

    1975-01-01

    A survey was made of antennas suitable for remote sensing of the earth's surface, in particular the world ocean, by means of microwave radiometers operating in the 1 to 26 GHz frequency region and carried on board the shuttle-launched advanced technology laboratory. Array antennas are found to be unattractive and unsuited to the task. Reflectors, including Cassegrain and offset types, as well as horn-reflectors are possible candidates but all have shortcomings which impair the accuracy of measurement. Horns of the corrugated type have excellent electrical characteristics. Although they are physically very large and will require development of suitable deployment mechanisms, they appear to be valid candidates for the task. The evolution of the periscope antenna is outlined, and it is shown to possess nearly ideal electrical characteristics for the intended application. Its only shortcoming is that the feed horn creates aperture blocking; there is no blocking due to struts or any other source. The periscope antenna is recommended for ATL radiometry.

  5. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    PubMed Central

    Bosch-Lluis, Xavier; Camps, Adriano; Ramos-Perez, Isaac; Marchan-Hernandez, Juan Fernando; Rodriguez-Alvarez, Nereida; Valencia, Enric

    2008-01-01

    The Passive Advanced Unit (PAU) for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD) and a GPS reflectometer (PAU-GNSS/R). These instruments in conjunction with an infra-red radiometer (PAU-IR) will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4×4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR). PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR's radiometer calibration algorithms and their performance. PMID:27879943

  6. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept.

    PubMed

    Bosch-Lluis, Xavier; Camps, Adriano; Ramos-Perez, Isaac; Marchan-Hernandez, Juan Fernando; Rodriguez-Alvarez, Nereida; Valencia, Enric

    2008-07-28

    The Passive Advanced Unit (PAU) for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD) and a GPS reflectometer (PAU-GNSS/R). These instruments in conjunction with an infra-red radiometer (PAU-IR) will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4x4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR). PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR's radiometer calibration algorithms and their performance.

  7. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  8. Advances in large-scale ocean dynamics from a decade of satellite altimetric measurement of ocean surface topography

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Menard, Y.

    2002-01-01

    The past decade has seen the most intensive observations of the global ocean surface topography from satellite altimeters. The Joint U.S./France TOPEX/Poseidon (T/P) Mission has become the longest radar mission ever flown in space, providing the most accurate measurements for the study of ocean dynamics since October 1992.

  9. Effects of Atmospheric Water Vapor and Clouds on NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) Satellite Data.

    DTIC Science & Technology

    1984-07-01

    smoke , smog, dust and water ;erosols usually falls within the Mie Regime. The combination of Rayleigh and Mie scattering causes the selective...T. L., 1984. Department of Commerce, NOAA, NESDIS, Assesment Services Center, Columbia, MO, Personal Communications. Barnett, T. L. and Thompson, D...Washington, D.C., NOAA Technical Memorandum, NESS 107, 73 pp. LeDuc, S. K., 1984. U.S. Department of Commerce, NOAA, NESDIS, Assesment Information Services

  10. Stable Targets for Spaceborne Microwave Radiometer Calibration

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Chan, S. K.; Armstrong, R. L.; Brodzik, M. J.; Savoie, M. H.; Knowles, K.

    2006-01-01

    Beginning in the 1970s, continuous observations of the Earth have been made by spaceborne microwave radiometers. Since these instruments have different observational characteristics, care must be taken in combining their data to form consistent long term records of brightness temperatures and derived geophysical quantities. To be useful for climate studies, data from different instruments must be calibrated relative to each other and to reference targets on the ground whose characteristics are stable and can be monitored continuously. Identifying such targets over land is not straightforward due to the heterogeneity and complexity of the land surface and cover. In this work, we provide an analysis of multi-sensor brightness temperature statistics over ocean, tropical forest, and ice sheet locations, spanning the period from 1978 to the present, and indicate the potential of these sites as continuous calibration monitoring targets.

  11. Solid-state spectral transmissometer and radiometer

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Steward, R. G.; Payne, P. R.

    1985-01-01

    An in situ instrument designed to measure the spectral attenuation coefficient of seawater and the ocean remote-sensing reflectance from 400 to 750 nm is in the test and development stage. It employs a 256 channel, charge-coupled type of linear array measuring the spectral intensities diffracted by a grating. Examples of the types of data delivered by this instrument have been simulated using a breadboard laboratory instrument and an above-water, solid-state radiometer. Algorithms developed using data from these instruments provide measures of chlorophyll a plus phaeophytin a concentrations from less than 0.1 to 77.0 mg/cu m, gelbstoff spectral absorption coefficients, and detrital spectral backscattering coefficients for waters of the west Florida shelf.

  12. A Low-Cost, Compact, Moored Spectral Radiometer.

    DTIC Science & Technology

    2007-11-02

    spectral irradiance over time at prescribed depths. Data from a mooring in the Arabian Sea are presented, and clearly show the change in spectral quality...after the onset of the SW monsoon. The operation of the moored spectral radiometer (MSR) agrees closely with the data from an MER-2040, once a... data collected during a six-month deployment during the Forced Upper Ocean Dynamics Experiment in the Arabian Sea(Trask et. al., 1995), and a

  13. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    NASA Astrophysics Data System (ADS)

    Heydt, Gerald T.

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation, and the history of the process is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory in Hawaii, which are discussed in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  14. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  15. Radiometer Testbed Development for SWOT

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  16. Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions

    NASA Astrophysics Data System (ADS)

    Feng, Rong; Duan, Wansuo; Mu, Mu

    2017-02-01

    In this paper, we explored potential observing locations (i.e., the sensitive areas) of positive Indian Ocean dipole (IOD) events to advance beyond the winter predictability barrier (WPB) using the geophysical fluid dynamics laboratory climate model version 2p1 (GFDL CM2p1). The sensitivity analysis is conducted through perfect model predictability experiments, in which the model is assumed to be perfect and so any prediction errors are caused by initial errors. The results show that the initial errors with an east-west dipole pattern are more likely to result in a significant WPB than spatially correlated noises; the areas where the large values of the dipole pattern initial errors are located have great effects on prediction uncertainties in winter and provide useful information regarding the sensitive areas. Further, the prediction uncertainties in winter are more sensitive to the initial errors in the subsurface large value areas than to those in the surface large value areas. The results indicate that the subsurface large value areas are sensitive areas for advancing beyond the WPB of IOD predictions and if we carry out intensive observations across these areas, the prediction errors in winter may be largely reduced. This will lead to large improvements in the skill of wintertime IOD event forecasts.

  17. High intensity solar cell radiometer

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Spisz, E. W.

    1972-01-01

    Device can be employed under high intensity illumination conditions such as would occur in a close-solar-approach space mission or in monitoring high intensity lamps. Radiometer consists of silicon solar cells with thin semi-transparent coatings of aluminum deposited on the front surfaces to permit transmission of small percentage of light and reflect the remainder.

  18. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  19. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Astrophysics Data System (ADS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-04-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  20. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  1. An Overview of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Accurate observations of ocean surface vector winds (OSVW) with high spatial and temporal resolution are critically important to improve both our understanding and predictability of tropical cyclones. As the successful NASA QuikSCAT satellite continues to age beyond its planned life span, many members of the tropical cyclone research and operational community recognize the need to develop new observational technologies and strategies to meet the essential need for OSVW information. This concern has been expressed in both the "Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond" developed by the National Research Council Committee on Earth Science and Applications from Space and the "Interagency Strategic Research Plan for Tropical Cyclone The Way Ahead" developed by the Joint Action Group for Tropical Cyclone Research (JAG-TCR) sponsored by the Office of the Federal Coordinator for Meteorology. One innovative technology development which offers the potential for new, unique remotely sensed observations of tropical cyclone OSVW and precipitation is the Hurricane Imaging Radiometer (HIRAD). This new instrument is passive microwave synthetic thinned aperture radiometer under development at the NASA Marshall Space Flight Center that will operate at the C-Band frequencies of 4, 5, 6, and 7 GHz. These frequencies have been successfully demonstrated by the NOAA nadir-staring Stepped Frequency Microwave Radiometer (SFMR) as useful for monitoring tropical cyclone ocean surface wind speeds and rain rates from low altitude reconnaissance aircraft. The HIRAD design incorporates a unique antenna design as well as several technologies that have been successfully demonstrated by the University of Michigan Lightweight Rain Radiometer sponsored by NASA Earth Science Technology Office Instrument Incubator Program. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce imagery of ocean wind surface

  2. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2013-09-30

    Lead Ocean gliders Ahead of ice edge Upper ocean (0-200m) T, S, O2, bio- optics , currents During cruise CU-B UAF Autonomous underwater vehicle...AUV) Under ice, up to 50km transects Ice thickness, floe-size distribution, waves, upper ocean properties ADCP, CTD, camera, multibeam sonar

  3. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  4. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Puget Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.

  5. L-Band Radiometer Experiment in the SMOS Test Site Upper Danube

    NASA Astrophysics Data System (ADS)

    Schlenz, Florian; Gebhardt, Timo; Loew, Alexander; Marzahn, Philip; Mauser, Wolfram

    2010-12-01

    In the frame of calibration and validation activities for ESA's soil moisture and ocean salinity mission, SMOS, the University of Munich operates a ground based L-band radiometer (ELBARA II) at 1.4 GHz to test and validate the radiative transfer model L-MEB also used in the SMOS Level 2 processor. The radiometer is situated on a test site near Puch, about 30 km west of Munich in the Upper Danube watershed in southern Germany in a temperate agricultural area. It is mounted on a scaffolding that allows to rotate the antenna which enables it to look at 2 different fields with grass and winter rape as land use respectively. In addition to the radiometer, a variety of complementary sensors are installed measuring all important meteorological and hydrological parameters. First datasets of the radiometer experiment are presented.

  6. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  7. Ocean Engineering Teaching at the University Level. Recommended Guidelines from the Unesco/IOC/ECOR Workshop on Advanced University Curricula in Ocean Engineering and Related Fields (Paris, France, October, 1982). Unesco Reports in Marine Science, No. 25.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report contains recommendations on advanced university curricula in ocean engineering and related areas, emphasizing the needs of developing countries. A decision matrix is included to assist users in developing the necessary criteria for designing appropriate curricula to prepare university students for careers in different ocean engineering…

  8. Examples of recent ground based L-band radiometer experiments

    NASA Astrophysics Data System (ADS)

    Schwank, Mike; Voelksch, I.; Maetzler, Ch.; Wigneron, Jean-Pierre; Kerr, Y. H.; Antolin, M. C.; Coll, A.; Millan-Scheiding, C.; Lopez-Baeza, Ernesto

    L-band (1 -2 GHz) microwave radiometry is a remote sensing technique to monitor soil mois-ture over land surfaces. The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) radiometer mission aims at providing global maps of soil moisture, with accuracy bet-ter than 0.04 m3 m-3 every 3 days, with a spatial resolution of approximately 40 km. Monitoring the large scale moisture dynamics at the boundary between the deep bulk soil and the atmo-sphere provides essential information both for terrestrial and atmospheric modellers. Perform-ing ground based radiometer campaigns before the mission launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the used radiative transfer models. This presentation starts with an outline of the basic concepts behind remote moisture retrieval from passive L-band radiation. Then the results from a selection of ground based microwave campaigns performed ü with the ELBARA radiometer and its successor models (JULBARA, ELBARAII) are pre-sented. Furthermore, some of the most important technical features, which were implemented in ELBARAII as the result of the experiences made with the forerunner, are outlined.

  9. Systems design and analysis of the microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1981-01-01

    Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.

  10. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  11. Interferometric Synthetic Aperture Microwave Radiometers : an Overview

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; McKague, Darren

    2011-01-01

    This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session.

  12. Measuring the instrument function of radiometers

    SciTech Connect

    Winston, R.; Littlejohn, R.G.

    1997-12-31

    The instrument function is a function of position and angle, the knowledge of which allows one to compute the response of a radiometer to an incident wave field in any state of coherence. The instrument function of a given radiometer need not be calculated; instead, it may be measured by calibration with incident plane waves.

  13. Portable Radiometer Identifies Minerals in the Field

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Machida, R. A.

    1982-01-01

    Hand-held optical instrument aids in identifying minerals in field. Can be used in exploration for minerals on foot or by aircraft. The radiometer is especially suitable for identifying clay and carbonate minerals. Radiometer measures reflectances of mineral at two wavelengths, computes ratio of reflectances, and displays ratio to user.

  14. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    Zone Based on a Rheological Parameterization Shen Proving and Improving Wave Models in the Arctic Ocean and its MIZ Wadhams and Doble Wave Climate ...arctic_sea_state Ackley, S.F. et al. (6 others), accepted, Surface Flooding of Antarctic summer sea ice, Annals of Glaciology (publication 2015) Ackley, S.F...E. Murphy and H. Xie (accepted), Ocean heat flux under Antarctic sea ice in the Bellingshausen and Amundsen Seas, Annals of Glaciology

  15. A Radiometer for Precision Coherent Radiation Measurements

    PubMed Central

    Thomas, Douglas B.; Zalewski, Edward F.

    1992-01-01

    A radiometer has been designed for precision colierent radiation measurements and tested for long-term repeatability at wavelengths of 488 and 633 nm. The radiometer consists of a pn silicon photodiode maintained in a nitrogen atmosphere with a quartz window designed to eliminate interference problems. Ratio measurements between the radiometer and an absolute type detector were made over a period of 215 d. At 0.5 mW, the standard deviations were 0.008% and 0.009% at 488 and 633 nm, respectively. The maximum deviations from the mean were 0.016% and 0.015% at the respective wavelengths. Measurements were also made on the radiometer with respect to angular and spatial uniformity and linearity. The high precision, simplicity, and portability of the radiometer suggest it for use as a transfer standard for radiometric measurements. PMID:28053435

  16. Radiometer Design Analysis Based Upon Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Lang, Roger H.

    2004-01-01

    This paper introduces a method for predicting the performance of a radiometer design based on calculating the measurement uncertainty. The variety in radiometer designs and the demand for improved radiometric measurements justify the need for a more general and comprehensive method to assess system performance. Radiometric resolution, or sensitivity, is a figure of merit that has been commonly used to characterize the performance of a radiometer. However when evaluating the performance of a calibration design for a radiometer, the use of radiometric resolution has limited application. These limitations are overcome by considering instead the measurement uncertainty. A method for calculating measurement uncertainty for a generic radiometer design including its calibration algorithm is presented. The result is a generalized technique by which system calibration architectures and design parameters can be studied to optimize instrument performance for given requirements and constraints. Example applications demonstrate the utility of using measurement uncertainty as a figure of merit.

  17. Distributed-switch Dicke radiometers

    NASA Technical Reports Server (NTRS)

    Levis, C. A. (Inventor)

    1979-01-01

    A radiometer on an orbiting spacecraft is described which derives high spatial resolution information from terrestrial and atmospheric regions. The N elements or subapertures on the spacecraft transduce electromagnetic energy into electric signals. Many or all of the elements are simultaneously illuminated by electromagnetic energy radiated from the same region. Identical, parallel processing channels are responsive to the N elements. Each of the channels includes a variable gain amplifier responsive to the signal transduced by its corresponding array elements. The gain of each amplifier is controlled as a function of the output difference when the channel is connected periodically to each of a pair of Dicke noise sources, such as resistors maintained at predetermined temperatures.

  18. Ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  19. Baseline Observations of Hemispheric Sea Ice with the Nimbus 7 Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gloersen, Per

    1998-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) on board the NASA Nimbus 7 satellite was designed to obtain data for sea surface temperatures (SSTs), near-surface wind speeds, sea ice coverage and type, rainfall rates over the oceans, cloud water content, snow water equivalent, and soil moisture. In this paper, I shall emphasize the sea ice observations and mention briefly some important SST observations. A prime factor contributing to the importance of SMMR sea ice observations lies in their successful integration into a long-term time series, presently being extended by observations from the series of Special Sensor Microwave/Imager (SSMI) on board the DOD/DMSP F8, Fl1, and F12 satellites. This currently constitutes a 19-year data set. Almost half of this was provided by the SMMR. Unfortunately, the 4-year data set produced earlier by the single-channel Electrically Scanned Microwave Radiometer (ESMR) was not successfully integrated into the SMMR/SSMI data set. This resulted primarily from the lack of an overlap period to provide intersensor adjustment, but also because of the large difference between the algorithms to produce ice concentrations and large temporal gaps in the ESMR data. The lack of overlap between the SeaSat and Nimbus 7 SMMR data sets was an important consideration for also excluding the SeatSat one, but the spatial gaps especially in the Southern Hemisphere daily SeaSat observations was another. The sea ice observations will continue into the future by means of the Advanced Microwave Scanning Radiometer (AMSR) on board the ADEOS II and EOS satellites due to be launched in mid- and late-2000, respectively. Analysis of the sea ice data has been carried out by a number of different techniques. Long-term trends have been examined by means of ordinary least squares and band-limited regression. Oscillations in the data have been examined by band-limited Fourier analysis. Here, I shall present results from a novel combination of Principal

  20. Advances in geophysics. Volume 28 - issues in atmospheric and oceanic modeling. Part A - climate dynamics

    SciTech Connect

    Manabe, S.

    1985-01-01

    Papers are presented on large-scale eddies and the general circulation of the troposphere; the role of barotropic energy conversions in the general circulation; balance conditions in the earth's climate system, climate sensitivity; CO2 and hydrology; modeling of paleoclimates; and the southern oscillation and El Nino. Topics treated include the stratospheric dynamics of the middle atmosphere, wave-mean-flow interaction in the middle atmosphere, radiative-dynamical interactions in the middle atmosphere, and a mechanistic interpretation of stratospheric tracer transport. Consideration is given to the general circulation of Venus, and Jovian and comparative atmospheric modeling. Also discussed are the modeling of ocean circulation, tropical oceanography, the simulation of mesoscale ocean variability in midlatitude gyres, modeling circulation and mixing in estuaries and coastal oceans, and the modeling of sea-ice dynamics.

  1. Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    PubMed Central

    Hill, Daniel J.; Bolton, Kevin P.; Haywood, Alan M.

    2017-01-01

    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source. PMID:28252023

  2. Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    NASA Astrophysics Data System (ADS)

    Hill, Daniel J.; Bolton, Kevin P.; Haywood, Alan M.

    2017-03-01

    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source.

  3. Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance.

    PubMed

    Hill, Daniel J; Bolton, Kevin P; Haywood, Alan M

    2017-03-02

    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source.

  4. Phase aligner for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Technical Reports Server (NTRS)

    Chren, William A., Jr.; Zomberg, Brian G.

    1993-01-01

    A prototype Phase Aligner (PA) or the Electronically Scanned Thinned Array Radiometer instrument has been designed and tested. Implemented in a single Xilinx XC3042PC84-125 Field Programmable Gate Array (FPGA), it is a dual-port register file which allows independent storage and phase coherent retrieval of antenna array data by the Central Processing Unit (CPU). It has dimensions of 4 x 20 bits and can be used at clock frequencies as high as 25 MHz. The ESTAR is a passive synthetic-aperture radiometer designed to sense soil moisture and ocean salinity at L-band.

  5. SeaHawk: an advanced CubeSat mission for sustained ocean colour monitoring

    NASA Astrophysics Data System (ADS)

    Morrison, John M.; Jeffrey, Hazel; Gorter, Hessel; Anderson, Pamela; Clark, Craig; Holmes, Alan; Feldman, Gene C.; Patt, Frederick S.

    2016-10-01

    Sustained ocean color monitoring is vital to understanding the marine ecosystem. It has been identified as an Essential Climate Variable (ECV) and is a vital parameter in understanding long-term climate change. Furthermore, observations can be beneficial in observing oil spills, harmful algal blooms and the health of fisheries. Space-based remote sensing, through MERIS, SeaWiFS and MODIS instruments, have provided a means of observing the vast area covered by the ocean which would otherwise be impossible using ships alone. However, the large pixel size makes measurements of lakes, rivers, estuaries and coastal zones difficult. Furthermore, retirement of a number of widely used and relied upon ocean observation instruments, particularly MERIS and SeaWiFS, leaves a significant gap in ocean color observation opportunities This paper presents an overview of the SeaHawk mission, a collaborative effort between Clyde Space Ltd., the University of North Carolina Wilmington, Cloudland Instruments, and Goddard Spaceflight Center, funded by the Gordon and Betty Moore Foundation. The goal of the project is to enhance the ability to observe ocean color in high temporal and spatial resolution through use of a low-cost, next-generation ocean color sensor flown aboard a CubeSat. The final product will be 530 times smaller (0.0034 vs 1.81m3) and 115 time less massive (3.4 vs 390.0kg) but with a ground resolution 10 times better whilst maintaining a signal/noise ratio 50% that of SeaWiFs. This paper will describe the objectives of the mission, outline the payload specification and the spacecraft platform to support it.

  6. Calibration and Image Reconstruction for the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Roberts, J. Brent; Biswas, Sayak; James, Mark W.; Miller, Timothy

    2012-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne passive microwave synthetic aperture radiometer designed to provide wide swath images of ocean surface wind speed under heavy precipitation and, in particular, in tropical cyclones. It operates at 4, 5, 6 and 6.6 GHz and uses interferometric signal processing to synthesize a pushbroom imager in software from a low profile planar antenna with no mechanical scanning. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during Fall 2010 as its first science field campaign. HIRAD produced images of upwelling brightness temperature over a aprox 70 km swath width with approx 3 km spatial resolution. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The calibration and image reconstruction algorithms that were used to verify HIRAD functional performance during and immediately after GRIP were only preliminary and used a number of simplifying assumptions and approximations about the instrument design and performance. The development and performance of a more detailed and complete set of algorithms are reported here.

  7. Source analysis of spaceborne microwave radiometer interference over land

    NASA Astrophysics Data System (ADS)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  8. Matching chelators to radiometals for radiopharmaceuticals.

    PubMed

    Price, Eric W; Orvig, Chris

    2014-01-07

    Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.

  9. Advances of Fine Resolution SSTs for Small Ocean Basins: Evaluation in the Black Sea

    DTIC Science & Technology

    2008-08-07

    contamination over the ocean can be as much as 1 oil I100% just near the boundaries. The contamination from -r1 land decreases systematically as one proceeds...parts by the EU SESAME and TUBITAK projects. The paper is contribution different NWP products? Fine resolution satellite-based NRL/JA/7320107/8016

  10. A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer

    NASA Technical Reports Server (NTRS)

    Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.

    1993-01-01

    A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.

  11. ELBARA II, an L-Band Radiometer System for Soil Moisture Research

    PubMed Central

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user. PMID:22315556

  12. ELBARA II, an L-band radiometer system for soil moisture research.

    PubMed

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.

  13. Shortwave Radiometer Calibration Methods Comparison and Resulting Solar Irradiance Measurement Differences: A User Perspective

    SciTech Connect

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-11-21

    methods of calibration demonstrated +1% to +2% differences in solar irradiance measurement. Analyzing these differences will ultimately help determine the uncertainty of the field radiometer data and guide the development of a consensus standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainty will allow more accurate prediction of solar output and improve the bankability of solar projects.

  14. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami

    NASA Astrophysics Data System (ADS)

    Satake, Kenji

    2014-12-01

    The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world's history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, seismology and tsunami sciences as well as tsunami disaster risk reduction have significantly developed. Progress in seismology includes implementation of earthquake early warning, real-time estimation of earthquake source parameters and tsunami potential, paleoseismological studies on past earthquakes and tsunamis, studies of probable maximum size, recurrence variability, and long-term forecast of large earthquakes in subduction zones. Progress in tsunami science includes accurate modeling of tsunami source such as contribution of horizontal components or "tsunami earthquakes", development of new types of offshore and deep ocean tsunami observation systems such as GPS buoys or bottom pressure gauges, deployments of DART gauges in the Pacific and other oceans, improvements in tsunami propagation modeling, and real-time inversion or data assimilation for the tsunami warning. These developments have been utilized for tsunami disaster reduction in the forms of tsunami early warning systems, tsunami hazard maps, and probabilistic tsunami hazard assessments. Some of the above scientific developments helped to reveal the source characteristics of the 2011 Tohoku earthquake, which caused devastating tsunami damage in Japan and Fukushima Dai-ichi Nuclear Power Station accident. Toward tsunami disaster risk reduction, interdisciplinary and trans-disciplinary approaches are needed for scientists with other stakeholders.

