Science.gov

Sample records for advanced optical diagnostic

  1. Advanced optical diagnostics in hypersonic research

    NASA Astrophysics Data System (ADS)

    Cattolica, Robert J.

    1988-10-01

    The renewed emphasis on hypersonic research has stimulated a resurgence of interest in experimental methods for the study of high-speed flows. Improvement in the physical and chemical models used in computational fluid dynamic simulation of hypersonic flows requires a modern experimental data base. Optical diagnostics provide the capability to make nonintrusive measurements of density, temperature, velocity, and species concentration in hypersonic flows. The short test time available in hypersonic wind tunnels or flight experiments necessitates spectroscopic methods capable of producing high signal levels. Fluorescence methods based on laser or electron-beam excitation satisfy this requirement. For flight experiments, electron-beam excitation offers a number of advantages over laser excitation that include small device size, high electrical efficiency, and multiple-state and species-selective excitation. Disadvantages of the electron beam fluorescence (EBF) technique included a complex excitation mechanism and some limitations in high-density applications. Laser fluorescence methods (LIF) have been developed extensively in recent years for combustion research, but need further advances in miniaturization of lasers for application to in-flight hypersonic combustion and aerodynamic experiments. Both techniques require a fundamental understanding of the complications introduced by physical effects such as energy transfer and quenching of the fluorescence signal. With modern electro-optic instrumentation it is now possible to examine in detail the influence of these phenomena on EBF and LIF fluorescence spectra in the laboratory and to extend these measurement techniques for use in flight research. To illustrate some of the research required to develop these methods to address issues relevent to hypersonic flight, examples of experiments on the use of EBF and LIF spectroscopy for the measurement of nitric oxide concentration are presented.

  2. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  3. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at

  4. Spectrally Analyzed Embedded Infrared Fiber Optic Diagnostic of Advanced Composite Propellant Combustion

    DTIC Science & Technology

    2006-05-31

    observations, XM39. This nitramine composite propellant is 76 per cent RDX with most of the balance made up by the binder cellulose acetate butyrate and the...13 Figure 7 Predicted Model Spectrum for Pure Decomposition Gas at 6 atm with a 0.3 cm Absorption Path Length...program of in situ diagnostics and laboratory experiments has led to more advanced models of the gas phase processes in the dark zone and secondary flame

  5. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.

    PubMed

    Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L

    2013-08-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  6. Advances in diagnostic radiology.

    PubMed

    Runge, Val M

    2010-12-01

    Recent advances in diagnostic radiology are discussed on the basis of current publications in Investigative Radiology. Publications in the journal during 2009 and 2010 are reviewed, evaluating developments by modality and anatomic region. Technological advances continue to play a major role in the evolution and clinical practice of diagnostic radiology, and as such constitute a major publication focus. In the past 2 years, this includes advances in both magnetic resonance and computed tomography (in particular, the advent of dual energy computed tomography). An additional major focus of publications concerns contrast media, and in particular continuing research involving nephrogenic systemic fibrosis, its etiology, and differentiation of the gadolinium chelates on the basis of in vivo stability.

  7. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  8. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  9. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    NASA Technical Reports Server (NTRS)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  10. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  11. Optical beam diagnostics on PEP

    SciTech Connect

    Sabersky, A.P.

    1981-02-01

    In designing the PEP optical diagnostics we have been able to build on the experience gained with SPEAR. Most of the problems at SPEAR could be traced to the optical diagnostic system being inside the tunnel. A machine shutdown is required for any maintenance or modification. This implies that in order to make such an instrument successful, a large engineering effort must be mounted to ensure 100% operation at startup. The functions that do not work at startup may never be made to work; this has happened at several machines. Experimental setups are likewise risky and time consuming. A point which has been borne out in both SPEAR and PEP is that the mechanical part of the instrument, the special vacuum chamber, the optical mounts, the alignment and adjustments, require approximately 60% of the effort and cost of the optical diagnostics. It is far better to economize on detectors and electronics than on mechanical and optical essentials.

  12. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  13. Recent advances in diagnostic bronchoscopy

    PubMed Central

    Ong, Philip G.; Debiane, Labib G.

    2016-01-01

    The field of diagnostic bronchoscopy has been revolutionized in the last decade primarily with the advent of endobronchial ultrasound (EBUS) but also with the addition of multiple different techniques for “guided-bronchoscopy”. These advances have had a substantial impact in the management of lung cancer with bronchoscopy now providing both diagnosis and mediastinal staging in a single procedure. EBUS has, in fact, become the first choice for staging of the mediastinum over cervical mediastinoscopy (CM). Although EBUS is now a well-established technique, there are continuous efforts from the scientific community to improve its diagnostic performance, and these will be reviewed in this manuscript. The term “guided-bronchoscopy” was recently coined to describe a myriad of techniques that guide our bronchoscopes or bronchoscopic tools into the periphery of the lungs in addition to our conventional fluoroscopy. Electromagnetic and non-electromagnetic navigation, thin and ultrathin scopes, as well as radial-probe EBUS have collectively increased our yield for smaller peripheral lung lesions and continue to evolve. Despite this improved diagnostic yield, there is still ample room for improvement and newer techniques are under way. With new therapies available for patients with interstitial lung disease, achieving a specific histologic diagnosis is now of paramount importance. Given the high morbidity and mortality of surgical biopsies, bronchoscopic cryobiopsy is being rapidly adopted as a safer and effective alternative, and it is likely going to play a major role in the management of these diseases in the near future. This manuscript we will focus on recent advances in EBUS, guided-bronchoscopy, and the use of cryobiopsy. PMID:28149581

  14. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  15. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  16. Advanced valve motor operator diagnostic system

    SciTech Connect

    Thibault, C.

    1989-01-01

    A brief summary of the current use of diagnostic applications to motor-operated valves (MOVs) to satisfy the requirements of IE Bulletin 85-03, IE 85-03 (Supplement 1), and preventive maintenance applications is presented in this paper. This paper explains a new system for diagnostics, signature analysis, and direct measurement of actual load on MOV in the closed direction. This advanced valve motor operator diagnostic system (AVMODS) system comprises two complementary segments: (1) valve motor operator diagnostic system (V-MODS) and (2) motor current signature analysis (MCSA). AVMODS technical considerations regarding V-MODS and MCSA are discussed.

  17. Advanced Optical Fiber Communication Systems

    DTIC Science & Technology

    1992-08-01

    Optical Network with Physical Star Topology," Advanced Fiber Communications Technologies , Leonid G. Kazovsky... advances in the performance and capabilities of optical fiber communication systems. While some of these technologies are interrelated (for example...multi gigabit per second hybrid circuit/packet switched lightwave network ," Proc. SPIE Advanced Fiber Communications Technologies , Boston 󈨟, Sept.

  18. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  19. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  20. Advanced Diagnostics for Reacting Flows

    DTIC Science & Technology

    1993-11-24

    Te), and the early absorbing medium may be described by the Beer - atomic kinetic temperature (T). Local values of these Lambert relationship given by...4 In 2/1r)1 2/AvD V(x - s, a), (7) the observation volume defined by the collection optics L I _jii ll li I i l l Beer d at. Vol. 9. No. 1l...sponds to a 5% change in the calculated Stark width. 1974 J. Opt. Soc. Am. B/Vol. 9 No. 11/November 1992 Beer et al. :.0 I IThe determination of accurate

  1. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  2. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  3. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  4. Optical Diagnostic Imaging Of Surface Topography And Body Deformity

    NASA Astrophysics Data System (ADS)

    Windischbauer, Gerhard

    1989-04-01

    Modern diagnostic imaging techniques are providing three-dimensional images by the combination of analog sensing devices, powerful digital processors and graphic displays. Computer based optical imaging systems are used for detection and tracking of body deformities in Orthopaedics. To establish a morphometric data-base means for comparing and averaging similar shapes have to be prepared. Assuming fast technological advancements use at present and prospective applications are given.

  5. Advanced Light Source beam diagnostics systems

    SciTech Connect

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  6. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines.

  7. Advanced optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2005-09-01

    We are developing a robust and compact photonic proximity sensor for munition applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The photonic component development exploits pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies employed in the optical fuze design are vertical cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, and miniature lenses optics. This work will culminate in a robust, fully integrated, g-hardened component design suitable for proximity fuzing applications. This compact sensor will replace costly assemblies that are based on discrete lasers, photodetectors, and bulk optics. It will be mass manufacturable and impart huge savings for such applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  8. Optical diagnostics of dusty plasmas

    NASA Astrophysics Data System (ADS)

    Remy, Jerome Alphonse Robert

    The central topic of this thesis is dusty plasmas, in which particles are generated or injected. Such plasmas, when ignited in silane-based gas mixtures, are widely used in the semiconductor industry for depositing silicon layers (amorphous, micro-crystalline or polymorphous). These layers have applications in flat panel displays, sensors, and solar cells for instance. The inclusion of nano-crystallites in the amorphous silicon layer produces cells with enhanced properties but calls at the same time for a better comprehension and control of the particles' formation and growth. The role played by silicon-based radical species in these processes more particularly prompts detailed studies. Dusty plasmas are also a field of enduring interest to the astrophysics community. The interstellar medium can be simulated in a laboratory plasma to identify the carbon-based molecular complexes (Polycyclic Aromatic Hydrocarbons or PAHs) whose ions are thought to be responsible for unidentified emission and absorption bands seen in the spectra of starlight. This thesis covers some aspects of both industry-oriented and astrophysical dusty plasmas. The experimental study on silane-based plasmas includes optical measurements performed in emission, absorption, and by analyzing the light scattered by particles grown in-situ. The negative charge acquired by the particles while immersed in the plasma disturbs their dynamics but also the electrical properties of the discharge. Based on the monitoring of the plasma impedance, it is shown that the plasma is affected by the particles' presence, independently from the nature of the silane carrier gas. Optical emission spectroscopy performed on SiH, H a and H 2 excited states indicates that the silane dissociation occurs in the vicinity of the RF-powered electrode. A Fourier Transform Infrared (FTIR) time-dependent analysis of the silane consumption after plasma ignition demonstrates that the silane dissociation is actually a slow but

  9. Disposable optics for microscopy diagnostics.

    PubMed

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-20

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  10. Disposable optics for microscopy diagnostics

    PubMed Central

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-01-01

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications. PMID:26586153

  11. Advances in sarcoma diagnostics and treatment

    PubMed Central

    Dancsok, Amanda R; Asleh-Aburaya, Karama; Nielsen, Torsten O

    2017-01-01

    The heterogeneity of sarcomas with regard to molecular genesis, histology, clinical characteristics, and response to treatment makes management of these rare yet diverse neoplasms particularly challenging. This review encompasses recent developments in sarcoma diagnostics and treatment, including cytotoxic, targeted, epigenetic, and immune therapy agents. In the past year, groups internationally explored the impact of adding mandatory molecular testing to histological diagnosis, reporting some changes in diagnosis and/or management; however, the impact on outcomes could not be adequately assessed. Transcriptome sequencing techniques have brought forward new diagnostic tools for identifying fusions and/or characterizing unclassified entities. Next-generation sequencing and advanced molecular techniques were also applied to identify potential targets for directed and epigenetic therapy, where preclinical studies reported results for agents active within the receptor tyrosine kinase, mTOR, Notch, Wnt, Hedgehog, Hsp90, and MDM2 signaling networks. At the level of clinical practice, modest developments were seen for some sarcoma subtypes in conventional chemotherapy and in therapies targeting the pathways activated by various receptor tyrosine kinases. In the burgeoning field of immune therapy, sarcoma work is in its infancy; however, elaborate protocols for immune stimulation are being explored, and checkpoint blockade agents advance from preclinical models to clinical studies. PMID:27732970

  12. Modular initiator with integrated optical diagnostic

    DOEpatents

    Alam, M. Kathleen; Schmitt, Randal L.; Welle, Eric J.; Madden, Sean P.

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  13. Structural diagnostics using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Surace, Giuseppe; Chiaradia, Agostino

    1997-11-01

    After establishing the basis for assessing the structural implications of introducing a widespread sensor architecture in laminated composite materials in order to precisely identify and locate damage, the paper addresses the problem of structural diagnostics with a discussion of the development of several optical sensors. The research project will first investigate a passive optical fiber impact sensor to be implemented in the matrix of a composite material used in aeronautic and automotive applications. The senor's operating principle is based on the changes in propagation conditions occurring in a fiber subjected to transverse compression: under these circumstances, structural microdistortions produce local energy losses and hence a reduction in the optical power which propagates in the fiber and can be measured at its opposite end. As optical power losses also take place as a result of micro-bending of the optical fiber's longitudinal axis, a preliminary feasibility study will measure power attenuation versus fiber curve radius as the first step in the development of an optical fiber delamination sensor which locates separations between the layers of a composite material, i.e. debonding of sandwich panel core faces. Finally, an active impact sensor will be developed which uses optical fiber's sensitivity to pressure changes to detect the pressure gradient caused by an approaching vehicle or obstacle. The automotive industry will be able to make strategic use of these sensors, for example by installing them on vehicle sides to active the side airbag in the event of impact or collision.

  14. Advanced optical condition monitoring. [of rocket engines

    NASA Technical Reports Server (NTRS)

    Cross, G.; Barkhoudarian, S.

    1991-01-01

    The application of Advanced Optical Condition Monitoring to optical leak detection and plume spectrometry is discussed. The development of these selected sensors for propulsion system monitoring is addressed.

  15. Diagnostic and Therapeutic Advances: Distal Symmetric Polyneuropathy

    PubMed Central

    Callaghan, Brian C.; Price, Raymond S.; Feldman, Eva L.

    2016-01-01

    Importance Peripheral neuropathy is a highly prevalent and morbid condition affecting 2–7% of the population. Patients frequently suffer from pain and are at risk of falls, ulcerations, and amputations. We aimed to review recent diagnostic and therapeutic advances in peripheral neuropathy in distal symmetric polyneuropathy, the most common subtype of peripheral neuropathy. Observations and Advances Current evidence supports limited routine laboratory testing in patients with distal symmetric polyneuropathy. Patients without a known cause should have a complete blood count, comprehensive metabolic panel, B12, serum protein electrophoresis with immunofixation, fasting glucose, and a glucose tolerance test. The presence of atypical features such as asymmetry, non-length-dependence, motor predominance, acute or subacute onset, and/or prominent autonomic involvement should prompt a consultation with a neurologist or neuromuscular specialist. Electrodiagnostic tests and magnetic resonance imaging of the neuroaxis are the main drivers of the cost of the diagnostic evaluation, but evidence supporting their use is lacking. Strong evidence supports the use of tricyclic antidepressants, serotonin and norepinephrine reuptake inhibitors, and voltage-gated calcium channel ligands in the treatment of neuropathic pain. More intensive glucose control substantially reduces the incidence of distal symmetric polyneuropathy in patients with type 1 diabetes, but does not in type 2 diabetes. Conclusions and Relevance The opportunity exists to improve guideline concordant testing in distal symmetric polyneuropathy patients. Moreover, the role of electrodiagnostic tests needs to be further defined, and interventions to reduce magnetic resonance imaging use in this population are needed. Even though several efficacious medications exist for neuropathic pain treatment, pain is still under-recognized and undertreated. New disease modifying medications are needed to prevent and treat

  16. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  17. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  18. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  19. Optical spectra analysis for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  20. Complementary optical diagnostics of noble gas plasmas

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Stewart, R. S.

    2001-10-01

    In this talk we will discuss our theoretical modeling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electrical fields ranging from 3x10-17 Vcm^2 to 2x10-16 Vcm^2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the ^1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to move complex systems, including the addition of molecules for EDF determination.

  1. Optical Diagnostics for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Bencic, T. J.; Martin, R. E.

    2004-01-01

    The translucent nature of ceramic oxide thermal barrier coatings (TBCs) provides an opportunity to employ optical probes to monitor temperature gradients and buried damage propagation within the coating. An important advantage of noncontact optical diagnostics is that they are amendable to health monitoring of TBCs in service. In this paper, two optical diagnostic approaches, operating in different wavelength regimes, are discussed. The first approach is the use of mid-infrared reflectance (MIR) to monitor the progression of TBC delamination produced by thermal cycling. This approach takes advantage of the maximum transparency of the TBCs at mid-infrared wavelengths, in particular, between 3 and 5 microns. Recent progress in extending the MIR method to a more practical visual inspection tool will be presented. A second approach, using visible wavelengths, is the embedding of thermographic phosphors within the TBC to add sensing functions to the coating that can provide depth-selective information about temperature gradients and TBC integrity. Emphasis will be given to the use of fluorescence decay time measurements to provide temperature readings from a thermographic phosphor layer residing beneath the TBC.

  2. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  3. Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

    SciTech Connect

    O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.

    1997-01-01

    This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

  4. The advanced LIGO input optics

    NASA Astrophysics Data System (ADS)

    Mueller, Chris L.; Arain, Muzammil A.; Ciani, Giacomo; DeRosa, Ryan. T.; Effler, Anamaria; Feldbaum, David; Frolov, Valery V.; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J.; Kokeyama, Keiko; Korth, William Z.; Martin, Rodica M.; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H.; Tanner, David B.; Vorvick, Cheryl; Williams, Luke F.; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  5. The advanced LIGO input optics

    SciTech Connect

    Mueller, Chris L. Arain, Muzammil A.; Ciani, Giacomo; Feldbaum, David; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Martin, Rodica M.; Reitze, David H.; Tanner, David B.; Williams, Luke F.; Mueller, Guido; DeRosa, Ryan T.; Effler, Anamaria; Kokeyama, Keiko; Frolov, Valery V.; Mullavey, Adam; Kawabe, Keita; Vorvick, Cheryl; King, Eleanor J.; and others

    2016-01-15

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  6. Multispectral optical tweezers for molecular diagnostics of single biological cells

    NASA Astrophysics Data System (ADS)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  7. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  8. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  9. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  10. Optical diagnostics of osteoblast cells and osteogenic drug screening

    NASA Astrophysics Data System (ADS)

    Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.

    2016-02-01

    Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.

  11. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  12. [Advances in the diagnostics of Alzheimer's disease].

    PubMed

    Fiedler, U; Wiltfang, J; Peters, N; Benninghoff, J

    2012-05-01

    Due to the demographic developments, diagnosis and treatment, dementia constitutes an increasing medical challenge and is likely to have an increasing socioeconomic impact. Dementia does not reflect a single disease but encompasses a variety of underlying conditions, heterogeneous clinical courses and therapeutic approaches, among which Alzheimer's disease represents the most common cause. Therefore, a thorough differential diagnosis of dementia is of major importance. To date the current diagnosis of dementia according to ICD-10/DMS-IV is based on clinical criteria. In addition, the concept of mild cognitive impairment comprises early cognitive dysfunction without clinically apparent dementia. Alzheimer's disease is more and more conceptualized as a disease continuum with mild cognitive impairment as an early and manifest dementia as the later stage of the disease. This review gives an overview on the current diagnostic approaches and the proposed revisions of diagnostic and research criteria for Alzheimer's disease.

  13. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  14. Genetics, diagnostics and therapeutic advances in NAFLD

    PubMed Central

    Rinella, Mary E.; Sanyal, Arun J.

    2016-01-01

    In 2014, NAFLD was confirmed as the fastest growing aetiology for hepatocellular cancer in the USA. However, 2014 also saw progress in our understanding of the heritability and pathogenesis of NAFLD, and an important clinical trial targeting the farnesoid X receptor pathway has illustrated advances in developing a pharmacological therapy. PMID:25560844

  15. Optical Diagnostics of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Majewski, Mark Steven

    The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy

  16. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  17. Advances in paper-based point-of-care diagnostics.

    PubMed

    Hu, Jie; Wang, ShuQi; Wang, Lin; Li, Fei; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2014-04-15

    Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC.

  18. Optically-Based Diagnostics for Gas-Phase Laser Development

    DTIC Science & Technology

    2010-08-01

    Phase Laser Development Acknowledgement of Support and Disclaimer This material is based upon work supported by Air Force Office of Scientific...00-2010 4. TITLE AND SUBTITLE Optically-Based Diagnostics for Gas-Phase Laser Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Sciences Inc. Role of Optical Diagnostics in High Energy Gas Laser Development  Chemically rich, energetic, reacting flow with competing phenomena

  19. Handheld optical coherence tomography scanner for primary care diagnostics.

    PubMed

    Jung, Woonggyu; Kim, Jeehyun; Jeon, Mansik; Chaney, Eric J; Stewart, Charles N; Boppart, Stephen A

    2011-03-01

    The goal of this study is to develop an advanced point-of-care diagnostic instrument for use in a primary care office using handheld optical coherence tomography (OCT). This system has the potential to enable earlier detection of diseases and accurate image-based diagnostics. Our system was designed to be compact, portable, user-friendly, and fast, making it well suited for the primary care office setting. The unique feature of our system is a versatile handheld OCT imaging scanner which consists of a pair of computer-controlled galvanometer-mounted mirrors, interchangeable lens mounts, and miniaturized video camera. This handheld scanner has the capability to guide the physician in real time for finding suspicious regions to be imaged by OCT. In order to evaluate the performance and use of the handheld OCT scanner, the anterior chamber of a rat eye and in vivo human retina, cornea, skin, and tympanic membrane were imaged. Based on this feasibility study, we believe that this new type of handheld OCT device and system has the potential to be an efficient point-of-care imaging tool in primary care medicine.

  20. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  1. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  2. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  3. Diagnostics for advanced laser acceleration experiments

    SciTech Connect

    Misuri, Alessio

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  4. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  5. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  6. Technology Advances in Support of Fusion Plasma Imaging Diagnostics

    NASA Astrophysics Data System (ADS)

    Jiang, Qi; Lai, Jiali; Hu, Fengqi; Li, Maijou; Chang, Yu-Ting; Domier, Calvin; Luhmann, Neville, Jr.

    2012-10-01

    Innovative technologies are under investigation in key areas to enhance the performance of microwave and millimeter-wave fusion plasma imaging diagnostics. Novel antenna and mixer configurations are being developed at increasingly higher frequencies, to facilitate the use of electron cyclotron emission imaging (ECEI) on high field (> 2.6 T) plasma devices. Low noise preamplifier-based imaging antenna arrays are being developed to increase the sensitivity and dynamic range of microwave imaging reflectometry (MIR) diagnostics for the localized measurement of turbulent density fluctuations. High power multi-frequency sources, fabricated using advanced CMOS technology, offer the promise of allowing MIR-based diagnostic instruments to image these density fluctuations in 2-D over an extended plasma volume in high performance tokamak plasmas. Details regarding each of these diagnostic development areas will be presented.

  7. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    NASA Astrophysics Data System (ADS)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  8. MEMS for enhanced optical diagnostics in endoscopy.

    PubMed

    Chamot, Stéphane R; Depeursinge, Christian

    2007-01-01

    Endoluminal microscopy and spectroscopy could significantly improve the efficiency of clinical endoscopic examination by allowing in-situ detection, staging and grading of potentially cancerous lesions. Indeed, high-end optical microscopy techniques such as confocal, coherence-gated and single-/multi-photon microscopy today deliver optical histology information and spectrally/spatially resolved measurements of tissue reflectance allow grading and staging of precancerous/cancerous lesions. Owing to the brisk development of MEMS technologies, miniaturization requirements satisfying the dimension requirements for endoscope integration have been met within the last decade and the present paper will report on the current and future development of MEMS-based endoscopes for optical diagnosis.

  9. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  10. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  11. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  12. Advances in optics for biotechnology, medicine and surgery.

    PubMed

    Hillman, Elizabeth M C; Elson, Daniel S; Bigio, Irving J; Levenson, Richard M; So, Peter T C

    2012-03-01

    The editors introduce the Biomedical Optics Express feature issue, "Advances in Optics for Biotechnology, Medicine and Surgery," which includes 12 contributions from attendees of the 2011 conference Advances in Optics for Biotechnology, Medicine and Surgery XII.

  13. Optical diagnostics in the oral cavity: an overview

    PubMed Central

    Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A

    2014-01-01

    As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. PMID:20561224

  14. Modern optical diagnostics in engine research

    NASA Astrophysics Data System (ADS)

    Leipertz, A.; Wensing, M.

    2007-10-01

    Different optical diagnistic techniques are used to gain insight into the single steps forming the functioning chain of the engine combustion process and the complex interplay between these single steps. Examples are given for the application of Mie scattering, laser-induced fluorescence, Raman scattering, CARS and laser-induced incandescence to study diesel engine, SI engine and HCCI combustion processes. The careful adaptation of each optical tool to one part of the engine process makes it possible to get valuable information with minimum change of the process investigated. The paper demonstrates that in addition to conventional engine measurement techniques, a number of different optical techniques must be applied -- and sometimes simultaneously -- to successfully determine the critical parameters of the processes and to investigate their influences on the performance and the quality of real engine combustion.

  15. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST).

    PubMed

    Xu, Z; Wu, Z W; Gao, W; Chen, Y J; Wu, C R; Zhang, L; Huang, J; Chang, J F; Yao, X J; Gao, W; Zhang, P F; Jin, Z; Hou, Y M; Guo, H Y

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  16. Femtosecond Optics: Advanced Devices and Ultrafast Phenomena

    DTIC Science & Technology

    2007-05-31

    periodically poled lithium niobate (PPLN), which already represents a significant advance . Gain is given by G=0.25(1+ exp(gl)), where for 7 t2 PPLN, g...H. Sotobayashi, J.T. Gopinath, and E.P. Ippen, ൟ cm long Bi20 3-based EDFA for picosecond pulse amplification with 80 nm gain bandwidth," IEEE...will be minimized by keeping the data in the optical domain. Such all- optical networks require advanced photonic technologies for a variety of

  17. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  18. Optical reflectance as a dynamic temperature diagnostic

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Seagle, Christopher; Ao, Tom

    2013-06-01

    Reliable temperature measurements of materials under dynamic compression remain elusive, especially in quasi-isentropic experiments. Optical pyrometry with nanosecond time resolution is essentially impossible for samples below 1000 K--not enough photons are emitted to make satisfactory measurements. Rather than relying on light emission from the sample, one can also infer temperature by the light reflected by the sample. Thermoreflectance measurements are a proven technique in static systems and can readily be applied to dynamic compression experiments. Gold is an ideal candidate for dynamic thermoreflectance measurements. Gold coatings rapidly equilibriate with their surroundings, acting as an embedded gauge that can be probed optically. The optical properties of gold vary in the visible spectrum, and these variations are known to change with temperature, so in principle one can infer temperature from time-resolved reflectivity measurements. Calibration is the largest barrier for using embedded gold gauges because both temperature and pressure contribute to the measurement. This presentation will discuss static and dynamic calibration efforts to establish gold as a dynamic thermoreflectance standard. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  19. Freeform and advanced optics for ELT instrumentation

    NASA Astrophysics Data System (ADS)

    Geyl, Roland

    2016-07-01

    In this paper we share some recent work performed at REOSC in the domain of advanced optics for space and that is also directly applicable to astronomical instrumentation, e.g. for the Extremely Large Telescopes (ELT), the construction of which has already started. We present firstly the results of some design investigations performed on Three Mirror Anastigmat (TMA) imaging optics when using freeform optical surfaces clearly showing gain in performance (WFE, distortion, … ) or compactness of the optics. We separate smart freeform from more aggressive freeform offering increased level of gain in design performances. Secondly we present our development in freeform and direct off-axis high performance optical manufacturing capabilities and the industrialization efforts conducted in the frame of the European Extremely Large Telescope (E-ELT) primary mirror segments. A third subject is the demonstration of an extreme freeform surface manufacturing with the prototyping of a huge 500 mm aperture, 90° deviation angle, F/2.5 high output NA Off Axis Parabola (OAP), a unique achievement aimed to confirm the viability of potential new design opportunities involving such type of extreme optics. Finally we present in this paper our technology development on polishing layer for SiC material, named R-SiC, a polishing layer that reduces costs, risks and schedule for advanced SiC optics manufacturing for Vis and IR applications.

  20. Neurogenic thoracic outlet syndrome: current diagnostic criteria and advances in MRI diagnostics.

    PubMed

    Magill, Stephen T; Brus-Ramer, Marcel; Weinstein, Philip R; Chin, Cynthia T; Jacques, Line

    2015-09-01

    Neurogenic thoracic outlet syndrome (nTOS) is caused by compression of the brachial plexus as it traverses from the thoracic outlet to the axilla. Diagnosing nTOS can be difficult because of overlap with other complex pain and entrapment syndromes. An nTOS diagnosis is made based on patient history, physical exam, electrodiagnostic studies, and, more recently, interpretation of MR neurograms with tractography. Advances in high-resolution MRI and tractography can confirm an nTOS diagnosis and identify the location of nerve compression, allowing tailored surgical decompression. In this report, the authors review the current diagnostic criteria, present an update on advances in MRI, and provide case examples demonstrating how MR neurography (MRN) can aid in diagnosing nTOS. The authors conclude that improved high-resolution MRN and tractography are valuable tools for identifying the source of nerve compression in patients with nTOS and can augment current diagnostic modalities for this syndrome.

  1. ORION OPTICAL DIAGNOSTIC SYSTEMS Construction and commissioning progress

    NASA Astrophysics Data System (ADS)

    Palmer, J. B. A.; Drew, D.; Fyrth, J.; Hill, M. P.; Kemshall, P.; Oades, K.; Harvey, E.; Gumbrell, E. T.

    2012-10-01

    The Orion facility provides a unique combined long- and short-pulse laser capability. We report on the progress in constructing a comprehensive plasma optical diagnostic suite for the facility, developed for a range of warm dense matter and other materials' properties experiments. The first VISAR imaging line for the suite is due to be commissioned in 2012 and its progress will be reported. The system consists of configurable optical elements mounted on a TIM, relay optics to an optical table, optics to direct the light through a VISAR bed onto an optical streak camera and the infrastructure systems to provide remote control and services. Due to the operational model of Orion the diagnostic must have comprehensive remote control for its set up and alignment. This makes the system design more complicated than otherwise. The sub-systems required to give the degree of remote control required will be described. A modified version of the suite's ASBO imaging line was used in 2011 to support the commissioning of Orion's long- and short-pulse laser beam lines by imaging optical emission from laser targets. The set up of this system and the data it recorded with an optical streak camera during a short pulse experiment will be presented.

  2. Gaseous laser targets and optical diagnostics for studying compressible hydrodynamic instabilities

    SciTech Connect

    Edwards, J M; Robey, H; Mackinnon, A

    2001-06-29

    Explore the combination of optical diagnostics and gaseous targets to obtain important information about compressible turbulent flows that cannot be derived from traditional laser experiments for the purposes of V and V of hydrodynamics models and understanding scaling. First year objectives: Develop and characterize blast wave-gas jet test bed; Perform single pulse shadowgraphy of blast wave interaction with turbulent gas jet as a function of blast wave Mach number; Explore double pulse shadowgraphy and image correlation for extracting velocity spectra in the shock-turbulent flow interaction; and Explore the use/adaptation of advanced diagnostics.

  3. Advanced Geothermal Optical Transducer (AGOT)

    SciTech Connect

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full scale. Employing a pair of identical, low

  4. Innovations in optical coupling of the KSTAR electron cyclotron emission imaging diagnostic

    SciTech Connect

    Liang, T.; Tobias, B.; Kong, X.; Domier, C. W.; Luhmann, N. C. Jr.; Lee, W.; Yun, G. S.; Park, H. K.

    2010-10-15

    The installation of a new electron cyclotron emission imaging diagnostic for the Korea Superconducting Tokamak Advanced Research (KSTAR) is underway, making use of a unique optical port cassette design, which allows placement of refractive elements inside the cryostat region without adverse effects. The result is unprecedented window access for the implementation of a state of the art imaging diagnostic. A dual-array optical design has been developed, capable of simultaneously imaging the high and low field sides of the plasma with independent features of focal plane translation, vertical zoom, and radial channel spacing. The number of translating optics has been minimized by making use of a zoom lens triplet and parabolic plasma facing lens for maximum channel uniformity over a continuous vertical zoom range of 3:1. The simulated performance of this design is presented along with preliminary laboratory characterization data.

  5. Optical diagnostics of a gliding arc.

    PubMed

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

  6. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-11-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  7. A Compact Fiber Optic Eye Diagnostics System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen; Zigler, J. Samuel, Jr.

    1995-01-01

    A new fiber optic probe development for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of the eye. The probe positioned in front of an eye, delivers a low power (approximately a few mu W) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. For a clinical use, the probe is mounted on a standard slit-lamp apparatus simply using Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  8. A Compact Fiber Optic Eye Diagnostic System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  9. A fiber optic sensor for ophthalmic refractive diagnostics

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.

    1992-01-01

    This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.

  10. Synthetic diagnostic for the beam emission spectroscopy diagnostic using a full optical integration

    NASA Astrophysics Data System (ADS)

    Hausammann, L.; Churchill, R. M.; Shi, L.

    2017-02-01

    The beam emission spectroscopy (BES) diagnostic is used to measure fluctuations of electron density in the edge and core of fusion plasmas, and is a key in understanding turbulence in a plasma reactor. A synthetic BES diagnostic for the turbulence simulation code XGC1 has been developed using a realistic neutral beam model and an optical system easily adaptable to different kinds of tokamaks. The beam is modeled using multiple beam energy components, each one with a fraction of the total energy and their own mass and energy (mono-energetic components). The optical system consists of a lens focusing a bundle of optical fibers and resulting in a 2D measurement. The synthetic diagnostic gives similar correlation functions and behaviour of the turbulences than the usual methods that do not take into account the full 3D optical effects. The results, based on a simulation of XGC1, contain an analysis of the correlation (in space and time), a comparison of different approximations possible and their importance in accurately modeling the BES diagnostic.

  11. Advanced optics in an interdisciplinary graduate program

    NASA Astrophysics Data System (ADS)

    Nic Chormaic, S.

    2014-07-01

    The Okinawa Institute of Science and Technology Graduate University, established in November 2011, provides a 5- year interdisciplinary PhD program, through English, within Japan. International and Japanese students entering the program undertake coursework and laboratory rotations across a range of topics, including neuroscience, molecular science, physics, chemistry, marine science and mathematics, regardless of previous educational background. To facilitate interdisciplinarity, the university has no departments, ensuring seamless interactions between researchers from all sectors. As part of the PhD program a course in Advanced Optics has been developed to provide PhD students with the practical and theoretical skills to enable them to use optics tools in any research environment. The theoretical aspect of the course introduces students to procedures for complex beam generation (e.g. Laguerre-Gaussian), optical trapping, beam analysis and photon optics, and is supported through a practical program covering introductory interference/diffraction experiments through to more applied fiber optics. It is hoped that, through early exposure to optics handling and measurement techniques, students will be able to develop and utilize optics tools regardless of research field. In addition to the formal course in Advanced Optics, a selection of students also undertakes 13 week laboratory rotations in the Light-Matter Interactions research laboratory, where they work side-by-side with physicists in developing optics tools for laser cooling, photonics or bio-applications. While currently in the first year, conclusive results about the success of such an interdisciplinary PhD training are speculative. However, initial observations indicate a rich cross-fertilization of ideas stemming from the diverse backgrounds of all participants.

  12. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  13. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  14. Diagnosis of Pulmonary Tuberculosis: Recent Advances and Diagnostic Algorithms

    PubMed Central

    2015-01-01

    Pulmonary tuberculosis (TB) persists as a great public health problem in Korea. Increases in the overall age of the population and the rise of drug-resistant TB have reinforced the need for rapid diagnostic improvements and new modalities to detect TB and drug-resistant TB, as well as to improve TB control. Standard guidelines and recent advances for diagnosing pulmonary TB are summarized in this article. An early and accurate diagnosis of pulmonary TB should be established using chest X-ray, sputum microscopy, culture in both liquid and solid media, and nucleic acid amplification. Chest computed tomography, histopathological examination of biopsy samples, and new molecular diagnostic tests can be used for earlier and improved diagnoses, especially in patients with smear-negative pulmonary TB or clinically-diagnosed TB and drug-resistant TB. PMID:25861338

  15. Status of neutron diagnostics on the experimental advanced superconducting tokamak.

    PubMed

    Zhong, G Q; Hu, L Q; Pu, N; Zhou, R J; Xiao, M; Cao, H R; Zhu, Y B; Li, K; Fan, T S; Peng, X Y; Du, T F; Ge, L J; Huang, J; Xu, G S; Wan, B N

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using (252)Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  16. Performance of Advanced Light Source particle beam diagnostics

    SciTech Connect

    Hinkson, J.

    1993-05-01

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 {Omega} Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed.

  17. Advanced high-bandwidth optical fuzing technology

    NASA Astrophysics Data System (ADS)

    Liu, Jony J.; von der Lippe, Christian M.

    2005-10-01

    A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  18. Optical Diagnostics on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2016-10-01

    Interferometry and Thomson Scattering are implemented on the HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) device to provide time resolved measurements of electron density and spatially resolved measurements of electron temperature, respectively. HIT-SI3 is a modification of the original HIT-SI apparatus that uses three injectors instead of two. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and spheromak stability. The interferometer system makes use of an intermediate frequency between two parallel 184.3 μm Far-Infrared (FIR) laser cavities which are optically pumped by a CO2 laser. The phase shift in this beat frequency due to the plasma index of refraction is used to calculate the line-integrated electron density. To measure the electron temperature, Thomson Scattered light from a 20 J (1 GW pulse) Ruby laser off of free electrons in the HIT-SI3 plasma is measured simultaneously at four locations across the spheromak (nominally 23 cm minor radius). Polychromators bin the collected light into 3 spectral bands to detect the relative level of scattering. Work supported by the D.O.E.

  19. Halo current diagnostic system of experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  20. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  1. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  2. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  3. Development of an otolaryngological interferometric fiber optic diagnostic probe

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Saravia, Eduardo; Parnes, Steven M.; Cacace, Anthony T.

    1992-08-01

    Current medical instrumentation research at InterScience, Inc. is aimed at utilizing state of the art electro-optics in the development of a diagnostic fiber optic instrument capable of quantifying vibration patterns in real time. This work is in collaboration with the Division of Otolaryngology of the Albany Medical College. The innovative diagnostic probe system design involves the miniaturization of an electronic speckle pattern interferometry (ESPI) system through the use of fiber optic elements coupled with high speed image acquisition from a solid state matrix detector. Subsequent frame by frame processing produces a high quality three-dimensional spatial representation of the vibrational pattern. The diagnostic probe system is being developed for quantitative tympanic membrane and vocal cord vibration analysis. The significance of the introduction of this instrument to the medical community is the contribution it could make in the efficiency and effectiveness of the diagnosis of otolaryngological disorders. Specific applications include the evaluation of tympanosclerosis, stiffness related middle ear disorders, ossicular chain abnormalities, tympanic membrane replacement, vocal dysphonias, and early detection of laryngeal carcinomas, cysts, and phenomenological properties of mucosal wave dynamics. The current instrumentation research is focused on the production of a prototype system for clinical trials. This research is based in ESPI optical system development and miniaturization, system hardware and software development, and clinical design of the probe heads within anatomical limitations. Significant advantages of this diagnostic tool over currently used instrumentation and procedures are the real time capabilities of the instrument, the ability to quantify the vibrational pattern in time and space, and the possibility of establishing a database of patient history and disorder characteristics. Once fully developed and integrated into the clinical

  4. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  5. Advanced optics experiments using nonuniform aperture functions

    NASA Astrophysics Data System (ADS)

    Wood, Lowell T.

    2013-05-01

    A method to create instructive, nonuniform aperture functions using spatial frequency filtering is described. The diffraction from a single slit in the Fresnel limit and the interference from a double slit in the Fraunhofer limit are spatially filtered to create electric field distributions across an aperture to produce apodization, inverse apodization or super-resolution, and apertures with phase shifts across their widths. The diffraction effects from these aperture functions are measured and calculated. The excellent agreement between the experimental results and the calculated results makes the experiment ideal for use in an advanced undergraduate or graduate optics laboratory to illustrate experimentally several effects in Fourier optics.

  6. Advanced Optical A/D Converter

    DTIC Science & Technology

    1993-05-01

    before the receiver and separately by reducing the gain in the EDFA . It is important to note that the optical power level was varied while all the...could not exceed roughly 50% of the maximum power available at full gain from the EDFA . 4.2 Baseband-Mode Testing The single-channel system was also...AD-A275 663 Advanced Optical A/D Convert M.C. Hamilton, J.A. Bell, D.A. Leep, J.P. Lin The Boeing Company Boeing Defense and Space Group P.O. Box

  7. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  8. Intraoral fiber optic-based diagnostic for periodontal disease

    SciTech Connect

    Johnson, P W; Gutierrez, D M; Everett, M J; Brown, S B; Langry, K C; Colston, B W; Roe, J N

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research tool.

  9. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  10. Soliton molecules for advanced optical telecommunications

    NASA Astrophysics Data System (ADS)

    Mitschke, Fedor; Hause, Alexander; Mahnke, Christoph

    2016-11-01

    Recent developments in the technology of optical telecommunications are pushed forward by the rapidly growing demand for data-carrying capacity. Current approaches are discussed; most lines of investigation are limited to the linear (i.e. low power) regime. It is shown how this restriction poses a limit for further evolution. If, on the other hand, the nonlinear regime is entered, recent developments about soliton molecules offer a possibility to advance further.

  11. Adaptive optics for improved retinal surgery and diagnostics

    SciTech Connect

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  12. A Proposal for an Advanced Drilling System with Real-Time Diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    Finger, J.T.; Mansure, A.J.; Prairie, M.R.

    1999-07-12

    In this paper, we summarize the rationale for an advanced system called Diagnostics-While-Drilling (DWD) and describe its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. We outline a Program Plan for DOE, university, and industry to cooperate in the development of DWD technology.

  13. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  14. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  15. Head & neck optical diagnostics: vision of the future of surgery

    PubMed Central

    Upile, Tahwinder; Jerjes, Waseem; Sterenborg, Henricus JCM; El-Naggar, Adel K; Sandison, Ann; Witjes, Max JH; Biel, Merrill A; Bigio, Irving; Wong, Brian JF; Gillenwater, Ann; MacRobert, Alexander J; Robinson, Dominic J; Betz, Christian S; Stepp, Herbert; Bolotine, Lina; McKenzie, Gordon; Mosse, Charles Alexander; Barr, Hugh; Chen, Zhongping; Berg, Kristian; D'Cruz, Anil K; Stone, Nicholas; Kendall, Catherine; Fisher, Sheila; Leunig, Andreas; Olivo, Malini; Richards-Kortum, Rebecca; Soo, Khee Chee; Bagnato, Vanderlei; Choo-Smith, Lin-Ping; Svanberg, Katarina; Tan, I Bing; Wilson, Brian C; Wolfsen, Herbert; Yodh, Arjun G; Hopper, Colin

    2009-01-01

    Review paper and Proceedings of the Inaugural Meeting of the Head and Neck Optical Diagnostics Society (HNODS) on March 14th 2009 at University College London. The aim of our research must be to provide breakthrough translational research which can be applied clinically in the immediate rather than the near future. We are fortunate that this is indeed a possibility and may fundamentally change current clinical and surgical practice to improve our patients' lives. PMID:19594907

  16. Optical diagnostic investigation of low Reynolds number nozzle flows

    NASA Technical Reports Server (NTRS)

    Micci, Michael M.

    1991-01-01

    The objectives are to obtain temperature, density and velocity profile measurements in the expansion region of low Reynolds number nozzles through the use of optical diagnostics. An LIF system will be used to probe the expansion of a microwave-heated expansion in the Center vacuum facility. The experimental measurements made in this program will be compared to numerical predictions obtained by Drs. Charles Merkle and Lyle Long.

  17. Optical Diagnostics for Flow Control on Small Wings

    DTIC Science & Technology

    2016-07-13

    AFRL-AFOSR-VA-TR-2016-0249 Optical diagnostics for flow control on small wings GEOFF SPEDDING UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE... control on small wings 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-15-1-0255 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey R Spedding 5d. PROJECT

  18. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  19. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  20. Optical diagnostics of mercury jet for an intense proton target.

    PubMed

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.

  1. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  2. Human toxocariasis: current advances in diagnostics, treatment, and interventions.

    PubMed

    Moreira, Gustavo Marçal Schmidt Garcia; Telmo, Paula de Lima; Mendonça, Marcelo; Moreira, Angela Nunes; McBride, Alan John Alexander; Scaini, Carlos James; Conceição, Fabricio Rochedo

    2014-09-01

    Toxocariasis is a neglected zoonosis caused by the nematodes Toxocara canis and Toxocara cati. This disease is widespread in many countries, reaching high prevalence independently of the economic conditions. However, the true number of cases of toxocariasis is likely to be underestimated owing to the lack of adequate surveillance programs. Although some diagnostic tests are available, their sensitivity and specificity need to be improved. In addition, treatment options for toxocariasis are limited and are non-specific. Toxocariasis is listed as one of the five most important neglected diseases by the CDC. This review presents recent advances related to the control of toxocariasis, including new immunodiagnostics, therapies, and drug formulations, as well as novel interventions using DNA vaccines, immunomodulators, and probiotics.

  3. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines

    PubMed Central

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A.; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-01-01

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid–based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. PMID:26409271

  4. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines.

    PubMed

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-10-15

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required.

  5. Recent advances in molecular diagnostics of hepatitis B virus.

    PubMed

    Datta, Sibnarayan; Chatterjee, Soumya; Veer, Vijay

    2014-10-28

    Hepatitis B virus (HBV) is one of the important global health problems today. Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocellular carcinoma. Presently, routine HBV screening and diagnosis is primarily based on the immuno-detection of HBV surface antigen (HBsAg). However, identification of HBV DNA positive cases, who do not have detectable HBsAg has greatly encouraged the use of nucleic acid amplification based assays, that are highly sensitive, specific and are to some extent tolerant to sequence variation. In the last few years, the field of HBV molecular diagnostics has evolved rapidly with advancements in the molecular biology tools, such as polymerase chain reaction (PCR) and real-time PCR. Recently, apart of PCR based amplification methods, a number of isothermal amplification assays, such as loop mediated isothermal amplification, transcription mediated amplification, ligase chain reaction, and rolling circle amplification have been utilized for HBV diagnosis. These assays also offer options for real time detection and integration into biosensing devices. In this manuscript, we review the molecular technologies that are presently available for HBV diagnostics, with special emphasis on isothermal amplification based technologies. We have also included the recent trends in the development of biosensors and use of next generation sequencing technologies for HBV.

  6. Optical alignment and diagnostics for the ATF microundulator FEL oscillator

    SciTech Connect

    Babzien, M.; Ben-Zvi, I.; Fang, J.M.