  15. L-band radiometer experiment in the SMOS test site Upper Danube

    NASA Astrophysics Data System (ADS)

    Schlenz, Florian; Gebhardt, Timo; Loew, Alexander; Marzahn, Philip; Mauser, Wolfram

    2010-05-01

    In the frame of calibration and validation activities for ESA's soil moisture and ocean salinity mission, SMOS, the University of Munich operates a ground based L-band radiometer (ELBARA II) on an experimental farm in Southern Germany since September 2009. It is being used to validate the radiative transfer model, L-MEB, used in the SMOS Level 2 processor. The radiometer measures the natural emission of two fields in the microwave domain with a wavelength of 1.4 GHz. Its working principle is similar to that of SMOS, for which reason it can be used for validation of the radiative transfer model on the field scale. To support the validation, extensive environmental measurements are being made at the test site. The radiometer is situated on an experimental farm near Puch, about 30 km west of Munich in the Upper Danube watershed in southern Germany in a temperate agricultural area. It is mounted on a 4 m high scaffolding that allows to turn the radiometer to look at 2 different fields with grass and winter rape as land use respectively. In addition to the L-band measurements, thermal infrared (IR) measurements are performed. For this purpose, one thermal IR radiometer is attached to the ELBARA antenna to look into the same direction and two IR radiometers are constantly pointed at the two fields. Next to the radiometer is a meteorological station providing soil and air temperature profiles, precipitation, global radiation, wind speed and relative humidity measurements with an hourly resolution. In addition to that, soil moisture is measured with TDR probes in 2 profiles under each of the two fields with several probes installed at depths between 5 and 50cm. Vegetation and snow parameters are also recorded on a regularly basis. Soil roughness is measured with a photogrammetric approach. An overview about the infrastructure and existing datasets is presented.

  16. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  17. Galileo Photopolarimeter/Radiometer experiment

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Brown, F. G.; Chandos, R. A.; Fincher, W. C.; Kubel, L. F.; Lacis, A. A.; Travis, L. D.

    1992-01-01

    The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 microns to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.

  18. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  19. NIST-BMDO transfer radiometer (BXR)

    NASA Astrophysics Data System (ADS)

    Jung, Timothy M.; Carter, Adriaan C.; Lorentz, Steven R.; Datla, Raju V.

    2000-07-01

    An infrared transfer radiometer has been recently developed at the Low-Background Infrared Calibration (LBIR) facility at the National Institute of Standards and Technology (NIST) for the Ballistic Missile Defense Organization (BMDO) program. The BMDO Transfer Radiometer (BXR) is designed to measure the irradiance of a collimated source of infrared light having an angular divergence of less than 1 mrad. It is capable of measuring irradiance levels as low as 10-15 W/cm2 over the spectral range from 2 micrometer to 30 micrometer. The radiometer uses an arsenic-doped silicon blocked impurity band (BIB) detector operated at temperatures below 12 K. Spectral resolution is provided by narrow bandpass interference filters and long-wavelength blocking filters. All the components of the radiometer, which include a mechanical shutter, an internal calibration source and detector, a long baffle section, a spatial filter, two filter wheels and a two- axis detector stage are cooled with an active flow of liquid helium to maintain temperatures below 20 K. A cryogenic vacuum chamber has been built to house the radiometer and to provide mechanical tilt alignment to the source. The radiometer is easily transported to a user site along with its support equipment.

  20. The importance of altimeter and scatterometer data for ocean prediction

    NASA Technical Reports Server (NTRS)

    Hurlburt, H. E.

    1984-01-01

    The prediction of ocean circulation using satellite altimeter data is discussed. Three classes of oceanic response to atmospheric forcing are outlined and examined. Storms, surface waves, eddies, and ocean currents were evaluated in terms of forecasting time requirements. Scatterometer and radiometer applications to ocean prediction are briefly reviewed.

  1. Satellite Ocean Color: Present Status, Future Challenges

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; McClain, Charles R.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    We are midway into our 5th consecutive year of nearly continuous, high quality ocean color observations from space. The Ocean Color and Temperature Scanner/Polarization and Directionality of the Earth's Reflectances (OCTS/POLDER: Nov. 1996 - Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997 - present), and now the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000 - present) have and are providing unprecedented views of chlorophyll dynamics on global scales. Global synoptic views of ocean chlorophyll were once a fantasy for ocean color scientists. It took nearly the entire 8-year lifetime of limited Coastal Zone Color Scanner (CZCS) observations to compile seasonal climatologies. Now SeaWIFS produces comparably complete fields in about 8 days. For the first time, scientists may observe spatial and temporal variability never before seen in a synoptic context. Even more exciting, we are beginning to plausibly ask questions of interannual variability. We stand at the beginning of long-time time series of ocean color, from which we may begin to ask questions of interdecadal variability and climate change. These are the scientific questions being addressed by users of the 18-year Advanced Very High Resolution Radiometer time series with respect to terrestrial processes and ocean temperatures. The nearly 5-year time series of ocean color observations now being constructed, with possibilities of continued observations, can put us at comparable standing with our terrestrial and physical oceanographic colleagues, and enable us to understand how ocean biological processes contribute to, and are affected by global climate change.

  2. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  3. Iron Resources and Oceanic Nutrients - Advancement of Global Environment Simulations (ironages)

    NASA Astrophysics Data System (ADS)

    de Baar, H. J. W.; Ironages Team

    Iron limits productivity in 40 percent of the oceans, and is a co-limitation in the re- maining 60 percent of surface waters. Moreover the paradigm of a single factor limit- ing plankton blooms, is presently giving way to co-limitation by light, and the nutri- ents N, P, Si, and Fe. Primary production, export into the deep sea, and CO2 uptake from the atmosphere together form the 'biological pump' in Ocean Biogeochemi- cal Climate Models (OBCM's). Thus far OBCM's assume just one limiting nutrient (P) and one universal phytoplankton species, for deriving C budgets and CO2 ex- change with the atmosphere. New realistic OBCM's are being developed in IRON- AGES for budgeting and air/sea exchanges of both CO2 and DMS, implementing (1) co-limitation by 4 nutrients of 5 major taxonomic classes of phytoplankton in a nested plankton ecosystem model, (ii) DMS(P) pathways, (iii) global iron cycling, (iv) chem- ical forms of iron and (v) iron supply in surface waters from above by aerosols and from below out of reducing margin sediments. IRONAGES is a consortium of 12 Eu- ropean institutes coordinated by the Royal NIOZ.

  4. FixO3: Advancement towards Open Ocean Observatory Data Management Harmonisation

    NASA Astrophysics Data System (ADS)

    Behnken, Andree; Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2015-04-01

    Since 2002 there has been a sustained effort, supported as European framework projects, to harmonise both the technology and the data management of Open Ocean fixed observatories run by European nations. FixO3 started in September 2013, and for 3 more years will coordinate the convergence of data management best practice across a constellation of moorings in the Atlantic, in both hemispheres, and in the Mediterranean. To ensure the continued existence of these unique sources of oceanographic data as sustained observatories it is vital to improve access to the data collected, both in terms of methods of presentation, real-time availability, long-term archiving and quality assurance. The data management component of FixO3 improves access to marine observatory data by harmonising data management standards, formats and workflows covering the complete life cycle of data from real time data acquisition to long-term archiving. Legal and data policy aspects have been examined and discussed to identify transnational barriers to open-access to marine observatory data. As a result, a harmonised FixO3 data policy was drafted, which provides a formal basis for data exchange between FixO3 infrastructures, and also enables open access to data for the general public. FixO3 interacts with other European infrastructures such as EMODnet, SeaDataNet, PANGAEA, and especially aims to harmonise efforts with OceanSites and MyOcean. The project landing page (www.fixo3.eu) offers detailed information about every observatory as well as data visualisations and direct downloads. In addition to this, metadata for all FixO3 - relevant data are available from the searchable FixO3 metadata catalogue, which is also accessible from the project web page. This catalogue is hosted by PANGAEA and receives updates in regular intervals. The FixO3 Standards & Services registry ties in with the GEOSS Components and Services Registry (CSR) and provides additional observatory information. The data management

  5. U.S. Tsunami Warning System: Advancements since the 2004 Indian Ocean Tsunami (Invited)

    NASA Astrophysics Data System (ADS)

    Whitmore, P.

    2009-12-01

    The U.S. government embarked on a strengthening program for the U.S. Tsunami Warning System (TWS) in the aftermath of the disastrous 2004 Indian Ocean tsunami. The program was designed to improve several facets of the U.S. TWS, including: upgrade of the coastal sea level network - 16 new stations plus higher transmission rates; expansion of the deep ocean tsunameter network - 7 sites increased to 39; upgrade of seismic networks - both USGS and Tsunami Warning Center (TWC); increase of TWC staff to allow 24x7 coverage at two centers; development of an improved tsunami forecast system; increased preparedness in coastal communities; expansion of the Pacific Tsunami Warning Center facility; and improvement of the tsunami data archive effort at the National Geophysical Data Center. The strengthening program has been completed and has contributed to the many improvements attained in the U.S. TWS since 2004. Some of the more significant enhancements to the program are: the number of sea level and seismic sites worldwide available to the TWCs has more than doubled; the TWC areas-of-responsibility expanded to include the U.S./Canadian Atlantic coasts, Indian Ocean, Caribbean Sea, Gulf of Mexico, and U.S. Arctic coast; event response time decreased by approximately one-half; product accuracy has improved; a tsunami forecast system developed by NOAA capable of forecasting inundation during an event has been delivered to the TWCs; warning areas are now defined by pre-computed or forecasted threat versus distance or travel time, significantly reducing the amount of coast put in a warning; new warning dissemination techniques have been implemented to reach a broader audience in less time; tsunami product content better reflects the expected impact level; the number of TsunamiReady communities has quadrupled; and the historical data archive has increased in quantity and accuracy. In addition to the strengthening program, the U.S. National Tsunami Hazard Mitigation Program (NTHMP

  6. Design of an atmospheric sounding radiometer for the GOES meteorological satellite system

    NASA Technical Reports Server (NTRS)

    Jensen, R. G.

    1980-01-01

    An advanced version of the visible infrared spin scan radiometer onboard U.S. geostationary operational environmental satellites was developed to add a vertical dimension to the instrument's infrared atmospheric images. Through the addition of twelve selectable narrow band filters and more precise in-flight calibration of the infrared detectors, the VISSR atmospheric sounder (VAS) will provide increased data to help determine the Earth's atmospheric temperature and water vapor distribution. The radiometer design, filter wheel, calibration shutter mechanisms, and their preflight test performance are discussed.

  7. View-limiting shrouds for insolation radiometers

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Trentelman, G. F.

    1985-01-01

    Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined.

  8. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one

  9. CHARM: A CubeSat Water Vapor Radiometer for Earth Science

    NASA Technical Reports Server (NTRS)

    Lim, Boon; Mauro, David; DeRosee, Rodolphe; Sorgenfrei, Matthew; Vance, Steve

    2012-01-01

    The Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC) are partnering in the CubeSat Hydrometric Atmospheric Radiometer Mission (CHARM), a water vapor radiometer integrated on a 3U CubeSat platform, selected for implementation under NASA Hands-On Project Experience (HOPE-3). CHARM will measure 4 channels at 183 GHz water vapor line, subsets of measurements currently performed by larger and more costly spacecraft (e.g. ATMS, AMSU-B and SSMI/S). While flying a payload that supports SMD science objectives, CHARM provides a hands-on opportunity to develop technical, leadership, and project skills. CHARM will furthermore advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and the CubeSat 183 GHz radiometer system from TRL 4 to TRL 7.

  10. Mission definition for a large-aperture microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.

    1981-01-01

    An Earth-observation measurements mission is defined for a large-aperture microwave radiometer spacecraft. This mission is defined without regard to any particular spacecraft design concept. Space data application needs, the measurement selection rationale, and broad spacecraft design requirements and constraints are described. The effects of orbital parameters and image quality requirements on the spacecraft and mission performance are discussed. Over the land the primary measurand is soil moisture; over the coastal zones and the oceans important measurands are salinity, surface temperature, surface winds, oil spill dimensions and ice boundaries; and specific measurement requirements have been selected for each. Near-all-weather operation and good spatial resolution are assured by operating at low microwave frequencies using an extremely large aperture antenna in a low-Earth-orbit contiguous mapping mode.

  11. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  12. Novel Cyclotron-Based Radiometal Production

    SciTech Connect

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.

  13. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    NASA Astrophysics Data System (ADS)

    Karvonen, J.

    2014-09-01

    We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR) segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP) neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2) polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI) ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice) algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea-land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.

  14. EarthCube: Advancing Partnerships, Collaborative Platforms and Knowledge Networks in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Stephen, Diggs; Lee, Allison

    2014-05-01

    The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.

  15. Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer

    DTIC Science & Technology

    2014-01-01

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...8217^ MODIS Aqua was launched in May 2002 with a life expectancy of 6 years which means it has already doubled its life expectancy. NOAA is currently at risk...Thuillier extraterrestrial irradiance Proc. of SPIE Vol. 9111 91110Y-9 Downloaded From: http://proceedlngs.$piedigitallibrary.org/on 06/04/2014

  16. Low-cost microprocessor controlled shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Michalsky, J. J.; Lebaron, B. A.; Harrison, L. C.

    1985-06-01

    This paper describes the second phase in the development of a low-cost microprocessor-controlled rotating shadowband radiometer at PNL. The initial work, to develop a solar photometer, resulted in a mechanical design that is adopted for the solar radiometer with only minor changes. The goals of this effort are: (1) to improve the data acquisition system; and (2) to derive corrections for the silicon cell-based pyranometer that would allow measurements of total horizontal, diffuse horizontal, and direct normal solar radiation approaching first-class instrumentation accuracy at a fraction of the cost. Significant progress on temperature, cosine and spectral corrections is achieved.

  17. Electrically scanning microwave radiometer for Nimbus E

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An electronically scanning microwave radiometer system has been designed, developed, and tested for measurement of meteorological, geomorphological and oceanographic parameters from NASA/GSFC's Nimbus E satellite. The system is a completely integrated radiometer designed to measure the microwave brightness temperature of the earth and its atmosphere at a microwave frequency of 19.35 GHz. Calibration and environmental testing of the system have successfully demonstrated its ability to perform accurate measurements in a satellite environment. The successful launch and data acquisition of the Nimbus 5 (formerly Nimbus E) gives further demonstration to its achievement.

  18. The Hurricane Imaging Radiometer: Present and Future

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; Morris, M.; Uhlhorn, E. W.; Black, P. G.

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  19. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  20. Radiometer experiment for the aeroassist flight experiment

    NASA Astrophysics Data System (ADS)

    Davy, W. C.; Park, C.; Arnold, J. O.; Balakrishnan, A.

    1985-06-01

    A forthcoming NASA flight experiment is described that provides an opportunity to obtain a large base of radiometric data for high-altitude, high-velocity thermochemically nonequilibrated-flow conditions. As a preliminary to the design of a radiometer for this experiment, an approximate method for predicting both equilibrium and nonequilibrium radiative surface fluxes is described. Spectral results for one trajectory state, a velocity of 10 km/sec at an altitude of 85 km, are presented. These results are then used to develop some of the instrument parameters that will be needed for designing of the three genre of radiometers that are proposed for this experiment.

  1. Recent advances in vibro-impact dynamics and collision of ocean vessels

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raouf A.

    2014-11-01

    The treatment of ship impacts and collisions takes different approaches depending on the emphasis of each discipline. For example, dynamicists, physicist, and mathematicians are dealing with developing analytical models and mappings of vibro-impact systems. On the other hand, naval architects and ship designers are interested in developing design codes and structural assessments due to slamming loads, liquid sloshing impact loads in liquefied natural gas tanks and ship grounding accidents. The purpose of this review is to highlight the main differences of the two disciplines. It begins with a brief account of the theory of vibro-impact dynamics based on modeling and mapping of systems experiencing discontinuous changes in their state of motion due to collision. The main techniques used in modeling include power-law phenomenological modeling, Hertzian modeling, and non-smooth coordinate transformations originally developed by Zhuravlev and Ivanov. In view of their effectiveness, both Zhuravlev and Ivanov non-smooth coordinate transformations will be described and assessed for the case of ship roll dynamics experiencing impact with rigid barriers. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. One of the recent results dealing with the coefficient of restitution is that its value monotonically decreases with the impact velocity and not unique but random in nature. Slamming loads and grounding events of ocean waves acting on the bottom of high speed vessels will be assessed with reference to the ship structural damage. It will be noticed that naval architects and marine engineers are treating these problems using different approaches from those used by dynamicists. The problem of sloshing impact in liquefied natural gas cargo and related problems will be assessed based on the numerical and experimental results. It is

  2. The development of a stepped frequency microwave radiometer and its application to remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.

    1980-01-01

    The design, development, application, and capabilities of a variable frequency microwave radiometer are described. This radiometer demonstrated the versatility, accuracy, and stability required to provide contributions to the geophysical understanding of ocean and ice processes. A closed-loop feedback method was used, whereby noise pulses were added to the received electromagnetic radiation to achieve a null balance in a Dicke switched radiometer. Stability was achieved through the use of a constant temperature enclosure around the low loss microwave front end. The Dicke reference temperature was maintained to an absolute accuracy of 0.1 K using a closed-loop proportional temperature controller. A microprocessor based digital controller operates the radiometer and records the data on computer compatible tapes. This radiometer exhibits an absolute accuracy of better than 0.5 K when the sensitivity is 0.1 K. The sensitivity varies between 0.0125 K and 1.25 K depending upon the bandwidth and integration time selected by the digital controller. Remote sensing experiments were conducted from an aircraft platform and the first radiometeric mapping of an ocean polar front; exploratory experiments to measure the thickness of lake ice; first discrimination between first year and multiyear ice below 10 GHz; and the first known measurements of frequency sensitive characteristics of sea ice.

  3. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis

  4. An investigation of radiometer design using digital processing techniques

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.

    1981-01-01

    The use of digital signal processing techniques in Dicke switching radiometer design was investigated. The general approach was to develop an analytical model of the existing analog radiometer and identify factors which adversly affect its performance. A digital processor was then proposed to verify the feasibility of using digital techniques to minimize these adverse effects and improve the radiometer performance. Analysis and preliminary test results comparing the digital and analog processing approaches in radiometers design were analyzed.

  5. A Novel Miniature Wide-band Radiometer for Space Applications

    NASA Astrophysics Data System (ADS)

    Sykulska-Lawrence, Hanna

    2016-10-01

    Design, development and testing of a novel miniaturised infrared radiometer is described. The instrument opens up new possibilities in planetary science of deployment on smaller platforms - such as unmanned aerial vehicles and microprobes - to enable study of a planet's radiation balance, as well as terrestrial volcano plumes and trace gases in planetary atmospheres, using low-cost long-term observations. Thus a key enabling development is that of miniaturised, low-power and well-calibrated instrumentation.The paper reports advances in miniature technology to perform high accuracy visible / IR remote sensing measurements. The infrared radiometer is akin to those widely used for remote sensing for earth and space applications, which are currently either large instruments on orbiting platforms or medium-sized payloads on balloons. We use MEMS microfabrication techniques to shrink a conventional design, while combining the calibration benefits of large (>1kg) type radiometers with the flexibility and portability of a <10g device. The instrument measures broadband (0.2 to 100um) upward and downward radiation fluxes, with built-in calibration capability, incorporating traceability to temperature standards such as ITS-90.The miniature instrument described here was derived from a concept developed for a European Space Agency study, Dalomis (Proc. of 'i-SAIRAS 2005', Munich, 2005), which involved dropping multiple probes into the atmosphere of Venus from a balloon to sample numerous parts of the complex weather systems on the planet. Data from such an in-situ instrument would complement information from a satellite remote sensing instrument or balloon radiosonde. Moreover, the addition of an internal calibration standard facilitates comparisons between datasets.One of the main challenges for a reduced size device is calibration. We use an in-situ method whereby a blackbody source is integrated within the device and a micromirror switches the input to the detector between

  6. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  7. Blackbody cavity radiometer has rapid response

    NASA Technical Reports Server (NTRS)

    Haley, F. C.

    1966-01-01

    Fast response, spectrally linear standard detector in the form of a blackbody cavity radiometer calibrates rapidly responding photodetectors against a calibrated standard detector. A power amplifier with maximum available gain reduces error signal without stability loss. It may be used as a blackbody radiator by manipulation of the bridge variable arm.

  8. Accounting For Nonlinearity In A Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Stelzried, Charles T.

    1991-01-01

    Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.

  9. Heat capacity mapping radiometer for AEM spacecraft

    NASA Technical Reports Server (NTRS)

    Sonnek, G. E.

    1977-01-01

    The operation, maintenance, and integration of the applications explorer mission heat capacity mapping radiometer is illustrated in block diagrams and detail schematics of circuit functions. Data format and logic timing diagrams are included along with radiometric and electronic calibration data. Mechanical and electrical configuration is presented to provide interface details for integration of the HCMR instrument to AEM spacecraft.

  10. LARSPEC spectroradiometer-multiband radiometer data formats

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.

    1982-01-01

    The data base software system, LARSPEC, is discussed and the data base format for agronomic, meteorological, spectroradiometer, and multiband radiometer data is described. In addition, the contents and formats of each record of data and the wavelength tables are listed and the codes used for some of the parameters are described.

  11. Balloon-borne radiometer profiler: Field observations

    SciTech Connect

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given.

  12. Application of Uncooled Monolithic Thermoelectric Linear Arrays to Imaging Radiometers

    NASA Astrophysics Data System (ADS)

    Kruse, Paul W.

    Introduction Identification of Incipient Failure of Railcar Wheels Technical Description of the Model IR 1000 Imaging Radiometer Performance of the Model IR 1000 Imaging Radiometer Initial Application Summary Imaging Radiometer for Predictive and Preventive Maintenance Description Operation Specifications Summary References INDEX CONTENTS OF VOLUMES IN THIS SERIES

  13. Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.

    1984-01-01

    The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.

  14. Wideband filter radiometers for blackbody temperature measurements

    NASA Astrophysics Data System (ADS)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  15. Langley method of calibrating UV filter radiometers

    NASA Astrophysics Data System (ADS)

    Slusser, James; Gibson, James; Bigelow, David; Kolinski, Donald; Disterhoft, Patrick; Lantz, Kathleen; Beaubien, Arthur

    2000-02-01

    The Langley method of calibrating UV multifilter shadow band radiometers (UV-MFRSR) is explored in this paper. This method has several advantages over the traditional standard lamp calibrations: the Sun is a free, universally available, and very constant source, and nearly continual automated field calibrations can be made. Although 20 or so Langley events are required for an accurate calibration, the radiometer remains in the field during calibration. Difficulties arise as a result of changing ozone optical depth during the Langley event and the breakdown of the Beer-Lambert law over the finite filter band pass since optical depth changes rapidly with wavelength. The Langley calibration of the radiometers depends critically upon the spectral characterization of each channel and on the wavelength and absolute calibration of the extraterrestrial spectrum used. Results of Langley calibrations for two UV-MFRSRs at Mauna Loa, Hawaii were compared to calibrations using two National Institute of Standards and Technology (NIST) traceable lamps. The objectives of this study were to compare Langley calibration factors with those from standard lamps and to compare field-of-view effects. The two radiometers were run simultaneously: one on a Sun tracker and the other in the conventional shadow-band configuration. Both radiometers were calibrated with two secondary 1000 W lamp, and later, the spectral response functions of the channels were measured. The ratio of Langley to lamp calibration factors for the seven channels from 300 nm to 368 nm using the shadow-band configuration ranged from 0.988 to 1.070. The estimated uncertainty in accuracy of the Langley calibrations ranged from ±3.8% at 300 nm to ±2.1% at 368 nm. For all channels calibrated with Central Ultraviolet Calibration Facility (CUCF) lamps the estimated uncertainty was ±2.5% for all channels.

  16. Ocean Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Cavanaugh, J.; Smith, J.; Esaias, W.

    1988-01-01

    The Ocean Data Acquisition System (ODAS) is a low cost instrument with potential commercial application. It is easily mounted on a small aircraft and flown over the coastal zone ocean to remotely measure sea surface temperature and three channels of ocean color information. From this data, chlorophyll levels can be derived for use by ocean scientists, fisheries, and environmental offices. Data can be transmitted to shipboard for real-time use with sea truth measurements, ocean productivity estimates and fishing fleet direction. The aircraft portion of the system has two primary instruments: an IR radiometer to measure sea surface temperature and a three channel visible spectro-radiometer for 460, 490, and 520 nm wavelength measurements from which chlorophyll concentration can be derived. The aircraft package contains a LORAN-C unit for aircraft location information, clock, on-board data processor and formatter, digital data storage, packet radio terminal controller, and radio transceiver for data transmission to a ship. The shipboard package contains a transceiver, packet terminal controller, data processing and storage capability, and printer. Both raw data and chlorophyll concentrations are available for real-time analysis.