    1995-12-31

    The microundulator FEL oscillator has a wiggler period of 8.8 mm, and is designed for initial lasing at 0.5 microns with a 50 MeV electron beam. The design and performance of the optical diagnostics and alignment are discussed. A HeNe coalignment laser is mode-matched to the resonator cavity for transverse alignment. Interference fringes are observed in the cavity with a pellicle, allowing an alignment tolerance of +/- 10 micro-radians. The same pellicle is used to produce transition radiation by the electron beam. This enables precise transverse alignment of the electron beam to the resonator axis. The HeNe laser is also used to align the wiggler by backlighting its bore. This method aligns the wiggler to the optic axis to a tolerance of +/- 50 microns. A frequency-doubled,pulsed Nd:YAG laser that produces the electron bunch train is also mode-matched to the FEL cavity. The cavity length is adjusted to resonate with this pulse train. Light from the FEL is transported to the diagnostic room using two separate paths: one for the single pass spontaneous emission, and the second for the multipass cavity output. Several diagnostics (CCD camera, photodiode, photomultiplier tube, joulemeter, spectrometer, and streak camera) are used to characterize the light. These instruments measure light energy per micropulse ranging from 10 femto-Joules to 10 micro-Joules.

  7. New advanced radio diagnostics tools for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Rothkaehl, H.; Atamaniuk, B.; Morawski, M.; Zakharenkova, I.; Cherniak, I.; Otmianowska-Mazur, K.

    2013-12-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities.

  8. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  9. Optical Diagnostics of Nonequilibrium Phenomena in Highly Rarefied Gas Flows

    NASA Astrophysics Data System (ADS)

    Niimi, Tomohide

    2003-05-01

    The necessity of non-intrusive measurement of the thermodynamic variables in rarefied gas flows has motivated the development of optical diagnostics, such as electron beam fluorescence, laser induced fluorescence, coherent anti-Stokes Raman scattering, and so on. These spectroscopic methods have enabled to detect the nonequilibrium in the gas flows, based on the internal energy distributions obtained from spectral profiles. In this paper, the laser-based techniques for detection of the nonequilibrium phenomena in the highly rarefied gas flows and some results obtained by us are described.

  10. Recent Advances in Miniaturized Optical Gyroscopes

    NASA Astrophysics Data System (ADS)

    Dell'Olio, F.; Tatoli, T.; Ciminelli, C.; Armenise, M. N.

    2014-03-01

    Low-cost chip-scale optoelectronic gyroscopes having a resolution ≤ 10 °/h and a good reliability also in harsh environments could have a strong impact on the medium/high performance gyro market, which is currently dominated by well-established bulk optical angular velocity sensors. The R&D activity aiming at the demonstration of those miniaturized sensors is crucial for aerospace/defense industry, and thus it is attracting an increasing research effort and notably funds. In this paper the recent technological advances on the compact optoelectronic gyroscopes with low weight and high energy saving are reviewed. Attention is paid to both the so-called gyroscope-on-a-chip, which is a novel sensor, at the infantile stage, whose optical components are monolithically integrated on a single indium phosphide chip, and to a new ultra-high Q ring resonator for gyro applications with a configuration including a 1D photonic crystal in the resonant path. The emerging field of the gyros based on passive ring cavities, which have already shown performance comparable with that of optical fiber gyros, is also discussed.

  11. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  12. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Advanced tomographic flow diagnostics for opaque multiphase fluids

    SciTech Connect

    Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

    1997-05-01

    This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

  14. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a

  15. Advances in optics for biotechnology, medicine and surgery

    PubMed Central

    Fitzmaurice, Maryann; Pogue, Brian W.; Tearney, Guillermo J.; Tunnell, James W.; Yang, Changhuei

    2014-01-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII. PMID:24575348

  16. Advances in optics for biotechnology, medicine and surgery.

    PubMed

    Fitzmaurice, Maryann; Pogue, Brian W; Tearney, Guillermo J; Tunnell, James W; Yang, Changhuei

    2014-02-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII.

  17. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  18. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  19. A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence

    2017-01-01

    Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.

  20. Application and development of advanced laser diagnostics for flame measurements

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh

    The application of hydrogen coherent anti-Stokes Raman scattering (CARS) for temperature measurements in low-pressure diamond-forming flames and the development of new polarization spectroscopy (PS) diagnostic techniques are the subjects of this Ph.D. dissertation research. The objectives of the low-pressure diamond-forming flame experiments were to measure detailed temperature profiles for comparison with a numerical flame model and to investigate the presence and magnitude of the temperature jump at the deposition substrate surface. Temperature jumps of approximately 100 K were observed in these rich, premixed oxy-acetylene flames ranging from 30 Torr to 125 Torr. The presence of this discontinuity in diamond-forming flames may have a significant effect on surface chemical model development. In these low-pressure flames, the ability to resolve fully the near-substrate temperature profiles will be extremely useful for the validation and improvement of surface chemistry models. The use of PS in the mid-infrared using a single-mode optical parametric generator (OPG) for the detection of CO2 has been demonstrated. Numerical modeling of the CO2 PS signal generation process has also been performed for comparison with the experimental PS signals. The experimental PS line shapes agree very well with the numerical calculations. These results are promising for using PS in detecting hydrocarbon molecules as hydrocarbon molecules have strong absorption resonances in the infrared region of the spectrum. The objectives of the theoretical work on short-pulse PS were to obtain fundamental insight into the physics of the short-pulse PS signal generation process and to investigate the diagnostic potential of the short-pulse PS for species concentration measurements. Short-pulse laser significantly decreases the collision-rate dependence of the PS signal compared with the long-laser pulse-length regime. For a saturating pump beam, the short-pulse PS signal was found to be nearly

  1. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  2. Advances in Performance of Microchannel Plate Detectors for HEDP Diagnostics

    SciTech Connect

    Ming Wu, Craig Kruschwitz, Ken Moy, Greg Rochau

    2009-10-01

    In recent years, a team from NSTec and SNL has built a unique capability to develop microchannel plate (MCP)?based framing x-ray cameras for HEDP diagnostics. At the SNL Z facility, multistrip MCP detectors to record up to eight channels are employed in 2-D, sub-nanosecond time-resolved imaging and time- and space-resolved spectroscopy diagnostics. Progressively more stringent technical temporal resolution and response uniformity requirements have necessitated a systematic design approach based on iterative modeling of the MCP using inputs from electrical circuit characterization. An inherently large exponential dependence in MCP gain, V{sup 11.5}, has mandated a firm understanding of the applied voltage pulse shape propagating across the strip. We pioneered direct measurements of the propagating waveform using a Picoprobe{reg_sign} and developed a Monte Carlo code to simulate MCP response to compare against test measurements. This scheme is shown in Figure 1. The simulation detailed a physical model of the cascade and amplification process of the MCP that includes energy conservation for the secondary electrons, the effects of elastic scattering of low-energy electrons from the channel wall, and gain saturation mechanisms from wall charging and space charge. Our model can simulate MCP response for both static and pulsed voltage waveforms. Using this design approach, we began to characterize the newly developed second-generation detector (H-CA-65) by using a Manson x-ray source to evaluate the following DC characteristics: MCP sensitivity as a function of bias voltage, flat-field uniformity and spatial resolution, and variation of spatial resolution and sensitivity as a function of phosphor bias voltage. Dynamic performance and temporal response were obtained by using an NSTec short-pulse laser to measure optical gate profiles, saturation, and dynamic range. These data were processed and combined to obtain the gain variation and gate profiles for any position along

  3. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  4. Fiber optic diagnostic techniques applied to electrical discharge machining sparks

    NASA Astrophysics Data System (ADS)

    Pillans, B. W.; Evensen, M. H.; Taylor, H. F.; Eubank, P. T.; Ma, Lianxi

    2002-02-01

    Plasma sparks from an electrical discharge machining (EDM) process were observed using fiber optics positioned in the dielectric oil. Measurement techniques were developed to observe the spark in the extremely noisy environment. Optical data were used along with current pulse wave forms from the EDM machine to study the temporal characteristics of the spark in both the pulse time and the pause time. During the pause time, extinction of the sparks was longer than previously thought—perhaps due to the remaining infrared radiation after the collapse of the spark. Further, an optical pattern was identified that indicated in advance when an arc was being formed instead of a spark. Spectral data of the plasma spark was obtained by using a scanning grating spectrometer in conjunction with crosscorrelation to maximize the signal-to-noise ratio. Average spark temperatures from the spectral data were found to be significantly higher than those previously predicted from energy balances. The results showed a shift in the optical spectra to longer wavelengths during the spark, showing that the spark temperature decreased with time.

  5. Raman spectroscopy and imaging: promising optical diagnostic tools in pediatrics.

    PubMed

    Beleites, C; Bonifacio, A; Codrich, D; Krafft, C; Sergo, V

    2013-01-01

    This review focuses on the use of Raman spectroscopy, an analytical technique based on the inelastic scattering of harmless laser light with biological tissues, as an innovative diagnostic tool in pediatrics. After a brief introduction to explain the fundamental concepts behind Raman spectroscopy and imaging, a short summary is given of the most important and common issues arising when handling spectral data with multivariate statistics. Then, the most relevant papers in which Raman spectroscopy or imaging has been applied with diagnostic purposes to pediatric patients are reviewed, and grouped according to the type of pathology: neoplastic, inflammatory, allergic, malformative as well as other kinds. Raman spectroscopy has been used both in vivo, mostly using optical fibers for tissue illumination, as well as on ex vivo tissue sections in a microscopic imaging approach defined as "spectral histopathology". According to the results reported so far, this technique showed a huge potential for mini- or non-invasive real-time, bedside and intra-operatory diagnosis, as well as for an ex vivo imaging tool in support to pathologists. Despite many studies are limited by the small sample size, this technique is extremely promising in terms of sensitivity and specificity.

  6. Advanced Integrated Optical Signal Processing Components.

    NASA Astrophysics Data System (ADS)

    Rastani, Kasra

    This research was aimed at the development of advanced integrated optical components suitable for devices capable of processing multi-dimensional inputs. In such processors, densely packed waveguide arrays with low crosstalk are needed to provide dissection of the information that has been partially processed. Waveguide arrays also expand the information in the plane of the processor while maintaining its coherence. Rib waveguide arrays with low loss, high mode confinement and highly uniform surface quality (660 elements, 8 μm wide, 1 μm high, and 1 cm long with 2 mu m separations) were fabricated on LiNbO _3 substrates through the ion beam milling technique. A novel feature of the multi-dimensional IO processor architecture proposed herein is the implementation of large area uniform outcoupling (with low to moderate outcoupling efficiencies) from rib waveguide arrays in order to access the third dimension of the processor structure. As a means of outcoupling, uniform surface gratings (2 μm and 4 μm grating periods, 0.05 μm high and 1 mm long) with low outcoupling efficiencies (of approximately 2-18%/mm) were fabricated on the nonuniform surface of the rib waveguide arrays. As a practical technique of modulating the low outcoupling efficiencies of the surface gratings, it was proposed to alter the period of the grating as a function of position along each waveguide. Large aperture (2.5 mm) integrated lenses with short positive focal lengths (1.2-2.5 cm) were developed through a modification of the titanium-indiffused proton exchanged (TIPE) technique. Such integrated lenses were fabricated by increasing the refractive index of the slab waveguides by the TIPE process while maintaining the refractive index of the lenses at the lower level of Ti:LiNbO _3 waveguide. By means of curvature reversal of the integrated lenses, positive focal length lenses have been fabricated while providing high mode confinement for the slab waveguide. The above elements performed as

  7. Optical Design of ECEI Diagnostic System for HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wen, Yizhi; Yu, Changxuan; Wan, Baonian; N, C. Luhmann; Wang, Jian; Z, G. Xia

    2004-02-01

    Electron cyclotron emission imaging system in the frequency range of 95 GHz-125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.

  8. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.

  9. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  10. Optical diagnostics of dusty plasmas during nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Mikikian, M.; Labidi, S.; von Wahl, E.; Lagrange, J. F.; Lecas, T.; Massereau-Guilbaud, V.; Géraud-Grenier, I.; Kovacevic, E.; Berndt, J.; Kersten, H.; Gibert, T.

    2017-01-01

    Carbon-based thin films deposited on surfaces exposed to a typical capacitively-coupled RF plasma are sources of molecular precursors at the origin of nanoparticle growth. This growth leads to drastic changes of the plasma characteristics. Thus, a precise understanding of the dusty plasma structure and dynamics is required to control the plasma evolution and the nanoparticle growth. Optical diagnostics can reveal some particular features occurring in these kinds of plasmas. High-speed imaging of the plasma glow shows that instabilities induced by nanoparticle growth can be constituted of small brighter plasma regions (plasmoids) that rotate around the electrodes. A single bigger region of enhanced emission is also of particular interest: the void, a main central dust-free region, has very distinct plasma properties than the surrounding dusty region. This particularity is emphasized using optical emission spectroscopy with spatiotemporal resolution. Emission profiles are obtained for the buffer gas and the carbonaceous molecules giving insights on the changes of the electron energy distribution function during dust particle growth. Dense clouds of nanoparticles are shown to be easily formed from two different thin films, one constituted of polymer and the other one created by the plasma decomposition of ethanol.

  11. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T.; Story-Held, K.; Glickman, R.D.; Conn, R.

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  12. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    NASA Technical Reports Server (NTRS)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and

  13. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  14. Advanced smile diagnostics using CAD/CAM mock-ups.

    PubMed

    Sancho-Puchades, Manuel; Fehmer, Vincent; Hämmerle, Christoph; Sailer, Irena

    2015-01-01

    Diagnostics are essential for predictable restorative dentistry. Both patient and clinician must agree on a treatment goal before the final restorations are delivered to avoid future disappointments. However, fully understanding the patient's desires is difficult. A useful tool to overcome this problem is the diagnostic wax-up and mock-up. A potential treatment outcome is modeled in wax prior to treatment and transferred into the patient's mouth using silicon indexes and autopolymerizing resin to obtain the patient's approval. Yet, this time-consuming procedure only produces a single version of the possible treatment outcome, which can be unsatisfactory for both the patient and the restorative team. Contemporary digital technologies may provide advantageous features to aid in this diagnostic treatment step. This article reviews opportunities digital technologies offer in the diagnostic phase, and presents clinical cases to illustrate the procedures.

  15. OPTICAL MASS FLOW DIAGNOSTICS IN HERBIG AE/BE STARS

    SciTech Connect

    Cauley, P. Wilson; Johns-Krull, Christopher M. E-mail: cmj@rice.edu

    2015-09-01

    We examine a broad range of mass flow diagnostics in a large sample of Herbig Ae/Be stars (HAEBES) using high resolution optical spectra. The Hβ and He i 5876 Å lines show the highest incidence of P Cygni (30%) and inverse P Cygni (14%) morphologies, respectively. The Fe ii 4924 Å line also shows a large incidence of P Cygni profiles (11%). We find support for many of the conclusions reached in a study based on the analysis of the He i λ10830 line in a large sample of HAEBES. Namely, HAEBES exhibit smaller fractions of both blueshifted absorption (i.e., mass outflow) and redshifted absorption (i.e., mass infall or accretion) than their lower mass cousins, the classical T Tauri stars (CTTSs). In particular, the optical data supports the conclusion that HAEBES displaying redshifted absorption, in general, show maximum redshifted absorption velocities that are smaller fractions of their stellar escape velocities than is found for CTTSs. This suggests that HAEBE accretion flows are originating deeper in the gravitational potentials of their stars than in CTTS systems. In addition, we find a lack of inner disk wind signatures in the blueshifted absorption objects; only stellar wind signatures are clearly observed. These findings, along with the lack of detected magnetic fields around HAEBES, support the idea that large magnetospheres are not prevalent around HAEBES and that accretion flows are instead mediated by significantly smaller magnetospheres with relatively smaller truncation radii (e.g., 1–2 R{sub *}). Redshifted absorption is much more common around Herbig Ae stars than Be stars, suggesting that Herbig Be stars may accrete via a boundary layer rather than along magnetic field lines.

  16. Diagnostic ultrasound in sports medicine: current concepts and advances.

    PubMed

    Nofsinger, Charles; Konin, Jeff G

    2009-03-01

    Diagnostic ultrasound is a valuable imaging tool that is slowly gaining in popularity among sports medicine clinicians. Commonly referred to as "musculoskeletal ultrasound," its valuable role in assisting with sports medicine diagnoses has been to date underused for a variety of reasons. Effective clinical usage for sports medicine diagnoses includes commonly seen conditions such as rotator cuff disease, ulnar collateral ligament of the elbow injury, and internal derangement of the knee, among many others. Limitation of clinical usage has been deterred by the cost of the unit, perception of time associated with assessment procedures, and the lack of formal training associated with diagnostic implementation. However, when properly used, musculoskeletal ultrasound can increase the accuracy of diagnosis and treatment, improve time to treatment intervention, and improve patient satisfaction. The purpose of this paper is to review the fundamentals of musculoskeletal ultrasound and present its specific diagnostic uses.

  17. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  18. Gold Nanoparticles for Diagnostics: Advances towards Points of Care

    PubMed Central

    Cordeiro, Mílton; Ferreira Carlos, Fábio; Pedrosa, Pedro; Lopez, António; Baptista, Pedro Viana

    2016-01-01

    The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting. PMID:27879660

  19. Optical Diagnostics for High-Temperature Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2009-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

  20. Tabletop Optical Diagnostics for Shock Compression of Liquids

    NASA Astrophysics Data System (ADS)

    Bassett, Will

    2015-06-01

    A novel platform for probing chemical properties in shocked liquids has recently been developed. A target cell consisting of around two hundred cuvettes roughly fifty microns deep for use with the laser-launched flyer plate apparatus developed in our group which takes advantage of our ability to perform more than a hundred launches per day. Modeling of the shock events suggests that we can access pressures between two and thirty GPa and temperatures as high as 1500 kelvin in liquid phase materials through impact driven shocks lasting tens of nanoseconds. The tabletop scale of our laser-launched flyer apparatus allows for a variety of techniques for optical diagnostics of shocked states such as fluorescence emission, infrared absorption, and Raman scattering. Preliminary results on Rhodamine 6G in glycerol shocked to 4 GPa show fluorescence red shifts of tens of nanometers. Initially, fluorescence emission of pH-indicator dyes will be used to monitor dissociation of water under shock. Future efforts will include temperature measurements during shocks using the Stokes:anti-Stokes ratios in Raman scattering and chemical compositions of reacting liquids determined through infrared absorption.

  1. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  2. Optical diagnostics of streamer discharges in atmospheric gases

    NASA Astrophysics Data System (ADS)

    Šimek, M.

    2014-11-01

    This paper reviews optical diagnostic methods and approaches applied to study the fundamentals of streamer discharges, considering the peculiarities of streamers developing in atmospheric gases at high (1 bar) as well as low (<10 mbar) pressures. A critical discussion is devoted to the cross-sections for electron-impact excitation/ionization/dissociation processes and corresponding rate constants in relation to methods used to probe streamer properties. The most important spectrometric signatures of radiative transitions of diatomic as well as atomic species are discussed on the basis of their synthetic models with a brief guide on how to simulate the most important emissions. Basic differences between UV-vis-NIR spectra produced by electron-impact and various heavy-particle energy-transfer processes during streamer evolution are presented and possible strategies based on 2D projections of cylindrically symmetric streamers to determine radial distributions of excited species within the streamer channel are discussed. The use of emission techniques to obtain the rotational temperatures and vibrational distributions of excited states of diatomics and laser-induced fluorescence techniques to probe the vibrational manifold of the lowest triplet metastable state of the nitrogen molecule is addressed.

  3. New optical, acoustic, and electrical diagnostics for the developing world

    NASA Astrophysics Data System (ADS)

    Neale, S. L.; Witte, C.; Bourquin, Y.; Kremer, C.; Menachery, A.; Zhang, Y.; Wilson, R.; Reboud, J.; Cooper, J. M.

    2012-03-01

    Infectious diseases cause 10 million deaths each year worldwide, accounting for ~60% of all deaths of children aged 5- 14. Although these deaths arise primarily through pneumonia, TB, malaria and HIV, there are also the so called "neglected diseases" such as sleeping sickness and bilharzia, which have a devastating impact on rural communities, in sub-Sahara Africa. There, the demands for a successful Developing World diagnostic are particularly rigorous, requiring low cost instrumentation with low power consumption (there is often no fixed power infrastructure). In many cases, the levels of infection within individuals are also sufficiently low that instruments must show extraordinary sensitivity, with measurements being made in blood or saliva. In this talk, a description of these demands will be given, together with a review of some of the solutions that have been developed, which include using acoustics, optics and electrotechnologies, and their combinations to manipulate the fluid samples. In one example, we show how to find a single trypanosome, as the causative agent of sleeping sickness.

  4. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  5. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  6. Optical diagnostics based on elastic scattering: An update of clinical demonstrations with the Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Boyer, J.; Johnson, T.M.; Lacey, J.; Mourant, J.R.; Conn, R.; Bohorfoush, A.

    1994-10-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.

  7. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  8. Optical protocols for advanced spacecraft networks

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1991-01-01

    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  9. Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy.

    PubMed

    Monsalve, B; Ferreras, A; Calvo, P; Urcola, J A; Figus, M; Monsalve, J; Frezzotti, P

    2017-03-01

    PurposeTo evaluate and compare the diagnostic accuracy of the Humphrey Field Analyzer (HFA), Octopus perimetry, and Cirrus OCT for glaucomatous optic neuropathy.MethodsEighty-eight healthy individuals and 150 open-angle glaucoma patients were consecutive and prospectively selected. Eligibility criteria for the glaucoma group were intraocular pressure ≥21 mm Hg and glaucomatous optic nerve head morphology. All subjects underwent a reliable standard automated perimetry with the HFA and Octopus perimeter, and were imaged with the Cirrus OCT. Receiver-operating characteristic (ROC) curves were plotted for the threshold values and main indices of the HFA and Octopus, the peripapillary retinal nerve fiber layer thicknesses, and the optic nerve head parameters. Sensitivities at 85 and 95% fixed-specificities were also calculated. The best areas under the ROC curves (AUCs) were compared using the DeLong method.ResultsIn the glaucoma group, mean deviation (MD) was -5.42±4.6 dB for HFA and 3.90±3.6 dB for Octopus. The MD of the HFA (0.966; P<0.001), mean sensitivity of the Octopus (0.941; P<0.001), and average cup-to-disc (C/D) ratio measured by the Cirrus OCT (0.958; P<0.001) had the largest AUCs for each test studied. There were no significant differences among them. Sensitivities at 95% fixed-specificity were 82% for pattern standard deviation of the HFA, 81.3% for average C/D ratio of OCT, and 80% for the MD of the Octopus.ConclusionsHFA, Octopus, and Cirrus OCT demonstrated similar diagnostic accuracies for glaucomatous optic neuropathy. Visual field and OCT provide supplementary information and thus these tests are not interchangeable.

  10. The general optics structure of millimeter-wave imaging diagnostic on TOKAMAK

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Xie, J.; Liu, W. D.; Luo, C.; Zhao, Z.; Chen, D.; Domier, C. W.; Luhmann, N. C., Jr.; Chen, M.; Hu, X.

    2016-01-01

    Advanced imaging optics techniques have significantly improved the performance of millimeter-wave imaging diagnostics, such as Electron Cyclotron Emission imaging and Microwave Imaging of Reflectometry. The fundamental functions of millimeter-wave imaging optics are focusing, collecting the emission or reflected microwave signal from the target area in the plasma and focusing the emitted (reflected) signal on the detector array. The location of the observation area can be changed using the focus lens. Another important function of the imaging optics is zooming. The size of the observation area in poloidal direction can be adjusted by the zoom lenses and the poloidal spatial resolution is determined by the level of zoom. The field curvature adjustment lenses are employed to adjust the shape of the image plane in the poloidal direction to reduce crosstalk between neighboring channels. The incident angle on each channel is controlled using the specific surface type of the front-side lenses to increase the signal-to-noise ratio. All functions are decoupled with the minimum number of lenses. Successful applications are given.

  11. Advances in telecom and datacom optical components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2001-07-01

    We review and contrast key technologies developed to address the optical components market for telecom and datacom applications. We first look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include glass fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then look at the most commonly used classes of technology and present their pros and cons as well as the functions achieved to date in each. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering (e.g., AWG), Bragg gratings, diffraction gratings, holographic elements, thin film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto- optics, magneto-optics, liquid crystals, total internal reflection technologies (e.g., bubble technology), and mechanical actuation (e.g., moving fibers and MEMS). We finally describe active technologies including heterostructures, quantum wells, rare earth doping, and semiconductor optical amplifiers. We also investigate the use of different material systems and technologies to achieve building block functions including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, nonreciprocal elements (Faraday rotators or nonreciprocal phase shifters) for isolators and circulators, wavelength converters, and dispersion compensators.

  12. New technologies for fluid dynamics experiments and optical diagnostics

    NASA Astrophysics Data System (ADS)

    Orlov, Sergei S.

    2008-12-01

    Modern technologies offer new opportunities for experimentalists in a wide variety of research areas including hydrodynamics. A significant improvement in precision, dynamic range, reproducibility, motion control accuracy, data acquisition rate and information capacity of the experimental datasets over the current state-of-the-art are possible using new approaches and techniques, which may bring the quality of experiments to a new level of standards. Application of these new technologies in experimental diagnostics can help bridge the current quality gap between the observations and the large-scale computational fluid dynamics simulations allowing direct and unambiguous comparison of the data and the modeling results, which is crucial for the code validation. One of the new technologies which is described in this paper is ultra-high performance digital holographic data storage. The state-of-the-art motion control, electronics and optical imaging allow for realization of turbulent flows with very high Reynolds number (>107) in a relatively small laboratory-scale form-factor and quantification of their properties with extremely high spatio-temporal resolutions and bandwidth. Digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 fps) over large spatial area (~50 cm) with high spatial (1-10 μm) and temporal (better than a few nanoseconds) resolutions and, therefore, can provide extremely accurate quantitative description of the fluid flows, including those of multiphase and unsteady conditions. These unique experimental and metrological capabilities enable the studies of spatial and temporal properties of the transport of momentum, angular momentum and energy, and the identification of scaling, invariants and statistical properties of the complex multiphase and unsteady turbulent flows. The technology can be applied for investigations of a large variety of hydrodynamic

  13. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  14. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Combustion Studies

    DTIC Science & Technology

    1992-11-01

    Appendices D, E, and F). The two main modeling approaches that enabled the calculation of stability from thermochemistry considera- tions are those of...Parallel TEACH -1Te Code Using an Approximately Implicit Algorithm." Proc. Tie prime authors of this report (G. Sturgess, D. Ballal S"ym Recem Advances and

  15. Advances in diagnostic imaging for pathologic conditions of the jaws.

    PubMed

    Benson, Byron W; Flint, Diane J; Liang, Hui; Opatowsky, Michael J

    2014-12-01

    Advances in dental and maxillofacial imaging are delineated along with the advantages and disadvantages of each imaging modality. The imaging modalities that are included are intraoral radiography, panoramic radiography, cone-beam computed tomography, multidetector computed tomography, magnetic resonance imaging, nuclear medicine, and ultrasound.

  16. Sub-micrometer transverse beam size diagnostics using optical transition radiation

    NASA Astrophysics Data System (ADS)

    Kruchinin, K.; Aryshev, A.; Karataev, P.; Bolzon, B.; Lefevre, T.; Mazzoni, S.; Shevelev, M.; Boogert, S. T.; Nevay, L. J.; Terunuma, N.; Urakawa, J.

    2014-05-01

    Optical transition radiation (OTR) arising when a relativistic charged particle crosses a boundary between two media with different optical properties is widely used as a tool for diagnostics of particle beams in modern accelerator facilities. The resolution of the beam profile monitors based on OTR depends on different effects of the optical system such as spherical and chromatic aberrations and diffraction. In this paper we present a systematic study of the different optical effects influencing the OTR beam profile monitor resolution. Obtained results have shown that such monitors can be used for sub-micrometer beam profile diagnostics. Further improvements and studies of the monitor are discussed.

  17. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings.

    PubMed

    Wang, ShuQi; Lifson, Mark A; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan

    2016-01-01

    The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed.

  18. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings

    PubMed Central

    Wang, ShuQi; Lifson, Mark A.; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan

    2016-01-01

    The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725

  19. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  20. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  1. Recent advancements in optical microstructure fabrication through glass molding process

    NASA Astrophysics Data System (ADS)

    Zhou, Tianfeng; Liu, Xiaohua; Liang, Zhiqiang; Liu, Yang; Xie, Jiaqing; Wang, Xibin

    2017-02-01

    Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibrationassisted molding technology.

  2. Micro-optics metrology using advanced interferometry

    NASA Astrophysics Data System (ADS)

    Reichelt, Stephan; Bieber, Alexander; Aatz, Bernd; Zappe, Hans

    2005-06-01

    Interferometric testing of micro-optical components involves some challenges due to problems such as Fresnel diffraction artefacts, the non-common path interferometer configuration, coherent noise as well disturbing interferences, and uncertainties in distance measurements. Recently we have developed a versatile Mach-Zehnder / Twyman-Green hybride interferometer for micro-optics testing. The system combines the advantages of both interferometer types and allows full characterization of lens and surface figure errors as well as radius of curvature and focal length measurements. The interferometer system is explained and measurement results of micro-lenses are presented. Furthermore, this paper is concerned with the metrology challenges of interferometric testing on microscopic scales.

  3. Advances in in vitro diagnostics in allergy, asthma, and immunology in 2012.

    PubMed

    Renz, Harald

    2013-12-01

    Laboratory tests play an increasing role in risk assessment, diagnostics, and disease monitoring. Great advances have been achieved lately, particularly in the field of clinical immunology and allergy. These include neonatal screening of immunodeficiencies and asthma biomarkers and investigation into the role of recombinant allergens in in vitro testing. The latter area has implications for the diagnostics of food allergy, pollen-induced allergies, asthma, and insect allergies.

  4. Advanced diagnostic imaging and surgical treatment of an odontogenic retromasseteric abscess in a guinea pig.

    PubMed

    Capello, V; Lennox, A

    2015-02-01

    A two-year-old guinea pig presented for difficulty chewing. Examination and diagnostic imaging, including computed tomography and magnetic resonance, revealed an odontogenic retromasseteric abscess associated with a mandibular cheek tooth. Treatment included removal of the abscess and marsupialisation of the surgical site for repeated debridement and healing by second intention. Unique features of this case included the use of advanced diagnostic imaging and utilisation of marsupialisation for surgical correction.

  5. Point of care diagnostics for sexually transmitted infections: perspectives and advances

    PubMed Central

    Gaydos, Charlotte; Hardick, Justin

    2014-01-01

    Accurate and inexpensive point-of-care (POC) tests are urgently needed to control sexually transmitted infection (STI) epidemics, so that patients can receive immediate diagnoses and treatment. Current POC assays for Chlamydia trachomatis and Neisseria gonorrhoeae perform inadequately and require better assays. Diagnostics for Trichomonas vaginalis rely on wet preparation, with some notable advances. Serological POC assays for syphilis can impact resource-poor settings, with many assays available, but only one available in the U.S. HIV POC diagnostics demonstrate the best performance, with excellent assays available. There is a rapid assay for HSV lesion detection; but no POC serological assays are available. Despite the inadequacy of POC assays for treatable bacterial infections, application of technological advances offers the promise of advancing POC diagnostics for all STIs. PMID:24484215

  6. Recent Advances in Diagnostic Strategies for Diabetic Peripheral Neuropathy

    PubMed Central

    2016-01-01

    Diabetes is an increasing epidemic in Korea, and associated diabetic peripheral neuropathy (DPN) is its most common and disabling complication. DPN has an insidious onset and heterogeneous clinical manifestations, making it difficult to detect high-risk patients of DPN. Early diagnosis is recommended and is the key factor for a better prognosis and preventing diabetic foot ulcers, amputation, or disability. However, diagnostic tests for DPN are not clearly established because of the various pathophysiology developing from the nerve injury to clinical manifestations, differences in mechanisms according to the type of diabetes, comorbidities, and the unclear natural history of DPN. Therefore, DPN remains a challenge for physicians to screen, diagnose, follow up, and evaluate for treatment response. In this review, diagnosing DPN using various methods to assess clinical symptoms and/or signs, sensorineural impairment, and nerve conduction studies will be discussed. Clinicians should rely on established modalities and utilize current available testing as complementary to specific clinical situations. PMID:27246283

  7. Optics for Advanced Neutron Imaging and Scattering

    SciTech Connect

    Moncton, David E.; Khaykovich, Boris

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  8. Advanced lightweight optics development for space applications

    SciTech Connect

    Bilbro, James W.

    1998-01-15

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  9. Advances in superresolution optical fluctuation imaging (SOFI)

    PubMed Central

    Dertinger, Thomas; Pallaoro, Alessia; Braun, Gary; Ly, Sonny; Laurence, Ted A.; Weiss, Shimon

    2013-01-01

    We review the concept of superresolution optical fluctuation imaging (SOFI), discuss its attributes and trade-offs (in comparison with other superresolution methods), and present superresolved images taken on samples stained with quantum dots, organic dyes, and plasmonic metal nanoparticles. We also discuss the prospects of SOFI for live cell superresolution imaging and for imaging with other (non-fluorescent) contrasts. PMID:23672771

  10. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  11. An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, Carsten; Eichhorn, Christoph; Scholze, Frank; Spemann, Daniel; Neumann, Horst; Pagano, Damiano; Scaranzin, Simone; Scortecci, Fabrizio; Leiter, Hans J.; Gauter, Sven; Wiese, Ruben; Kersten, Holger; Holste, Kristof; Köhler, Peter; Klar, Peter J.; Mazouffre, Stéphane; Blott, Richard; Bulit, Alexandra; Dannenmayer, Käthe

    2016-10-01

    Experimental characterization is an essential task in development, qualification and optimization process of electric propulsion thrusters or ion beam sources for material processing, because it can verify that the thruster or ion beam source fulfills the requested mission or application requirements, and it can provide parameters for thruster and plasma modeling. Moreover, there is a need for standardizing electric propulsion thruster diagnostics in order to make characterization results of different thrusters and also from measurements performed in different vacuum facilities reliable and comparable. Therefore, we have developed an advanced electric propulsion diagnostic (AEPD) platform, which allows a comprehensive in-situ characterization of electric propulsion thrusters (or ion beam sources) and could serve as a standard on-ground tool in the future. The AEPD platform uses a five-axis positioning system and provides the option to use diagnostic tools for beam characterization (Faraday probe, retarding potential analyzer, ExB probe, active thermal probe), for optical inspection (telemicroscope, triangular laser head), and for thermal characterization (pyrometer, thermocamera). Here we describe the capabilities of the diagnostic platform and provide first experimental results of the characterization of a gridded ion thruster RIT- μX.

  12. Mach-Zehnder Fiber-Optic Links for ICF Diagnostics

    SciTech Connect

    Miller, E. K., Hermann, H. W.

    2012-11-01

    This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.

  13. Testing of optical diagnostics for ion-beam-driven WDM experiments at NDCX-1

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Bieniosek, F. M.; Leitner, M.; Weber, C.; Waldron, W. L.

    2009-07-01

    We report on the testing of optical diagnostics developed for warm-dense-matter (WDM) experiments on the neutralized drift compression experiments (NDCX-1) at Lawrence Berkeley National Laboratory (LBNL). The diagnostics consists of a fast optical pyrometer, a streak camera spectrometer, and a Doppler-shift laser interferometer (VISAR). While the NDCX is in the last stage of commissioning for the target experiments, the diagnostics were tested elsewhere in an experiment where an intense laser pulse was used to generate the WDM state in metallic and carbon samples.

  14. Mathematical Modelling and Tuberculosis: Advances in Diagnostics and Novel Therapies

    PubMed Central

    Zwerling, Alice; Shrestha, Sourya; Dowdy, David W.

    2015-01-01

    As novel diagnostics, therapies, and algorithms are developed to improve case finding, diagnosis, and clinical management of patients with TB, policymakers must make difficult decisions and choose among multiple new technologies while operating under heavy resource constrained settings. Mathematical modelling can provide helpful insight by describing the types of interventions likely to maximize impact on the population level and highlighting those gaps in our current knowledge that are most important for making such assessments. This review discusses the major contributions of TB transmission models in general, namely, the ability to improve our understanding of the epidemiology of TB. We focus particularly on those elements that are important to appropriately understand the role of TB diagnosis and treatment (i.e., what elements of better diagnosis or treatment are likely to have greatest population-level impact) and yet remain poorly understood at present. It is essential for modellers, decision-makers, and epidemiologists alike to recognize these outstanding gaps in knowledge and understand their potential influence on model projections that may guide critical policy choices (e.g., investment and scale-up decisions). PMID:26556559

  15. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  16. Advances and prospects for molecular diagnostics of fungal infections.

    PubMed

    Bretagne, Stéphane

    2010-11-01

    The polymerase chain reaction (PCR) methods published for the diagnosis of invasive fungal infections are still not included in the revised European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group definitions of IA. This could be achieved with consensual PCR procedures. A checklist of items has been proposed to improve the reliability of the results and clinicians' confidence in them, with emphasis on limiting false-positive results from contamination with either previously amplified products or environmental commensals. Internal amplification controls are mandatory to expose false-negative results. However, our ignorance of the origin and the kinetics of fungal DNA during an infection hamper the choice of the best specimen and DNA extraction protocol. Evidence is increasing that serum could be a good compromise between sensitivity and ease of DNA extraction. Once a technical consensus is achieved, clinical studies should be initiated to integrate quantitative PCR in the diagnostic armamentarium.

  17. Recent advances in the molecular diagnostics of gastric cancer

    PubMed Central

    Kanda, Mitsuro; Kodera, Yasuhiro

    2015-01-01

    Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined. PMID:26379391

  18. Optical Measurements On Advanced Performance Domes

    NASA Astrophysics Data System (ADS)

    Archibald, P. C.; Burge, D. K.

    1984-12-01

    Sapphire, spinel, and ALON (aluminum oxynitride) have been identified as candidate dome materials for ultraviolet through 5 μm wavelength applications. They possess optical, mechanical, and thermal properties that are superior to those of currently used Irtran-1 domes. Optical performance of these materials in the visible wavelength region far exceeds that of Irtran-1, while infrared properties reported here vary from worse than to better than Irtran-1 domes. Reported in this paper are measurements of optical scatter and transmittance at 0.4762, 0.6471, and 3.39 μm, which represent a large range of values obtained on these materials in dome form. Processing changes over the last few years have produced improvements in both scatter and transmittance, provided that a good surface finish is maintained. Higher index of refraction will, of course, limit the ultimate transmittance for uncoated domes of these materials to slightly less than that of Irtran-1, which has also improved in the same time period. Calculations indicate maximum transmittance at 3.39 pm to be 0.95 to 0.96 for Irtran-1 and 0.87 to 0.88 for spinel, a difference of 0.08. Current measurements at the Naval Weapons Center confirm values of 0.88 for spinel, while the best Irtran-1 dome gave a value of less than 0.92.

  19. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  20. Nondestructive Measurements for Diagnostics of Advanced Reactor Passive Components

    SciTech Connect

    Prowant, Matthew S.; Dib, Gerges; Roy, Surajit; Luzi, Lorenzo; Ramuhalli, Pradeep

    2016-09-20

    Information on advanced reactor (AdvRx) component condition and failure probability is necessary to maintaining adequate safety margins and avoiding unplanned shutdowns, both of which have regulatory and economic consequences. Prognostic health management (PHM) technologies provide one approach to addressing these needs by providing the technical means for lifetime management of significant passive components and reactor internals. However, such systems require measurement data that are sensitive to degradation of the component. This paper describes results to date of ongoing research on nondestructive measurements of component condition for degradation mechanisms of relevance to AdvRx concepts. The focus of this paper is on in-situ ultrasonic measurements during high-temperature creep degradation. The data were analyzed to assess the sensitivity of the measurements to creep degradation, with the specific objective of assessing the suitability of the resulting correlations for remaining life prediction. The details of the measurements, results of data analysis, and ongoing research in this area are discussed.

  1. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  2. Linear semiconductor optical amplifiers for amplification of advanced modulation formats.

    PubMed

    Bonk, R; Huber, G; Vallaitis, T; Koenig, S; Schmogrow, R; Hillerkuss, D; Brenot, R; Lelarge, F; Duan, G-H; Sygletos, S; Koos, C; Freude, W; Leuthold, J

    2012-04-23

    The capability of semiconductor optical amplifiers (SOA) to amplify advanced optical modulation format signals is investigated. The input power dynamic range is studied and especially the impact of the SOA alpha factor is addressed. Our results show that the advantage of a lower alpha-factor SOA decreases for higher-order modulation formats. Experiments at 20 GBd BPSK, QPSK and 16QAM with two SOAs with different alpha factors are performed. Simulations for various modulation formats support the experimental findings.

  3. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  4. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  5. CHRONICLE: Fourth Scientific and Technical Conference on Optical Methods for Flow Diagnostics

    NASA Astrophysics Data System (ADS)

    Zubov, Vladimir A.; Rinkevichius, Bronyus S.

    1997-12-01

    A review is given of the papers presented at the Fourth Scientific and Technical Conference on Optical Methods for Flow Diagnostics. This conference was concerned with research and applications in the field of flow diagnostics and with related physical and technical topics, such as determination and visualisation of optical and dynamic characteristics of media, creation and monitoring of local directional precision displacements, local measurements and determination of the spatial distribution of optical inhomogeneities in transparent media, as well as a number of practical applications of new methods and techniques.

  6. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  7. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade

    SciTech Connect

    Tobias, B.; Kong, X.; Liang, T.; Spear, A.; Domier, C. W.; Luhmann, N. C. Jr.; Classen, I. G. J.; Boom, J. E.; Pol, M. J. van de; Jaspers, R.; Donne, A. J. H.; Park, H. K.; Munsat, T.

    2009-09-15

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  8. Recent advances in ALON optical ceramic

    NASA Astrophysics Data System (ADS)

    Wahl, Joseph M.; Hartnett, Thomas M.; Goldman, Lee M.; Twedt, Richard; Warner, Charles

    2005-05-01

    Aluminum Oxynitride (ALONTM Optical Ceramic) is a transparent ceramic material which combines transparency from the UV to the MWIR with excellent mechanical properties. ALON"s optical and mechanical properties are isotropic by virtue of its cubic crystalline structure. Consequently, ALON is transparent in its polycrystalline form and can be made by conventional powder processing techniques. This combination of properties and manufacturability make ALON suitable for a range of applications from IR windows, domes and lenses to transparent armor. The technology for producing transparent ALON was developed at Raytheon and has been transferred to Surmet Corporation where it is currently in production. Surmet is currently selling ALON into a number of military (e.g., windows and domes) and commercial (e.g., supermarket scanner windows) applications. The capability to manufacture large ALON windows for both sensor window and armor applications is in place. ALON windows up to 20x30 inches have been fabricated. In addition, the capability to shape and polish these large and curved windows is being developed and demonstrated at Surmet. Complex shapes, both hyper-hemispherical and conformal, are also under development and will be described.

  9. Integrated modeling of advanced optical systems

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-01-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  10. A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities Toward Diagnostic Mammography

    DTIC Science & Technology

    2011-01-01

    1-0004 TITLE: A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities toward Diagnostic Mammography PRINCIPAL...Summary 3. DATES COVERED (From - To) 1 Jan 2010 – 31 Dec 2010 4. TITLE AND SUBTITLE A Novel Hand-held Optical Imager with Real-Time Coregistration ...translation of a hand-held optical imager with automated coregistration facilities toward 3D tomography. Studies were performed in vivo with healthy female

  11. Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis.

    PubMed

    Kumar, L Dinesh; Karthik, R; Gayathri, N; Sivasudha, T

    2016-04-01

    This review is intended to provide a summary of the pathogenesis, diagnosis and therapies for rheumatoid arthritis. Rheumatoid arthritis (RA) is a common form of inflammatory autoimmune disease with unknown aetiology. Bone degradation, cartilage and synovial destruction are three major pathways of RA pathology. Sentinel cells includes dendritic cells, macrophages and mast cells bound with the auto antigens and initiate the inflammation of the joints. Those cells further activates the immune cells on synovial membrane by releasing inflammatory cytokines Interleukin 1, 6, 17, etc., Diagnosis of this disease is a combinational approach comprises radiological imaging, blood and serology markers assessment. The treatment of RA still remain inadequate due to the lack of knowledge in disease development. Non-steroidal anti-inflammatory drugs, disease modifying anti rheumatic drugs and corticosteroid are the commercial drugs to reduce pain, swelling and suppressing several disease factors. Arthroscopy will be an useful method while severe degradation of joint tissues. Gene therapy is a major advancement in RA. Suppressor gene locus of inflammatory mediators and matrix degrading enzymes were inserted into the affected area to reduce the disease progression. To overcome the issues aroused from those therapies like side effects and expenses, phytocompounds have been investigated and certain compounds are proved for their anti-arthritic potential. Furthermore certain complementary alternative therapies like yoga, acupuncture, massage therapy and tai chi have also been proved for their capability in RA treatment.

  12. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  13. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Astrophysics Data System (ADS)

    Skinner, S. Ballou

    1992-09-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  14. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  15. Recent advancements towards green optical networks

    NASA Astrophysics Data System (ADS)

    Davidson, Alan; Glesk, Ivan; Buis, Adrianus; Wang, Junjia; Chen, Lawrence

    2014-12-01

    Recent years have seen a rapid growth in demand for ultra high speed data transmission with end users expecting fast, high bandwidth network access. With this rapid growth in demand, data centres are under pressure to provide ever increasing data rates through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present technology based on well-established CMOS technology is becoming increasingly difficult to scale and consequently data networks are struggling to satisfy current network demand. In this paper the interrelated issues of electronic scalability, power consumption, limited copper interconnect bandwidth and the limited speed of CMOS electronics will be explored alongside the tremendous bandwidth potential of optical fibre based photonic networks. Some applications of photonics to help alleviate the speed and latency in data networks will be discussed.

  16. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  17. Advanced Heat Pipes For Optical Applications

    NASA Astrophysics Data System (ADS)

    Shaubach, Robert M.; Eastman, G. Yale

    1984-12-01

    Heat pipes offer the potential of vibrationless cooling of optical surfaces while maintaining a high degree of temperature uniformity on the cooled surface. The objective of the present program is to develop and demonstrate prototype heat pipes for this application. The material of construction is silicon; the pqwer density range is 5 to 50 Watts/per square centimeter with a nominal objective of 30 W/cm2. This paper describes the first eighteen months of work, during which the contract goals were met. The program was carried out by Thermacore on Contract F33615-82-C-5127 for the Department of the Air Force, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio. Dr. Alan K. Hopkins of the Materials Laboratory supplied technical supervision of the program for the Air Force.

  18. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria.