  17. Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  18. Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  19. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  20. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  1. The HYDROS Radiometer/Radar Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.; Njoku, Eni; Entekhabi, Dara; Doiron, Terence; Piepmeier, Jeffrey; Girard, Ralph

    2004-01-01

    The science objectives of the HYDROS mission are to provide frequent, global measurements of surface soil moisture and surface freeze/thaw state. In order to adequately measure these geophysical quantities, the key instrument requirements were determined by the HYDROS science team to be: 1) Dual-polarization L-Band passive radiometer measurements at 40 km resolution, 2) Dual-polarization L-Band active radar measurements at 3 km resolution, and 3) A wide swath to insure global three day refresh time for these measurements (1000 km swath at the selected orbit altitude of 670 km). As a solution to this challenging set of instrument requirements, a relatively large, 6 meter, conically-scanning reflector antenna architecture was selected for the instrument design. The deployable mesh antenna is shared by both the radiometer and radar electronics by employing a single L-Band feed.

  2. Galileo Net Flux Radiometer Report 1997

    NASA Technical Reports Server (NTRS)

    Tomasko, Martin G.

    1997-01-01

    On 7 December 1995, the Galileo probe entered Jupiter's atmosphere. The Net Flux Radiometer (NFR) on board the probe, measured upward and downward fluxes in the visible and infrared. At the University of Arizona, we have analyzed the data from the two visible-light channels, as well as the solar contributions to the thermal channels. The results are being prepared for submission to JGR in early September.

  3. Reflection seismic investigations of the Beaufort Sea margin, Arctic Ocean: Variable history of Quaternary ice-sheet advance

    NASA Astrophysics Data System (ADS)

    Batchelor, Christine; Dowdeswell, Julian; Pietras, Jeffrey

    2013-04-01

    The seismic stratigraphy and sedimentary architecture of the formerly-glaciated Beaufort Sea shelf and adjacent slope are investigated using a comprehensive grid of high-resolution 2-D seismic reflection data collected by ION Geophysical Corporation as part of the BeaufortSPAN East survey. Three cross-shelf troughs, representing locations of former ice streams draining a 1000 km-long section of the Laurentide Ice Sheet are examined; the Mackenzie, Amundsen Gulf and M'Clure Strait systems. These palaeo-ice streams operated during the last, Late Wisconsinan, glacial maximum and a hitherto unknown number of earlier glacial periods. Their dynamics influenced past ice-sheet configuration and may have forced abrupt climate change through transport of ice and freshwater to the Arctic Ocean. The objectives of this work are to constrain the number of ice advances through each trough, to discuss the possible timing of these events, and to examine the impact of Quaternary glaciation on the continental shelf and adjacent slope. The number of cycles of ice-sheet growth and decay varies markedly between the Mackenzie Trough on the western Beaufort Sea margin, with only two recorded events, and the Amundsen Gulf Trough to the east, with at least nine. The Mackenzie Trough was probably occupied by an ice stream during the Late Wisconsinan and either the Illinoian or Early Wisconsinan glaciation. The Amundsen Gulf ice stream was initiated earlier in the Quaternary, suggesting that the onset of cross-shelf glaciation on the eastern Beaufort Sea margin occurred significantly prior to initial glaciation of Mackenzie Trough to the west. Whereas the continental slope beyond the Mackenzie Trough lacks a significant glacial-sedimentary depocentre, major trough-mouth fans (of volumes ~10,000 km³ and ~60,000 km³) are present beyond the Amundsen Gulf and M'Clure Strait, respectively. A number of buried glacigenic landforms, including grounding-zone wedges and lateral moraines, are

  4. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  5. The Split Window Microwave Radiometer (SWMR) for hurricane wind speed measurement from space

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Black, P. G.

    1992-01-01

    The monitoring of hurricanes demands considerable resources each year by the National Oceanic and Atmospheric Administration. Even with the extensive use of satellite and airborne probing of those storms, there is still much uncertainty involved in predicting landfall for timely evacuation of people subject to the threat. The concept of the Split Window Microwave Radiometer (SWMR) is to add an additional capability of remotely measuring surface winds to hopefully improve prediction capabilities or at least define the severity of the storm while it is far from land. Some of the present science and observational needs are addressed in this report as are remote sensing limitations which impact the design of a minimal system which can be launched into low earth orbit by a low cost launch system. This study has concluded that wind speed and rain rate maps of hurricanes can be generated with an X-Band radiometer system with an antenna whose aperture is 2 m on a side.

  6. Emissivity Model Sensitivity on Radiometric Inter-calibration between the GMI and Its Constellation Imager Radiometers

    NASA Astrophysics Data System (ADS)

    Chen, R.

    2015-12-01

    The inter-satellite radiometric calibration technique (also known as XCAL) has been applied with great success between the TRMM Microwave Imager (TMI) -calibration transfer standard- and its constellation imagers, namely, WindSat, AMSR2 and SSMIS. However, while the TRMM mission has now ended, it is now time to change the radiometric transfer standard from the previous TMI to the GPM Microwave Imager (GMI). In this paper, we conduct the inter-calibration between GMI and other imager instruments in its constellation using two different radiative transfer models (RTM), namely XCAL RTM which has been used by XCAL group over the past 10 years, and RSS RTM developed by Remote Sensing Systems (RSS). The main difference between these two RTMs lies in calculating the ocean surface emissivity which is crucial for the measurement of spaceborne microwave radiometers. By comparing the simulated Tb's from two RTMs applied on 9 microwave channels ranging from 10 to 90 GHz, we are able to evaluate the robustness of our XCAL RTM, especially the Elsaesser Ocean Surface Emissivity model that has been used within this model. Besides discussing the reliability of these two RTMs, an XCAL approach known as Double Difference (DD) that has been developed and successfully validated by the Central Florida Remote Sensing Lab will be performed between GMI and its constellation imagers, from which the results will enable us to prescreen the consistency of GMI as the new radiometric transfer standard for imager radiometers as well as assessing the impact of the ocean surface emissivity on radiometric inter-calibration of radiometers at imager channels. Index: Inter-satellite calibration, ocean surface emissivity, radiative transfer model, microwave radiometry

  7. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    NASA Technical Reports Server (NTRS)

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  8. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revised

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; Mueller, James L.

    2000-01-01

    The document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. This document supersedes the earlier version (Mueller and Austin 1995) published as Volume 25 in the SeaWiFS Technical Report Series. This document marks a significant departure from, and improvement on, theformat and content of Mueller and Austin (1995). The authorship of the protocols has been greatly broadened to include experts specializing in some key areas. New chapters have been added to provide detailed and comprehensive protocols for stability monitoring of radiometers using portable sources, abovewater measurements of remote-sensing reflectance, spectral absorption measurements for discrete water samples, HPLC pigment analysis and fluorometric pigment analysis. Protocols were included in Mueller and Austin (1995) for each of these areas, but the new treatment makes significant advances in each topic area. There are also new chapters prescribing protocols for calibration of sun photometers and sky radiance sensors, sun photometer and sky radiance measurements and analysis, and data archival. These topic areas were barely mentioned in Mueller and Austin (1995).

  9. A new radiometer for earth radiation budget studies

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  10. A new radiometer for earth radiation budget studies

    SciTech Connect

    Weber, P.G.

    1992-05-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  11. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  12. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  13. Structure of Florida Thunderstorms Using High-Altitude Aircraft Radiometer and Radar Observations.

    NASA Astrophysics Data System (ADS)

    Heymsfield, G. M.; Shepherd, J. M.; Bidwell, S. W.; Boncyk, W. C.; Caylor, I. J.; Ameen, S.; Olson, W. S.

    1996-10-01

    This paper presents an analysis of a unique radar and radiometer dataset from the National Aeronautics and Space Administration (NASA) ER-2 high-altitude aircraft overlying Florida thunderstorms on 5 October 1993 during the Convection and Moisture Experiment (CAMEX). The observations represent the first ER-2 Doppler radar (EDOP) measurements and perhaps the most comprehensive multispectral precipitation measurements collected from a single aircraft. The objectives of this paper are to 1) examine the relation of the vertical radar reflectivity structure to the radiometric responses over a wide range of remote sensing frequencies, 2) examine the limitations of rain estimation schemes over land and ocean backgrounds based on the observed vertical reflectivity structures and brightness temperatures, and 3) assess the usefulness of scattering-based microwave frequencies (86 GHz and above) to provide information on vertical structure in the ice region. Analysis focused on two types of convection: a small group of thunderstorms over the Florida Straits and sea-breeze-initiated convection along the Florida Atlantic coast.Various radiometric datasets are synthesized including visible, infrared (IR), and microwave (10 220 GHz). The rain cores observed over an ocean background by EDOP, compared quite well with elevated brightness temperatures from the Advanced Microwave Precipitation Radiometer (AMPR) 10.7-GHz channel. However, at higher microwave frequencies, which are ice-scattering based, storm evolution and vertical wind shear were found to be important in interpretation of the radiometric observations. As found in previous studies, the ice-scattering region was displaced significantly downshear of the convective and surface rainfall regions due to upper-level wind advection. The ice region above the rain layer was more opaque in the IR, although the 150- and 220-GHz brightness temperatures Tb approached the IR measurements and both corresponded well with the radar

  14. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    NASA Astrophysics Data System (ADS)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  15. Receivers for the Microwave Radiometer on Juno

    NASA Technical Reports Server (NTRS)

    Maiwald, F.; Russell, D.; Dawson, D.; Hatch, W.; Brown, S.; Oswald, J.; Janssen, M.

    2009-01-01

    Six receivers for the MicroWave Radiometer (MWR) are currently under development at JPL. These receivers cover a frequency range of 0.6 to 22 GHz in approximately octave steps, with 4 % bandwidth. For calibration and diagnosis three noise diodes and a Dicke switch are integrated into each receiver. Each receiver is connected to its own antenna which is mounted with its bore sights perpendicular to the spin axis of the spacecraft. As the spacecraft spins at 2 RPM, the antenna field of view scans Jupiter's atmosphere from limb to nadir to limb, measuring microwave emission down to 1000-bar.

  16. Atmospheric monitoring with an infrared radiometer

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; Chadwick, P. M.

    2015-03-01

    The molecular atmosphere has a number of windows where it is effectively transparent to electromagnetic radiation, one of these being in the infrared 8-14 micron region. The presence of clouds and aerosols, which are more effective emitters of infrared radiation, in the atmosphere show up as an increase in the effective brightness temperature compared to the clear sky. This talk will cover the results from operating a scanning radiometer at the H.E.S.S. site in Namibia in determining atmospheric conditions.

  17. RF Reference Switch for Spaceflight Radiometer Calibration

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph

    2013-01-01

    The goal of this technology is to provide improved calibration and measurement sensitivity to the Soil Moisture Active Passive Mission (SMAP) radiometer. While RF switches have been used in the past to calibrate microwave radiometers, the switch used on SMAP employs several techniques uniquely tailored to the instrument requirements and passive remote-sensing in general to improve radiometer performance. Measurement error and sensitivity are improved by employing techniques to reduce thermal gradients within the device, reduce insertion loss during antenna observations, increase insertion loss temporal stability, and increase rejection of radar and RFI (radio-frequency interference) signals during calibration. The two legs of the single-pole double-throw reference switch employ three PIN diodes per leg in a parallel-shunt configuration to minimize insertion loss and increase stability while exceeding rejection requirements at 1,413 MHz. The high-speed packaged diodes are selected to minimize junction capacitance and resistance while ensuring the parallel devices have very similar I-V curves. Switch rejection is improved by adding high-impedance quarter-wave tapers before and after the diodes, along with replacing the ground via of one diode per leg with an open circuit stub. Errors due to thermal gradients in the switch are reduced by embedding the 50-ohm reference load within the switch, along with using a 0.25-in. (approximately equal to 0.6-cm) aluminum prebacked substrate. Previous spaceflight microwave radiometers did not embed the reference load and thermocouple directly within the calibration switch. In doing so, the SMAP switch reduces error caused by thermal gradients between the load and switch. Thermal issues are further reduced by moving the custom, highspeed regulated driver circuit to a physically separate PWB (printed wiring board). Regarding RF performance, previous spaceflight reference switches have not employed high-impedance tapers to improve

  18. The interdisciplinary marine system of the Amundsen Sea, Southern Ocean: Recent advances and the need for sustained observations

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Ducklow, Hugh W.; Schofield, Oscar; Wåhlin, Anna; Newman, Louise; Lee, SangHoon

    2016-01-01

    The Southern Ocean exerts a profound influence on the functioning of the Earth System, in part because its location and unique bathymetric configuration enable direct linkages to the other major ocean basins (Ganachaud and Wunsch, 2000; Lumpkin and Speer, 2007). It is the site of the world's largest current system, the Antarctic Circumpolar Current (ACC), which transfers waters and climatically/ecologically-important tracers between the Atlantic, Indian and Pacific Oceans (Rintoul et al., 2001). In addition to the strong horizontal connectivity, the ACC is also characterized by a vigorous overturning circulation, which upwells warm, nutrient-rich waters from intermediate depth to the surface, where they are modified by interactions with the atmosphere and cryosphere to form new water masses, some of which are lighter and others more dense (Marshall and Speer, 2012). This overturning circulation structures the Southern Ocean both horizontally and vertically, dictates the levels of its communication with the rest of the global ocean, and is a fundamental control on the sequestration of carbon from the atmosphere into the ocean interior (Sallée et al., 2012). In some locations, the upwelled waters can intrude onto the Antarctic shelves, supplying heat and nutrients to the shallower regions. This is believed to be especially effective in west Antarctica, where the southern edge of the ACC moves close to the shelf break (Martinson, 2011; Orsi et al., 1995; Thoma et al., 2008).

  19. Development and Validation of New Advanced Ocean Altimetry Products From Cryosat-2 in Conventional and in SAR Mode

    NASA Astrophysics Data System (ADS)

    Cotton, D.; Gommenginger, C.; Andersen, O. B.; Boy, F.; Cancet, M.; Egido, A.; Fernandes, J.; Moreau, T.; Naeije, M.; Garcia, P.; Dinardo, S.; Benveniste, J.

    2013-12-01

    The ESA CryoSat-2 mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode, as well as the more conventional Low Rate Mode (LRM), and also the SAR Interferometric mode (SARIN). Although the prime mission objective of CryoSat-2 is to monitor land and marine ice, the SAR mode capability of the CryoSat-2 SIRAL altimeter also presents the opportunity of demonstrating significant potential benefits of SAR altimetry for ocean applications. Expected performance enhancements of SAR mode include improved range precision, finer along track spatial resolution, and an improved ability to provide measurements close to the coast. The 'Cryosat Plus for Oceans' (CP4O) project is supported by ESA under the Support To Science Element Programme. CP4O started in June 2012, and will continue to June 2014. The objectives of CP4O are: to build a sound scientific basis for new scientific and operational applications of CryoSat-2 data over the open ocean, polar ocean, coastal seas and for sea-floor mapping. to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the CryoSat-2 SIRAL altimeter, and extend their application beyond the initial mission objectives. to ensure that the scientific return of the CryoSat-2 mission is maximised. This work is being carried out within four sub-themes: Open Ocean Altimetry, Coastal Zone Altimetry, Polar Ocean Altimetry, and Sea Floor Altimetry. In this presentation we provide a detailed assessment of the capability of SAR altimeter data to provide improved oceanographic measurements over the open ocean, coastal ocean and polar ocean. We describe different processing schemes applied to Cryosat-2 SAR mode data, to carry out full resolution SAR processing and SAR mode retracking, and to construct LRM-type altimeter waveforms from the SAR bursts, - so called Reduced SAR mode (RDSAR). The latter processing is important to determine if it is

  20. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  1. Information theoretic approach using neural network for determining radiometer observations from radar and vice versa

    NASA Astrophysics Data System (ADS)

    Kannan, Srinivasa Ramanujam; Chandrasekar, V.

    2016-05-01

    Even though both the rain measuring instruments, radar and radiometer onboard the TRMM observe the same rain scenes, they both are fundamentally different instruments. Radar is an active instrument and measures backscatter component from vertical rain structure; whereas radiometer is a passive instrument that obtains integrated observation of full depth of the cloud and rain structure. Further, their spatial resolutions on ground are different. Nevertheless, both the instruments are observing the same rain scene and retrieve three dimensional rainfall products. Hence it is only natural to seek answer to the question, what type of information about radiometric observations can be directly retrieved from radar observations. While there are several ways to answer this question, an informational theoretic approach using neural networks has been described in the present work to find if radiometer observations can be predicted from radar observations. A database of TMI brightness temperature and collocated TRMM vertical attenuation corrected reflectivity factor from the year 2012 was considered. The entire database is further classified according to surface type. Separate neural networks were trained for land and ocean and the results are presented.

  2. The Millimeter-Wave Imaging Radiometer (MIR)

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Jackson, D. M.; Adler, R. F.; Dod, L. R.; Shiue, J. C.

    1991-01-01

    The Millimeter-Wave Imaging Radiometer (MIR) is a new instrument being designed for studies of airborne passive microwave retrieval of tropospheric water vapor, clouds, and precipitation parameters. The MIR is a total-power cross-track scanning radiometer for use on either the NASA ER-2 (high-altitude) or DC-8 (medium altitude) aircraft. The current design includes millimeter-wave (MMW) channels at 90, 166, 183 +/- 1,3,7, and 220 GHz. An upgrade for the addition of submillimeter-wave (SMMW) channels at 325 +/- 1,3,7 and 340 GHz is planned. The nadiral spatial resolution is approximately 700 meters at mid-altitude when operated aboard the NASA ER-2. The MIR consists of a scanhead and data acquisition system, designed for installation in the ER-2 superpod nose cone. The scanhead will house the receivers (feedhorns, mixers, local oscillators, and preamplifiers), a scanning mirror, hot and cold calibration loads, and temperature sensors. Particular attention is being given to the characterization of the hot and cold calibration loads through both laboratory bistatic scattering measurements and analytical modeling. Other aspects of the MIR and the data acquisition system are briefly discussed, and diagrams of the location of the MIR in the ER-2 superpod nosecone and of the data acquisition system are presented.

  3. Scanning and focusing mechanisms of METEOSAT radiometer

    NASA Technical Reports Server (NTRS)

    Jouan, J.

    1977-01-01

    The scanning and focusing mechanisms settled onboard the METEOSAT Radiometer are described. A large camera which will take line by line pictures of the earth from a geostationary satellite in the same manner as a TV picture using both the spin of the spacecraft and the tilt of a telescope is included. The scanning mechanism provides the + or - 9 degrees tilt angle of the telescope through 2,500 elementary steps of 1.256 0.0001 radian. As the radiometer image quality is closely dependent on the characteristics of the scanning law, the mechanism is required to fulfill functional performances specifications particularly severe in terms of linearity of the scan curve, accuracy of each step as well as repeatability of the short-term scanning. The focusing mechanism allows + or - 12 millimeters shift of the telescope focus by step increments of 0.140 mm. The focus adjustment is achieved by moving a dihedral reflector according to a pure straight-line motion. The main requirements of each mechanism are summarized and their design and performances are described in detail.

  4. Microfluidic Radiometal Labeling Systems for Biomolecules

    SciTech Connect

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  5. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  6. Application and Design of Satellite Infrared Spectral Imaging Radiometers with Uncooled Microbolometer Array Detectors

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Lancaster, Regie; Maschhoff, Kevin; Starr, David OC (Technical Monitor)

    2001-01-01

    Uncooled infrared microbolometer array detectors have application for space borne spectral imaging radiometer of several types to lower size, power and cost and provide improved performance. Other advantages of eliminating cooling requirement are simplified systems, simplified satellite integration and improved reliability. A prototype microbolometer instrument for cloud observations was flown on the STS-85 space shuttle mission. Extensive data were acquired at_km resolution at four thermal infrared wavelength bands. From the 320x280 detector array both spectral and angular information can be used to advantage in cloud retrievals and has been demonstrated. An engineering model Compact Visible and Infrared Imaging Radiometer (COVIR) for small satellite missions has been developed. Application of advanced microbolometer array detectors for three axis stabilized GOES thermal imagers has been studied.

  7. Conceptual radiometer design studies for Earth observations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  8. Remote sensing of ocean color and detection of chlorophyll content

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Lecompte, P.; Viollier, M.

    1977-01-01

    The chlorophyll enrichment of the water in an equatorial upwelling was surveyed and described with the aid of a radiometer specially designed for the airborne measurement of ocean color. A relation is proposed between airborne measurement of difference of albedos at two wavelengths in the blue and green, and the concentration of chlorophyll in the ocean.

  9. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  10. Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements.

    PubMed

    Hoge, F E; Swift, R; Yungel, J

    1995-06-20

    It is shown that airborne active-passive (laser-solar) ocean color data can be used to develop and validate oceanic radiance models. The two principal inputs to the oceanic radiance model, chlorophyll pigment and incident solar irradiance, are obtained from a nadir-viewing laser-induced fluorescence spectrometer and a zenith-viewing radiometer, respectively. The computed water-leaving radiances are validated by comparison with the calibrated output of a separate nadir-viewing radiometer subsystem. In the North Atlantic Ocean, the calculated and the observed airborne radiances are found to compare very favorably for the 443-, 520-, and 550-nm wavelengths over an ∼ 170-km flight track east of St. John's, Newfoundland. The results further suggest that the semianalytical radiance model of ocean color, the airborne active (laser) fluorescence spectrometer, and the passive (solar) radiometric instrumentation are all remarkably precise.

  11. Limits of Precipitation Detection from Microwave Radiometers and Sounders

    NASA Astrophysics Data System (ADS)

    Munchak, S. J.; Skofronick-Jackson, G.; Johnson, B. T.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission will unify and draw from numerous microwave conical scanning imaging radiometers and cross-track sounders, many of which already in operation, to provide near real-time precipitation estimates worldwide at 3-hour intervals. Some of these instruments were designed for primary purposes unrelated to precipitation remote sensing. Therefore it is worthwhile to evaluate the strengths and weaknesses of each set of channels with respect to precipitation detection to fully understand their role in the GPM constellation. The GPM radiometer algorithm will use an observationally-based Bayesian retrieval with common databases of precipitation profiles for all sensors. Since these databases are still under development and will not be truly complete until the GPM core satellite has completed at least one year of dual-frequency radar observations, a screening method based upon retrieval of non-precipitation parameters related to the surface and atmospheric state is used in this study. A cost function representing the departure of modeled radiances from their observed values plus the departure of surface and atmospheric parameters from the TELSEM emissivity atlas and MERRA reanalysis is used as an indicator of precipitation. Using this method, two datasets are used to evaluate precipitation detection: One year of matched AMSR-E and AMSU-B/MHS overpasses with CloudSat used as validation globally; and SSMIS overpasses over the United States using the National Mosaic and QPE (NMQ) as validation. The Heidke Skill Score (HSS) is used as a metric to evaluate detection skill over different surfaces, seasons, and across different sensors. Non-frozen oceans give the highest HSS for all sensors, followed by bare land and coasts, then snow-covered land and sea ice. Negligible skill is present over ice sheets. Sounders tend to have higher skill than imagers over complex surfaces (coast, snow, and sea ice), whereas imagers have higher skill

  12. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    NASA Technical Reports Server (NTRS)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  13. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Astrophysics Data System (ADS)

    King, J. L.

    1980-05-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  14. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Technical Reports Server (NTRS)

    King, J. L.

    1980-01-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  15. Non-Scanning Radiometer Results for Earth Radiation Budget Investigations

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Green, Richard N.; Lee, Robert B., III; Bess, T. Dale; Rutan, David

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) included non-scanning radiometers (Luther, 1986) flown aboard a dedicated mission of Earth Radiation Budget Satellite, and the NOAA-9 and -10 operational meteorological spacecraft (Barkstrom and Smith, 1986). The radiometers first began providing Earth radiation budget data in November 1984 and have remained operational, providing a record of nearly 8 years of data to date for researchers. Although they do not produce measurements with the resolution given by the scanning radiometers, the results from the non-scanning radiometers are extremely useful for climate research involving long-term radiation data sets. This paper discusses the non-scanning radiometers, their stability, the method of analyzing the data, and brief scientific results from the data.