    PubMed

    Dubois, Bruno; Feldman, Howard H; Jacova, Claudia; Hampel, Harald; Molinuevo, José Luis; Blennow, Kaj; DeKosky, Steven T; Gauthier, Serge; Selkoe, Dennis; Bateman, Randall; Cappa, Stefano; Crutch, Sebastian; Engelborghs, Sebastiaan; Frisoni, Giovanni B; Fox, Nick C; Galasko, Douglas; Habert, Marie-Odile; Jicha, Gregory A; Nordberg, Agneta; Pasquier, Florence; Rabinovici, Gil; Robert, Philippe; Rowe, Christopher; Salloway, Stephen; Sarazin, Marie; Epelbaum, Stéphane; de Souza, Leonardo C; Vellas, Bruno; Visser, Pieter J; Schneider, Lon; Stern, Yaakov; Scheltens, Philip; Cummings, Jeffrey L

    2014-06-01

    In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

  19. Advanced optical interference filters based on metal and dielectric layers.

    PubMed

    Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien

    2016-09-05

    In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target.

  20. Optical diagnosis of mammary ductal carcinoma using advanced optical technology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-02-01

    Clinical imaging techniques for diagnosing breast cancer mainly include X-ray mammography, ultrasound, and magnetic resonance imaging (MRI), which have respective drawbacks. Multiphoton microscopy (MPM) has become a potentially attractive optical technique to bridge the current gap in clinical utility. In this paper, MPM was used to image normal and ductal cancerous breast tissues, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our results showed that MPM has the ability to exhibit the microstructure of normal breast tissue, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) lesions at the molecular level comparable to histopathology. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time histological diagnosis of mammary ductal carcinoma in vivo.

  1. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  2. Digital polarization holography advancing 4G optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Roberts, David E.; Tabiryan, Nelson V.; Steeves, Diane M.; Kimball, Brian R.

    2016-09-01

    The fourth generation optics (4G optics) enables the realization of novel optical components (lenses, gratings, vector vortices, etc.) by patterning the optical axis orientation in the plane of an anisotropic film. Such components exhibit near 100% diffraction efficiency for wavelengths meeting half-wave retardation condition. In this framework, we have advanced a step-forward by realizing different diffractive waveplates (DWs) with arbitrary spatial patterns of the optical axis orientation by exploiting the capability of a Digital Spatial Light Polarization Converter (DSLPC). The DSLPC is based on a reflective, high resolution Spatial Light Modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment is that the orientation of the alignment layer, and therefore of the fabricated liquid crystal (LC) or liquid crystal polymer (LCP) DWs, can be specified on a pixel-by-pixel basis. By varying the optical magnification or de-magnification between the SLM and the alignment layer, the spatial resolution of the photoaligned layer can be adjusted to be optimal for each application. We show that with a simple "click" it is possible to record different high resolution optical components as well as arbitrary patterns ranging from lenses to invisible and even dual labels.

  3. Two Non-Invasive Optical Diagnostics for the Plasma Couette Experiment

    NASA Astrophysics Data System (ADS)

    Tabbutt, Megan; Flanagan, Ken; Milhone, Jason; Nornberg, Mark; Roesler, Fred; Forest, Cary; WiPAL Team Team

    2016-10-01

    Two non-invasive optical diagnostics have been developed for the Plasma Couette Experiment Upgrade (PCX-U). PCX-U is capable of producing electron temperatures of 5 to 15 eV, densities between 1010 and 5 ×1011 cm-3, and ion temperatures between 0.5 eV to 2 eV. The first diagnostic described utilizes a low cost USB spectrometer for optical emission spectroscopy (OES). Combined with a modified coronal model, OES is used to measure electron temperature in Argon plasmas. A higher resolution spectrometer is used to image ion lines which can be analyzed to determine moments of the ion energy distribution function, particularly ion temperature and flow. Both optical diagnostics are mounted on a linear stage for scanning chords across the plasma volume. Abel transform techniques are used to create radial profiles of measured plasma properties. DOE, NSF.

  4. Optical diagnostic and therapy applications of femtosecond laser radiation using lens-axicon focusing.

    PubMed

    Parigger, Christian G; Johnson, Jacqueline A; Splinter, Robert

    2013-01-01

    Diagnostic modalities by means of optical and/or near infrared femtosecond radiation through biological media can in principle be adapted to therapeutic applications. Of specific interest are soft tissue diagnostics and subsequent therapy through hard tissue such as bone. Femto-second laser pulses are delivered to hydroxyapatite representing bone, and photo-acoustic spectroscopy is presented in order to identify the location of optical anomalies in an otherwise homogeneous medium. Imaging through bone is being considered for diagnostic, and potentially therapeutic, applications related to brain tumors. The use of mesomeric optics such as lens-axicon combinations is of interest to achieve the favorable distribution of focused radiation. Direct therapy by increasing local temperature to induce hyperthermia is one mode of brain tumor therapy. This can be enhanced by seeding the tumor with nanoparticles. Opto-acoustic imaging using femtosecond laser radiation is a further opportunity for diagnosis.

  5. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  6. Using fiber-optic transillumination as a diagnostic aid in dental practice.

    PubMed

    Strassler, Howard E; Pitel, Mark L

    2014-02-01

    Fiber-optic transillumination (FOTI) is a well-accepted and valuable adjunctive diagnostic tool with a wide range of clinical applications. In dentistry, FOTI has been primarily associated with caries diagnosis and has been corroborated through research studies to be a valid indicator of the histological presence or absence of bacterially infected tooth structure. In this review, techniques for using FOTI for tooth evaluation are presented along with examples of how FOTI can be effectively used as a supplemental diagnostic aid.

  7. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  8. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  9. RA diagnostics applying optical tomography in frequency domain

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Prapavat, Viravuth; Minet, Olaf; Beuthan, Juergen; Mueller, Gerhard J.

    1998-01-01

    Our aim is to reconstruct the optical parameters in a slice of a finger joint phantom for further investigations about rheumatoid arthritis (RA). Therefore, we have developed a flexible NIR scanning system in order to collect amplitude and phase delay of photon density waves in frequency-domain. A cylindrical finger joint phantom was embedded in a container of Intralipid solution due to the application of an inverse method for infinite geometry. The joint phantom was investigated by a laser beam obtaining several projections. The average optical parameters of each projection was calculated. Using different reconstruction techniques, e.g. ART and SIRT with a special projection operator, we reconstructed the optical parameters in a slice. The projection operator can be heuristically described by a photon path density function of a homogeneous media with infinite geometry. Applied to an object with an unknown distribution of optical parameters it calculates the expectation value of the investigated object. The potentials and limits of these fast reconstruction methods will be presented.

  10. Melanocytoma of the optic nerve head - a diagnostic dilemma

    PubMed Central

    Mohmad, Zalilawati; Kah, Tan Aik; Yong, Ku Chui; Abdul Halim, Wan Haslina Wan; Kong Yong, Then

    2011-01-01

    The clinical features, autofluorescence, B-scan ultrasonography, optical coherence tomography and fluorescein angiography of the lesion were described. Multiple investigation modalities are needed to confirm the benign nature of the lesion. Careful evaluation and follow-up is crucial to avoid misdiagnosis and erroneous management. PMID:24765321

  11. Melanocytoma of the optic nerve head - a diagnostic dilemma.

    PubMed

    Mohmad, Zalilawati; Kah, Tan Aik; Yong, Ku Chui; Abdul Halim, Wan Haslina Wan; Kong Yong, Then

    2011-07-01

    The clinical features, autofluorescence, B-scan ultrasonography, optical coherence tomography and fluorescein angiography of the lesion were described. Multiple investigation modalities are needed to confirm the benign nature of the lesion. Careful evaluation and follow-up is crucial to avoid misdiagnosis and erroneous management.

  12. Computerized prediction of optical density for diagnostic radiology.

    PubMed

    Schoenfeld, C M; Lautenschlager, E P; Moore, B K; Rechtien, J J

    1977-09-01

    A computer program was formulated and verified experimentally to predict the optical density on an image receptor for any given set of radiographic variables including tube kilovoltage, milliamperage, and wave form; x-ray beam filtration; nature of filters and absorbers, and type of x-ray film.

  13. Optical methods for diagnostic of cell-tissue grafts

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Volova, L. T.; Boltovskaya, V. V.; Zherdeva, L. A.; Belousov, N. V.; Pershutkina, S. V.

    2015-08-01

    In this work the results of cell-tissue grafts research with a complex of optical methods - confocal fluorescent microscopy and Raman spectroscopy are presented. It was established that coefficient M scatter is related to irregularity of demineralization process. It was microscopically shown that the quantity of integrated cells into these types of transplants amounts to 20% of its surface.

  14. Optical spatial solitons: historical overview and recent advances.

    PubMed

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  15. Electron kinetic effects on optical diagnostics in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Duff, J.; Parke, E.

    2014-08-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = Te/mec2 model may be insufficient; we present a more precise model with τ2-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  16. Electron kinetic effects on optical diagnostics in fusion plasmas

    SciTech Connect

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E.; Brower, D. L. Ding, W. X.

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  17. Advances in DOE modeling and optical performance for SMO applications

    NASA Astrophysics Data System (ADS)

    Carriere, James; Stack, Jared; Childers, John; Welch, Kevin; Himel, Marc D.

    2010-04-01

    The introduction of source mask optimization (SMO) to the design process addresses an urgent need for the 32nm node and beyond as alternative lithography approaches continue to push out. To take full advantage of SMO routines, an understanding of the characteristic properties of diffractive optical elements (DOEs) is required. Greater flexibility in the DOE output is needed to optimize lithographic process windows. In addition, new and tighter constraints on the DOEs used for off-axis illumination (OAI) are being introduced to precisely predict, control and reduce the effects of pole imbalance and stray light on the CD budget. We present recent advancements in the modeling and optical performance of these DOEs.

  18. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  19. Excitation and Diagnostics of Optical Contamination in the Spacecraft Environment

    DTIC Science & Technology

    1988-07-01

    AFGL’s design reviews of this instrument. This work led to major changes in the optical systems of this [Arizona] Imager/Spectrograph as well as an...ultraviolet through the mid-wavelength infrared (including the specially- designed Arizona Imager/Spectrograph, now being constructed for USAF), in space...101 and 105 cm respectively). The apparently- dominant off-surface feature at visible-wavelengths NO2 (’B 1 , 2 -X) has a very weak extremely near-UV

  20. Molecular-Based Optical Diagnostics for Hypersonic Nonequilibrium Flows

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Bathel, Brett; Johansen, Craig; Winter, Michael; O'Byrne, Sean; Cutler, Andrew

    2015-01-01

    This presentation package consists of seven different talks rolled up into one. These talks are all invited orals presentations in a special session at the Aviation 2015 conference and represent contributions that were made to a recent AIAA book that will be published entitled 'Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances'. Slide 5 lists the individual presentations that will be given during the special session.

  1. Catheters: instrumental advancements in biomedical applications of optical fibers.

    PubMed

    de Lima, Carlos J; Moreira, Leonardo M; Lyon, Juliana P; Villaverde, Antonio B; Pacheco, Marcos T T

    2009-07-01

    This review is focused on the advancements in biomedical engineering regarding the elaboration of new prototypes of optical fiber catheters to be applied in spectroscopic analysis, such as Raman and fluorescence spectroscopy. Our group has contributed to the development of new prototypes with interesting properties, such as side-viewing signal excitation and collection, distal tip with bending control, and Raman scattering minimization from the optical fiber. In addition, several groups have contributed to other new catheter-improving properties of this spectroscopic device. However, a relatively small number of studies has been published in the literature, due to industrial interest in this interdisciplinary and multidisciplinary area. To our knowledge, no review that has focused on the applications of catheters to several modes of spectroscopy has been published. In this work we revised this topic, analyzing the advancements and limitations of the recent biomedical catheters.

  2. Advanced Laser Chemical Processing For Microelectronics and Integrated Optics

    DTIC Science & Technology

    1992-08-15

    Barbara, CA (June 25-27, 1990). 15. R.M. Osgood, Jr., " Laser - Fabrication for Integrated Electronics and Optics," OITDA Conference, Tokyo, Japan, (July 5...Society Meeting, Boston, MA, November 26 - December 3, 1990. 20. R.M. Osgood, Jr., "Advances in Laser Fabrication for Solid-State Electronics and...Thin, Excimer Laser-Deposited Cd Interlayers," J. Elec. Mat. 12, 1239 (July, 1990). 14. R.M. Osgood, Jr., " Laser - Fabrication for Solid State

  3. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... COMMISSION Advanced Optics Electronics, Inc.; Order of Suspension of Trading March 2, 2011. It appears to the... securities of Advanced Optics Electronics, Inc. because it has not filed any periodic reports since the... of investors require a suspension of trading in Advanced Optics Electronics, Inc. Therefore, it...

  4. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOEpatents

    Karl JR., Robert R.

    1990-03-06

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  5. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOEpatents

    Karl, Jr., Robert R.

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  6. Principles for new optical techniques in medical diagnostics for mHealth applications

    NASA Astrophysics Data System (ADS)

    Balsam, Joshua Michael

    Medical diagnostics is a critical element of effective medical treatment. However, many modern and emerging diagnostic technologies are not affordable or compatible with the needs and conditions found in low-income and middle-income countries and regions. Resource-poor areas require low-cost, robust, easy-to-use, and portable diagnostics devices compatible with telemedicine (i.e. mHealth) that can be adapted to meet diverse medical needs. Many suitable devices will need to be based on optical technologies, which are used for many types of biological analyses. This dissertation describes the fabrication and detection principles for several low-cost optical technologies for mHealth applications including: (1) a webcam based multi-wavelength fluorescence plate reader, (2) a lens-free optical detector used for the detection of Botulinum A neurotoxin activity, (3) a low cost micro-array reader that allows the performance of typical fluorescence based assays demonstrated for the detection of the toxin staphylococcal enterotoxin (SEB), and (4) a wide-field flow cytometer for high throughput detection of fluorescently labeled rare cells. This dissertation discusses how these technologies can be harnessed using readily available consumer electronics components such as webcams, cell phones, CCD cameras, LEDs, and laser diodes. There are challenges in developing devices with sufficient sensitivity and specificity, and approaches are presented to overcoming these challenges to create optical detectors that can serve as low cost medical diagnostics in resource-poor settings for mHealth.

  7. Optical interferometry diagnostics in laser-driven equation of state experiments

    SciTech Connect

    Cauble, R C; Celliers, P M; Collins, G W; Da Silva, L B; Gold, D M; Kalantar, D H; Remington, B A; Weber, S V

    1999-06-18

    We have developed and tested several optical interferometric diagnostics to measure preheat and shock velocity in high-pressure equation of state experiments on the Nova laser. Theory and practical application of interferometric measurement techniques with illustrative experimental results are presented.

  8. Potential clinical utility of a fibre optic-coupled dosemeter for dose measurements in diagnostic radiology.

    PubMed

    Jones, A Kyle; Hintenlang, David

    2008-01-01

    Many types of dosemeters have been investigated for absorbed dose measurements in diagnostic radiology, including ionisation chambers, metal-oxide semiconductor field-effect transistor dosemeters, thermoluminescent dosemeters, optically stimulated luminescence detectors, film and diodes. Each of the aforementioned dosemeters suffers from a critical limitation, either the need to interrogate, or read, the dosemeter to retrieve dose information or large size to achieve adequate sensitivity. This work presents an evaluation of a fibre optic-coupled dosemeter (FOCD) for use in diagnostic radiology dose measurement. This dosemeter is small, tissue-equivalent and capable of providing true real-time dose information. The FOCD has been evaluated for dose linearity, angular dependence, sensitivity and energy dependence at energies, beam qualities and beam quantities relevant to diagnostic radiology. The FOCD displayed excellent dose linearity and high sensitivity, while exhibiting minimal angular dependence of response. However, the dosemeter does exhibit positive energy dependence, and is subject to attenuation of response when bent.

  9. New optical diagnostics for equation of state experiments on the Janus laser

    SciTech Connect

    Spaulding, D. K.; Jeanloz, R.; Hicks, D. G.; Smith, R. F.; Eggert, J. H.; Collins, G. W.; McWilliams, R. S.

    2007-12-12

    We describe the configuration of two new optical diagnostics for laser-driven dynamic-compression experiments to multi-Mbar pressures. A streaked optical pyrometer (SOP) has been developed to provide temporally and spatially-resolved records of the thermal emission from shock-compressed samples. In addition, temporally-resolved broadband reflectivity is measured between 532 and {approx}850 nm by supercontinuum generation in an optical fiber. These new tools expand capabilities to probe the thermal and electronic states of matter at high pressures and temperatures using the Lawrence Livermore National Laboratory's Janus laser.

  10. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  11. Novel x-ray optics for medical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, A.; Arvanian, V.; Kuyumchyan, D.; Aristov, V.; Shulakov, E.

    2009-08-01

    A new hard X - ray hologram with using crystal Fresnel zone plates (ZP) has been described. An image of Fourier hologram for hard X- ray is presented. X-ray phase contrast methods for medical diagnostics techniques are presented. We have developed an X-ray microscope, based on micro focus source which is capable of high resolution phasecontrast imaging and holograms. We propose a new imaging technique with the x-ray energy 8 keV. The method is expected to have wide applications in imaging of low absorbing samples such as biological and medical tissue. We used FIB to reproduction three dimension structures of damaged spinal cord of rat before and after combined treatment with NT3 and NR2D. PUBLISHER'S NOTE 12/16/09: This SPIE Proceedings paper has been updated with an erratum correcting several issues throughout the paper. The corrected paper was published in place of the earlier version on 9/1/2009. If you purchased the original version of the paper and no longer have access, please contact SPIE Digital Library Customer Service at CustomerService@SPIEDigitalLibrary.org for assistance.

  12. Raman diagnostics in manufacturing of polymer planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Gnyba, Marcin; Keranen, Mikko

    2003-04-01

    A Raman spectroscopy was used to diagnose a synthesis process of new class of materials - hybrid polymer thin films, dedicated to planar optical waveguides. Hybrids, made in sol-gel technology, have a great application potential, because their properties may be formed in wide range. However, to obtain high quality product, a strict control of the manufacturing process must be ensured. In our experiment, correctness of particular steps of the process as well as molecular structure of monomers, gel and thin films was investigated. The results of Raman mesurements showed that efficiency of two basic reactions should be improved. However, the structure of final product seems to be appropriate. To investigate full potential of Raman spectroscopy in process control, an experimental in-situ measurement was made in the real time, which allowed us to estimate the time required for the reaction.

  13. Express diagnostic of anaerobic infection and disbacteriosis by optical PNC method in clinical dentistry

    NASA Astrophysics Data System (ADS)

    Alexandrov, Michail T.; Koz'ma, Sergey U.; Taubinsky, Ilia M.; Masychev, Victor I.

    2000-11-01

    In this research a new way of express (real time) diagnostics of anaerobic infection and disbacteriosis is suggested. The express diagnostics of anaerobic infection allows to perform quick assessment of the injury microbiocenosis, the state of gastroenteric tract, the disbacteriosis presence and the degree of its development, to follow up dynamics of microflora variations in the process of medication treatment. The research were performed with optical PNC-method. The basic of the method is in registration of stimulated (secondary) radiations and registration of their space fields, which occur in the process of probing radiation interaction with biological tissues and their active elements. The process is called Photon- undulatory Nonlinear Conversion or in short PNC-process (PNC- method, PNC-diagnostic). The optimal diagnostic PNC-method developed here allows detecting the presence of anaerobic microflora directly at the bed of a patient. It makes possible to control the dynamic of patient rehabilitation process, providing strictly individual assessments.

  14. Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost

    PubMed Central

    Pierce, Mark C.; Weigum, Shannon E.; Jaslove, Jacob M.; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S.

    2013-01-01

    One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and / or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact “hybrid” objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 m. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation. PMID:24097204

  15. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  16. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  17. Optical Diagnostics for Classifying Stages of Dental Erythema

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Splinter, Robert; Lockhart, Peter; Brennan, Michael; Fox, Philip C.

    2003-02-01

    Periodontal disease is a term used to describe an inflammatory disease affecting the tissues surrounding and supporting the teeth. Periodontal diseases are some of the most common chronic disorders, which affect humans in all parts of the world. Treatment usually involves the removal of plaque and calculus by scaling and polishing the tooth. In some cases a surgical reduction of hyperplastic tissue, may also be required. In addition, periodontitis is a risk factor for systemic disorders such as cardiovascular disease and diabetes. Current detection methods are qualitative, inaccurate, and often do not detect the periodontal disease in its early, reversible stages. Therefore, an early detection method should be implemented identifying the relationship of periodontal disease with erythema. In order to achieve this purpose we are developing an optical erythema meter to diagnose the periodontal disease in its reversible, gingival stage. The discrimination between healthy and diseased gum tissue was made by using the reflection of two illuminating wavelengths provided by light emitting diodes operating at wavelengths that target the absorption and reflection spectra of the highlights of each particular tissue type (healthy or diseased, and what kind of disease). Three different color gels could successfully be distinguished with a statistical significance of P < 0.05.

  18. High-Speed Optical Diagnostics of Laser-Interactions

    NASA Astrophysics Data System (ADS)

    Bin Suaidi, Mohamad Kadim

    Available from UMI in association with The British Library. The interaction of an 8 ns, 10 mJ and 1.06 μm infrared pulse of radiation from a Q-switched Nd-YAG laser with water near a solid boundary is studied using high speed photographic techniques. The laser-liquid interaction has been used to generate high frequency sound waves by the mechanism of dielectric breakdown of the liquid around the beam waist of the focused laser beam. This leads to the production of a short duration plasma which rapidly heats and vaporises the surrounding liquid giving rise to a vapour cavity and the formation of a cavitation bubble resulting in the emission of a spherical acoustic wave. The acoustic transient associated with the breakdown, in turn interacted with a liquid-polymer interface leading to the generation of acoustic waves at this boundary and the propagation of stress-waves in the solid. Diagnostics of the laser-interaction events are recorded using a Mach-Zehnder interferometer illuminated by a sub-nanosecond nitrogen laser-pumped dye laser and computer-controlled video-imaging and capture systems. Measurements of the transient pressure distributions from the digitally recorded interferograms are carried out using a process known as Abel inversion. Dynamic photoelastic studies of the stress-waves propagation in the solid are performed using a circular polariscope arrangement thus producing the photoelastic fringe patterns. Identification of the wave structures are greatly enhanced by also recording the events in schlieren and focused shadowgraphy as well as by the combination of the above techniques. The initial part of the project also involved the design and development of a nitrogen laser and tunable dye laser system. The short-duration and high peak power output pulse of the nitrogen laser is then used to pump the dye laser giving sufficiently high power output with good spectral linewidth to provide an ideal light source for high-speed photography of the laser

  19. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  20. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.

    PubMed

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2017-01-15

    Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400nm to 700nm with the high resolution of 0.2521nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function.

  1. Endoscopic optical diagnosis provides high diagnostic accuracy of esophageal squamous cell carcinoma

    PubMed Central

    2014-01-01

    Background Recent technological advances have stimulated the development of endoscopic optical biopsy technologies. This study compared the accuracy of endoscopic diagnosis using magnifying narrow-band imaging (NBI) and histologic diagnosis of esophageal squamous lesions. Methods Patients at high risk for esophageal squamous cell carcinoma were examined with endoscopy and subsequent biopsy. The lesions diagnosed as cancer on NBI and the lesions diagnosed as cancer on biopsy were resected endoscopically or surgically. Histological diagnoses of resected specimens, the reference standards in this study, were made by a pathologist who was blind to both the endoscopic and biopsy diagnoses. The primary outcome was the accuracy of endoscopic and biopsy diagnosis. A noninferiority trial design with a noninferiority margin of −10% was chosen to investigate the accuracy of endoscopic diagnosis using magnifying NBI. Results Between November 2010 and October 2012, a total of 111 lesions in 85 patients were included in the analysis. The accuracy of endoscopic diagnosis and biopsy diagnosis for all lesions was 91.0% (101/111) and 85.6% (95/111), respectively. The difference in diagnostic accuracy was 5.4% (95% confidence interval: −2.9%–13.7%). The accuracy of endoscopic diagnosis and biopsy diagnosis of invasive cancers was 94.9% (74/78) and 84.6% (66/78), respectively. The difference was 10.3% (95% confidence interval: 1.6%–19.0%) for invasive cancers. The lower bound of the 95% confidence interval was above the prestated −10% in both cases. Conclusion Noninferiority of endoscopic diagnosis by magnifying NBI to histologic diagnosis by biopsy was established in this study (p = 0.0001). Trial registration The study was registered on 9th November 2010 in the University Hospital Medical Network Clinical Trials Registry as number: UMIN000004529. PMID:25108624

  2. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  3. Advances in Microfluidic PCR for Point-of-Care Infectious Disease Diagnostics

    PubMed Central

    Park, Seungkyung; Zhang, Yi; Lin, Shin; Wang, Tza-Huei; Yang, Samuel

    2011-01-01

    Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics. PMID:21741465

  4. Water cooled metal optics for the Advanced Light Source

    SciTech Connect

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-10-28

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

  5. Optical metrology for advanced process control: full module metrology solutions

    NASA Astrophysics Data System (ADS)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  6. TOPICAL REVIEW: Recent advances in diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Gibson, A. P.; Hebden, J. C.; Arridge, S. R.

    2005-02-01

    We review the current state-of-the-art of diffuse optical imaging, which is an emerging technique for functional imaging of biological tissue. It involves generating images using measurements of visible or near-infrared light scattered across large (greater than several centimetres) thicknesses of tissue. We discuss recent advances in experimental methods and instrumentation, and examine new theoretical techniques applied to modelling and image reconstruction. We review recent work on in vivo applications including imaging the breast and brain, and examine future challenges.

  7. Advances in Cardiovascular MRI for Diagnostics: Applications in Coronary Artery Disease and Cardiomyopathies

    PubMed Central

    Salerno, Michael; Kramer, Christopher M

    2010-01-01

    Background Cardiac magnetic resonance (CMR) imaging has emerged as an important cardiac imaging technique for the evaluation of multiple cardiac pathologies. Objective/Method The goal of this review is to describe recent advances in techniques which have extended the potential applications of CMR. The focus will be on the clinical applications of CMR for the evaluation of coronary artery disease and heart failure/cardiomyopathies which are major causes of morbidity and mortality worldwide. Conclusion CMR provides unique tissue characterization which is not available from other imaging modalities and has demonstrated important diagnostic and prognostic information in many forms of heart disease. PMID:21113233

  8. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics

    SciTech Connect

    Mourant, Judith B.; Hielscher, Andreas H.; Eick, Angelica A.; Johnson, Tamara M.; Shen, Dan

    1998-06-01

    We have studied the optical properties of mammalian cell suspensions to provide a mechanistic basis for interpreting the optical properties of tissues {ital in vivo}. Measurements of the wavelength dependence of the reduced scattering coefficient and measurements of the phase function demonstrated that there is a distribution of scatterer sizes. The volumes of the scatterers are equivalent to those of spheres with diameters in the range between {approximately}0.4 and 2.0 {mu}m. Measurements of isolated organelles indicate that mitochondria and other similarly sized organelles are responsible for scattering at large angles, whereas nuclei are responsible for small-angle scattering. Therefore optical diagnostics are expected to be sensitive to organelle morphology but not directly to the size and shape of the cells. {copyright} 1998 Optical Society of America

  9. Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas

    SciTech Connect

    Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.

    2004-10-01

    A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.

  10. Data and Analysis from a Time-Resolved Tomographic Optical Beam Diagnostic

    SciTech Connect

    Daniel K. Frayer, Douglas Johnson, Carl Ekdahl

    2010-05-02

    An optical tomographic diagnostic instrument developed for the acquisition of high-speed time-resolved images has been fielded at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory. The instrument was developed for the creation of time histories of electron-beam cross section through the collection of Cerenkov light. Four optical lines of sight optically collapse an image and relay projections via an optical fiber relay to recording instruments; a tomographic reconstruction algorithm creates the time history. Because the instrument may be operated in an adverse environment, it may be operated, adjusted, and calibrated remotely. The instrument was operated over the course of various activities during and after DARHT commissioning, and tomographic reconstructions reported verifiable beam characteristics. Results from the collected data and reconstructions and analysis of the data are discussed.

  11. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics.

    PubMed

    Lippitsch, M E; Draxler, S; Kieslinger, D; Lehmann, H; Weigl, B H

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors.

  12. Recent biologic and genetic advances in neuroblastoma: Implications for diagnostic, risk stratification, and treatment strategies.

    PubMed

    Newman, Erika A; Nuchtern, Jed G

    2016-10-01

    Neuroblastoma is an embryonic cancer of neural crest cell lineage, accounting for up to 10% of all pediatric cancer. The clinical course is heterogeneous ranging from spontaneous regression in neonates to life-threatening metastatic disease in older children. Much of this clinical variance is thought to result from distinct pathologic characteristics that predict patient outcomes. Consequently, many research efforts have been focused on identifying the underlying biologic and genetic features of neuroblastoma tumors in order to more clearly define prognostic subgroups for treatment stratification. Recent technological advances have placed emphasis on the integration of genetic alterations and predictive biologic variables into targeted treatment approaches to improve patient survival outcomes. This review will focus on these recent advances and the implications they have on the diagnostic, staging, and treatment approaches in modern neuroblastoma clinical management.

  13. Diagnostics of Electron Beams Based on Cherenkov Radiation in an Optical Fiber

    NASA Astrophysics Data System (ADS)

    Vukolov, A. V.; Novokshonov, A. I.; Potylitsyn, A. P.; Uglov, S. R.

    2017-02-01

    The use of an optical fiber in which Cherenkov radiation is generated instead of a metal wire for scanning a beam profile allows a compact and noise-proof device for diagnostics of charged particle beams in a wide energy range to be developed. Results of experimental investigation of the yield of Vavilov-Cherenkov radiation generated in optical fibers with thickness in the range from 0.125 to 1 mm by electrons with energy of 5.7 MeV are presented.

  14. Backreflection diagnostics for ultra-intense laser plasma experiments based on frequency resolved optical gating

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Hornung, J.; Schmidt, C.; Eckhardt, M.; Roth, M.; Stöhlker, T.; Bagnoud, V.

    2017-02-01

    We report on the development and implementation of a time resolved backscatter diagnostics for high power laser plasma experiments at the petawatt-class laser facility PHELIX. Pulses that are backscattered or reflected from overcritical plasmas are characterized spectrally and temporally resolved using a specially designed second harmonic generation frequency resolved optical gating system. The diagnostics meets the requirements made by typical experiments, i.e., a spectral bandwidth of more than 30 nm with sub-nanometer resolution and a temporal window of 10 ps with 50 fs temporal resolution. The diagnostics is permanently installed at the PHELIX target area and can be used to study effects such as laser-hole boring or relativistic self-phase-modulation which are important features of laser-driven particle acceleration experiments.

  15. Quasi-4D laser diagnostics using an acousto-optic deflector scanning system

    NASA Astrophysics Data System (ADS)

    Li, Tao; Pareja, Jhon; Becker, Lukas; Heddrich, Wolfgang; Dreizler, Andreas; Böhm, Benjamin

    2017-03-01

    In this paper, a novel scanning system for laser diagnostics was developed and characterized. The system is based on the acousto-optic deflection of a high-speed pulsed laser. Results showed that quasi-volumetric laser illumination with high precision and accuracy can be achieved with a simplified and flexible optical setup. The feasibility of the method for performing high-speed quasi-4D laser diagnostics was demonstrated by the tomographic visualization of a lifted turbulent jet flame using Mie-scattering and multi-plane particle image velocimetry measurements of a turbulent non-reactive mixing case. Three-dimensional flame and flow structures can be detected and tracked with this new scanning system.

  16. Optical biosensor technologies for molecular diagnostics at the point-of-care

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  17. High-power terahertz optically pumped NH{sub 3} laser for plasma diagnostics

    SciTech Connect

    Mishchenko, V. A.; Petrushevich, Yu. V.; Sobolenko, D. N.; Starostin, A. N.

    2012-06-15

    The parameter of a terahertz (THz) laser intended for plasma diagnostics in electrodynamic accelerators and tokamaks with a strong magnetic field are discussed. Generation of THz radiation in an ammonia laser under the action of high-power pulsed optical pumping by the radiation of a 10P(32) CO{sub 2} laser is simulated numerically. The main characteristics of the output radiation, such as its spectrum, peak intensity, time dependence, and total energy, are calculated.

  18. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ross, J. S.; Datte, P.; Divol, L.; Galbraith, J.; Froula, D. H.; Glenzer, S. H.; Hatch, B.; Katz, J.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D. S.; Moody, J. D.; Swadling, G.; Weaver, J.

    2016-11-01

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ˜5 × 1020 cm-3 while a 3ω probe will be used for plasma densities of ˜1 × 1019 cm-3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  19. Advances in optics in the medieval Islamic world

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2015-04-01

    This paper reviews the state of knowledge in the field of optics, mainly in catoptrics and dioptrics, before the birth of modern science and the well-documented contributions of men such as Kepler and Newton. The paper is not intended to be a comprehensive survey of the subject such as one might find in history of science journals; instead, it is aimed at the curious physicist who has probably been taught that nothing much of note was understood about the behaviour of light, beyond outdated philosophical musings, prior to the seventeenth century. The paper will focus on advances during the medieval period between the ninth and fourteenth centuries, in both the east and the west, when the theories of the Ancient Greeks were tested, advanced, corrected and mathematised. In particular, it concentrates on a multivolume treatise on optics written one thousand years ago by the Arab scholar, Ibn al-Haytham, and examines how it influenced our understanding of the nature of reflection and refraction of light. Even the well-informed physicist should find a few surprises here, which will alter his or her view of the debt we owe to these forgotten scholars.

  20. High-efficiency fast scintillators for 'optical' soft x-ray arrays for laboratory plasma diagnostics

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Vero, R.; Finkenthal, M.; Suliman, G.; Kaita, R.; Majeski, R.; Stratton, B.; Roquemore, L.; Tarrio, C

    2007-08-20

    Scintillator-based 'optical' soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic faceplates (FOPs) as substrates, and a thin aluminum foil(150 nm) to reflect the visible light emitted by the scintillator back to the optical detector.Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics.Its luminescence decay time of the order of?1-10 {mu}s is thus suitable for the 10 {mu}s time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built,and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  1. Applications of all optical signal processing for advanced optical modulation formats

    NASA Astrophysics Data System (ADS)

    Nuccio, Scott R.

    Increased data traffic demands, along with a continual push to minimize cost per bit, have recently motivated a paradigm shift away from traditional on-off keying (OOK) fiber transmission links towards systems utilizing more advanced modulation formats. In particular, modulation formats that utilize the phase of the optical signal, including differential phase shift keying (DPSK) and differential quadrature phase shift keying (DQPSK) along with polarization multiplexing (Pol-MUX), have recently emerged as the most popular means for transmitting information over long-haul and ultra-long haul fiber transmission systems. DPSK is motivated by an increase in receiver sensitivity compared to traditional OOK. DQPSK is motivated by a doubling of the spectral efficiency, along with increased tolerance to dispersion and nonlinear distortions. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency (bits/sec/Hz) of the optical channel, including quadrature amplitude modulation (QAM). Polarization multiplexing of channels is a straight forward method to allow two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX (D)QPSK has grown in interest as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters may be possible. In addition to advanced modulation formats, it is expected that optical

  2. DNA technological progress toward advanced diagnostic tools to support human hookworm control.

    PubMed

    Gasser, R B; Cantacessi, C; Loukas, A

    2008-01-01

    Blood-feeding hookworms are parasitic nematodes of major human health importance. Currently, it is estimated that 740 million people are infected worldwide, and more than 80 million of them are severely affected clinically by hookworm disease. In spite of the health problems caused and the advances toward the development of vaccines against some hookworms, limited attention has been paid to the need for improved, practical methods of diagnosis. Accurate diagnosis and genetic characterization of hookworms is central to their effective control. While traditional diagnostic methods have considerable limitations, there has been some progress toward the development of molecular-diagnostic tools. The present article provides a brief background on hookworm disease of humans, reviews the main methods that have been used for diagnosis and describes progress in establishing polymerase chain reaction (PCR)-based methods for the specific diagnosis of hookworm infection and the genetic characterisation of the causative agents. This progress provides a foundation for the rapid development of practical, highly sensitive and specific diagnostic and analytical tools to be used in improved hookworm prevention and control programmes.

  3. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  4. PAH 8μm Emission as a Diagnostic of HII Region Optical Depth

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.

    2017-01-01

    PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.

  5. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  6. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  7. Diagnostic Accuracy of Optic Nerve Ultrasonography and Ophthalmoscopy in Prediction of Elevated Intracranial Pressure

    PubMed Central

    Golshani, Keihan; Ebrahim zadeh, Mehdi; Farajzadegan, Ziba; Khorvash, Fariborz

    2015-01-01

    Introduction: Elevated intracranial pressure (ICP) is a major and potentially lethal disorder in patients admitted to the emergency department (ED). Several methods are being used to investigate for elevated ICP. Here we assessed and compared the diagnostic accuracy of two existing tools of ophthalmoscopy and optic nerve ultrasonography in detection of elevated ICP. Methods: 131 participants with probable elevation of ICP referred to the emergency department of Al-Zahra Hospital, Isfahan, Iran, from 2012 to 2014, were enrolled. Brain computed tomography (CT) scan, ultrasonography of optic nerve sheath, and ophthalmoscopy were performed for them. The optic nerves sheath with diameter more than 5 millimeters was considered as elevated ICP. Widening of optic nerve, ocular venous engorgement, blurring, hemorrhage over optic disk, elevation of optic disk, and retinal venous tortuosity were recorded as evidences of ICP rising in ophthalmoscopy. Diagnostic accuracy of the two tools in prediction of ICP rising were compared with the results of brain CT scan as a gold standard. Results: The mean age of participants was 46.29 ± 10 years (77% male). The number of diagnosed elevated ICPs with ophthalmoscopy and ultrasound were 98 (74.8%) and 102 (77.9%) cases, respectively. The calculated sensitivity and specificity of ophthalmoscopy and ultrasonography in detection of ICP rising were 100.0% (95% CI: 88.6-100.0) and 35.4% (95% CI: 26.0-46.2), 100.0% (95% CI: 84.0-100.0) and 31.9% (95% CI: 23.0-41.7), respectively. Conclusion: The present study revealed that bedside ultrasonography of optic nerve sheath and ophthalmoscopy have enough accuracy for the screening of patients with probable elevation of ICP. Of course, it should be considered that despite the high sensitivity of both tools, their specificity is low. PMID:26495382

  8. Laser beam and tissue interactions: use of advanced therapeutic and diagnostic techniques: in-vitro experiments and in-vivo trials

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.

    2001-04-01

    The mechanism of laser beam and tissue interaction is governed by the technical characteristics of the laser beam and the optical properties of the tissue. The therapeutic laser wavelength, pulse duration and beam quality, as well as the laser radiation delivery systems, the ablation mechanisms and the diagnostic techniques to monitor a surgical process are studied in this work. Advanced therapeutic and diagnostic techniques, such as integrating sphere, atomic force microscopy and beam profiling are used in the experimental study. In vitro experiments on tissue, laser ablation and diagnosis using laser induced fluorescence are performed. Finally, in vivo animal trials of an endoscopic/laparoscopic laser prototype are realized, in the framework of the appropriate protocols.

  9. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Charlot, S.; Gutkin, J.

    2016-03-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as C IV λλ1548, 1551, O III] λλ1661, 1666, N III] λ1750, [Si III] λ1883+Si III] λ1892 and [C III] λ1907+C III] λ1909, with the He II λ1640 recombination line are individually good discriminants of the nature of the ionizing source. Diagrams involving at least three of these lines allow an even more stringent distinction between active and inactive galaxies, as well as valuable constraints on interstellar gas parameters and the shape of the ionizing radiation. Several line ratios involving Ne-based emission lines, such as [Ne IV] λ2424, [Ne III] λ3343 and [Ne V] λ3426, are also good diagnostics of nuclear activity. Our results provide a comprehensive framework to identify the sources of photoionization and physical conditions of the ionized gas from the ultraviolet and optical nebular emission from galaxies. This will be particularly useful to interpret observations of high-redshift galaxies with future facilities, such as the James Webb Space Telescope and extremely large ground-based telescopes.

  10. Optical diagnostics of tumour cells at different stages of pathology development

    SciTech Connect

    Shcheglova, L S; Maryakhina, V S; Abramova, L L

    2013-11-30

    The differences in optical and biophysical properties between the cells of mammary gland tumour extracted from tumours of different diameter are described. It is shown that the spectral and spectrokinetic properties of fluorescent probes in the cells extracted from the tumours 1 – 3 cm in diameter are essentially different. Thus, the extinction coefficient of rhodamine 6G gradually increases with the pathology development. At the same time the rate of interaction of the triplet states of molecular probes with the oxygen, diluted in the tumour cells cytoplasm, decreases with the growth of the tumour capsule diameter. The observed regularities can be due to the changes in the cell structure, biochemical and biophysical properties. The reported data may be useful for developing optical methods of diagnostics of biotissue pathological conditions. (optical methods in biology and medicine)

  11. Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer

    PubMed Central

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  12. Optical Diagnostics of the Plasma and Surface during Inductively Coupled Plasma Etching

    NASA Astrophysics Data System (ADS)

    Herman, Irving P.

    1999-10-01

    The use of optical diagnostics to analyze the etching of Si, Ge, and InP by chlorine in an inductively coupled plasma (ICP) is investigated. Optical probes, along with other conventional plasma diagnostics, are used to characterize the process through measurements of the constituents of the plasma and the surface composition to obtain a more complete picture of the etching process. Neutral Cl2 and Cl densities are determined by optical emission actinometry by following optical emission from Cl_2. The absolute densities of Cl_2^+ and Cl^+ are determined by laser- induced fluorescence (LIF) of Cl_2^+ and Langmuir probe measurements of the total positive ion density. The surface is probed by using laser-induced thermal desorption with an XeCl laser (308 nm) to desorb the steady-state adlayer and optical methods to detect these desorbed species. The development of a new method to detect optically these laser desorbed (LD) species is detailed, that of examining transient changes in the plasma-induced emission (PIE). This LD-PIE method is more universal than the previously reported detection by LIF (LD-LIF), but requires more calibration due to varying electron density and temperature with varying plasma conditions. This is detailed for Si etching, for which LD-PIE and LD-LIF results are compared. The calibration methods are seen to be valid when the surface is analyzed as the rf power supplied to the reactor is varied. The electron density - needed for LD-PIE calibration - is measured by microwave interferometry. An improved understanding of the etching mechanism is obtained by combining the results of each of these measurements. This work was supported by NSF Grant No. DMR-98-15846. note

  13. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  14. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  15. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  16. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  17. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.

    PubMed

    Saqib, Najmus; Silva, Cody J; Maupin, C Mark; Porter, Jason M

    2017-01-01

    An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.

  18. Diagnostic Overview of the C-2U Advanced Beam-Driven Field-Reversed Configuration Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Gota, Hiroshi; Putvinski, Sergei; Tuszewski, Michel; Binderbauer, Michl; The TAE Team

    2015-11-01

    The C-2U experiment at Tri Alpha Energy seeks to study the evolution of advanced beam-driven field-reversed configuration (FRC) plasmas sustained by neutral beam (NB) injection for 5 + ms. Data on the FRC plasma performance is provided by a comprehensive suite of diagnostics including magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape that will both improve accuracy and facilitate active control of the FRC plasma.

  19. Design of an Optical Thomson Scattering diagnostic at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Galbraith, Justin; Datte, Phil; Ross, Steven; Swadling, George; Manuel, Stacie; Molander, Bill; Hatch, Ben; Manha, Dan; Vitalich, Mike; Petre, Brad

    2016-09-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Inertial Confinement Fusion program based on laser-target interactions. The Optical Thomson Scattering (OTS) diagnostic has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. A deep-UV probe beam is needed to overcome the large background of self-Thomson scattering produced by the 351nm (3ω) NIF drive beams. A two-phase approach to OTS on NIF will mitigate the risk presented by background levels. In Phase I, the diagnostic will assess background levels around a potential deep-UV probe wavelength considered for 5ω Thomson scattering measurements to be conducted in Phase II. The Phase I design of the diagnostic includes an unobscured collection telescope, dual crossed Czerny-Turner spectrometers, and the shared use of one streak camera located inside of an airbox. The Phase II design will include a 5ω probe laser. We will describe the engineering design and concept of operations of the Phase I NIF OTS diagnostic, with a focus on optomechanical disciplines.

  20. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    SciTech Connect

    Piccinini, M. Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M.; Ambrosini, F.; Nichelatti, E.

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  1. Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2012-04-27

    Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.

  2. Advanced Neuropsychological Diagnostics Infrastructure (ANDI): A Normative Database Created from Control Datasets

    PubMed Central

    de Vent, Nathalie R.; Agelink van Rentergem, Joost A.; Schmand, Ben A.; Murre, Jaap M. J.; Huizenga, Hilde M.

    2016-01-01

    In the Advanced Neuropsychological Diagnostics Infrastructure (ANDI), datasets of several research groups are combined into a single database, containing scores on neuropsychological tests from healthy participants. For most popular neuropsychological tests the quantity, and range of these data surpasses that of traditional normative data, thereby enabling more accurate neuropsychological assessment. Because of the unique structure of the database, it facilitates normative comparison methods that were not feasible before, in particular those in which entire profiles of scores are evaluated. In this article, we describe the steps that were necessary to combine the separate datasets into a single database. These steps involve matching variables from multiple datasets, removing outlying values, determining the influence of demographic variables, and finding appropriate transformations to normality. Also, a brief description of the current contents of the ANDI database is given. PMID:27812340

  3. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  4. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-15

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  5. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  6. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics.

    PubMed

    Bak, J G; Lee, S G; Son, D; Ga, E M

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  7. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurementsa)

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Meo, F.; Korsholm, S. B.; Bindslev, H.; Furtula, V.; Kantor, M.; Leipold, F.; Michelsen, P. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.

    2012-10-01

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic on TEXTOR without a source of probing radiation in discharges with sawtooth oscillations, an elevation angle misalignment of 0.9° was found with an accuracy of 0.25°.

  8. Radial localization of edge modes in Alcator C-Mod pedestals using optical diagnostics

    NASA Astrophysics Data System (ADS)

    Theiler, C.; Terry, J. L.; Edlund, E.; Cziegler, I.; Churchill, R. M.; Hughes, J. W.; LaBombard, B.; Golfinopoulos, T.; the Alcator C-Mod Team

    2017-02-01

    Dedicated experiments in ion cyclotron range heated enhanced D-alpha (EDA) H-mode and I-mode plasmas have been performed on Alcator C-Mod to identify the location of edge fluctuations inside the pedestal and to determine their plasma frame phase velocity. For this purpose, measurements from gas puff imaging (GPI) and gas puff charge exchange recombination spectroscopy (GP-CXRS) have been collected using the same optical views. The data suggest that the EDA H-mode-specific quasi-coherent mode (QCM) is centered near the radial electric field (E r) well minimum and propagates along the ion diamagnetic drift direction in the plasma frame. The weakly coherent mode (WCM) and the geodesic acoustic mode observed in I-mode, on the other hand, are found to be located around the outer shear layer of the E r well. This results in a weak plasma frame phase velocity mostly along the electron diamagnetic drift direction for the WCM. The findings in these EDA H-mode plasmas differ from probe measurements in ohmic EDA H-mode (LaBombard et al 2014 Phys. Plasmas 21 056108), where the QCM was identified as an electron drift-wave located several mm outside the E r well minimum in a region of positive E r. To explore if instrumental effects of the optical diagnostics could be the cause of the difference, a synthetic diagnostic for GPI is introduced. This diagnostic reproduces amplitude ratios and relative radial shifts of the mode profiles determined from poloidally and toroidally oriented optics and, if instrumental effects related to GP-CXRS are also included, indicates that the measured location of the QCM and WCM relative to the E r well reported here is only weakly affected by instrumental effects.