  16. 1/ f-Type noise in a total power radiometer

    NASA Astrophysics Data System (ADS)

    Tsybulev, P. G.; Dugin, M. V.; Berlin, A. B.; Nizhelskij, N. A.; Kratov, D. V.; Udovitskiy, R. Yu.

    2014-04-01

    We report the experimental results of a study of the sources of 1/ f α type noise (hereafter referred to as 1/ f-type noise for the sake of brevity) in a total power radiometer. We find this noise to have two main sources in the radiometer: microwave amplifiers and the square-law diode detector with a Schottky barrier. We present methods for a substantial reduction of 1/ f-type noise, which allow total power radiometer measurements to be performed with nominal sensitivity on time scales of up to 10 seconds. The sensitivity of the total power radiometer on time scales up to 100 seconds remains higher than that of a Dicke switched radiometer.

  17. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  18. MCM Polarimetric Radiometers for Planar Arrays

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  19. Recent Advances in Immersive Visualization of Ocean Data: Virtual Reality Through the Web on Your Laptop Computer

    NASA Astrophysics Data System (ADS)

    Hermann, A. J.; Moore, C.; Soreide, N. N.

    2002-12-01

    Ocean circulation is irrefutably three dimensional, and powerful new measurement technologies and numerical models promise to expand our three-dimensional knowledge of the dynamics further each year. Yet, most ocean data and model output is still viewed using two-dimensional maps. Immersive visualization techniques allow the investigator to view their data as a three dimensional world of surfaces and vectors which evolves through time. The experience is not unlike holding a part of the ocean basin in one's hand, turning and examining it from different angles. While immersive, three dimensional visualization has been possible for at least a decade, the technology was until recently inaccessible (both physically and financially) for most researchers. It is not yet fully appreciated by practicing oceanographers how new, inexpensive computing hardware and software (e.g. graphics cards and controllers designed for the huge PC gaming market) can be employed for immersive, three dimensional, color visualization of their increasingly huge datasets and model output. In fact, the latest developments allow immersive visualization through web servers, giving scientists the ability to "fly through" three-dimensional data stored half a world away. Here we explore what additional insight is gained through immersive visualization, describe how scientists of very modest means can easily avail themselves of the latest technology, and demonstrate its implementation on a web server for Pacific Ocean model output.

  20. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  1. The Use of Rotating Shadowband Radiometers and Microwave Radiometers to Obtain Cloud Properties in Arctic Environments

    SciTech Connect

    Barnard, James C. ); Liljegren, James C.; Min, Qilong; Doran, J Christopher )

    2001-01-01

    In this paper we discuss the use of rotating shadowband radiometers and microwave radiometers to find shortwave cloud optical depth and cloud effective radius at two Arctic sites. These sites are the SHEBA ice camp site (a field study undertaken in 1997 and 1998) and the ARM Barrow (AK) site. Special measures are necessary to process the data from the SHEBA site to account for the harsh environment in which the instruments reside. The analysis shows that, over the summer of 1998, the median cloud optical depth at the SHEBA site is greater than the median cloud optical depth at the Barrow site. The cloud droplet effective radius is less at the SHEBA site than the Barrow site.

  2. Ozone height profiles using laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  3. Prototype Cryospheric Experimental Synthetic Aperture Radiometer (CESAR)

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M.; Phelps, Norman L.; Riley, J. Thomas; Markus, Thorsten M.; Bland, Geoffrey L.; Ruf, Christopher; Lawrence, Roland W.; Reising, Steven C.; Pichel, Thomas

    2005-01-01

    Present satellite microwave radiometers typically have a coarse spatial resolution of several kilometers or more. This is only adequate only over homogenous areas. Significantly enhanced spatial resolution is critically important to reduce the uncertainty of estimated cryospheric parameters in heterogeneous and climatically-sensitive areas. Examples include: (1) dynamic sea ice areas with frequent lead and polynya developments and variable ice thicknesses, (2) mountainous areas that require improved retrieval of snow water equivalent, and (3) melting outlet glacier or ice shelf areas along the coast of Greenland and Antarctica. For these situations and many others, an Earth surface spot size of no more than 100 m is necessary to retrieve the information needed for significant new scientific progress, including the synthesis of field observations with satellite observations with high confidence.

  4. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  5. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2014-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  6. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; Bircher, Simone; Laurence, Heather; Mialon, Arnaud; Bitar, Ahmad Al; Richaume, Philippe

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the

  7. Advantages of an oceanographic satellite in the study of ocean current systems

    NASA Technical Reports Server (NTRS)

    Robe, R. Q.

    1974-01-01

    SEASAT-A instruments for the study of oceanic currents are: a scanning radiometer with a temperature resolution of about + or - 1 C for locating ocean fronts by thermal difference, and a precision altimeter for monitoring sea surface slopes that drive major ocean currents.

  8. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  9. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    PubMed Central

    Pérez, Isaac Ramos; Bosch-Lluis, Xavi; Camps, Adriano; Alvarez, Nereida Rodriguez; Hernandez, Juan Fernando Marchán; Domènech, Enric Valencia; Vernich, Carlos; de la Rosa, Sonia; Pantoja, Sebastián

    2009-01-01

    The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN) signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network. PMID:22454576

  10. Nimbus-7 scanning multichannel microwave radiometer /SMMR/ in-orbit performance appraisal

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Cavalieri, D. J.; Gatlin, J. A.

    1981-01-01

    Calibration and processing techniques enacted during first year of operation of the Nimbus-7 scanning multichannel microwave radiometer (SMMR) are described. It was found that in-orbit calibration was necessary, as was fine-tuning of the geophysical parameter retrieval parameters to account for anomalies such as lower-than-expected polarization differences in ocean radiances. Phase shifts in the scan angles were corrected in order to avoid polarization mixing. Calibration constants to eliminate cross-talk and phase shift effects were established for radiation reflected from the earth, then averaged over data from 300 orbits to fit points on a sine curve to better than 0.2 K accuracy. An iterative approach was determined to be necessary due to signal anomalies caused by antenna dish oscillations. Global ocean and atmosphere parameters used to construct a radiation model of ten latitude bands are presented for use in radiation transfer equations.

  11. Middle Atmosphere Sounder and Thermal Emission Radiometer - Master

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Scott, D. K.; Esplin, R. W.; Bailey, S. M.; Randall, C. E.

    2014-12-01

    The Middle Atmosphere Sounder and Thermal Emission Radiometer (MASTER) instrument is an advanced infrared limb-scanning instrument designed to measure the thermal structure, chemical composition, and energy balance from the stratosphere to the lower thermosphere. MASTER builds on NASA's long and successful heritage of infrared limb scanners including the LIMS, HIRDLS, and SABER instruments. MASTER has exceptional radiometric sensitivity with a more efficient, compact, and lightweight design. An updated focal plane enables critical new science in the areas of the carbon budget closure, geomagnetically-driven ozone destruction, and auroral energy deposition, while virtually eliminating out of band contributions via dual filtering. MASTER will continue the SABER-TIMED and EOS-Aura records of temperature, lower stratospheric water vapor, ozone, methane, and thermospheric cooling by nitric oxide and carbon dioxide. MASTER's size and mass are specifically designed to allow flexibility in the choice of small satellite buses and low cost launch vehicles. The expanded focal plane enables a choice of channels applicable to science objectives in NASA's Earth Science and Heliophysics enterprises. Due to the long and successful heritage the MASTER instrument is at an exceptionally high technology readiness level. No new technologies are required to build the MASTER flight instrument.

  12. Measuring the CMB temperature in the classroom with a low-cost antenna and radiometer

    NASA Astrophysics Data System (ADS)

    Karkare, Kirit S; Bowens-Rubin, Rachel; Connors, Jake; Dame, Thomas M.; Gao, Ryan; Harrison, Samuel; Kimberk, Robert S; Kovac, John M; Law-Smith, Jamie; Robins, Derek; Sansone, Steve; Wilson, Robert W.; Yermakova, Anya; Zeng, Lingzhen

    2014-06-01

    Estimation of the cosmic microwave background (CMB) temperature through a skydip is an ambitious undergraduate laboratory exercise in which care must be taken to understand and account for systematic errors. It is an ideal environment for learning about careful experimental design. We present two versions of a low-cost antenna and radiometer system replicating the CMB discovery measurement (Penzias and Wilson, 1965), operating at 11 and 19 GHz. We describe two small-aperture (8") antenna designs: an HDPE lens-coupled corrugated horn, and a single-groove Potter horn, both of which are simple and inexpensive to fabricate. They have been designed to minimize far sidelobe pickup from the ground in conjunction with a straight-walled or Winston cone. The radiometers are based on low-cost commercial satellite TV receivers, read out with standard laboratory equipment. We describe the design of aperture-filling calibration loads necessary to characterize the radiometer performance. Several iterations of this experiment have been run in the advanced undergraduate astrophysics laboratory course (Ay 191) at Harvard University, with the students building the apparatus starting from scratch and finishing in about 6 weeks. Positive detections of background radiation have been achieved with typical uncertainties of 0.3 K.

  13. Characterizations of the Earth Radiation Budget Experiment (ERBE) scanning radiometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Avis, Lee M.; Halyo, Nesim; Gibson, Michael A.

    1989-01-01

    NASA's Earth Radiation Budget Experiment employs the Earth Radiation Budget Satellite and the NOAA 9 and 10 spacecraft to obtain absolute measurements of incoming solar radiation, shortwave earth-reflected solar radiation, and longwave earth-emitted radiation, using both scanning and nonscanning radiometers. Each of the three remote-sensing spacecraft carry narrow FOV scanning radiometers whose detection sensors are thermistor bolometers. Attention is presently given to the calibration models and methods employed in characterizing the scanning radiometers' output signals; the design features of the scanners and flight calibration systems are presented.

  14. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  15. Infrared radiometer for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Moorman, S. L.; Becker, E. C.

    1978-01-01

    An infrared radiometer is described which was developed to measure temperature rises of wind tunnel models undergoing transient heating over a temperature range of -17.8 C to 260 C. This radiometer interfaces directly with a system which measures the effective thermophysical property square root of rho ck. It has an output temperature fluctuation of 0.26 C at low temperatures and 0.07 C at high temperatures, and the output frequency response of the radiometer is from dc to 400 hertz.

  16. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  17. Oceans '88

    SciTech Connect

    Not Available

    1988-01-01

    These proceedings discuss the following papers: Solid waste disposal crisis; Plastics in Ocean; Continental shelf environmental research; Seafood technology advancements; Gulf of Mexico chemosynthetic petroleum seep communities; Water reuse on onshore mariculture and processing facilities; Oil and gas industry conflicts on the outer continental shelf; Cumulative environmental effects of the oil and gas leasing program; Oil and gas exploration; and Oil and gas resource management; Aids to navigation systems and equipment; and Surveillance experiments.

  18. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  19. Ensuring Continuity of Coastal Ocean Optical Products

    NASA Astrophysics Data System (ADS)

    Crout, Richard L.; Ladner, Sherwin; Lawson, Adam; Martinolich, Paul; Arnone, Bob; Vandermeulen, Ryan; Bowers, Jennifer

    2015-12-01

    Satellite ocean colour remote sensing evolved rapidly following the 1978 launch of the Color Zone Coastal Scanner (CZCS). Since that launch, the Naval Research Laboratory (NRL) has developed and transitioned tactical ocean optical products (diver visibility, laser penetration depth, chlorophyll concentration, and inherent optical products) from polar-orbiting ocean color sensors to the Naval Oceanographic Office (NAVOCEANO). Beginning with CZCS, NRL exploited the succession of ocean color sensors, including Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer (Aqua MODIS), MEdium Resolution Imaging Spectrometer (MERIS), and the Suomi National Polar-orbiting Partnership Visible Infra Infrared Imager Radiometer Suite (S-NPP VIIRS). Additionally, the geostationary Communication, Ocean, and Meteorological Satellite Geostationary Ocean Color Imager (COMS GOCI) is also being exploited. Future sensors of interest include the Sentinel-3 series Ocean and Land Color Imager (OLCI) and the Joint Polar Satellite System (JPSS) VIIRS. NRL’s Automated Optical Processing System (AOPS) processes ocean color satellite data to provide an operational near-real time depiction of the bio-optical ocean environment. These products are also used for validation of/or assimilation into ocean forecast models and to predict the impact of the environment on Navy coastal operations. NRL contributes to advancements in satellite processing techniques, atmospheric correction for coastal waters, enhanced resolution optical properties using imaging bands, cloud masking, and sensor merging for optimal operational products. Multiple satellites are necessary to provide changing conditions throughout the day allowing for detection of rapid optical temporal and spatial changes due to tides, winds, and river outflow. The Sentinel-3A and -3B OLCIs are critical to Navy coastal operations due to the quality of the data and the morning orbit that complements MODIS Aqua and

  20. Next generation along track scanning radiometer - SLSTR

    NASA Astrophysics Data System (ADS)

    Frerick, J.; Nieke, J.; Mavrocordatos, C.; Berruti, B.; Donlon, C.; Cosi, M.; Engel, W.; Bianchi, S.; Smith, Dave

    2012-10-01

    Since 1991, along track scanning radiometers (A)ATSR have been flown on a series of satellite platforms. These instruments use an along-track scanning design that provides two views of the same earth target through different atmospheric paths. Dual-view multispectral measurements can be used to derive an accurate atmospheric correction when retrieving geophysical parameters such as Sea Surface Temperature (SST). In addition, the (A)ATSR family of instruments use actively cooled detector systems and two precision calibration blackbody targets to maintain and manage on-board calibration. Visible channel calibration is implemented using a solar diffuser viewed once per orbit. As a consequence of these design features, resulting data derived from (A)ATSR instruments is both accurate and well characterized. After 10 years of Service the ENVISAT platform was lost in early 2012 asnd AATSR operations stopped. The Global Monitoring for Environment and Security (GMES) Sentinel-3 "Sea Land Surface Temperature Radiometer" (SLSTR) instrument is the successor to the AATSR family of instruments and is expected to launch in April 2014. The challenge for SLSTR is to develop and deliver a new instrument with identical or improved performance to that of the (A)ATSR family. The SLSTR design builds on the heritage features of the (A)ATSR with important extensions to address GMES requirements. SLSTR maintains the main instrument principles (along-track scanning, a two point infrared on-board radiometric calibration, actively cooled detectors, solar diffuser). The design also includes more spectral channels including additional bands at 1.3 and 2.2 μm providing enhanced cloud detection, dedicated fire channels, an increase of dual view swath from 500 to 740 km, an increase in the nadir swath of 1400 km. The increase in swath has led to, a new optical front-end design incorporating two rotating scan mirrors (with encoders to provide pointing knowledge) and an innovative flip mechanism to

  1. Errors in scatterometer-radiometer wind measurement due to rain

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Chaudhry, A. H.; Birrer, I. J.

    1983-01-01

    The behavior of radiometer corrections for the scatterometer is investigated by simulating simple situations using footprint sizes comparable with those used in the SEASAT-1 experiment and also actual footprints and rain rates from a hurricane observed by the SEASAT-1 system. The effects on correction due to attenuation and wind speed gradients are examined independently and jointly. It is shown that the error in the wind-speed estimate can be as large as 200% at higher wind speeds. The worst error occurs when the scatterometer footprint overlaps two or more radiometer footprints and the attenuation in the scatterometer footprint differs greatly from those in parts of the radiometer footprints. This problem could be overcome by using a true radiometer-scatterometer system having identical coincident footprints comparable in size with typical rain cells.

  2. The Cloud Absorption Radiometer HDF Data User's Guide

    NASA Technical Reports Server (NTRS)

    Li, Jason Y.; Arnold, G. Thomas; Meyer, Howard G.; Tsay, Si-Chee; King, Michael D.

    1997-01-01

    The purpose of this document is to describe the Cloud Absorption Radiometer (CAR) Instrument, methods used in the CAR Hierarchical Data Format (HDF) data processing, the structure and format of the CAR HDF data files, and methods for accessing the data. Examples of CAR applications and their results are also presented. The CAR instrument is a multiwavelength scanning radiometer that measures the angular distributions of scattered radiation.

  3. A low-noise beta-radiometer

    SciTech Connect

    Antonenko, G.I.; Savina, V.I.

    1995-12-01

    The two-channel detector for a low-noise (down to 0.06 sec{sup -1}) beta-radiometer for measuring the mass concentration of {sup 90}Sr in the environment after the chemical extraction of strontium by the oxalate-nitrate method was certified at the D.I. Mendeleev Institute of Metrology (certificate No. 137/93). A detector unit using two end-window self-quenching counters with thin input windows (8 {mu}m thick and 60 mm in diameter) operating as a Geiger-Mueller counter and filled with a mixture of 90% helium (atomic gas) and 10% ethanol (organic molecules) can measure the beta-activity of two substrates concurrently. It is often used to detect the beta-radiation of {sup 90}Sr. This isotope produces particles with energies ranging from 180 to 1000 keV, and the detection efficiency is 50% at a level of 0.1 Bq after measuring for 20 min with an uncertainty of 25%.

  4. Pioneer Saturn infrared radiometer - Preliminary results

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Neugebauer, G.; Orton, G. S.; Muench, G.; Chase, S. C.

    1980-01-01

    Preliminary results of the infrared radiometer experiment on Pioneer Saturn are reported. The instrument made use of two broadband channels centered at 20 and 45 microns which scan at a fixed 75-deg angle with respect to the spacecraft spin axis to acquire 10,000 image pairs of Saturn and its rings in the 2.5 h before closest approach, as well as several observations of Titan. The intensities of radiation observed in both bands indicate an effective temperature of 94.4 + or - 3 K for the planet, implying a total emission greater than twice the absorbed sunlight. Infrared data also indicates a molecular abundance of 0.85 for H2 relative to H2 + He, which can be improved by comparing the derived temperature profiles and radio occultation data. Planetary temperatures are found to range from a minimum of 83 to 140 K at the 1 bar level, with differences of 2.5 K between belts and zones up to the 0.06-bar level, while ring temperatures range from 60 to 70 K on the illuminated side and from less than 60 to 67 K in the planet's shadow and average 55 K on the unilluminated side. Preliminary estimates indicate a 45-micron brightness temperature of 80 + or - 10 K for Titan.

  5. A segmented mirror antenna for radiometers

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Houshmand, B.; Zimmerman, M.; Acosta, R.

    1989-01-01

    An antenna is designed for the radiometer application of the planned NASA Earth Science Geostationary Platforms in the 1990's. The antenna consists of two parts: a regular parabolic dish of 5 meters in diameter which converts the radiation from feeds into a collimated beam, and a movable mirror that redirects the beam to a prescribed scan direction. The mirror is composed of 28 segmented planar conducting plates, mostly one square meter in size. The secondary pattern of the antenna was analyzed based on a physical optics analysis. For frequencies between 50 and 230 GHz, and for a scan range of + or -8 deg (270 beamwidths scan at 230 GHz), the worst calculated beam efficiency is 95 percent. To cover such a wide frequency and scan range, each of the 28 plates is individually controlled for a tilting less than 4 deg, and for a sliding less than 0.5 cm. The sliding is done at discrete steps. At 230 GHz, a step size of 2 mil is sufficient. The plate positions must be reset for each frequency and for each scan direction. Once the position is set, the frequency bandwidth of the antenna is very narrow.

  6. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    SciTech Connect

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  7. Global irradiance calibration of multifilter UV radiometers

    NASA Astrophysics Data System (ADS)

    Piedehierro, A. A.; Cancillo, M. L.; Serrano, A.; Antón, M.; Vilaplana, J. M.

    2016-01-01

    It is well known that the amount of ultraviolet solar radiation (UV) reaching the Earth's surface is governed by stratospheric ozone, which has exhibited notable variations since the late 1970s. A thorough monitoring of UV radiation requires long-term series of accurate measurements worldwide, and to keep track of its evolution, it is essential to use high-quality instrumentation with an excellent long-term performance capable of detecting low UV signal. There are several UV monitoring networks worldwide based on multifilter UV radiometers; however, there is no general agreement about the most suitable methodology for the global irradiance calibration of these instruments. This paper aims to compare several calibration methods and to analyze their behavior for different ranges of solar zenith angle (SZA). Four methods are studied: the two currently most frequently used methods referred to in the literature and two new methods that reduce systematic errors in calibrated data at large solar zenith angles. The results evidence that proposed new methods show a clear improvement compared to the classic approaches at high SZA, especially for channels 305 and 320 nm. These two channels are of great interest for calculating the total ozone column and other products such as dose rates of biological interest in the UV range (e.g., the erythemal dose).

  8. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  9. Regional ocean data assimilation.

    PubMed

    Edwards, Christopher A; Moore, Andrew M; Hoteit, Ibrahim; Cornuelle, Bruce D

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  10. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  11. Development of a Two Dimensional Synthetic Aperture Radiometer at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Carver, K.; Goodberlet, M.; Popstefanija, I.; Mead, J.

    2000-01-01

    A radiometer that uses aperture synthesis in two dimensions is being built as part of research under NASA's Instrument Incubator Program. The instrument development team consists of engineers at the Goddard Space Flight Center, the University of Massachusetts and Quadrant Engineering. This will be an aircraft instrument operating at L-band which builds on the heritage of ESTAR. The choice of L-band was made because the problem of achieving adequate resolution in space is most critical at this wavelength and because a polarimetric, conical scanning airborne radiometer for future experiments to validate soil moisture and ocean salinity retrieval algorithms is not currently available. The instrument will be designed to fly on the NASA P-3 aircraft in a nadir pointing mode, although other options are possible. The antenna will consist of an array of modules arranged in a rectangular grid. Each module will be comprised of a printed circuit dual-polarized patch and integrated receiver. The distribution of modules within the rectangular array will be adjustable so that several different imaging configurations (e.g. "+","Y", "T") can be employed. The integrated receiver will provide amplification and conversion to IF. The IF signal will be routed to a processor where the required correlations performed. The I and Q channels will be created digitally and the correlations will be done digitally in this processor. The digitization will be done with sufficient bits to study the effects of quantization on radiometer performance. A computer/controller will store the data for conversion to an image and will also perform temperature control and other data interfacing and housekeeping tasks. The instrument is currently in the bread boarding phase of development. A design of the critical components has been completed and hardware is being assembled to test the individual elements. It is expected that a complete 2-channel correlator will be tested by the summer of 2000 and that the

  12. The 1982-1983 El Nino Atlas: Nimbus-7 microwave radiometer data

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1987-01-01

    Monthly maps of sea surface temperature, atmospheric water vapor, and surface level wind speed as measured by the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite for the tropical Pacific from June 1982 to October 1983, during one of the most intense El Nino Southern Oscillations (ENSO) episodes, are presented. The non-ENSO annual cycle was compiled by averaging the 1980 and 1981 data for each calendar month and was removed from monthly fields of 1982 and 1983 to reveal the anomalous distributions. The anomaly fields and part of the non-ENSO annual cycle are also presented. This study and earlier evaluations demonstrate that the Nimbus/SMMR can be used to monitor large scale and low frequency variabilities in the tropical ocean. The SMMR data support and extend conventional measurements. The variabilities of the three parameters are found to represent various aspects of ENSO related through ocean atmosphere interaction. Their simultaneous and quantitative descriptions pave the way for the derivation of ocean atmosphere latent heat exchange and further the understanding of the coupled atmospheric and oceanic thermodynamics.

  13. A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS and MISR

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Zhang, J.; Reid, J. S.; Zhang, X.; Hyer, E. J.; Smirnov, A.

    2015-05-01

    Submerged oceanic bubbles, which have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite-based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine whether such bubbles are of sufficient magnitude to impact satellite aerosol optical depth (AOD) retrievals through perturbation of the lower boundary conditions. There has been significant discussion in the community regarding the high positive biases in retrieved AODs in many remote ocean regions. In this study, for the first time, the effects of oceanic bubbles on satellite retrievals of AOD are studied by using a linked Second Simulation of a Satellite Signal in the Solar Spectrum (6S) atmospheric and HydroLight oceanic radiative transfer models. The results suggest an insignificant impact on AOD retrievals in regions with near-surface wind speeds of less than 12 m s-1. However, the impact of bubbles on aerosol retrievals could be on the order of 0.02-0.04 for higher wind conditions within the scope of our simulations (e.g., winds < 20 m -1. This bias is propagated to global scales using 1 year of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data to investigate the possible impacts of oceanic bubbles on an enhanced AOD belt observed over the high-latitude southern oceans (also called the enhanced southern oceans anomaly, or ESOA) by some passive satellite sensors. Ultimately, this study is supportive of the null hypothesis: submerged bubbles are not the major contributor to the ESOA feature. This said, as retrievals progress to higher and higher resolutions, such as from airborne platforms, the uniform bubble correction in clean marine conditions should probably be separately accounted for against individual bright whitecaps and bubble rafts.

  14. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Simmons, David; Uhlhorn, Eric

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  15. Cooled infrared filters and dichroics for the sea and land surface temperature radiometer.

    PubMed

    Hawkins, Gary; Sherwood, Richard; Djotni, Karim; Coppo, Peter; Höhnemann, Holger; Belli, Fabio

    2013-04-01

    The sea and land surface temperature radiometer (SLSTR) is a nine-channel visible and infrared high-precision radiometer designed to provide climate data of global sea and land surface temperatures. The SLSTR payload is destined to fly on the Ocean and Medium-Resolution Land Mission for the ESA/EU global monitoring for environment and security (GMES) programme Sentinel-3 mission to measure the sea and land temperature and topography for near real-time environmental and atmospheric climate monitoring of the Earth. In this paper we describe the optical layout of infrared optics in the instrument, the spectral thin-film multilayer design, and the system channel throughput analysis for the combined interference filter and dichroic beam splitter coatings to discriminate wavelengths at 3.74, 10.85, 12.0 μm. The rationale for selection of thin-film materials, the deposition technique, and environmental testing, inclusive of humidity, thermal cycling, and ionizing radiation testing are also described.

  16. Evaluation of geophysical parameters measured by the Nimbus-7 microwave radiometer for the TOGA Heat Exchange Project

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald R.

    1986-01-01

    The data distributed by the National Space Science Data Center on the Geophysical parameters of precipitable water, sea surface temperature, and surface-level wind speed, measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, are evaluated with in situ measurements between Jan. 1980 and Oct. 1983 over the tropical oceans. In tracking annual cycles and the 1982-83 E1 Nino/Southern Oscillation episode, the radiometer measurements are coherent with sea surface temperatures and surface-level wind speeds measured at equatorial buoys and with precipitable water derived from radiosonde soundings at tropical island stations. However, there are differences between SMMR and in situ measurements. Corrections based on radiosonde and ship data were derived supplementing correction formulae suggested in the databook. This study is the initial evaluation of the data for quantitative description of the 1982-83 E1 Nino/Southern Oscillation episode. It paves the way for determination of the ocean-atmosphere moisture and latent heat exchanges, a priority of the Tropical Ocean and Global Atmosphere (TOGA) Heat Exchange Program.

  17. Observing atmospheric water in storms with the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.; Lewis, R. M.

    1984-01-01

    Employing data on integrated atmospheric water vapor, total cloud liquid water and rain rate obtainable from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), we study the frontal structure of several mid-latitude cyclones over the North Pacific Ocean as they approach the West Coast of North America in the winter of 1979. The fronts, analyzed with all available independent data, are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content, which unfortunately has received very little in situ verification, has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is also a good indicator of frontal location and rain amounts are generally within a factor of two of what is observed with rain gauges on the coast. Furthermore, the onset of rain on the coast can often be accurately forecast by simple advection of the SMMR observed rain areas.

  18. Topical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Adler, R. F.

    1979-01-01

    Data from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) were used to calculate latent heat release and other rainfall parameters for over 70 satellite observations of 21 tropical cyclones in the tropical North Pacific Ocean. The results indicate that the ESMR-5 measurements can be useful in determining the rainfall characteristics of these storms and appear to be potentially useful in monitoring as well as predicting their intensity. The ESMR-5 derived total tropical cyclone rainfall estimates agree favorably with previous estimates for both the disturbance and typhoon stages. The mean typhoon rainfall rate (1.9 mm h(-1)) is approximately twice that of disturbances (1.1 mm h(-1)).

  19. Simulation of the Impact of New Aircraft and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, TImothy L.; Atlas, R. M.; Black, P. G.; Case, J. L.; Chen, S. S.; Hood, R. E.; Johnson, J. W.; Jones, L.; Ruf, C. S.; Uhlborn, E. W.

    2008-01-01

    Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. As NASA's QuikSCAT and Navy's WindSat operate beyond their design life, many members of the weather and climate science communities recognize the importance of developing new observational technologies and strategies to meet the essential need for OVW information to improve hurricane intensity and location forecasts. The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development which offers new and unique remotely sensed satellite observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is the only proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required TC remote sensing physics has been validated by both SFMR and WindSat radiometers. The instrument is described in more detail in a paper by Jones et al. presented to the Tropical Meteorology Special Symposium at this AMS Annual Meeting. Simulated HIRAD passes through a simulation of hurricane Frances are being developed to demonstrate HIRAD estimation of surface wind speed over a wide swath in the presence of heavy rain. These are currently being used in "quick" OSSEs (Observing System Simulation Experiments) with H'Wind analyses as the discriminating tool. The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic , Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind

  20. Radiometer effect in space missions to test the equivalence principle

    NASA Astrophysics Data System (ADS)

    Nobili, A. M.; Bramanti, D.; Comandi, G.; Toncelli, R.; Polacco, E.; Catastini, G.

    2001-05-01

    Experiments to test the equivalence principle in space by testing the universality of free fall in the gravitational field of the Earth have to take into account the radiometer effect, caused by temperature differences in the residual gas inside the spacecraft as it is exposed to the infrared radiation from Earth itself. We report the results of our evaluation of this effect for the three proposed experiments currently under investigation by space agencies: μSCOPE, STEP, and GG. It is found that in μSCOPE, which operates at room temperature, and even in STEP, where the effect is greatly reduced by means of very low temperatures, the radiometer effect is a serious limitation to the achievable sensitivity. Instead, by axially spinning the whole spacecraft and with an appropriate choice of the sensitivity axes-as proposed in GG-the radiometer effect averages out and becomes unimportant even at room temperature.

  1. Progress in Low-Power Digital Microwave Radiometer Technologies

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2004-01-01

    Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.

  2. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  3. Variability of Earth's radiation budget components during 2009 - 2015 from radiometer IKOR-M data

    NASA Astrophysics Data System (ADS)

    Cherviakov, Maksim

    2016-04-01

    budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean and monitoring of the East Asian Summer Monsoon. The report will be presented more detailed results. The reported study was funded by RFBR according to the research project No.16-35-00284 mol_a.

  4. Maser radiometer for cosmic background radiation anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Fixsen, D. J.; Wilkinson, D. T.

    1982-06-01

    A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.

  5. Mineral discrimination using a portable ratio-determining radiometer.

    USGS Publications Warehouse

    Whitney, G.; Abrams, M.J.; Goetz, A.F.H.

    1983-01-01

    A portable ratio-determining radiometer has been tested in the laboratory to evaluate the use of narrow band filters for separating geologically important minerals. The instrument has 10 bands in the visible and near-infrared portion of the spectrum (0.5-2.4mm), positioned to sample spectral regions having absorption bands characteristic of minerals in this wavelength region. Measurements and statistical analyses were performed on 66 samples, which were characterized by microscopic and X-ray diffraction analyses. Comparison with high-resolution laboratory spectral reflectance curves indicated that the radiometer's raw values faithfully reproduced the shapes of the spectra. -from Authors

  6. Specular UV reflectance measurements for cavity radiometer design.

    PubMed

    Booker, R L

    1982-01-01

    Specular reflectance measurements were made on a black paint used in a solar constant monitoring cavity radiometer. Interference filters peaking at 180, 200, and 220 nm were used in conjunction with a deuterium lamp source and a silicon photodiode detector. Results showed that the black paint was specular for light incident 60 degrees from normal and it reflected ~8% of the light at these wavelengths. We conclude that the high absorptance of the radiometer calculated for visible wavelengths should remain valid down to ~190-nm UV wavelengths.

  7. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  8. Experimental characterization of edge force on the Crookes radiometer

    SciTech Connect

    Ventura, Austin L.; Ketsdever, Andrew D.; Gimelshein, Natalia E.; Gimelshein, Sergey F.

    2014-12-09

    The contribution of edge force on the Crookes radiometer is experimentally investigated with three vane geometries. This work examines increasing the force per unit weight of a radiometer vane for applications such as near-space propulsion by increasing the vane’s perimeter while decreasing the total surface area of the vane by means of machined holes in the vanes. Experimental results are given for three vane geometries. These results indicate that although force to vane weight ratios can be improved, the maximum force is achieved by a vane geometry that contains no hole features.

  9. Maser radiometer for cosmic background radiation anisotropy measurements

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Wilkinson, D. T.

    1982-01-01

    A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.

  10. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  11. ESTAR - A synthetic aperture microwave radiometer for measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Griffis, A.; Swift, C. T.; Jackson, T. J.

    1992-01-01

    The measurement of soil moisture from space requires putting relatively large microwave antennas in orbit. Aperture synthesis, an interferometric technique for reducing the antenna aperture needed in space, offers the potential for a practical means of meeting these requirements. An aircraft prototype, electronically steered thinned array L-band radiometer (ESTAR), has been built to develop this concept and to demonstrate its suitability for the measurement of soil moisture. Recent flights over the Walnut Gulch Watershed in Arizona show good agreement with ground truth and with measurements with the Pushbroom Microwave Radiometer (PBMR).

  12. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  13. Sea and Land Surface Temperature Radiometer detection assembly design and performance

    NASA Astrophysics Data System (ADS)

    Coppo, Peter; Mastrandrea, Carmine; Stagi, Moreno; Calamai, Luciano; Nieke, Jens

    2014-01-01

    The Sea and Land Surface Temperature Radiometers (SLSTRs) are high-accuracy radiometers selected for the Copernicus mission Sentinel-3 space component to provide sea surface temperature (SST) data continuity with respect to previous (Advanced) Along Track Scanning Radiometers [(A)ATSRs] for climatology. Many satellites are foreseen over a 20-year period, each with a 7.5-year lifetime. Sentinel-3A will be launched in 2015 and Sentinel-3B at least six months later, implying that two identical satellites will be maintained in the same orbit with a 180-deg phase delay. Each SLSTR has an improved design with respect to AATSR affording wider near-nadir and oblique view swaths (1400 and 740 km) for SST/land surface temperature global coverage at a 1-km spatial resolution (at SSP) with a daily revisit time (with two satellites), appropriate for both climate and meteorology. Cloud screening and other products are obtained with 0.5 km spatial resolution [at sub-satellite point (SSP)] in visible and short wave infrared (SWIR) bands, while two additional channels are included to monitor high temperature events such as forest fires. The two swaths are obtained with two conical scans and telescopes combined optically at a common focus, representing the input of a cooled focal plane assembly, where nine channels are separated with dichroic and are focalized on detectors with appropriate optical relays. IR and SWIR optics/detectors are cooled to 85 K by an active mechanical cryo-cooler with vibration compensation, while the VIS ones are maintained at a stable temperature. The opto-mechanical design and the expected electro-optical performance of the focal plane assembly are described and the model predictions at system level are compared with experimental data acquired in the vacuum chamber in flight representative thermal conditions or in the laboratory.

  14. Attitude angle effects on Nimbus-7 Scanning Multichannel Microwave Radiometer radiances and geophysical parameter retrievals

    NASA Technical Reports Server (NTRS)

    Macmillan, Daniel S.; Han, Daesoo

    1989-01-01

    The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.

  15. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  16. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    SciTech Connect

    Andreas, Afshin M.; Wilcox, Stephen M.

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  17. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  18. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  19. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  20. Calibration plan for the sea and land surface temperature radiometer

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of <0.3K traced to international standards. To achieve these low uncertainties requires an end to end instrument calibration strategy that includes pre-launch calibration at subsystem and instrument level, on-board calibration systems and sustained post launch activities. The authors describe the preparations for the pre-launch calibration activities including the spectral response, instrument level alignment tests, solar and infrared radiometric calibration. A purpose built calibration rig has been designed and built at RAL space that will accommodate the SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  1. Topographic Signatures in Aquarius Radiometer/Scatterometer Response: Initial Results

    NASA Technical Reports Server (NTRS)

    Utku, C.; LeVine, D. M.

    2012-01-01

    The effect of topography on remote sensing at L-band is examined using the co-located Aquarius radiometer and scatterometer observations over land. A correlation with slope standard deviation is demonstrated for both the radiometer and scatterometer at topographic scales. Although the goal of Aquarius is remote sensing of sea surface salinity, the radiometer and scatterometer are on continuously and collect data for remote sensing research over land. Research is reported here using the data over land to determine if topography could have impact on the passive remote sensing at L-band. In this study, we report observations from two study regions: North Africa between 15 deg and 30 deg Northern latitudes and Australia less the Tasmania Island. Common to these two regions are the semi-arid climate and low population density; both favorable conditions to isolate the effect of topography from other sources of scatter and emission such as vegetation and urban areas. Over these study regions, topographic scale slopes within each Aquarius pixel are computed and their standard deviations are compared with Aquarius scatterometer and radiometer observations over a 36 day period between days 275 and 311 of 2011.

  2. Radiometer calibration procedure and beacon attenuation estimation reference level

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1994-01-01

    The primary objectives are to compare radiometer attenuation with beacon attenuation and to compare sky temperature estimates with calculations using simultaneous meteorological data. Secondary objectives are: (1) noise diode and reference load measurements and (2) to adjust for outside temperature and component temperature changes.

  3. The MASCOT Radiometer MARA for the Hayabusa 2 Mission

    NASA Astrophysics Data System (ADS)

    Grott, M.; Knollenberg, J.; Hänschke, F.; Helberg, J.; Kührt, E.

    2012-09-01

    The MASCOT radiometer MARA is a multispectral instrument to radiatively measure the surface temperature of the Hayabusa 2 target asteroid 1999JU3. MARA uses 5 bandpass and one longpass channel to determine the surface temperature, emissivity, and thermal inertia. In addition, surface mineralogy can be constrained.

  4. High resolution soil moisture radiometer. [large space structures

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  5. Global measurements of air pollution from satellites. [employing radiometer techniques

    NASA Technical Reports Server (NTRS)

    Acton, L. L.; Bartle, E. R.; Griggs, M.; Hall, G. D.; Hesketh, W. D.; Ludwig, C. B.; Malkmus, W.; Reichle, H.

    1974-01-01

    The conceptual design of an FOV nadir radiometer was examined for its applicability to monitoring the radiation process in the atmosphere as it relates to aerosol behavior. The instrument employs a gas filter correlation technique and is suitable for transportation onboard satellite.

  6. Radio-frequency interference mitigating hyperspectral L-band radiometer

    NASA Astrophysics Data System (ADS)

    Toose, Peter; Roy, Alexandre; Solheim, Frederick; Derksen, Chris; Watts, Tom; Royer, Alain; Walker, Anne

    2017-02-01

    Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio-astronomy frequency allocation of 1400-1427 MHz but nonetheless are still subjected to frequent RFI intrusions. We present a unique surface-based and airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI-detecting radiometer designed with a frequency range from 1400 through ≈ 1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm), and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets and 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.

  7. ENVISAT-1 Microwave Radiometer (MWR): validation campaign achievements

    NASA Astrophysics Data System (ADS)

    Bombaci, Ornella; L'Abbate, Michele; Svara, Carlo; Caltagirone, Francesco; Guijarro, J.

    1998-12-01

    Alenia Aerospazio Remote Sensing Division started in 1986 the study of microwave radiometers under Italian Space Agency fundings, and since 1989 the definition and development of radiometric systems under European Space Agency (ESA) contracts. In particular the Multifrequency Imaging Microwave Radiometer (MIMR) and the ENVISAT Microwave Radiometer (MWR) were both developed by the European Industry, with Alenia Aerospazio as Prime Contractor. MWR is an instrument designed and developed as part of the Envisat-1 satellite scientific payload, with Alenia Spazio engaged in the phase C-D as instrument Prime Contractor, leading an industrial consortium of European and American companies. The Flight Model of the Instrument has been delivered to ESA at the end of July 1997, after completion of test and calibration activities. Given the MWR in-flight calibration concept, a specific pre-flight calibration and characterization activity was performed to define a radiometer mathematical model and a relevant ground characterization database including all model coefficients. The model and its database will be used by on-ground processing during instrument in-flight operation to retrieve the antenna-measured temperature. Standing its complexity and iterative measurement concept, the pre-flight characterization and calibration of the instrument is the key aspect of its development phase. Within this paper the key instrument design topics are summarized, and after a summary overview of the overall flight model qualification campaign, emphasis will be on the pre-flight calibration and characterization activities and radiometric performance achievements among several test phases.

  8. A cavity radiometer for Earth albedo measurement, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiometric measurements of the directional albedo of the Earth requires a detector with a flat response from 0.2 to 50 microns, a response time of about 2 seconds, a sensitivity of the order of 0.02 mw/sq cm, and a measurement uncertainty of less than 5 percent. Absolute cavity radiometers easily meet the spectral response and accuracy requirements for Earth albedo measurements, but the radiometers available today lack the necessary sensitivity and response time. The specific innovations addressed were the development of a very low thermal mass cavity and printed/deposited thermocouple sensing elements which were incorporated into the radiometer design to produce a sensitive, fast response, absolute radiometer. The cavity is applicable to the measurement of the reflected and radiated fluxes from the Earth surface and lower atmosphere from low Earth orbit satellites. The effort consisted of requirements and thermal analysis; design, construction, and test of prototype elements of the black cavity and sensor elements to show proof-of-concept. The results obtained indicate that a black body cavity sensor that has inherently a flat response from 0.2 to 50 microns can be produced which has a sensitivity of at least 0.02 mw/sq cm per micro volt ouput and with a time constant of less than two seconds. Additional work is required to develop the required thermopile.

  9. Mapping the sky with the COBE differential microwave radiometers

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Gulkis, S.

    1992-01-01

    The Differential Microwave Radiometers (DMR) instrument on COBE is designed to determine the anisotropy of the Cosmic Microwave Background by providing all-sky maps of the diffuse sky brightness at microwave frequencies. The principal intent of this lecture is to show how these maps are generated from differential measurements.

  10. Suomi NPP VIIRS Ocean Color Data Product Early Mission Assessment

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Robinson, Wayne D.; Franz, Bryan A.; Eplee, Robert E., Jr.; Meister, Gerhard; Fireman, Gwyn F.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.

    2013-01-01

    Following the launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (NPP) spacecraft, the NASA NPP VIIRS Ocean Science Team (VOST) began an evaluation of ocean color data products to determine whether they could continue the existing NASA ocean color climate data record (CDR). The VOST developed an independent evaluation product based on NASA algorithms with a reprocessing capability. Here we present a preliminary assessment of both the operational ocean color data products and the NASA evaluation data products regarding their applicability to NASA science objectives.

  11. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  12. A Preview of AMSR: Airborne C-band Microwave Radiometer (ACMR) Observations from SGP99

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Doiron, Terence; Principe, Caleb; Gong, Lei; Shiue, James

    2000-01-01

    Although L-band is generally considered ideal for passive microwave sensing of soil moisture, near-future satellite observing systems such as Advanced Mechanically Scanned Radiometer (AMSR) will provide C-band data for several years before any L-band data might become available. The Southern Great Plains'99 (SGP99) Experiment was designed to generate C-band observations suitable for testing and refinement of AMSR-era soil moisture retrieval algorithms. C-band data collected using the Airborne C-band Microwave Radiometer (ACMR), a new high-accuracy NASA/GSFC instrument, clearly demonstrated a strong response to a 9-day drydown event as well as to differences between the northern (cooler & wetter) and southern (warmer & dryer) areas covered by the P-3 flights. For example, the H-polarized brightness temperatures observed during the first three days of the drydown increased up to 50 K in the northern areas. These observations represent a preview of what we can expect from AMSR, albeit at 3-km spatial resolution vs. approximately 60 km for AMSR. Initial results of soil-vegetation microwave modeling will also be presented to estimate the relative contributions of soil physical temperature, canopy physical temperature, soil moisture, and canopy moisture. Significant radio-frequency interference (RFI) was evident during the experiment, and amelioration strategies will be discussed. The net effect of RFI (an upward bias in brightnesses) when averaged over an AMSR footprint is expected to be more subtle.

  13. A New Way to Demonstrate the Radiometer as a Heat Engine

    ERIC Educational Resources Information Center

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  14. Radiometer effect in the μSCOPE space mission

    NASA Astrophysics Data System (ADS)

    Nobili, A. M.; Bramanti, D.; Comandi, G. L.; Toncelli, R.; Polacco, E.

    2002-12-01

    Space experiments to test the Equivalence Principle (EP) are affected by a systematic radiometer effect having the same signature as the target signal. In [PhRvD 63 (2001) 101101(R)] we have investigated this effect for the three proposed experiments currently under study by space agencies: μSCOPE, STEP and GG, setting the requirements to be met—on temperature gradients at the level of the test masses—for each experiment to reach its goal. We have now re-examined the radiometer effect in the case of μSCOPE and carried out a quantitative comparative analysis, on this issue, with the proposed heliocentric LISA mission for the detection of gravity waves. We find that, even assuming that the μSCOPE spacecraft and payload be built to meet all the challenging requirements of LISA, temperature gradients along its test masses would still make the radiometer effect larger than the target signal of an EP violation because of flying in the low geocentric orbit required for EP testing. We find no way to separate with certainty the radiometer systematic disturbance from the signal. μSCOPE is designed to fly a second accelerometer whose test masses have the same composition, in order to separate out systematic effects which—not being composition dependent like the signal—must be detected by both accelerometers. We point out that this accelerometer is in fact insensitive to the radiometer effect, just as it is to an EP violation signal, and therefore even having it onboard will not allow this disturbance to be separated out. μSCOPE is under construction and it is scheduled to fly in 2004. If it will detect a signal to the expected level, it will be impossible to establish with certainty whether it is due to the well known classical radiometer effect or else to a violation of the equivalence principle—which would invalidate General Relativity. The option to increase the rotation speed of the spacecraft (now set at about 10 -3 Hz) so as to average out the temperature

  15. PHyTIR - A Prototype Thermal Infrared Radiometer

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  16. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  17. A Climate Record of Enhanced Spatial Resolution Radiometer Data (Invited)

    NASA Astrophysics Data System (ADS)

    Paget, A. C.; Long, D. G.; Brodzik, M.

    2013-12-01

    Satellite radiometers, such SMMR, SSM/I, SSMIS, and AMSR, provide a multi-decadal time series of observations of the globe to support studies of climate change. Unfortunately, spatial resolution and sampling characteristics differ between sensors, which complicate compiling a single climate record. Resolution concerns can be ameliorated by reconstructing radiometer brightness temperature measurement (Tb) data onto daily-averaged compatible grids. We consider and contrast two widely used methods for image reconstruction: a radiometer version of the scatterometer image reconstruction (SIR) algorithm and Backus-Gilbert (BG). Both require detailed information about the spatial response function (antenna gain pattern) and the sampling geometry. We discuss considerations for an optimum gridding scheme based on the EASE-Grid 2.0 map projection. The EASE-Grid 2.0 simplifies the application of the Tb images in derived products since the reconstruction for each radiometer channel is implement on the same grid. This has the effect of optimally interpolating low-resolution measurements to locations of the highest resolution measurements. By employing reconstruction techniques rather than 'drop in the bucket' (dib) gridding, the effective resolution of the images is spatially enhanced compared to dib images, at the expense of additional computation required for the reconstruction processing. We evaluate the sensitivity of the radiometric accuracy of the resulting Tb images to uncertainties in the antenna gain pattern as well as variations in local-time-of-day. We briefly consider a number of applications of reconstructed Tb images. As part of the NASA-MEASUREs project 'An improved, enhanced-resolution, gridded passive microwave ESDR for monitoring cryospheric and hydrologic time series' we are processing all available satellite radiometer data to generate a consistently calibrated and processed time series of gridded images spanning from the 1970's to the present.

  18. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    SciTech Connect

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.