  9. Optical diagnostics of biological tissue cells during their cultivation in polymers

    SciTech Connect

    Letuta, S N; Maryakhina, V S; Rakhmatullin, R R

    2011-04-30

    The specific features of long-term luminescence of exogenous molecular probes in cells of pathogenic and normal biological tissues, cultivated on a solid nutrient medium, have been investigated by laser kinetic fluorimetry. It is proposed to use the Hyamatrix biopolymer as a nutrient medium. This polymer is formed on the basis of native, chemically unmodified hyaluronic acid and contains amino acids, microelements, vitamins, and other components. The possibility of using the obtained results to develop an alternative method of fluorescent diagnostics of biological tissues is discussed. (optical technologies in biophysics and medicine)

  10. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities. This research is partly supported by grant O N517 418440

  11. Optical diagnostics of turbulent mixing in explosively-driven shock tube

    NASA Astrophysics Data System (ADS)

    Anderson, James; Hargather, Michael

    2016-11-01

    Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.

  12. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic.

    PubMed

    Rowan, W L; Houshmandyar, S; Phillips, P E; Austin, M E; Beno, J H; Hubbard, A E; Khodak, A; Ouroua, A; Taylor, G

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  13. The simulation of optical diagnostics for crystal growth - Models and results

    NASA Astrophysics Data System (ADS)

    Banish, M. R.; Clark, R. L.; Kathman, A. D.; Lawson, S. M.

    A computer simulation of a Two Color Holographic Interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  14. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  15. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; Austin, M. E.; Beno, J. H.; Hubbard, A. E.; Khodak, A.; Ouroua, A.; Taylor, G.

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  16. Optical diagnostics of tumour cells at different stages of pathology development

    NASA Astrophysics Data System (ADS)

    Shcheglova, L. S.; Abramova, L. L.; Maryakhina, V. S.

    2013-11-01

    The differences in optical and biophysical properties between the cells of mammary gland tumour extracted from tumours of different diameter are described. It is shown that the spectral and spectrokinetic properties of fluorescent probes in the cells extracted from the tumours 1 - 3 cm in diameter are essentially different. Thus, the extinction coefficient of rhodamine 6G gradually increases with the pathology development. At the same time the rate of interaction of the triplet states of molecular probes with the oxygen, diluted in the tumour cells cytoplasm, decreases with the growth of the tumour capsule diameter. The observed regularities can be due to the changes in the cell structure, biochemical and biophysical properties. The reported data may be useful for developing optical methods of diagnostics of biotissue pathological conditions.

  17. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.

    2008-09-01

    Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they

  18. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, S.A.; Shannon, R.R.

    1985-01-18

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  19. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, Steve A.; Shannon, Robert R.

    1987-01-01

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  20. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  1. Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology.

    PubMed

    Hyer, Daniel E; Fisher, Ryan F; Hintenlang, David E

    2009-05-01

    This work reports on the characterization of a new fiber-optic coupled (FOC) dosimeter for use in the diagnostic radiology energy range. The FOC dosimeter was constructed by coupling a small cylindrical plastic scintillator, 500 microm in diameter and 2 mm in length, to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photo-multiplier tube (PMT). A serial port interface on the PMT permits real-time monitoring of light output from the dosimeter via a custom computer program. The FOC dosimeter offered excellent sensitivity and reproducibility, allowing doses as low as 0.16 mGy to be measured with a coefficient of variation of only 3.64%. Dose linearity was also excellent with a correlation coefficient of 1.000 over exposures ranging from 0.16 to 57.29 mGy. The FOC dosimeter exhibited little angular dependence from axial irradiation, varying by less than 5% over an entire revolution. A positive energy dependence was observed and measurements performed within a scatter medium yielded a 10% variation in sensitivity as beam quality changed due to hardening and scatter across a 16 cm depth range. The current dosimetry system features an array of five PMTs to allow multiple FOC dosimeters to be monitored simultaneously. Overall, the system allows for rapid and accurate dose measurements relevant to a range of diagnostic imaging applications.

  2. Non-intercepting diagnostic for high brightness electron beams using Optical Diffraction Radiation Interference (ODRI)

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Balandin, V.; Castellano, M.; Catani, L.; Chiadroni, E.; Gatti, G.; Golubeva, N.; Honkavaara, K.; Kube, G.

    2012-05-01

    High-gain Free Electron Lasers and future Linear Colliders require development of modern electron linacs with high brightness beams. Conventional intercepting transverse electron beam diagnostics, e.g. based on Optical Transition Radiation (OTR), cannot tolerate such high power beams without remarkable mechanical damages on the diagnostics device. Optical Diffraction Radiation (ODR) is an excellent candidate for measurements of the transverse phase space parameters in a non-intercepting way. One of the main problems of this method is the low signal to noise ratio, mainly due to the unavoidable synchrotron radiation background. This problem can be overcome by using two slits on metallic foils, placed at a distance shorter than the radiation formation zone. In this case a nearly background-free ODR interference pattern is produced allowing the determination of the beam size and angular divergence. The accuracy on these parameters can be increased by exploiting both ODR polarization states, as well as different wavelengths. Here we report measurements of the ODR interference between two slits with different aperture sizes in a non-collinear geometry, carried out at FLASH (DESY, Germany). Our results demonstrate the unique potential of this technique to determine the beam parameters.

  3. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  4. Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology

    SciTech Connect

    Hyer, Daniel E.; Fisher, Ryan F.; Hintenlang, David E.

    2009-05-15

    This work reports on the characterization of a new fiber-optic coupled (FOC) dosimeter for use in the diagnostic radiology energy range. The FOC dosimeter was constructed by coupling a small cylindrical plastic scintillator, 500 {mu}m in diameter and 2 mm in length, to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube (PMT). A serial port interface on the PMT permits real-time monitoring of light output from the dosimeter via a custom computer program. The FOC dosimeter offered excellent sensitivity and reproducibility, allowing doses as low as 0.16 mGy to be measured with a coefficient of variation of only 3.64%. Dose linearity was also excellent with a correlation coefficient of 1.000 over exposures ranging from 0.16 to 57.29 mGy. The FOC dosimeter exhibited little angular dependence from axial irradiation, varying by less than 5% over an entire revolution. A positive energy dependence was observed and measurements performed within a scatter medium yielded a 10% variation in sensitivity as beam quality changed due to hardening and scatter across a 16 cm depth range. The current dosimetry system features an array of five PMTs to allow multiple FOC dosimeters to be monitored simultaneously. Overall, the system allows for rapid and accurate dose measurements relevant to a range of diagnostic imaging applications.

  5. Inside Single Cells: Quantitative Analysis with Advanced Optics and Nanomaterials

    PubMed Central

    Cui, Yi; Irudayaraj, Joseph

    2014-01-01

    Single cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single cell activity. In order to obtain quantitative information (e.g. molecular quantity, kinetics and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single cell studies both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live cell analysis. Although a considerable proportion of single cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single cell analysis. PMID:25430077

  6. Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Puretzky, Alexander A.; Geohegan, David B.; Pannala, Sreekanth; Rouleau, Christopher M.; Regmi, Murari; Thonnard, Norbert; Eres, Gyula

    2013-06-01

    The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures.The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally

  7. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  8. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    a single spine, with two-photon uncaging) and in rapid, flexible spatial-temporal patterns [10-14]. Nevertheless, current technology generally requires damaging doses of UV or violet illumination and the continuous re-introduction of the caged compound, which, despite interest, makes for a difficult transition beyond in vitro preparations. Thus, the tremendous progress in the in vivo application of photo-stimulation tools over the past five years has been largely facilitated by two 'exciting' new photo-stimulation technologies: photo-biological stimulation of a rapidly increasing arsenal of light-sensitive ion channels and pumps ('optogenetic' probes[15-18]) and direct photo-thermal stimulation of neural tissue with an IR laser [19-21]. The Journal of Neural Engineering has dedicated a special section in this issue to highlight advances in optical stimulation technology, which includes original peer-reviewed contributions dealing with the design of modern optical systems for spatial-temporal control of optical excitation patterns and with the biophysics of neural-thermal interaction mediated by electromagnetic waves. The paper by Nikolenko, Peterka and Yuste [22] presents a compact design of a microscope-photo-stimulator based on a transmissive phase-modulating spatial-light modulator (SLM). Computer-generated holographic photo-stimulation using SLMs [12-14, 23] allows the efficient parallel projection of intense sparse patterns of light, and the welcome development of compact, user-friendly systems will likely reduce the barrier to its widespread adoption. The paper by Losavio et al [24] presents the design and functional characteristics of their acousto-optical deflector (AOD) systems for studying spatial-temporal dendritic integration in single neurons in vitro. Both single-photon (UV) and two-photon (femtosecond pulsed IR) AOD uncaging systems are described in detail. The paper presents an excellent overview of the current state of the art and limitations of

  9. Investigation of the feasibility of temperature profiling optical diagnostics in the SSME fuel pre-burner

    NASA Technical Reports Server (NTRS)

    Shirley, J. A.

    1983-01-01

    Results of an analytical investigation to determine the feasibility of temperature profiling in the space shuttle main engine (SSME) fuel preburner are presented. In this application it is desirable to measure temperature in the preburner combustor with a remote, nonintrusive optical technique. Several techniques using laser excitation were examined with a consideration of the constraints imposed by optical access in the fuel preburner and the problems associated with operation near the functioning space shuttle engine. The potential performance of practical diagnostic systems based on spontaneous Raman backscattering, laser induced fluorescence, and coherent anti-Stokes Raman spectroscopy were compared analytically. A system using collection of spontaneous Raman backscattering excited by a remotely located 5 to 10 watt laser propagated to the SSME through a small diameter optical fiber was selected as the best approach. Difficulties normally associated with Raman scattering: weak signal strength and interference due to background radiation are not expected to be problematic due to the very high density in this application, and the low flame luminosity expected in the fuel rich hydrogen oxygen flame.

  10. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  11. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  12. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    PubMed

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  13. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  14. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Morohashi, Isao; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-02-01

    Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

  15. Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Boedeker, Laurence R.

    1993-01-01

    Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman

  16. Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.

    2013-08-01

    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.

  17. Portable fiber optic coupled doppler interferometer system for detonation and shock wave diagnostics

    SciTech Connect

    Fleming, K.J.

    1993-03-01

    Testing and analysis of shock wave characteristics such as produced by detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses doppler interferometry and has pined wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement non intrusively. The conventional VISAR is not well suited for portability because of its sensitive components, large power and cooling requirements, and hazardous laser beam. A new VISAR using the latest technology in solid state lasers and detectors has been developed and tested. To further enhance this system`s versatility, the unit is fiber optic coupled which allows remote testing, permitting the VISAR to be placed over a kilometer away from the target being measured. Because the laser light is contained in the fiber optic, operation of the system around personnel is far less hazardous. A software package for data reduction has also been developed for use with a personal computer. These new advances have produced a very versatile system with full portability which can be totally powered by batteries or a small generator. This paper describes the solid state VISAR and its peripheral components, fiber optic coupling methods and the fiber optic coupled sensors used for sending and receiving laser radiation.

  18. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    PubMed

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.

  19. Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    GuoBiao, Cai; Jian, Dai; Yang, Zhang; NanJia, Yu

    2016-06-01

    This research evaluates the combustion behaviors of a single-element, swirl-coaxial injector in an atmospheric combustion chamber with gaseous oxygen and gaseous hydrogen (GO2/GH2) as the propellants. A brief simulated flow field schematic comparison between a shear-coaxial injector and the swirl-coaxial injector reveals the distribution characteristics of the temperature field and streamline patterns. Advanced optical diagnostics, i.e., OH planar laser-induced fluorescence and high-speed imaging, are simultaneously employed to determine the OH radical spatial distribution and flame fluctuations, respectively. The present study focuses on the flame structures under varying O/F mixing ratios and center oxygen swirl intensities. The combined use of several image-processing methods aimed at OH instantaneous images, including time-averaged, root-mean-square, and gradient transformation, provides detailed information regarding the distribution of the flow field. The results indicate that the shear layers anchored on the oxygen injector lip are the main zones of chemical heat release and that the O/F mixing ratio significantly affects the flame shape. Furthermore, with high-speed imaging, an intuitionistic ignition process and several consecutive steady-state images reveal that lean conditions make it easy to drive the combustion instabilities and that the center swirl intensity has a moderate influence on the flame oscillation strength. The results of this study provide a visualized analysis for future optimal swirl-coaxial injector designs.

  20. Optical coherence tomography: influence of contrast concentration on image quality and diagnostic confidence.

    PubMed

    Blachutzik, Florian; Achenbach, Stephan; Nef, Holger; Hamm, Christian; Dörr, Oliver; Boeder, Niklas; Marwan, Mohamed; Tröbs, Monique; Schneider, Reinhard; Röther, Jens; Schlundt, Christian

    2016-11-09

    OCT requires intracoronary injection of contrast agent to remove blood from the coronary lumen during data acquisition, which is a possible limitation of this method. Aim of this study was to analyze the influence of iodine concentration on image quality and diagnostic certainty of optical coherence tomography (OCT). OCT sequences acquired using contrast agent with a reduced concentration of 150 mg iodine/ml and a standard concentration of 350 mg iodine/ml were analyzed. Cross-sectional images with a spacing of 10 mm were evaluated regarding image quality and diagnostic confidence. A total of 67 OCT sequences acquired in 24 patients were analyzed. 31 sequences were acquired using contrast agent with a concentration of 150 mg iodine/ml and 36 sequences with a concentration of 350 mg iodine/ml. The percentage of remaining blood streaks in the cross sections was significantly lower for 350 mg iodine/ml compared to 150 mg iodine/ml (19 ± 21 vs. 34 ± 26%, p = 0.013). Contrast with 350 mg iodine/ml showed a significantly higher percentage of completely flushed pullback length as compared to 150 mg iodine/ml (78 ± 24 vs. 58 ± 27%, p = 0.004). Diagnostic certainty was significantly higher for 350 mg iodine/ml than for 150 mg iodine/ml (Likert scale average 1.4 ± 0.7 vs. 2.1 ± 1.2, p < 0.001; Likert scale: 1 = absolutely confident, 2 = confident with slight doubts, 3 = doubtful/not confident, 4 = non-diagnostic). Regarding image quality and diagnostic certainty, contrast agent with a concentration of 350 mg iodine/ml is superior to 150 mg iodine/ml.

  1. Advances in optical fiber sensors for vehicle detection

    NASA Astrophysics Data System (ADS)

    Meller, Scott A.; de Vries, Marten J.; Arya, Vivek; Claus, Richard O.; Zabaronick, Noel

    1998-01-01

    THe primary objective for this project is the design of optical fiber-based sensor instrumentation for specific ITS applications. Specifically, this paper discusses research on optical fiber sensors that can be used for traffic monitoring and vehicle classification. This paper also discusses developments on the application of optical fiber sensor that can be used for monitoring visibility. This research is directly beneficial to the implementation of driver advisory and safety systems, traffic control system, and other ITS applications. This paper summarizes research performed on optical fiber sensors used for measuring traffic flow on highways and discusses progress on optical fiber sensors used for monitoring visibility.

  2. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  3. Recent developments in high-resolution optical diagnostics of repetitively pulsed laser-target effects

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred; Althaus, Marion

    1995-05-01

    High energy densities, as required both in research and in industry, are achieved by the use of lasers. Extremely highpower densities are obtained in the pulsed mode with short microsecond(s) -, ns-, or even ultrashort ps- to fs- pulses. The interaction of such powerful laser pulses with any type of solid state, liquid or gaseous materials is then causing rapidly developing, nonstationary, optically nonlinear processes. Experimental investigations of these effects are therefore requiring special measuring techniques with high spatial and temporal resolution. Optical and optronical methods have proven to be particularly useful. Methods based on laser diagnostics, including high speed photography, cinematography, speckle techniques, holography, videography, infrared techniques or arbitrary combinations of these, are therefore considered to be important tools in these laser effect studies. The investigations reported in the present paper are referring to carbon dioxide-laser effects in intensity ranges which are useful for many industrial applications, such as for example in the field of material processing. Basic interest is actually in pulsed, plasma sustained laser target interaction phenomena which occur above critical threshold power densities, specific for each type of material. Surface induced, highly ionized absorption waves are then determining the energy transfer from the coherent laser radiation field towards the targets. The experiments at ISL were aimed at investigating plasma parameters and their influence on the energy transfer rates, by fast optical, electrical and optronical techniques, such as mentioned above. The results to be discussed refer to target effects, basically observed on optically transparent materials, subject to high average power pulsed carbon dioxide-laser radiation, with repetition rates of several tens to hundred pps at multi-MW/cm2 to GW/cm2 peak power densities and average power densities in the multi-kW/cm2-range.

  4. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  5. Investigation of edge turbulence by means of optical and electrical diagnostics in RFP plasmas

    NASA Astrophysics Data System (ADS)

    Scarin, Paolo; Cavazzana, Roberto; Serianni, Gianluigi; Yagi, Yasuyuki; Sakakita, Hajime

    2003-10-01

    Electrostatic turbulence in the edge region of RFP is commonly observed with sets of Langmuir probes during low current operation and associated with electrostatic structures. A new diagnostic system is being developed for the investigation of electrostatic turbulence in the edge region of fusion plasmas, at high plasma currents and thermal loads and will be used in the TPE-RX and RFX devices. The system is composed of gas puff nozzle, a double radial array of Langmuir probes and a set of 32 optical chords measuring the HÑ fluctuations. The nozzle will allow the puffing of gas to increase the local optical emissivity; the optical sensors will permit to investigate the optical emissivity turbulent pattern and to perform a two-dimensional analysis of turbulent structures. The Langmuir probes will be used to visualise the floating potential turbulent pattern and to measure the electron density. After assessing the correspondence between the results of the two systems and characterising the properties of the local plasma, the Langmuir probes will be remotely removed and only the optical analysis will be continued at high plasma currents. The gas flow will be characterised so as not to perturb the investigated region, while at the same time increasing the local emissivity. The area of optical view is 60 mm wide (toroidal direction) and 4 mm high (poloidal direction). The fields of view of adjacent chords in the object plane are 5 mm toroidally apart from each other and their diameter is 4 mm. The focus along the line of sight is about 50 mm deep. Each chord views a cone centred on focal point in the outer edge and extending through the plasma. The contributions due to small-scale structures away from the focus will be spatially averaged and so should contribute mainly a constant level to the chord signal. The puffed cloud emission will be collected from 3 optical heads and transferred through 35 m long optical fibres to the detection system, for which standard

  6. Optical imaging of intracranial hemorrhages in newborns: modern strategies in diagnostics and direction for future research

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Semyachkina-Glushkovskaya, O. V.; Lychagov, V. V.; Bibikova, O. A.; Sindeev, S. S.; Pavlova, O. N.; Shuvalova, E. P.; Tuchin, V. V.

    2014-05-01

    Using Doppler optical coherence tomography (DOCT) we study stress-related intracranial hemorrhages (ICHs) in newborn rats. We investigate a masked stage of ICH development that corresponds to the first 4 h after the stress. We show that this period is characterized by significant changes in the diameter of the sagittal vein and the velocity of the cerebral venous blood flow (CVBF). We discuss diagnostic abilities of wavelet-based methods and consider an adaptive technique allowing us to reveal clearest distinctions in the dynamics of CVBF between normal and stressed newborn rats. Finally, we conclude that the venous insufficiency in newborns and a reduced response of the sagittal vein to adrenaline are related to important prognostic markers of the risk of ICH development.

  7. Reduced optical transmission of SiO[sub 2] fibers used in controlled fusion diagnostics

    SciTech Connect

    Ramsey, A.T.; Adler, H.G.; Hill, K.W.

    1993-02-01

    We have subjected a silica core fiber optic cable to 4 years of low-level neutron and gamma radiation from Princeton's TFTR controlled fusion experiment The accumulated dose was 200 Gy. As a result of the radiation, we have measured increased attenuations of 100--300 db/km in the visible part of the spectrum, and a decrease of the numerical aperture. An attempt to decrease this damage by photobleaching failed. We argue that this failure is not unexpected, since the rate of damage is so slow and the time scale so long that the self-annealing process keeps the residual damage at the irreducible level seen in other experiments. The implications of these findings for controlled fusion diagnostics during upcoming experiments with highly reactive deuterium-tritium plasmas are discussed.

  8. Reduced optical transmission of SiO{sub 2} fibers used in controlled fusion diagnostics

    SciTech Connect

    Ramsey, A.T.; Adler, H.G.; Hill, K.W.

    1993-02-01

    We have subjected a silica core fiber optic cable to 4 years of low-level neutron and gamma radiation from Princeton`s TFTR controlled fusion experiment The accumulated dose was 200 Gy. As a result of the radiation, we have measured increased attenuations of 100--300 db/km in the visible part of the spectrum, and a decrease of the numerical aperture. An attempt to decrease this damage by photobleaching failed. We argue that this failure is not unexpected, since the rate of damage is so slow and the time scale so long that the self-annealing process keeps the residual damage at the irreducible level seen in other experiments. The implications of these findings for controlled fusion diagnostics during upcoming experiments with highly reactive deuterium-tritium plasmas are discussed.

  9. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  10. Diagnostic efficacy of computer extracted image features in optical coherence tomography of the precancerous cervix

    PubMed Central

    Kang, Wei; Qi, Xin; Tresser, Nancy J.; Kareta, Margarita; Belinson, Jerome L.; Rollins, Andrew M.

    2011-01-01

    Purpose: To determine the diagnostic efficacy of optical coherence tomography (OCT) to identify cervical intraepithelial neoplasia (CIN) grade 2 or higher by computer-aided diagnosis (CADx). Methods: OCT has been investigated as a screening∕diagnostic tool in the management of preinvasive and early invasive cancers of the uterine cervix. In this study, an automated algorithm was developed to extract OCT image features and identify CIN 2 or higher. First, the cervical epithelium was detected by a combined watershed and active contour method. Second, four features were calculated: The thickness of the epithelium and its standard deviation and the contrast between the epithelium and the stroma and its standard deviation. Finally, linear discriminant analysis was applied to classify images into two categories: Normal∕inflammation∕CIN 1 and CIN 2∕CIN 3. The algorithm was applied to 152 images (74 patients) obtained from an international study. Results: The numbers of normal∕inflammatory∕CIN 1∕CIN 2∕CIN 3 images are 74, 29, 14, 24, and 11, respectively. Tenfold cross-validation predicted the algorithm achieved a sensitivity of 51% (95% CI: 36%–67%) and a specificity of 92% (95% CI: 86%–96%) with an empirical two-category prior probability estimated from the data set. Receiver operating characteristic analysis yielded an area under the curve of 0.86. Conclusions: The diagnostic efficacy of CADx in OCT imaging to differentiate high-grade CIN from normal∕low grade CIN is demonstrated. The high specificity of OCT with CADx suggests further investigation as an effective secondary screening tool when combined with a highly sensitive primary screening tool. PMID:21361180

  11. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  12. The evolution of whole field optical diagnostics for external transonic testing

    NASA Astrophysics Data System (ADS)

    Fry, K. A.; Bryanston-Cross, P.