  19. A Texture-Polarization Method for Estimating Convective/Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Hong, Ye; Kummerow, Christian D.; Turk, Joseph; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observational and modeling studies have described the relationships between convective/stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques which can quantify the relative areal proportion of convective and stratiform, rainfall can provide useful information regarding the dynamic and thermodynamic processes in these systems. In the present study, two methods for deducing the convective/stratiform areal extent of precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitating hydrometeors is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5 GHz radiances to estimate the area fraction of convective rain within the radiometer footprint. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction. Based upon observations of ten convective systems over ocean and nine systems over land, instantaneous 0.5 degree resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) are compared to nearly coincident estimates from the TRMM Precipitation Radar (TRMM PR). The TMI convective area fraction estimates are slightly low-biased with respect to the PR, with TMI-PR correlations of 0.78 and 0.84 over ocean and land backgrounds, respectively. TMI monthly-average convective area percentages in the tropics and subtropics from February 1998 exhibit the greatest values along the ITCZ and in continental regions of the summer (southern) hemisphere. Although convective area percentages. from the TMI are systematically lower than those from the PR, monthly rain patterns derived from the TMI and PR rain algorithms are very similar

  20. NASA Oceanic Processes Program, fiscal year 1983

    NASA Technical Reports Server (NTRS)

    Nelson, R. M. (Editor); Pieri, D. C. (Editor)

    1984-01-01

    Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.

  1. Wearable system-on-a-chip radiometer for remote temperature sensing and its application to the safeguard of emergency operators.

    PubMed

    Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A

    2007-01-01

    The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.

  2. The Correlation Radiometer - A New Application in MM-Wave Total Power Radiometry

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Tanner, Alan; Kangaslahti, Pekka; Lim, Boon

    2013-01-01

    We describe the design and performance of a 180 GHz correlation radiometer suitable for remote sensing. The radiometer provides continuous comparisons between a the observed signal and a reference load to provide stable radiometric baselines. The radiometer was assembled and tested using parts from the GeoSTAR-II instrument and is fully compatible with operation in a synthetic aperture radiometer or as a standalone technology for use in microwave sounding and imaging. This new radiometer was tested over several days easily demonstrating the required 6 hour stability requirement for observations of mean brightness temperature for a geostationary instrument.

  3. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  4. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  5. Ocean-Atmosphere Interaction in Climate Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  6. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  7. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  8. DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE.

    PubMed

    Klemetsen, O; Birkelund, Y; Jacobsen, S K; Maccarini, P F; Stauffer, P R

    2011-01-01

    We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25-3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (< 5 mm × 5 mm) and which offer satisfactory overall sensitivity. Two different Dicke radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure.Numerical simulations were performed to test the design concepts before building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components

  9. A conceptual design of a large aperture microwave radiometer geostationary platform

    NASA Technical Reports Server (NTRS)

    Garn, Paul A.; Garrison, James L.; Jasinski, Rachel

    1992-01-01

    A conceptual design of a Large Aperture Microwave Radiometer (LAMR) Platform has been developed and technology areas essential to the design and on-orbit viability of the platform have been defined. Those technologies that must be developed to the requirement stated here for the LAMR mission to be viable include: advanced radiation resistant solar cells, integrated complex structures, large segmented reflector panels, sub 3 kg/m(exp 2) areal density large antennas, and electric propulsion systems. Technology areas that require further development to enhance the capabilities of the LAMR platform (but are not essential for viability) include: electrical power storage, on-orbit assembly, and on-orbit systems checkout and correction.

  10. Errors from Rayleigh-Jeans approximation in satellite microwave radiometer calibration systems.

    PubMed

    Weng, Fuzhong; Zou, Xiaolei

    2013-01-20

    The advanced technology microwave sounder (ATMS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a total power radiometer and scans across the track within a range of ±52.77° from nadir. It has 22 channels and measures the microwave radiation at either quasi-vertical or quasi-horizontal polarization from the Earth's atmosphere. The ATMS sensor data record algorithm employed a commonly used two-point calibration equation that derives the earth-view brightness temperature directly from the counts and temperatures of warm target and cold space, and the earth-scene count. This equation is only valid under Rayleigh-Jeans (RJ) approximation. Impacts of RJ approximation on ATMS calibration biases are evaluated in this study. It is shown that the RJ approximation used in ATMS radiometric calibration results in errors on the order of 1-2 K. The error is also scene count dependent and increases with frequency.

  11. Exploring the Turbulent Urban Boundary by Use of Lidars and Microwave Radiometers

    NASA Astrophysics Data System (ADS)

    Arend, Mark; Valerio, Ivan; Neufeld, Stephen; Bishir, Raymond; Wu, Younghu; Moshary, Fred; Melecio-Vazquez, David; Gonzalez, Jorge

    2016-06-01

    A Doppler lidar has been developed using fiber optic based technologies and advanced signal processing techniques. Although this system has been operated in a scanning mode in the past, for this application, the system is operated in a vertically pointing mode and delivers a time series of vertical velocity profiles. By cooperating the Doppler lidar with other instruments, including a back scatter lidar, and a microwave radiometer, models of atmospheric stability can be tested, opening up an exciting path for researchers, applied scientists and engineers to discover unique phenomena related to fundamental atmospheric science processes. A consistent set of retrievals between each of these instruments emphasizes the utility for such a network of instruments to better characterize the turbulent atmospheric urban boundary layers which is expected to offer a useful capability for assessing and improving models that are in great need of such ground truth.

  12. A multiband radiometer and data acquisition system for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Robinson, B. F.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.

    1981-01-01

    Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing.

  13. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  14. Inversion Algorithms for Water Vapor Radiometers Operating at 20.7 and 31.4 Ghz

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1984-01-01

    Eight water vapor radiometers (WVRs) were constructed as research and development tools to support the Advanced System Programs in the Deep Space Network and the Crustal Dynamics Project. These instruments are intended to operate at the stations of the Deep Space Network (DSN), various radio observatories, and obile facilities that participate in very long baseline interferometric (VLBI) experiments. It is expected that the WVRs will operate in a wide range of meteorological conditions. Several algorithms are discussed that are used to estimate the line-of-sight path delay due to water vapor and columnar liquid water rom the observed microwave brightness temperatures provided by the WVRs. In particular, systematic effects due to site and seasonal variations are examined. The accuracy of the estimation as indicated by a simulation calculation is approximately 0.3 cm for a noiseless WVR in clear and moderately cloudy weather. With a realistic noise model of WVR behavior, the inversion accuracy is approximately 0.6 cm.

  15. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  16. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; Johnson, J.; Jones, W.; Ruf, C.; Simmons, D.; Uhlhorn, E.; Inglish, C.

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  17. Retrievals on Tropical small scale humidity variability from multi-channel microwave radiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhao; Zuidema, Paquita; Turner, David

    2016-04-01

    Small-scale atmospheric humidity structure is important to many atmospheric process studies. In the Tropics especially, convection is sensitive to small variations in humidity. High temporal-resolution humidity profiles and spatially-resolved humidity fields are valuable for understanding the relationship of convection to tropical humidity, such as at convectively-induced cold pools and as part of the shallow-to-deep cloud transition. Radiosondes can provide high resolution vertical profiles of temperature and humidity, but are relatively infrequent. Microwave radiometers (MWR) are able to profile and scan autonomously and output measurements frequently (~1 Hz). To date, few assessments of microwave humidity profiling in the Tropics have been undertaken. Löhnert et al. (2009) provide one evaluation for Darwin, Australia. We build on this using four months of data from the equatorial Indian Ocean, at Gan Island, collected from University of Miami's (UM) multi-channel radiometer during the Dynamics of Madden-Julian Oscillation (DYNAMO) field campaign. Liquid Water Path (LWP) and Water Vapor Path (WVP) are physically retrieved using the MWR RETrieval (MWRRET) algorithm (Turner et al., 2007b), and humidity profiles in the tropics are retrieved using the Integrated Profiling Technique (Löhnert et al., 2004). Tropical temperature variability is weak and a climatological temperature profile is assumed, with humidity information drawn from five channels between 22 to 30 GHz. Scanning measurements were coordinated with the scanning pattern of NCAR's S-Pol-Ka radar. An analysis of the humidity information content gathered from both the profiling and scanning measurements will be presented.

  18. Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Abbott, W. V.

    1976-01-01

    The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions.

  19. Combined High-Resolution Active and Passive Imaging of Ocean Surface Winds from Aircraft

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Piepmeier, J. R.; McIntosh, R. E.; Swift, C. T.; Carswell, J. R.; Donnelly, W. J.; Knapp, E.; Westwater, E. R.; Irisov, V. I.; Fedor, L. S.; Vandemark, D. C.

    1997-01-01

    A unique complement of passive and active microwave imaging and sensing instruments for observing ocean surface emission and scattering signatures were integrated onto the NASA Wallops Flight Facility's Orion P-3B aircraft (N426NA) for the purpose of studying the signature of ocean surface winds. The complement included: (1) a, four-band (X, K, Ka, and W) tri-polarimetric scanning radiometer (PSR), (2) a C-band ocean surface scatterometer (CSCAT), (3) a Ka-band conical-scanning polarimetric radiometer (KASPR), (4) a nadir-viewing Ka-band polarimetric radiometer, (KAPOL), (5) a 21- and 31-GHz zenith-viewing cloud and water vapor radiometer (CWVR), and (6) a radar ocean wave spectrometer (ROWS). The above Ocean Winds Imaging (OWI) complement was flown during January-March, 1997 over the Labrador Sea. Conically-scanned brightness temperature and backscatter imagery were observed over open ocean for a variety of wind speeds and cloud conditions. Presented herein are the results of a preliminary intercomparison of data from several of the OWI instruments.

  20. Phased Array Radiometer Calibration Using a Radiated Noise Source

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutoch S.; Laymon, Charles A.; Meyer, Paul J.

    2010-01-01

    Electronic beam steering capability of phased array antenna systems offer significant advantages when used in real aperture imaging radiometers. The sensitivity of such systems is limited by the ability to accurately calibrate variations in the antenna circuit characteristics. Passive antenna systems, which require mechanical rotation to scan the beam, have stable characteristics and the noise figure of the antenna can be characterized with knowledge of its physical temperature [1],[2]. Phased array antenna systems provide the ability to electronically steer the beam in any desired direction. Such antennas make use of active components (amplifiers, phase shifters) to provide electronic scanning capability while maintaining a low antenna noise figure. The gain fluctuations in the active components can be significant, resulting in substantial calibration difficulties [3]. In this paper, we introduce two novel calibration techniques that provide an end-to-end calibration of a real-aperture, phased array radiometer system. Empirical data will be shown to illustrate the performance of both methods.

  1. Linear response of an instrument entitled Sky Radiometer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Wei; Zhou, Zhe; Wang, Dong; Xu, Wen-qing; Fan, Ren-jie

    2016-11-01

    In order to validate the good linear response of an instrument entitled Sky Radiometer(abbreviated to DTL-1) and check the great accuracy of radiance, the experiments which checked the DTL-1 using the large diameter integrating sphere system verified that the instrument had fine linearity and working stability. At the same time, the sky radiance in Hefei was measured, and the validity and correctness of DTL-1 were verified using fibre-optical spectrometer. The results indicated that the instrument had fine work ability, including good linear response, and could satisfy the scientific research and the actual application. However, the linear response of the instrument entitled Sky Radiometer in different region will be validated.

  2. Rotating shadowband radiometer development and analysis of spectral shortwave data

    SciTech Connect

    Michalsky, J.; Harrison, L.; Min, Q.

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  3. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  4. Optical fibre-coupled cryogenic radiometer with carbon nanotube absorber

    NASA Astrophysics Data System (ADS)

    Livigni, David J.; Tomlin, Nathan A.; Cromer, Christopher L.; Lehman, John H.

    2012-04-01

    A cryogenic radiometer was constructed for direct-substitution optical-fibre power measurements. The cavity is intended to operate at the 3 K temperature stage of a dilution refrigerator or 4.2 K stage of a liquid cryostat. The optical fibre is removable for characterization. The cavity features micromachined silicon centring rings to thermally isolate the optical fibre as well as an absorber made from micromachined silicon on which vertically aligned carbon nanotubes were grown. Measurements of electrical substitution, optical absorption and temperature change indicate that the radiometer is capable of measuring a power level of 10 nW with approximate responsivity of 155 nW K-1 and 1/e time constant of 13 min. An inequivalence between optical and electrical power of approximately 10% was found, but the difference was largely attributable to unaccounted losses in the optical fibre.

  5. Calibration analysis for a multi-channel infrared scanning radiometer

    NASA Technical Reports Server (NTRS)

    Walden, H.; Hurley, E. J.; Korb, C. L.

    1977-01-01

    A procedure for calibrating an infrared scanning spectroradiometer by a computerized parametric error analysis technique was developed. The uncertainties in the radiometric measurements of scene radiance and (for the case of a blackbody scene) temperature due to possible uncertainties in the calibration target temperature, calibration target emissivity, and instrument temperature were calculated for a range of uncertainty levels in the parameters, as well as for a gamut of scent temperatures corresponding to a given spectral channel. This technique is applicable to the radiometric calibration of any infrared radiometer. It was applied specifically to the Cloud-Top Scanning (C.T.S) Radiometer, a three-channel instrument designed for aircraftborne cloud radiance measurements in the 6.75 and 11.5 micron thermal emission spectral regions.

  6. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Astrophysics Data System (ADS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-06-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  7. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  8. Solar-Reflectance-Based Calibration of Spectral Radiometers

    NASA Technical Reports Server (NTRS)

    Cattrall, Christopher; Carder, Kendall L.; Thome, Kurtis J.; Gordon, Howard R.

    2001-01-01

    A method by which to calibrate a spectral radiometer using the sun as the illumination source is discussed. Solar-based calibrations eliminate several uncertainties associated with applying a lamp-based calibration to field measurements. The procedure requires only a calibrated reflectance panel, relatively low aerosol optical depth, and measurements of atmospheric transmittance. Further, a solar-reflectance-based calibration (SRBC), by eliminating the need for extraterrestrial irradiance spectra, reduces calibration uncertainty to approximately 2.2% across the solar-reflective spectrum, significantly reducing uncertainty in measurements used to deduce the optical properties of a system illuminated by the sun (e.g., sky radiance). The procedure is very suitable for on-site calibration of long-term field instruments, thereby reducing the logistics and costs associated with transporting a radiometer to a calibration facility.

  9. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  10. Ocean Wave Studies with Applications to Ocean Modeling and Improvement of Satellite Altimeter Measurements

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1999-01-01

    view Sensor (SeaWiFS) and Advanced Very High-Resolution Radiometer (AVHRR) data on sea surface temperature (SST) and chlorophyll concentration jointly with TOPEX/POSEIDON data on SSH variations.

  11. A combined radar-radiometer with variable polarization

    NASA Technical Reports Server (NTRS)

    Martin, D. P.

    1972-01-01

    An instrument is described that provides both radar and radiometer data at the same time. The antenna and receiver are time shared for the two sensor functions. The antenna polarization can be electronically scanned at rates up to 5000 changes for both the transmit and receive signal paths. This equipment is to investigate target signatures for remote sensing applications. The function of the equipment is described and the results for observations of asphalt, grass, and gravel surfaces are presented.

  12. Analysis of Anechoic Chamber Testing of the Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Fenigstein, David; Ruf, Chris; James, Mark; Simmons, David; Miller, Timothy; Buckley, Courtney

    2010-01-01

    The Hurricane Imaging Radiometer System (HIRAD) is a new airborne passive microwave remote sensor developed to observe hurricanes. HIRAD incorporates synthetic thinned array radiometry technology, which use Fourier synthesis to reconstruct images from an array of correlated antenna elements. The HIRAD system response to a point emitter has been measured in an anechoic chamber. With this data, a Fourier inversion image reconstruction algorithm has been developed. Performance analysis of the apparatus is presented, along with an overview of the image reconstruction algorithm

  13. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems.

  14. Ozone profiles above Kiruna from two ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  15. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  16. Color coded data obtained by JPL's Shuttle Multispectral Infrared radiometer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Color coded data obtained from Baja California, Mexico to Texas by JPL's Shuttle Multispectral Infrared radiometer is pictured. The map shows where data was obtained on the 19th orbit of the mission. Yellow and green areas represent water. The first brown segment at left is Baja California, and the second begins at the coast of mainland Mexico and extends into Texas. The dark brown strips at the right are clouds.

  17. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    NASA Technical Reports Server (NTRS)

    Walter, Steven; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James; Smith, Christopher; Thomassen, John

    2000-01-01

    Submillimeter-wave cloud ice radiometry is an innovative technique for determining the amount of ice present in cirrus clouds, measuring median crystal size, and constraining crystal shape. The radiometer described in this poster is being developed to acquire data to validate radiometric retrievals of cloud ice at submillimeter wavelengths. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, meeting key climate modeling and NASA measurement needs.

  18. Development and application of an automated precision solar radiometer

    NASA Astrophysics Data System (ADS)

    Qiu, Gang-gang; Li, Xin; Zhang, Quan; Zheng, Xiao-bing; Yan, Jing

    2016-10-01

    Automated filed vicarious calibration is becoming a growing trend for satellite remote sensor, which require a solar radiometer have to automatic measure reliable data for a long time whatever the weather conditions and transfer measurement data to the user office. An automated precision solar radiometer has been developed. It is used in measuring the solar spectral irradiance received at the Earth surface. The instrument consists of 8 parallel separate silicon-photodiode-based channels with narrow band-pass filters from the visible to near-IR regions. Each channel has a 2.0° full-angle Filed of View (FOV). The detectors and filters are temperature stabilized using a Thermal Energy Converter at 30+/-0.2°. The instrument is pointed toward the sun via an auto-tracking system that actively tracks the sun within a +/-0.1°. It collects data automatically and communicates with user terminal through BDS (China's BeiDou Navigation Satellite System) while records data as a redundant in internal memory, including working state and error. The solar radiometer is automated in the sense that it requires no supervision throughout the whole process of working. It calculates start-time and stop-time every day matched with the time of sunrise and sunset, and stop working once the precipitation. Calibrated via Langley curves and simultaneous observed with CE318, the different of Aerosol Optical Depth (AOD) is within 5%. The solar radiometer had run in all kinds of harsh weather condition in Gobi in Dunhuang and obtain the AODs nearly eight months continuously. This paper presents instrument design analysis, atmospheric optical depth retrievals as well as the experiment result.

  19. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  20. Scanning mechanism study for multi-frequency microwave radiometers

    NASA Technical Reports Server (NTRS)

    Shin, I.

    1976-01-01

    Scanning mode for a microwave radiometer having large aperture antenna is determined from scientific needs by engineering tradeoffs. Two configurations of the scan drive mechanism with an integral momentum compensation are formulated for 1.OM and 1.4M diameter antennas. As the formulation is based on currently available components, it is possible to design and fabricate the formulated mechanism without new hardware development. A preliminary specification for major components of formulated drives is also included in the report.

  1. Radiometer system to map the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Gorenstein, M. V.; Muller, R. A.; Smoot, G. F.; Tyson, J. A.

    1978-01-01

    A 33-GHz airborne radiometer system has been developed to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 deg apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of plus or minus 1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 deg, reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, Calif.

  2. Experimental measurements and noise analysis of a cryogenic radiometer

    SciTech Connect

    Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U.

    2014-07-15

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/√(Hz) for the measured experimental parameters.

  3. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  4. Radiometer system to map the cosmic background radiation.

    PubMed

    Gorenstein, M V; Muller, R A; Smoot, G F; Tyson, J A

    1978-04-01

    We have developed a 33-GHz airborne radiometer system to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 degrees apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of +/-1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 degrees , reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, CA.

  5. A millimeter-wave radiometer for detecting microbursts

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert

    1992-01-01

    This paper describes a millimeter-wave radiometer for the detection of wind shear from airborne platforms or at airport terminals. This proposed instrument will operate near the group of atmospheric oxygen absorptions centered near 60 GHz, which it will use to sense temperature from a distance. The instrument will use two channels to provide two different temperature measurements, providing the basis for solution of two equations in two unknowns, which are range to the wind shear plume and its temperature. A third channel will measure ambient atmospheric temperature. Depending on the temperature difference between the wind-shear plume and ambient, the standard deviation of range measurement accuracy is expected to be about 1 km at 5 km range, while the temperature measurement standard deviation will be about one-fourth the temperature difference between plume and ambient at this range. The instrument is expected to perform usefully at ranges up to 10 km, giving adequate warning of the presence of wind shear even for high performance jet aircraft. Other atmospheric hazards which might be detected by this radiometer include aircraft wakes and vortices, clear-air turbulence, and wind rotors, although the latter two phenomena would be detected by an airborne version of the instrument. A separate radiometer channel will be provided in the proposed instrument to detect aircraft wakes and vortices based on perturbation of the spectrum of microscopic atmospheric temperature fluctuations caused by the passage of large aircraft.

  6. Microwave radiometer observations of soil moisture in HAPEX-SAHEL

    NASA Astrophysics Data System (ADS)

    Schmugge, Thomas J.; Chanzy, Andre; Kerr, Yann H.; van Oevelen, Peter

    1995-01-01

    Water stored in the soil serves as the reservoir for the evapotranspiration process, thus the interest in trying to map its spatial and temporal variations in experiments studying the soil- plant-atmosphere interactions at the GCM grid scale. During the 8 week intensive observation period (IOP) of HAPEX-Sahel (Hydrologic Atmospheric Pilot Experiment in the Sahel), this was done with two airborne microwave radiometer systems. The five frequency (5 to 90 GHz) PORTOS radiometer on the French ARAT aircraft and the single frequency (1.42 GHz) multibeam pushbroom microwave radiometer (PBMR) on the NASA C-130 were used. These aircraft measurements were supported by ground based observations at the central sites and, because of several rains during the IOP, covered a good range of soil wetness conditions that existed. The PBMR and the 5.05 GHz PORTOS channel in H polarization show a large dynamic range of TB on each day and between different days in response to variations in rainfall and drying conditions ranging from low TBs of 210 to 220 K for the wettest conditions to values of 280 to 290 K for the driest.

  7. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    SciTech Connect

    Stamnes, K.; Leontieva, E.

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  8. Low-cost solar array project: Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: Radiometer standards

    NASA Technical Reports Server (NTRS)

    Estey, R. S.; Seaman, C. H.

    1981-01-01

    Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.

  9. The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

    NASA Astrophysics Data System (ADS)

    Sanò, Paolo; Panegrossi, Giulia; Casella, Daniele; Marra, Anna C.; Di Paola, Francesco; Dietrich, Stefano

    2016-11-01

    The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS) radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1), developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF), with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR) and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR). In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013-2014) dataset of coincident observations over a regular grid at 0.5° × 0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC) was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast), and the root mean squared error (RMSE) was equal to 1.30 mm h-1 over ocean and 1.11 mm h-1 over vegetated land. The results showed a

  10. Remote sensing of oceanic phytoplankton - Present capabilities and future goals

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1980-01-01

    A description is given of current work in the development of sensors, and their integration into increasingly powerful systems, for oceanic phytoplankton abundance estimation. Among the problems relevant to such work are phytoplankton ecology, the spatial and temporal domains, available sensor platforms, and sensor combinations. Among the platforms considered are satellites, aircraft, tethered balloons, helicopters, ships, and the Space Shuttle. Sensors discussed include microwave radiometers, laser fluorosensors, microwave scatterometers, multispectral scanners, Coastal Ocean Dynamics Radar (CODAR), and linear array detectors. Consideration is also given to the prospects for such future sensor systems as the National Oceanic Satellite System (NOSS) and the Airborne Integrated Mapping System (AIMS).

  11. Sea Ice Drift in the Arctic Ocean. Seasonal Variability and Long-Term Changes

    NASA Astrophysics Data System (ADS)

    Pavlov, V.; Pavlova, O.

    2010-12-01

    Variability in the drift of sea ice in the Arctic Ocean is an important parameter that can be used to characterise the thermodynamic processes in the Arctic. Knowledge of the features of sea ice drift in the Arctic Ocean is necessary for climate research, for an improved understanding of polar ecology and as an aid to human activity in the Arctic Ocean. Monthly mean sea ice drift velocities, computed from Advanced Very High Resolution Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and International Arctic Buoy Programme (IABP) buoy data, are used to investigate the spatial and temporal variability of ice motion in the Arctic Ocean and Nordic Seas from 1979. Sea ice drift in the Arctic Ocean is characterized by strong seasonal and inter-annual variability. The results of combined statistical analysis of sea ice velocities and wind fields over the Arctic Ocean suggest that the seasonal changes of local wind are a predominant factor in the formation of the sea ice velocities annual cycle. Sea ice drift velocities mirror seasonal changes of the wind in the Arctic, reaching a maximum in December, with a minimum in June. In the central part of the Arctic Ocean and in the area near the Canadian shore the amplitude of this variation is not more than 2 cm/ sec. The maximum amplitudes are found in the Fram Strait (9-10 cm/sec), Beaufort Gyre (6-7 cm/sec) and the northern part of Barents Sea (5-6 cm/sec). Low frequency variations of sea ice drift velocities, with periods of 2.0-2.5 yrs and 5.0-6.0 yrs, are related to reorganization of the atmospheric circulation over the Arctic. There is evidence that the average sea ice velocity for the whole of the Arctic Ocean is increasing, with a positive trend for the period of last three decades. Trends of the monthly mean ice drift velocities are positive almost everywhere in the Arctic Ocean. In the Baffin Bay, Fram Strait and Barents Sea regions, sea ice velocities

  12. Ocean Data Assimilation Systems for GODAE

    DTIC Science & Technology

    2009-09-01

    day composite Advanced Very High Resolution Radiometer sea surface temperature (SST) (columns 1, 3. and 5) and five-day averaged SST in the Tasman ...200 ISO 100 150 Global HYCOM sea surface height (cm) valid March 26, 200% Q0Z BY JAMES CUMMINCS, LAURENT BERTINO, PIERRE BRASSEUR, ICHIRO...satellite altimeters Argo, CTD, XBT, and moorings In situ and satellite data OSI-SAF sea ice analysis Mercator Along-track data from satellite

  13. Wide-Band Airborne Microwave and Millimeter-Wave Radiometers to Provide High-Resolution Wet-Tropospheric Path Delay Corrections for Coastal and Inland Water Altimetry

    NASA Astrophysics Data System (ADS)

    Reising, Steven C.; Kangaslahti, Pekka; Brown, Shannon T.; Tanner, Alan B.; Padmanabhan, Sharmila; Parashare, Chaitali; Montes, Oliver; Dawson, Douglas E.; Gaier, Todd C.; Khayatian, Behrouz; Bosch-Lluis, Xavier; Nelson, Scott P.; Johnson, Thaddeus; Hadel, Victoria; Gilliam, Kyle L.; Razavi, Behzad

    2013-04-01

    Current satellite ocean altimeters include nadir-viewing, co-located 18-34 GHz microwave radiometers to measure wet-tropospheric path delay. Due to the area of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals is substantially degraded near coastlines, and retrievals are not provided over land. Retrievals are flagged as not useful about 40 km from the world's coastlines. A viable approach to improve their capability is to add wide-band millimeter-wave window channels at 90 to 170 GHz, yielding finer spatial resolution for a fixed antenna size. In addition, NASA's Surface Water and Ocean Topography (SWOT) mission in formulation (Phase A) is planned for launch in late 2020. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies and the flow rate of rivers. Therefore, an important new science objective of SWOT is to transition satellite radar altimetry into the coastal zone. The addition of millimeter-wave channels near 90, 130 and 166 GHz to current Jason-class radiometers is expected to improve retrievals of wet-tropospheric delay in coastal areas and to enhance the potential for over-land retrievals. The Ocean Surface Topography Science Team Meeting recommended in 2012 to add these millimeter-wave channels to the Jason Continuity of Service (CS) mission. To reduce the risks associated with wet-tropospheric path delay correction over coastal areas and fresh water bodies, we are developing an airborne radiometer with 18.7, 23.8 and 34.0 GHz microwave channels, as well as millimeter-wave window channels at 90, 130 and 166 GHz, and temperature sounding above 118 as well as water vapor sounding below 183 GHz for validation of wet-path delay. For nadir-viewing space-borne radiometers with no moving parts, two-point internal calibration sources are necessary, and the

  14. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  15. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  16. Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.

    1986-01-01

    The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.

  17. Ground registration of data from an airborne Multifrequency Microwave Radiometer (MfMR). [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Richter, J. C. (Principal Investigator)

    1981-01-01

    The agricultural soil moisture experiment was conducted near Colby, Kansas, in July and August 1978. A portion of the data collected was taken with a five band microwave radiometer. A method of locating the radiometer footprints with respect to a ground based coordinate system is documented. The procedure requires that the airplane's flight parameters along with aerial photography be acquired simultaneously with the radiometer data. The software which documented reads in data from the precision radiation thermometer (PRT Model 5) and attaches the scene temperature to the corresponding multifrequency microwave radiometer data. Listings of the programs used in the registration process are included.

  18. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

    NASA Technical Reports Server (NTRS)

    McLinden, Matthew; Piepmeier, Jeffrey

    2013-01-01

    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This

  19. Satellite Ocean-Color Validation Using Ships of Opportunity. Chapter 5

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Cutchin, David L.; Gross-Colzy, Lydwine; Poteau, Antoine; Deschamps, Pierre-Yves

    2003-01-01

    The investigation s main objective is to collect from platforms of opportunity (merchant ships, research vessels) concomitant normalized water-leaving radiance and aerosol optical thickness data over the world s oceans. A global, long-term data set of these variables is needed to verify whether satellite retrievals of normalized water-leaving radiance are within acceptable error limits and, eventually, to adjust atmospheric correction schemes. To achieve this objective, volunteer officers, technicians, and scientists onboard the selected ships collect data from portable SIMBAD and Advanced SIMBAD (SIMBADA) radiometers. These instruments are specifically designed for evaluation of satellite-derived ocean color. They measure radiance in spectral bands typical of ocean-color sensors. The SIMBAD version measures in 5 spectral bands centered at 443, 490, 560, 670, and 870 nm, and the Advanced SIMBAD version in 11 spectral bands centered at 350, 380, 412, 443, 490, 510, 565, 620, 670, 750, and 870 nm. Aerosol optical thickness is obtained by viewing the sun disk like a classic sun photometer. Normalized water-leaving radiance, or marine reflectance, is obtained by viewing the ocean surface through a vertical polarizer in a specific geometry (nadir angle of 45o and relative azimuth angle of 135deg) to minimize direct sun glint and reflected sky radiation. The SIMBAD and SIMBADA data, after proper quality control and processing, are delivered to the SIMBIOS project office for inclusion in the SeaBASS archive. They complement data collected in a similar way by the Laboratoire d'Optique Atmospherique of the University of Lille, France. The SIMBAD and SIMBADA data are used to check the radiometric calibration of satellite ocean-color sensors after launch and to evaluate derived ocean-color variables (i.e., normalized water-leaving radiance, aerosol optical thickness, and aerosol type). Analysis of the SIMBAD and SIMBADA data provides information on the accuracy of satellite

  20. Responses of the Tropical Pacific to Wind Forcing as Observed by Spaceborne Sensors and Simulated by an Ocean General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Qenqing; Atlas, Robert

    1996-01-01

    In this study, satellite observations, in situ measurements, and model simulations are combined to assess the oceanic response to surface wind forcing in the equatorial Pacific. The surface wind fields derived from observations by the spaceborne special sensor microwave imager (SSM/I) and from the operational products of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared. When SSM/I winds are used to force a primitive-equation ocean general circulation model (OGCM), they produce 3 C more surface cooling than ECMWF winds for the eastern equatorial Pacific during the cool phase of an El Nino-Southern Oscillation event. The stronger cooling by SSM/I winds is in good agreement with measurements at the moored buoys and observations by the advanced very high resolution radiometer, indicating that SSM/I winds are superior to ECMWF winds in forcing the tropical ocean. In comparison with measurements from buoys, tide gauges, and the Geosat altimeter, the OGCM simulates the temporal variations of temperature, steric, and sea level changes with reasonable realism when forced with the satellite winds. There are discrepancies between model simulations and observations that are common to both wind forcing fields, one of which is the simulation of zonal currents; they could be attributed to model deficiencies. By examining model simulations under two winds, vertical heat advection and uplifting of the thermocline are found to be the dominant factors in the anomalous cooling of the ocean mixed layer.

  1. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  2. Conversion of sunflower multiband radiometer polarization measurements to polarization parameters

    NASA Technical Reports Server (NTRS)

    Biehl, Larry L.

    1995-01-01

    The data processing analysis and conversion of polarization measurements to polarization parameters from the Sunflower multiband radiometer is presented in this final report. Included is: (1) the actual data analysis; (2) the comparison of the averaging techniques and the percent polarization derived from the original and averaged I, Q, U parameters; (3) the polarizer angles used in conversion; (4) the Matlab files; (5) the relative ground size, field of view location, and view zenith angles, and (6) the summary of all the sky data for all dates.

  3. Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Technical Reports Server (NTRS)

    Zomberg, Brian G.; Chren, William A., Jr.

    1994-01-01

    A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.

  4. Application of microwave radiometers for wetlands and estuaries monitoring

    SciTech Connect

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-06-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface.

  5. Diagnosis Of A Pressure-Modulator-Radiometer Cell

    NASA Technical Reports Server (NTRS)

    May, Randy D.; Mccleese, Daniel J.; Rider, David M.; Schofield, John T.; Webster, Christopher

    1990-01-01

    Spectral response of pressure-modulator-radiometer cell measured with help of lead-salt tunable diode laser. Laser chosen because of narrow bandwidths {2 x 10 to negative 4th power (cm) to negative 1st power} and relatively high powers (up to 1 mW continuous) of such lasers and because available for wavelengths from 3 to 30 micrometers. Direct measurement of spectral response enables formulation of more-precise atmospheric-transmission functions, enabling extraction of better information from readings taken with instrument.

  6. Clear air turbulence avoidance using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1984-01-01

    The avoidance of Clear Air Turbulence (CAT) is theoretically possible by selecting flight levels that are a safe distance from the tropopause and inversion layers. These favored sites for CAT generation can be located by an 'airborne microwave radiometer' (AMR) passive sensor system that measures altitude temperature profiles. A flight evaluation of the AMR sensor shows that most CAT could be avoided by following sensor-based advisories. Some limitations still exist for any hypothetical use of the sensor. The principal need is to augment the sensor's 'where' advisories to include useful 'when' forecasts.

  7. Multichannel infrared fiber optic radiometer for controlled microwave heating

    NASA Astrophysics Data System (ADS)

    Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1990-07-01

    An infrared fiberoptic multichannel radiometer was used for monitoring and controlling the temperature of samples in a microwave heating system. The temperature of water samples was maintained at about 40 °C, with a standard deviation of +/- 0.2°C and a maximum deviation of +/- 0.5°C. The temperature was monitored on the same time at several points on the surface and inside the sample. This novel controlled system is reliable and precise. Such system would be very useful for medical applications such as hypothermia and hyperthermi a.

  8. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  9. Landsat-simulating radiometer for agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Lemme, G. D.; Westin, F. C.

    1979-01-01

    The reliability of a Landsat-simulating ground-based spectral radiometer for use in agricultural remote sensing was investigated. Significant correlation coefficients in all wavebands except Band 7 were found to exist between Landsat computer compatible tape (CCT) and ground-based radiometric data from several corn fields. No significant correlations were found within data from small grain fields. Combined data from several common agricultural crops yielded significant correlation coefficients in the wavebands most commonly employed in agricultural remote sensing. It was also found that sun angle within certain limits of a given day had minimal effect on ground-based radiometric measurements taken from a fallow and barley field.

  10. Io's thermal emission from the Galileo photopolarimeter-radiometer.

    PubMed

    Spencer, J R; Rathbun, J A; Travis, L D; Tamppari, L K; Barnard, L; Martin, T Z; McEwen, A S

    2000-05-19

    Galileo's photopolarimeter-radiometer instrument mapped Io's thermal emission during the I24, I25, and I27 flybys with a spatial resolution of 2.2 to 300 kilometers. Mapping of Loki in I24 shows uniform temperatures for most of Loki Patera and high temperatures in the southwest corner, probably resulting from an eruption that began 1 month before the observation. Most of Loki Patera was resurfaced before I27. Pele's caldera floor has a low temperature of 160 kelvin, whereas flows at Pillan and Zamama have temperatures of up to 200 kelvin. Global maps of nighttime temperatures provide a means for estimating global heat flow.

  11. Global atmospheric temperature anomaly monitoring with passive microwave radiometers

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Christy, John R.

    1990-01-01

    The potential of microwave sounding units (MSU) for augmenting the surface-based thermometer record by providing a measurement representing a significant depth of the troposphere is considered. These radiometers measure the thermal emission by molecular oxygen in the atmosphere at different spectral intervals in the oxygen absorption complex near 60 GHz. Brightness temperature variations measured by NOAA-6 and NOAA-7 MSUs during a near-two year period are analyzed and compared with monthly averaged surface air temperature data. It is demonstrated that MSUs, while of limited use for vertical profiling of the atmosphere, provide stable measurements of vertically average atmospheric temperatures, centered at a constant pressure level.

  12. Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Astrophysics Data System (ADS)

    Zomberg, Brian G.; Chren, William A., Jr.

    1994-06-01

    A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.

  13. Color enhancement of nimbus high resolution infrared radiometer data.

    PubMed

    Kreins, E R; Allison, L J

    1970-03-01

    Two examples of Nimbus high resolution infrared radiometer (HRIR) data processed by a color display enhancement system demonstrate possible meteorological, oceanographic, and geomorphological applications of this technique for geophysical research. A commonly used means of displaying radiation temperatures mapped by the HRIR has been a black and white photofacsimile film strip. However, the human eye can distinguish many more colors than shades of gray, and this characteristic permits an analyst to evaluate quantitatively radiation values mapped in color more readily than in black and white.

  14. A new broadband square law detector. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    A broadband constant law detector was developed for precision power measurements, radio metric measurements, and other applications. It has a wide dynamic range and an accurate square law response. Other desirable characteristics, which are all included in a single compact unit, are: (1) high-level dc output with immunity to ground loop problems; (2) fast response times; (3) ability to insert known time constants; and (4) good thermal stability. The detector and its performance are described in detail. The detector can be operated in a programmable system with a ten-fold increase in accuracy. The use and performance of the detector in a noise-adding radiometer system is also discussed.

  15. Four band differential radiometer for monitoring LNG vapors

    NASA Technical Reports Server (NTRS)

    Simmonds, J. J.

    1981-01-01

    The development by JPL of a four band differential radiometer (FBDR) which is capable of providing a fast rate of response, accurate measurements of methane, ethane, and propane concentrations on the periphery of a dispersing LNG cloud. The FBDR is a small, low power, lightweight, portable instrument system that uses differential absorption of near infrared radiation by the LNG cloud as a technique for the determination of concentration of the three gases as the LNG cloud passes the instrument position. Instrument design and data analysis approaches are described. The data obtained from the FBDR prototype instrument system deployed in an instrument array during two 40 cubic meter spill tests are discussed.

  16. Near-infrared diffractive optical element (DOE) radiometer

    NASA Astrophysics Data System (ADS)

    Hamilton, Kelvin E.; Codere, J. R. Michel; Verreault, J. J. M.; Fjarlie, Earl J.

    1994-10-01

    A radiometer has been designed that operates at 1064 nanometers using a diffractive element arrangement to focus the energy onto a detector array. The aperture is made up of several elements consisting of both on and off-axis designed elements arranged to provide an overall FOV. The blur circle and the efficiency of the elements have been measured. The advantages of DOEs are weight saving, repetitiveness of design, the making of either off-axis or on-axis elements with the same ease, good efficiency of energy collection, and diffraction limited focusing.

  17. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  18. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  19. COBE DMR results and implications. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  20. COBE Differential Microwave Radiometers - Preliminary systematic error analysis

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Aymon, J.; De Amici, G.; Hinshaw, G.; Jackson, P. D.; Kaita, E.; Keegstra, P.

    1992-01-01

    The techniques available for the identification and subtraction of sources of dynamic uncertainty from data of the Differential Microwave Radiometer (DMR) instrument aboard COBE are discussed. Preliminary limits on the magnitude in the DMR 1 yr maps are presented. Residual uncertainties in the best DMR sky maps, after correcting the raw data for systematic effects, are less than 6 micro-K for the pixel rms variation, less than 3 micro-K for the rms quadruple amplitude of a spherical harmonic expansion, and less than 30 micro-(K-squared) for the correlation function.

  1. COBE Differential Microwave Radiometers - Preliminary systematic error analysis

    NASA Astrophysics Data System (ADS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Aymon, J.; de Amici, G.; Hinshaw, G.; Jackson, P. D.; Kaita, E.; Keegstra, P.; Lineweaver, C.; Loewenstein, K.; Rokke, L.; Tenorio, L.; Boggess, N. W.; Cheng, E. S.; Gulkis, S.; Hauser, M. G.; Janssen, M. A.; Kelsall, T.; Mather, J. C.; Meyer, S.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Weiss, R.; Wilkinson, D. T.

    1992-12-01

    The techniques available for the identification and subtraction of sources of dynamic uncertainty from data of the Differential Microwave Radiometer (DMR) instrument aboard COBE are discussed. Preliminary limits on the magnitude in the DMR 1 yr maps are presented. Residual uncertainties in the best DMR sky maps, after correcting the raw data for systematic effects, are less than 6 micro-K for the pixel rms variation, less than 3 micro-K for the rms quadruple amplitude of a spherical harmonic expansion, and less than 30 micro-(K-squared) for the correlation function.

  2. Internal tide oceanic tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2016-09-01

    A concept of internal tide oceanic tomography (ITOT) is proposed to monitor ocean warming on a global scale. ITOT is similar to acoustic tomography, but that work waves are internal tides. ITOT detects ocean temperature changes by precisely measuring travel time changes of long-range propagating internal tides. The underlying principle is that upper ocean warming strengthens ocean stratification and thus increases the propagation speed of internal tides. This concept is inspired by recent advances in observing internal tides by satellite altimetry. In particular, a plane wave fit method can separately resolve multiple internal tidal waves and thus accurately determines the phase of each wave. Two examples are presented to demonstrate the feasibility and usefulness of ITOT. In the eastern tropical Pacific, the yearly time series of travel time changes of the M2 internal tide is closely correlated with the El Niño-Southern Oscillation index. In the North Atlantic, significant interannual variations and bidecadal trends are observed and consistent with the changes in ocean heat content measured by Argo floats. ITOT offers a long-term, cost-effective, environmentally friendly technique for monitoring global ocean warming. Future work is needed to quantify the accuracy of this technique.

  3. Ocean energy program summary

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the U.S. Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now.

  4. New Multiplatform Ocean Surface Wind Product Available

    NASA Astrophysics Data System (ADS)

    Ardizzone, Joseph; Atlas, Robert; Hoffman, Ross N.; Jusem, Juan Carlos; Leidner, S. Mark; Moroni, David F.

    2009-07-01

    A new cross-calibrated, multiplatform (CCMP) ocean surface wind product with wide-ranging research applications in meteorology and oceanography became available at the Physical Oceanography Distributed Active Archive Center (PO.DACC) in May 2009. Data sets at three different levels of processing may be downloaded from http://podaac.jpl.nasa.gov/DATA_CATALOG/ccmpinfo.html. The principal data set, denoted as level 3.0, has global ocean coverage (except for the Arctic Ocean) with 25-kilometer resolution every 6 hours for more than 20 years, beginning in July 1987. Applying an enhanced variational analysis method (VAM) to multiple input data sources creates the level 3.0 data set. The VAM performs quality control and optimally combines wind observations from several individual satellite microwave radiometer and scatterometer sensors along with available conventional ship and buoy wind observations and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses.

  5. A reactionless, bearingless linear shutter mechanism for the multispectral pushbroom imaging radiometer

    SciTech Connect

    Krumel, L.J.

    1996-12-31

    The Atmospheric Radiation Measurement Program is a multi-laboratory, interagency program as part of DOE`s principal entry into the US Global Change Research Program. Two issues addressed are the radiation budget and its spectral dependence, and radiative and other properties of clouds. Measures of solar flux divergence and energy exchanges between clouds, the earth, its oceans, and the atmosphere through various altitudes are sought. Additionally, the program seeks to provide measurements to calibrate satellite radiance products and validate their associated flux retrieval algorithms. Unmanned Aerospace Vehicles fly long, extended missions. MPIR is one of the primary instruments on the ARM-UAV campaigns. A shutter mechanism has been developed and flown as part of an airborne imaging radiometer having application to spacecraft or other applications requiring low vibration, high reliability, and long life. The device could be employed in other cases where a reciprocating platform is needed. Typical shutters and choppers utilize a spinning disc, or in very small instruments, a vibrating vane to continually interrupt incident light or radiation that enters the system. A spinning disk requires some sort of bearings that usually have limited life, and at a minimum introduce issues of reliability. Friction, lubrication and contamination always remain critical areas of concern, as well as the need for power to operate. Dual vibrating vanes may be dynamically well balanced as a set and are frictionless. However, these are limited by size in a practical sense. In addition, multiples of these devices are difficult to synchronize.

  6. Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station

    NASA Astrophysics Data System (ADS)

    Renju, R.; Suresh Raju, C.; Mathew, Nizy; Antony, Tinu; Krishna Moorthy, K.

    2015-05-01

    The intraseasonal and interannual characteristics and the vertical distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer profiler (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, particularly during a prolonged monsoon period, has been demonstrated by comparing with the PWV derived from collocated GPS measurements based on regression model between PWV and GPS wet delay component which has been developed for TVM station. Large diurnal and intraseasonal variations of PWV are observed during winter and premonsoon seasons. There is large interannual PWV variability during premonsoon, owing to frequent local convection and summer thunderstorms. During monsoon period, low interannual PWV variability is attributed to the persistent wind from the ocean which brings moisture to this coastal station. However, significant interannual humidity variability is seen at 2 to 6 km altitude, which is linked to the monsoon strength over the station. Prior to monsoon onset over the station, the specific humidity increases up to 5-10 g/kg in the altitude region above 5 km and remains consistently so throughout the active spells.

  7. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    NASA Astrophysics Data System (ADS)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  8. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 3 - The electrically Scanning Microwave Radiometer and the Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Wilheit, Thomas T.; Yamasaki, Hiromichi

    1990-01-01

    The two microwave radiometers for TRMM are designed to measure thermal microwave radiation upwelling from the earth. The Electrically Scanning Microwave Radiometer (ESMR) scans from 50 deg to the left through nadir to 50 deg to the right in 78 steps with no moving mechanical parts in a band centered at 19.35 GHz. The TRMM concept uses the radar to develop a climatology of rain-layer thickness which can be used for the interpretation of the radiometer data over a swath wider than the radar. The ESMR data are useful for estimating rain intensity only over an ocean background. The Special Sensor Microwave/Imager (SSM/I), which scans conically with three dual polarized channels at 19, 37, and 85 GHz and a single polarized channel at 22 GHz, provides a wider range of rainfall intensities. The SSM/I spins about an axis parallel to the local spacecraft vector and 128 uniformly spaced samples of the 85 GHz data are taken on each scan over a 112-deg scan region simultaneously with 64 samples of the other frequencies.

  9. Solar heating of the Arctic Ocean in the context of ice-albedo feedback

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Niu, Xiaolei; Ma, Yingtao

    2014-12-01

    To study the relationship of solar heat input into the Arctic open water and the variations of sea ice extent, improved satellite-based estimates of shortwave radiative (SWR) fluxes and most recent observations of ice extent are used. The SWR flux estimates are based on observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Advanced Very High Resolution Radiometer (AVHRR) for the period of 1984-2009. Ice extent information at 25 km resolution comes from Nimbus-7 SMMR and DMSP SSM/I Passive Microwave Data as generated with the NASA Team algorithm developed by the Oceans and Ice Branch, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center. The trends of the solar heat input into the ocean and the open water fraction for 1984-2009 are found to be positive: 0.3%/yr and 0.8%/yr, respectively, at a 99% confidence level. There is an obvious transition region separating the 26 years into two periods: one with moderate change: 1984-2002, and the other with an abrupt growth in both solar heat input and open water fraction: 2003-2009. The impact of the observed changes on the reduction of winter ice growth in 2007 is estimated to be about 44 cm, and a delay in fall freezeup as about 10-36 days.

  10. Classification of Tropical Oceanic Precipitation using High-Altitude Aircraft Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel J.; LaFontaine, Frank J.; Blakeslee, Richard J.; Mach, Douglas m.; Heymsfield, Gerald M.; Marks, Frank D., Jr.; Zipser, Edward J.

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the NASA ER-2 high-altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower-altitude horizontal reflectivity scans collected by the NOAA WP3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  11. Ocean Remote Sensing Using Ambient Noise

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Remote Sensing Using Ambient Noise Michael G...frequency sound propagation in the ocean , and the effects of environmental variability on signal stability and coherence. We seek to understand the...fundamental limits to signal processing imposed by ocean variability to enable advanced signal processing techniques, including matched field processing

  12. The measurement of the winds near the ocean surface with a radiometer-scatterometer on Skylab

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.; Moore, R. K.; Mcclain, E. P. (Principal Investigator); Cardone, V. J.; Young, J. D.; Greenwood, J. A.; Greenwood, C.; Fung, A. K.; Salfi, R.; Chan, H. L.

    1976-01-01

    The author has identified the following significant results. There were a total of twenty-six passes in the ZLV mode that yielded useful data. Six were in the in-track noncontiguous mode; all others were in the cross-track noncontiguous mode. The wind speed and direction, as effectively determined in a neutral atmosphere at 19.5 m above the sea surface, were found for each cell scanned by S193. It is shown how the passive microwave measurements were used both to compute the attenuation of the radar beam and to determine those cells where the backscatter measurement was suspect. Given the direction of the wind from some independent source, with the typical accuracy of measurement by available meteorological methods, a backscatter measurement at a nadir angle of 50, 43, or 32 deg can be used to compute the speed of the wind averaged over the illuminated area.

  13. Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.

    1982-01-01

    A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.

  14. Infrared Fiber Radiometer For Thermometry In Electromagnetic Induced Therapeutic Healing

    NASA Astrophysics Data System (ADS)

    Katzir, A.; Bowman, F.; Asfour, Y.; Zur, A.; Valeri, C. R.

    1988-06-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35°C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0°C for an extended period (e.g. 30 min.) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electro-magnetic field. For this purpose we have developed a fiberoptic radiometer system which is based on a non-metallic, infrared fiber probe, which can operate either in contact or in non-contact modes. In preliminary investigations the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of ±0.5°C.

  15. Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment

    SciTech Connect

    Katzir, A.; Bowman, H.F.; Asfour, Y.; Zur, A.; Valeri, C.R.

    1989-06-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35 degrees C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0 degrees C for an extended period (e.g., 30 min) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electromagnetic field. For this purpose, we have developed a fiberoptic radiometer system which is based on a nonmetallic, infrared fiber probe, which can operate either in contact or noncontact mode. In preliminary investigations, the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of +/- 0.5 degrees C. This fiberoptic thermometer was used to control the surface temperature of objects within +/- 2 degrees C.

  16. Knudsen pump inspired by Crookes radiometer with a specular wall

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Hardt, Steffen; Shahabi, Vahid; Roohi, Ehsan

    2017-03-01

    A rarefied gas is considered in a channel consisting of two infinite parallel plates between which an evenly spaced array of smaller plates is arranged normal to the channel direction. Each of these smaller plates is assumed to possess one ideally specularly reflective and one ideally diffusively reflective side. When the temperature of the small plates differs from the temperature of the sidewalls of the channel, these boundary conditions result in a temperature profile around the edges of each small plate that breaks the reflection symmetry along the channel direction. This in turn results in a force on each plate and a net gas flow along the channel. The situation is analyzed numerically using the direct simulation Monte Carlo method and compared with analytical results where available. The influence of the ideally specularly reflective wall is assessed by comparing with simulations using a finite accommodation coefficient at the corresponding wall. The configuration bears some similarity to a Crookes radiometer, where a nonsymmetric temperature profile at the radiometer vanes is generated by different temperatures on each side of the vane, resulting in a motion of the rotor. The described principle may find applications in pumping gas on small scales driven by temperature gradients.

  17. Spatial sampling errors for a satellite-borne scanning radiometer

    NASA Technical Reports Server (NTRS)

    Manalo, Natividad D.; Smith, G. L.

    1991-01-01

    The Clouds and Earth's Radiant Energy System (CERES) scanning radiometer is planned as the Earth radiation budget instrument for the Earth Observation System, to be flown in the late 1990's. In order to minimize the spatial sampling errors of the measurements, it is necessary to select design parameters for the instrument such that the resulting point spread function will minimize spatial sampling errors. These errors are described as aliasing and blurring errors. Aliasing errors are due to presence in the measurements of spatial frequencies beyond the Nyquist frequency, and blurring errors are due to attenuation of frequencies below the Nyquist frequency. The design parameters include pixel shape and dimensions, sampling rate, scan period, and time constants of the measurements. For a satellite-borne scanning radiometer, the pixel footprint grows quickly at large nadir angles. The aliasing errors thus decrease with increasing scan angle, but the blurring errors grow quickly. The best design minimizes the sum of these two errors over a range of scan angles. Results of a parameter study are presented, showing effects of data rates, pixel dimensions, spacecraft altitude, and distance from the spacecraft track.

  18. Characterization of the Earth Radiation Budget Experiment radiometers

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Barkstrom, B. R.

    1991-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers were used to measure the earth's radiation fields during the period November 1984 through February 1990. The ERBE radiometric packages were placed into orbit aboard the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. In each radiometric package, thermistor bolometers were used as detection elements for the broadband total (0,2 - 50,0 microns), shortwave (0,2 - 5,0 microns), and longwave (5,0 - 50,0 microns) spectral regions. Flight calibration facilities were built into each of the spacecraft radiometric packages. The flight facilities consisted of black bodies, tungsten lamps, and silicon photodiodes. The black bodies and tungsten lamps were found to be reliable at precision levels approaching 0,5 percent over a five-year period. The photodiodes were found to degrade more than 2 percent during the first year in orbit. In this paper, the flight calibration systems for the ERBE scanning radiometers are described along with the resultant measurements.

  19. Improvement of scanning radiometer performance by digital reference averaging

    NASA Technical Reports Server (NTRS)

    Bremer, J. C.

    1979-01-01

    Most radiometers utilize a calibration technique in which measurements of a known reference are subtracted from measurements of an unknown source so that common-mode bias errors are cancelled. When a radiometer is scanned over a varying scene, it produces a sequence of outputs, each being proportional to the difference between the reference and the corresponding input. A reference averaging technique is presented that employs a simple digital algorithm which exploits the asymmetry between the time-variable scene inputs and the nominally constant reference input by averaging many reference measurements to decrease the statistical uncertainty in the reference value. This algorithm is, therefore, optimized by an asymmetric chopping sequence in which the scene is viewed for more than one-half of the duty cycle (unlike the analog Dicke technique). Reference averaging algorithms are well within the capabilities of small microprocessors. Although this paper develops the technique for microwave radiometry, it may be beneficial for any system which measures a large number of unknowns relative to a known reference in the presence of slowly varying common-mode errors.

  20. Modeling the frequency response of microwave radiometers with QUCS

    NASA Astrophysics Data System (ADS)

    Zonca, A.; Roucaries, B.; Williams, B.; Rubin, I.; D'Arcangelo, O.; Meinhold, P.; Lubin, P.; Franceschet, C.; Jahn, S.; Mennella, A.; Bersanelli, M.

    2010-12-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  1. L-Band Radiometer Measurements of Conifer Forests

    NASA Technical Reports Server (NTRS)

    Lang, R.; LeVine, D.; Chauhan, N.; deMatthaeis, P.; Bidwell, S.; Haken, M.

    2000-01-01

    Airborne radiometer measurements have been made at L-band over conifer forests in Virginia to study radiometric response to biomass and soil moisture. The horizontally polarized synthetic aperture radiometer, ESTAR, has been deployed abroad a NASA-P3 aircraft which is based at the Goddard Space Flight Center's Wallops Flight Facility. The instrument has been mounted in the bomb bay of the P-3 and images data in the cross track direction. Aircraft and surface measurements were made in July, August and November of 1999 over relatively homogeneous conifer stands of varying biomass. The surface measurements included soil moisture measurements in several stands. The soil moisture was low during the July flight and highest in November after heavy rains had occurred. The microwave images clearly distinguished between the different forest stands. Stand age, obtained from International Paper Corporation which owns the stands, showed a strong correlation between brightness temperature and stand age. This agrees with previous simulation studies of conifer forests which show that the brightness temperature increases with increasing stand biomass. Research is continuing to seek a quantitative correlation between the observed brightness temperature of the stands and their biomass and surface soil moisture.

  2. Uncertainties in radiometer intercalibration associated with variability in geophysical parameters

    NASA Astrophysics Data System (ADS)

    Yang, John Xun; McKague, Darren S.; Ruf, Christopher S.

    2016-10-01

    Spaceborne radiometry plays a major role in weather and climate science and applications. Intercalibrating different radiometers has become an indispensable task for diagnosing instrument performance and integrating constellation data to extend the observational record. Because intercalibration affects both base radiance data and downstream science products, it is critical to examine intercalibration performance. In this study, we use constellation radiometer data from the Global Precipitation Measurement mission to detect and characterize a pronounced variability in intercalibration stability with a 40 day periodicity. A regional dependence of the calibration is also found. The variability is related to geophysical parameters including water vapor, surface wind speed, and sea surface temperature. It is found that the variability is caused by periodic variations in the local times and locations of the overlap regions between spacecraft. An analytical orbit model is developed for calculating the period of oscillation and agrees well with observation. Calibration errors show nonlinear and nonmonotonic dependences on geophysical parameters and brightness temperature, which cannot be removed by simple linear regression. The variability affects both base radiance calibration accuracy and retrieved science data products.

  3. ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK

    SciTech Connect

    AUSTIN, ME; LOHR, J

    2002-08-01

    OAK A271 ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK. The electron cyclotron emission (ECE) heterodyne radiometer diagnostic on DIII-D has been upgraded with the addition of eight channels for a total of 40. The new, higher frequency channels allow measurements of electron temperature into the magnetic axis in discharges at maximum field, 2.15 T. The complete set now extends over the full usable range of second harmonic emission frequencies at 2.0 T covering radii from the outer edge inward to the location of third harmonic overlap on the high field side. Full coverage permits the measurement of heat pulses and magnetohydrodynamic (MHD) fluctuations on both sides of the magnetic axis. In addition, the symmetric measurements are used to fix the location of the magnetic axis in tokamak magnetic equilibrium reconstructions. Also, the new higher frequency channels have been used to determine central T{sub e} with good time resolution in low field, high density discharges using third harmonic ECE in the optically gray and optically thick regimes.

  4. Aquarius Radiometer RFI Detection, Mitigation, and Impact Assessment

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Chen, David; Le Vine, David; de Matthaeis, Paolo; Piepmeier, Jeffrey

    2012-01-01

    The Aquarius/SAC-D satellite was launched on 10 June 2011 into a sun-synchronous polar orbit and the Aquarius microwave radiometers [1] became operational on 25 August 2011. Since that time, it has been measuring brightness temperatures at 1.4 GHz with vertical, horizontal and 3rd Stokes polarizations . Beginning well before the launch, there has been the concern that Radio Frequency Interference (RFI) could have an appreciable presence. This concern was initiated by, among other things, its prevalence in both early [2] and more recent [3,4] aircraft field experiments using 1.4 GHz radiometers, as well as by the strong RFI environment encountered during the recent ESA SMOS mission, also at 1.4 GHz [5]. As a result, a number of methods for RFI detection and mitigation have been developed and tested. One in particular, "glitch detection" and "pulse blanking" mitigation has been adapted for use by Aquarius [6, 7]. The early on-orbit performance of the Aquarius RFI detection and mitigation algorithm is presented here, together with an assessment of the global RFI environment at 1.4 GHz which can be derived from the Aquarius results.

  5. Comparative Analysis of Radiometer Systems Using Non-Stationary Processes

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers require periodic calibration to correct for instabilities in the receiver response. Various calibration techniques exist that minimize the effect of instabilities in the receivers. The optimal technique depends upon many parameters. Some parameters are constrained by the particular application and others can be chosen in the system design. For example, the measurement uncertainty may be reduced to the limits of the resolution of the measurement (sensitivity) if periodic absolute calibration can be performed with sufficient frequency. However if the period between calibrations is long, a reference-differencing technique, i.e. Dicke-type design, can yield better performance. The measurement uncertainty not only depends upon the detection scheme but also on the number of pixels between calibrations, the integration time per pixel, integration time per calibration reference measurement, calibration reference temperature, and the brightness temperature of what is being measured. The best scheme for reducing the measurement uncertainty also depends, in large part, on the stability of the receiver electronics. In this presentation a framework for evaluating calibration schemes for a wide range of system architectures is presented. Two methods for treating receiver non-stationarity are compared with radiometer measurements.

  6. Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Bindlish, Rajat; Piepmeier, Jeffrey R.; Brown, Shannon T.

    2014-01-01

    Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites.

  7. A theory of microwave apparent temperature over the ocean

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Fung, A. K.

    1973-01-01

    In the microwave region combined active (scatterometer) and passive (radiometer) remote sensors over the ocean show promise of providing surface wind speeds and weather information to the oceanographer and meteorologist. This has aroused great interest in the investigation of the scattering of waves from the sea surface. A composite surface scattering theory is investigated. The two-scale scattering theory proposed by Semyonov was specifically extended to compute the emmision and scattering characteristics of ocean surfaces. The effects of clouds and rain on the radiometer and scatterometer observations are also investigated using horizontally stratified model atmospheres with rough sea surfaces underneath. Various cloud and rain models proposed by meteorologist were employed to determine the rise in the microwave temperature when viewing downward through these model atmospheres. For heavy rain-fall rates the effects of scattering on the radiative transfer process are included.

  8. Ocean Fertilization and Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cao, L.; Caldeira, K.

    2008-12-01

    It has been suggested that ocean fertilization could help diminish ocean acidification. Here, we quantitatively evaluate this suggestion. Ocean fertilization is one of several ocean methods proposed to mitigate atmospheric CO2 concentrations. The basic idea of this method is to enhance the biological uptake of atmospheric CO2 by stimulating net phytoplankton growth through the addition of iron to the surface ocean. Concern has been expressed that ocean fertilization may not be very effective at reducing atmospheric CO2 concentrations and may produce unintended environmental consequences. The rationale for thinking that ocean fertilization might help diminish ocean acidification is that dissolved inorganic carbon concentrations in the near-surface equilibrate with the atmosphere in about a year. If ocean fertilization could reduce atmospheric CO2 concentrations, it would also reduce surface ocean dissolved inorganic carbon concentrations, and thus diminish the degree of ocean acidification. To evaluate this line of thinking, we use a global ocean carbon cycle model with a simple representation of marine biology and investigate the maximum potential effect of ocean fertilization on ocean carbonate chemistry. We find that the effect of ocean fertilization on ocean acidification depends, in part, on the context in which ocean fertilization is performed. With fixed emissions of CO2 to the atmosphere, ocean fertilization moderately mitigates changes in ocean carbonate chemistry near the ocean surface, but at the expense of further acidifying the deep ocean. Under the SRES A2 CO2 emission scenario, by year 2100 simulated atmospheric CO2, global mean surface pH, and saturation state of aragonite is 965 ppm, 7.74, and 1.55 for the scenario without fertilization and 833 ppm, 7.80, and 1.71 for the scenario with 100-year (between 2000 and 2100) continuous fertilization for the global ocean (For comparison, pre-industrial global mean surface pH and saturation state of

  9. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  10. Radiogenic Isotopes As Paleoceanographic Tracers in Deep-Sea Corals: Advances in TIMS Measurements of Pb Isotopes and Application to Southern Ocean Corals

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; van de Flierdt, T.; Bridgestock, L. J.; Paul, M.; Rehkamper, M.; Robinson, L. F.; Adkins, J. F.

    2014-12-01

    Deep-sea corals have emerged as a valuable archive of deep ocean paleoceanographic change, with uranium-series dating providing absolute ages and the potential for centennial resolution. In combination with measurements of radiocarbon, neodymium isotopes and clumped isotopes, this archive has recently been exploited to reconstruct changes in ventilation, water mass sourcing and temperature in relation to millennial climate change. Lead (Pb) isotopes in both corals and seawater have also been used to track anthropogenic inputs through space and time and to trace transport pathways within the oceans. Better understanding of the oceanic Pb cycle is emerging from the GEOTRACES programme. However, while Pb isotopes have been widely used in environmental studies, their full potential as a (pre-anthropogenic) paleoceanographic tracer remains to be exploited. In deep-sea corals, challenges exist from low Pb concentrations in aragonite in comparison to secondary coatings, the potential for contamination, and the efficient elemental separation required for measurement by thermal ionisation mass spectrometry (TIMS). Here we discuss progress in measuring Pb isotopes in coral aragonite using a 207Pb-204Pb double spike on a ThermoFinnigan Triton TIMS. For a 2 ng NIST-981 Pb standard, the long term reproducibility (using 1011 Ω resistors) is ~1000 ppm (2 s.d.) on 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios. We now show that using a new 1012 Ω resistor to measure the small 204Pb beam improves the internal precision on these ratios from ~500 ppm (2 s.e.) to ~250 ppm (2 s.e.) and we envisage a potential improvement in the long term reproducibility as a consequence. We further assess the internal precision and external reproducibility of our method using a BCR-2 rock standard and an in-house coral standard. Preliminary evidence on the application of this method to natural samples is derived from cleaning experiments and replication tests on deep-sea corals from the Southern

  11. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    NASA Astrophysics Data System (ADS)

    Greely, T. M.; Lodge, A.

    2009-12-01

    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  12. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  13. Dual transmission grating based imaging radiometer for tokamak edge and divertor plasmas

    SciTech Connect

    Kumar, Deepak; Clayton, Daniel J.; Parman, Matthew; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael

    2012-10-15

    The designs of single transmission grating based extreme ultraviolet (XUV) and vacuum ultraviolet (VUV) imaging spectrometers can be adapted to build an imaging radiometer for simultaneous measurement of both spectral ranges. This paper describes the design of such an imaging radiometer with dual transmission gratings. The radiometer will have an XUV coverage of 20-200 A with a {approx}10 A resolution and a VUV coverage of 200-2000 A with a {approx}50 A resolution. The radiometer is designed to have a spatial view of 16 Degree-Sign , with a 0.33 Degree-Sign resolution and a time resolution of {approx}10 ms. The applications for such a radiometer include spatially resolved impurity monitoring and electron temperature measurements in the tokamak edge and the divertor. As a proof of principle, the single grating instruments were used to diagnose a low temperature reflex discharge and the relevant data is also included in this paper.

  14. Intercomparison of 51 radiometers for determining global horizontal irradiance and direct normal irradiance measurements

    SciTech Connect

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Wilcox, Stephen; Stoffel, Thomas

    2016-08-01

    Accurate solar radiation measurements require properly installed and maintained radiometers with calibrations traceable to the World Radiometric Reference. This study analyzes the performance of 51 commercially available and prototype radiometers used for measuring global horizontal irradiances or direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with an internal shading mask deployed at the National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012), and their measurements were compared under clear-sky, partly cloudy, and mostly cloudy conditions to reference values of low estimated measurement uncertainties. The intent of this paper is to present a general overview of each radiometer's performance based on the instrumentation and environmental conditions available at NREL.

  15. In-flight shortwave calibrations of the active cavity radiometers using tungsten lamps

    NASA Technical Reports Server (NTRS)

    Thomas, Susan; Lee, Robert B.; Gibson, Michael A.; Wilson, Robert S.; Bolden, William C.

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) active cavity radiometers are used to measure the incoming solar, reflected shortwave solar, and emitted longwave radiations from the Earth and atmosphere. The radiometers are located on the NASA's Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. Two of the radiometers, one wide field of view (WFOV) and one medium field of view (MFOV), measure the total radiation in the spectral region of 0.2 to 50 microns and the other two radiometers (WFOV and MFOV) measure the shortwave radiation in the spectral region of 0.2 to 5.0 microns. For the in-flight calibrations, tungsten lamp and the sun are used as calibration sources for shortwave radiometers. Descriptions of the tungsten lamp and solar calibration procedures and mechanisms are presented. The tungsten lamp calibration measurements are compared with the measurements of solar calibration for ERBS and NOAA-9 instruments.

  16. Thermal analysis of radiometer containers for the 122m hoop column antenna concept

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.

    1986-01-01

    A thermal analysis was conducted for the 122 Meter Hoop Column Antenna (HCA) Radiometer electronic package containers. The HCA radiometer containers were modeled using the computer aided graphics program, ANVIL 4000, and thermally simulated using two thermal programs, TRASYS and MITAS. The results of the analysis provided relationships between the absorptance-emittance ratio and the average surface temperature of the orbiting radiometer containers. These relationships can be used to specify the surface properties, absorptance and reflectance, of the radiometer containers. This is an initial effort in determining the passive thermal protection needs for the 122 m HCA radiometer containers. Several recommendations are provided which expand this effort so specific passive and active thermal protection systems can be defined and designed.

  17. A hot wire radiant energy source for mapping the field of view of a radiometer

    NASA Technical Reports Server (NTRS)

    Edwards, S. F.; Stewart, W. F.; Vann, D. S.

    1977-01-01

    The design and performance of a calibration device that allows the measurement of a radiometer's field of view are described. The heart of the device is a heated 0.0254-mm (0.001-inch) diameter filament that provides a variable, isothermal line source of radiant energy against a cold background. By moving this discrete line source across the field of view of a radiometer, the radiometer's spatial response can be completely mapped. The use of a platinum filament provides a durable radiation source whose temperature is stable and repeatable to 10 K over the range of 600 to 1200 K. By varying the energy emitted by the filament, the field of view of radiometers with different sensitivities (or multiple channel radiometers) can be totally mapped.

  18. Semiconductor millimeter and centimeter wave radiometer for the study of the radiation of an underlying surface

    NASA Technical Reports Server (NTRS)

    Bordonskiy, G. S.; Zazinov, A. N.; Kirsanov, Y. A.; Kravchenko, M. K.; Khapin, Y. B.; Sharapov, A. N.; Etkin, V. S.

    1979-01-01

    A theoretical and experimental investigation of a superheterodyne radiometer system with input frequency converter and intermediate frequency modulation is presented. Conditions are found, at which the temperature sensitivity of the device does not deteriorate. A sensitivity function to external parameters (temperature, heterodyne power) of a radiometer system with intermediate frequency modulation and a Schottky diode frequency converter is presented and calculated. Use of a frequency converter at the second harmonic of the heterodyne permitted simplication of the radiometer design and the use of a semiconductor heterodyne. A 3 cm range intermediate frequency amplifier permitted the use of centimeter wave radiometer signals. Fluctuation sensitivity of radiometers with a 1 sec time constant is 0.3 K at 3.4 mm and 0.06 K at 3 cm.

  19. Satellite Ocean Color Validation Using Merchant Ships. Chapter 10

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Cutchin, David L.; Deschamps, Pierre-Yves

    2001-01-01

    A collaborative measurement program for evaluating satellite-derived ocean color has been developed based on ships of opportunity (merchant, oceanographic) and specific instrumentation, the SIMBAD radiometer. The purpose of the measurement program is to complement, in a cost-effective way, dedicated evaluation experiments at sea, which are expensive, cannot be carried out over the full range of expected oceanic and atmospheric conditions, and generally provide a few match-ups. Ships participate in the program on a volunteer basis or at a very small cost, and measurement procedures do not interfere with other ship activities. The SIMBAD radiometer is a portable, easy-to-operate instrument that measures the basic ocean color variables, namely aerosol optical thickness and water-leaving radiance, in typical spectral bands of ocean-color sensors, i.e., 443, 490, 560, 670, and 870 nm. Measuring these variables at the time of satellite overpass is usually sufficient to verify satellite-derived ocean color and to evaluate atmospheric correction algorithms. Any ordinary crew can learn quickly how to make measurements. Importantly, the ship is not required to stop, making it possible to collect data along regular routes traveled by merchant ships in the world's oceans.

  20. Applications of SMAP data to retrieval of ocean surface wind and salinity

    NASA Astrophysics Data System (ADS)

    Yueh, Simon; Fore, Alexander; Tang, Wenqing; Hayashi, Akiko; Stiles, Bryan; Zhang, Fuqing; Weng, Yonghui; Real, Nicolas

    2016-10-01

    We have examined the L-band radiometer and radar data from NASA's Soil Moisture Active Passive (SMAP) mission for ocean research and applications. We find that the SMAP data are in excellent agreement with the geophysical model function (GMF) derived from the Aquarius data up to a wind speed of 20 ms-1. For severe wind conditions, the higher resolution data from SMAP allowed us to assess the sensitivity of L-band radiometer signals to hurricane force winds. We applied the L-band GMF to the retrieval of ocean surface wind and SSS from the SMAP data. Comparison with the European Center for Medium-Range Weather Forecasting, WindSat and RapidSCAT wind speeds suggests that SMAP's radiometer wind speed reaches an excellent accuracy of about 1.1-1.7 ms-1 below a wind speed of 20 ms-1. We have also found that the maximum wind speed derived from the SMAP radiometer data can reach 140 knots for severe storms and are generally in good agreement with the hurricane track analysis and operational aircraft Stepped Frequency Microwave Radiometer wind speeds. The spatial patterns of the SMAP SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features.