    1992-09-01

    The diagnostic use of quantitative laser flow visualization techniques has increased rapidly over recent years. The limitations imposed by conventional single point techniques such as laser Doppler anemometry are addressed and how they have been overcome by the development of a new family of whole field measurement techniques is demonstrated. In particular near instantaneous whole field velocity data was obtained in a relatively hostile, industrial 2.74 m x 2.44 m transonic wind tunnel (TWT) at the Aircraft Research Association (ARA). The techniques were evaluated for their suitability for making quantitative measurements in the wing/pylon region of a model wing and engine combination. Three optical diagnostic techniques were successfully developed within the context of the ARA facility. The first technique, laser light sheet (LLS), combines the operation of a pulse laser and video capture system to provide a 'real time' visualization of the flow, whereas a second pulse laser technique, Particle Image Velocimetry (PIV) can be used to make specific quantitative whole field instantaneous velocity measurements. The third method, holography, was used to produce a stored three dimensional visualization of the unsteady and shock wave features of the transonic flow in the gully region. A description is made of their installation and operation, and examples are presented of current test results.

  13. Utilization of optical image data from the Advanced Test Accelerator (ATA)

    SciTech Connect

    Chambers, F.W.; Kallman, J.S.; Slominski, M.E.; Chong, Y.P.; Donnelly, D.; Cornish, J.P.

    1987-01-01

    Extensive use is made of optical diagnostics to obtain information on the 50-MeV, 10-kA, 70-ns pulsed-electron beam produced by the Advanced Test Accelerator (ATA). Light is generated by the beam striking a foil inserted in the beamline or through excitation of the gas when the beamline is filled with air. The emitted light is collected and digitized. Two-dimensional images are recorded by either a gated framing camera or a streak camera. Extraction of relevant beam parameters, such as current density, current, and beam size, requires an understanding of the physics of the light-generation mechanism and an ability to handle and properly exploit a large digital database of image data. We will present a brief overview of the present understanding of the light-generation mechanisms in foil and gas, with emphasis on experimental observations and trends. We will review our data management and analysis techniques and indicate successful approaches for extracting beam parameters.

  14. Applications of advanced optical fiber sensors at UESTC

    NASA Astrophysics Data System (ADS)

    Rao, Yun-Jiang

    2012-02-01

    Based on many years research, a number of novel fiber-optic sensors and systems are developed by the Fiber Optics Group at University of Electronic Science & Technology of China (UESTC). This paper presents a review of the applications of these sensors and systems developed in recent years, including: (1) Micro fiber-optic Fabry-Perot interferometric sensors for high temperature strain measurement applications; (2) Fiber Bragg grating (FBG) sensors for safety monitoring applications in transportations industry; (3) Long-distance Brillouin optical time-domain analyzer (BOTDA) for high performance temperature/strain measurement; (4) Fiber-optic fences based on FBG and phasesensitive optical time-domain reflectometer (Φ-OTDR) for intrusion monitoring applications.

  15. Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.

  16. Advanced Organic Electro-Optic Materials for Integrated Device Applications

    DTIC Science & Technology

    2001-06-01

    Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more

  17. Optical combo sensor for early diagnostics within the built and natural environment

    NASA Astrophysics Data System (ADS)

    Bryce, Emma; Sommerville, James

    2008-04-01

    Within the Built and Natural Environment early analysis of structural conditions, air quality monitoring, pollutant and irritant detection by optical sensor technology is advancing. Combining the two technologies, Surface Plasmon Resonance (SPR) and Surface Enhance Raman Scattering (SERS) into a single instrument is the aim of the research, with a resulting fingerprint library of measurands being produced. The combo sensor will provide unique fingerprints of the measurands, monitoring conditions, such as the carbonation of concrete, microbial and chemical loading and ageing effects of structures, along with their severity. Analysed conditions will be crossed referenced with the library allowing smart feedback for timely maintenance. SPR and SERS work on the principle that specific surfaces, when excited by a light source passing through a glass prism, will change their rate and scale of vibration when their surface holds or is contaminated by particular a component, in this case the monitoring condition analyte. A ligand, which binds specifically to the monitoring analyte, is held in specialised surface coatings which are applied to the surface of the sensor glass or prism itself. The sensing takes place through detection of differences in the original laser light source and reflections/refractions of that light source from the glass prisms. The advances and obstacles of early research are discussed along with initial results and findings being examined in the development a new optical combo sensor.

  18. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  19. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Thompson, M C; Gota, H; Putvinski, S; Tuszewski, M; Binderbauer, M

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  20. Optical coherence tomography in diagnostics of precancer and cancer of human bladder

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena V.; Streltsova, Olga S.; Gladkova, Natalia D.; Shakhova, Natalia M.; Feldchtein, Felix I.; Kamensky, Vladislav A.; Gelikonov, Grigory V.; Snopova, Ludmila B.; Donchenko, Ekaterina V.

    2004-07-01

    Our goal was statistical assessment of the in vivo cystoscopic optical coherence tomography (OCT) ability to detect neoplasia in human urinary bladder. We analyzed major reasons of false positive and false negative image recognition results. Optical coherence tomography was performed to image the bladder during cystoscopy. The study enrolled 63 patients with suspicion for bladder cancer and scheduled for cystoscopy. The diagnosis was established by histopathology examination of a biopsy. Each biopsy site was examined by OCT. Benign conditions were diagnosed for 31 patients, and dysplasia or carcinoma were diagnosed for 32 patients. Six physicians blinded to all clinical data participated in the dichotomy recognition (malignant or benign) of the OCT images. 98% sensitivity and 72% specificity for the OCT recognition of dysplastic/malignant versus benign/reactive conditions of the bladder are demonstrated. Total error rate was 14.8%. The interobserver agreement multi-rater kappa coefficient is 0.80. The superficial and invasive bladder cancer and high-grade dysplasia were recognized with minimum error rate ranging from 0 to 3.3%. High sensitivity and good specificity of the OCT method in the diagnostics of bladder neoplasia makes OCT a promising complementary cystoscopic technique for non-invasive evaluation of zones suspicious for high-grade dysplasia and cancer.

  1. Research Studies on Advanced Optical Module/Head Designs for Optical Disk Recording Devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.; Seery, Bernard D.

    1993-01-01

    The Annual Report of the Optical Data Storage Center of the University of Arizona is presented. Summary reports on continuing projects are presented. Research areas include: magneto-optic media, optical heads, and signal processing.

  2. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  3. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  4. Research studies on advanced optical module/head designs for optical devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.

    1991-01-01

    A summary is presented of research in optical data storage materials and of research at the center. The first section contains summary reports under the general headings of: (1) Magnetooptic media: modeling, design, fabrication, characterization, and testing; (2) Optical heads: holographic optical elements; and (3) Optical heads: integrated optics. The second section consist of a proposal entitled, Signal Processing Techniques for Optical Data Storage. And section three presents various publications prepared by the center.

  5. NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.

  6. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    NASA Technical Reports Server (NTRS)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  7. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  8. Last Advances in Silicon-Based Optical Biosensors.

    PubMed

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  9. Advances and problems in plasma-optical mass-separation

    SciTech Connect

    Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A.

    2014-03-15

    This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

  10. Advances in fiber optic sensors for in-vivo monitoring

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Mignani, Anna G.

    1995-09-01

    Biomedical fiber-optic sensors are attractive for the measurement of both physical and chemical parameters as well as for spectral measurements directly performed on the patient. An overview of fiber-optic sensors for in vivo monitoring is given, with particular attention to the advantages that these sensors are able to offer in different fields of application such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology, and dentistry.

  11. Recent advance in target diagnostics on the Laser MégaJoule (LMJ)

    NASA Astrophysics Data System (ADS)

    Caillaud, T.; Alozy, E.; Briat, M.; Cornet, P.; Darbon, S.; Dizière, A.; Duval, A.; Drouet, V.; Fariaut, J.; Gontier, D.; Landoas, O.; Marchet, B.; Masclet-Gobain, I.; Oudot, G.; Soullié, G.; Stemmler, P.; Reverdin, C.; Rosch, R.; Rousseau, A.; Rossé, B.; Rubbelynck, C.; Troussel, P.; Villette, B.; Aubard, F.; Huelvan, S.; Maroni, R.; Llavador, P.; Allouche, V.; Burillo, M.; Chollet, C.; D'Hose, C.; Prat, B.; Trosseille, C.; Raimbourg, J.; Zuber, C.; Lebreton, J. P.; Perez, S.; Ulmer, J. L.; Jalinaud, T.; Jadaud, J. P.; Bourgade, J. L.; Wrobel, R.; Rogue, X.; Miquel, J. L.

    2016-09-01

    Since the first experimental campaign conducted in 2014 with mid field Gated X-ray Imager (GXI) and two quadruplets (20 kJ at 351 nm) focused on target, the Laser MégaJoule (LMJ) operational capability is still growing up. New plasma diagnostics have been implemented: a large field 2D GXI, two broadband x-ray spectrometers (called DMX and miniDMX), a specific soft x-ray spectrometer and a Laser Entrance Hole (LEH) imaging diagnostic. A series of experiments have been performed leading to more than 60 shots on target. We will present the plasma diagnostics development status conducted at CEA for experimental purpose. Several diagnostics are now under manufacturing or development which include a Streaked Soft X-ray Imager (SSXI), an Equation Of State (EOS) diagnostic suite ("EOS pack"), a Full Aperture BackScattering (FABS) diagnostic, a Near Backscattered Imager (NBI), a high resolution 2D GXI, a high resolution x-ray spectrometer, a specific set of two polar hard x-ray imagers for LEH characterization and a set of Neutron Time of Flight (NTOF) detectors. We describe here the diagnostics design and performances in terms of spatial, temporal and spectral resolutions. Their designs have taken into account the harsh environment (neutron yields, gamma rays, electromagnetic perturbations, debris and shrapnel) and the safety requirements.

  12. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  13. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  14. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics.

    PubMed

    Mishra, Saswat; Saadat, Darius; Kwon, Ohjin; Lee, Yongkuk; Choi, Woon-Seop; Kim, Jong-Hoon; Yeo, Woon-Hong

    2016-07-15

    There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies.

  15. Enabling advanced mirror blank design through modern optical fabrication technology

    NASA Astrophysics Data System (ADS)

    Wilson, Timothy J.; Genberg, Victor L.

    1994-02-01

    Mirror blanks used in high-reliability optical systems for airborne and spaceborne applications have many requirements in terms of weight, stiffness and moment of inertia, as well as mounting and gravitational influences. Lightweight and ultra-lightweight mirror blank design techniques have been enhanced by recent technological developments in mirror blank fabrication and optical figuring. This paper briefly reviews traditional mirror blank design considerations in light of new fabrication technologies such as abrasive water jet machining of mirror cores and ion figuring of optical surfaces. The impact of these new technologies on mirror blank design is also discussed, as well as new design and analytical techniques using NASTRAN. Actual production data using these techniques are presented.

  16. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  17. Developments Toward Diagnostic Breast Cancer Imaging Using Near-Infrared Optical Measurements and Fluorescent Contrast Agents1

    PubMed Central

    Hawrysz, Daniel J; Sevick-Muraca, Eva M

    2000-01-01

    Abstract The use of near-infrared (NIR) light to interrogate deep tissues has enormous potential for molecular-based imaging when coupled with NIR excitable dyes. More than a decade has now passed since the initial proposals for NIR optical tomography for breast cancer screening using time-dependent measurements of light propagation in the breast. Much accomplishment in the development of optical mammography has been demonstrated, most recently in the application of time-domain, frequency-domain, and continuous-wave measurements that depend on endogenous contrast owing to angiogenesis and increased hemoglobin absorbance for contrast. Although exciting and promising, the necessity of angiogenesis-mediated absorption contrast for diagnostic optical mammography minimizes the potential for using NIR techniques to assess sentinel lymph node staging, metastatic spread, and multifocality of breast disease, among other applications. In this review, we summarize the progress made in the development of optical mammography, and focus on the emerging work underway in the use of diagnostic contrast agents for the molecular-based, diagnostic imaging of breast. PMID:11191107

  18. Last Advances in Silicon-Based Optical Biosensors

    PubMed Central

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  19. The design of the optical Thomson scattering diagnostic for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Datte, P. S.; Ross, J. S.; Froula, D. H.; Daub, K. D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Katz, J.; Kilkenny, J.; Landen, O.; Manha, D.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G. F.; Weaver, J.

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 1020 electrons/cm3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  20. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  1. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  2. PIC Simulation of RF Plasma Sheath Formation and Initial Validation of Optical Diagnostics using HPC Resources

    NASA Astrophysics Data System (ADS)

    Icenhour, Casey; Exum, Ashe; Martin, Elijah; Green, David; Smithe, David; Shannon, Steven

    2014-10-01

    The coupling of experiment and simulation to elucidate near field physics above ICRF antennae presents challenges on both the experimental and computational side. In order to analyze this region, a new optical diagnostic utilizing active and passive spectroscopy is used to determine the structure of the electric fields within the sheath region. Parallel and perpendicular magnetic fields with respect to the sheath electric field have been presented. This work focuses on the validation of these measurements utilizing the Particle-in-Cell (PIC) simulation method in conjunction with High Performance Computing (HPC) resources on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Plasma parameters of interest include electron density, electron temperature, plasma potentials, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model of the experimental setup. The overall goal of this study is to develop models for complex RF plasma systems and to help outline the physics of RF sheath formation and subsequent power loss on ICRF antennas in systems such as ITER. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.

  3. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  4. Magnetic fluctuation profile measurement using optics of motional Stark effect diagnostics in JT-60U

    SciTech Connect

    Suzuki, T.; Isayama, A.; Matsunaga, G.; Oyama, N.; Fujita, T.; Oikawa, T.

    2008-10-15

    Motional Stark effect (MSE) diagnostics in JT-60U works as polarimeter to measure the pitch angle of magnetic field as well as beam-emission-spectroscopy (BES) monochromator simultaneously at 30 spatial channels. Fluctuation in the BES signal using MSE optics (MSE/BES) contains fluctuations in not only the density but also the pitch angle (or the magnetic field). Correlation analysis of the magnetic fluctuation between two spatial channels is applied to high-beta plasma with a magnetohydrodynamic activity at frequency of about 0.9 kHz. It has been found that the magnetic fluctuation measured by the MSE/BES is spatially localized near the magnetic flux surface having safety factor and that the phase of the fluctuation is inverted at about the surface, suggesting magnetic island structure by tearing mode. The phase of the magnetic fluctuation measured by the MSE/BES at outside of the q=2 surface is consistent with that by the pickup coil placed outside the plasma.

  5. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    PubMed

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10(20) electrons/cm(3) while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10(19) electrons/cm(3). We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  6. Polarization-based optical imaging and processing techniques with application to the cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Gang L.; Li, Yanfang; Cameron, Brent D.

    2002-06-01

    In this investigation, a polarization-based imaging system is developed and described that measures the two-dimensional effective backscattering Mueller matrix of a sample in near real-time. As is well known, a Mueller matrix can provide considerable information on the makeup and optical characteristics of a sample and also directly describes how the sample transforms an incident light beam. The ability to measure the two-dimensional Mueller matrix of a biological sample, therefore, can provide considerable information on the sample composition as well as the potential to reveal significant structural information that normally would not be visible through standard imaging techniques. Additional information can also be obtained through the application of image-processing, decomposition, and reconstruction techniques that operate directly on the 2D Mueller matrix. Using the developed system, it is shown how the induction of internal strain within the sample coupled with image reconstruction and decomposition techniques can further improve image contrast and aid in the detection of boundaries between tissues of different biomechanical and structural properties. The studies presented were performed with both rat tissue and a melanoma-based tissue culture. The results demonstrate how these techniques could provide information that may be of diagnostic value in the physical detection of malignant lesion boundaries.

  7. An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development

    SciTech Connect

    Droemer, Darryl W.; Crain, Marlon D.; Lare, Gregory A.; Bennett, Nichelle L.; Johnston, Mark D.

    2013-06-13

    National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed power–driven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camera–based optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

  8. Characterization of optical components using contact and non-contact interferometry techniques: advanced metrology for optical components

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Conroy, Mike; Smith, Richard

    2012-10-01

    Advanced metrology plays an important role in the research, production and quality control of optical components. With surface finish, form error and other parameter specifications becoming more stringent, precision measurements are increasingly demanded by optics manufacturers and users. The modern metrologist now has both contact and noncontact measurement solutions available and a combination of these techniques now provides a more detailed understanding of optical components. Phase Grating Interferometry (PGI) with sub-nanometre vertical resolution and sub-micron lateral resolution can provide detailed characterization of a wide range of components including shallow and steep-sided optics. PGI is ideal for precision form measurement of a comprehensive range of lenses, moulds and other spherical or aspheric products. Because of the complex nature of these components, especially precision aspheric and asphero-diffractive optics, control of the form is vital to ensure they perform correctly. Recent hardware and software developments now make it possible to gain a better understanding and control of the form and function of this optics. Another change is the use of high speed 3D non-contact measurement of optics which is becoming more popular. Often scanning interferometric techniques such as coherence correlation interferometry (CCI) can be used to study components not suited to 2D contact analysis, including fragile surfaces and structured surfaces. Scanning interferometry can also be used to measure film thickness and uniformity of any coating present. In this paper the use of both PGI and CCI to measure optical lenses and coatings is discussed.

  9. Recent advances in aluminum oxynitride (ALON) optical ceramic

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Hartnett, Thomas M.; Wahl, Joseph M.; Ondercin, Robert J.; Olson, Karen R.

    2001-09-01

    Aluminum Oxynitride or ALON optical ceramic is transparent material, developed and patented by Raytheon, which is very similar to sapphire, being comprised mostly of Al2O3 with a small amount of additional nitrogen. This nitrogen addition has the effect of producing a cubic material whose optical and mechanical properties are isotropic. Importantly, this means that it can be produced by powder processing methods, which are scalable to larger sizes, and at lower prices than can be achieved by the single crystal growth techniques that are used to grow sapphire. Furthermore, its isotropic properties make it much easier to grind and polish than sapphire. Recently, the interest in ALON optical ceramic has grown substantially following impressive results in ballistic testing. Ballistic laminates, containing ALON layers, have demonstrated protection against armor piercing rounds, at half the areal density and thickness of conventional ballistic laminates. ALON plates as large as 14x20in are being produced, under Air Force funding, for evaluation as IR windows and transparent armor, using conventional powder processing techniques. The production processes themselves are now being scaled to produce large pieces and large quantities of ALON optical ceramic.

  10. Advanced optical modelling of dynamically deposited silicon nitride layers

    NASA Astrophysics Data System (ADS)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  11. Advanced Geometric Optics on a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Nussbaum, Allen

    1979-01-01

    Presents a ray-tracing procedure based on some ideas of Herzberger and the matrix approach to geometrical optics. This method, which can be implemented on a programmable pocket calculator, applies to any conic surface, including paraboloids, spheres, and planes. (Author/GA)

  12. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  13. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  14. Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Qiu, Zhihai; Huang, Zheng

    2012-12-01

    Photodynamic therapy (PDT) is based on the generation of highly reactive singlet oxygen through interactions of photosensitizer, light and molecular oxygen. PDT has become a clinically approved, minimally invasive therapeutic modality for a wide variety of malignant and nonmalignant diseases. The main dosimetric parameters for predicting the PDT efficacy include the delivered light dose, the quantification and photobleaching of the administrated photosensitizer, the tissue oxygen concentration, the amount of singlet oxygen generation and the resulting biological responses. This review article presents the emerging optical techniques that in use or under development for monitoring dosimetric parameters during PDT treatment. Moreover, the main challenges in developing real-time and noninvasive optical techniques for monitoring dosimetric parameters in PDT will be described.

  15. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  16. Imaging heterogeneous absorption distribution of advanced breast cancer by optical tomography

    PubMed Central

    Xu, Yan; Zhu, Quing

    2010-01-01

    Tumor vascular patterns of advanced breast cancers are complex and heterogeneous. Two typical light absorption patterns of periphery enhancement and posterior shadowing have been observed when imaging these advanced cancers using optical tomography guided by ultrasound. We perform a series simulation and phantom experiments to systemically evaluate the effects of target parameters, target locations, and target optical properties on imaging periphery enhancement absorption distribution using reflection geometry. Large tumors are modeled as concentric semiellipsoidal targets of different outer shell and inner core optical properties. We show that larger targets of more than 3 to 4 cm diameter with outer shell thicknesses less than 1 cm can be resolved at a depth less than 3 cm. A clinical example is given to show the complex vasculature distributions seen from an advanced cancer. PMID:21198181

  17. Beginning-to-end wafer bonding for advanced optical systems

    NASA Astrophysics Data System (ADS)

    Farrens, Shari N.; Lindner, Paul; Dwyer, Steven; Wimplinger, Markus

    2003-11-01

    The old adage "Work Smarter, Not Harder" is certainly applicable in today's competitive marketplace for Optical MEMS. In order to survive the current economic conditions, high volume manufacturers must get optimum performance and yield from each design and manufactured component. Wafer bonding, and its numerous variants, is entering mainstream production environments by providing solutions throughout the production flow. For example, SOI (silicon on insulator) and other laminated materials such as GaAs/Si are used as cost effective alternatives to molecular epitaxy methods for Bragg mirrors, rf resonators, and hybrid device fabrication. Temporary wafer bonding is used extensively to allow fragile compound semiconductors to be attached to rigid support wafers. This allows for front side and backside processing with a reduction in wafer breakage and increases in thickness uniformity results after backgrind operations. Permanent wafer bonding is used to attach compound semiconductors to each other or silicon to completely integrate optical components and logic or MEMS components. Permanent hermetic sealing is used for waveguide formation and, when combined with vacuum sealing, higher performance is achieved for RF resonators. Finally, many of the low temperature solders and eutectic alloys are finding application in low temperature wafer-to-wafer level packaging of optical devices to ceramic packages. Through clever application of these bonding methods, throughput increases and reduction in fabrication complexity givs a clear edge in the market place. This presentation will provide guidelines and process overviews needed to adopt wafer-to-wafer bonding technologies into the high volume-manufacturing environment.

  18. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  19. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  20. Remote skin tissue diagnostics in vivo by fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.

    1998-04-01

    The new method of fiber-optical evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle IR region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast, remote, and can be applied to many fields Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured and assigned in the regions of 850-4000 cm-1. The lipid structure changes are discussed. We are able to develop the spectral histopathology as a fast and informative tool of analysis.

  1. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  2. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ...-resistant TB (MDR TB) and extensively drug-resistant TB (XDR TB). Both plans addressed domestic and global strategies, including partnerships with global agencies, as well as detailed action steps and specific agency... strategies that would expedite the development of new diagnostic tests and biomarkers for TB. Date and...

  3. New methodology to baseline and match AME polysilicon etcher using advanced diagnostic tools

    NASA Astrophysics Data System (ADS)

    Poppe, James; Shipman, John; Reinhardt, Barbara E.; Roussel, Myriam; Hedgecock, Raymond; Fonda, Arturo

    1999-09-01

    As process controls tighten in the semiconductor industry, the need to understand the variables that determine system performance become more important. For plasma etch systems, process success depends on the control of key parameters such as: vacuum integrity, pressure, gas flows, and RF power. It is imperative to baseline, monitor, and control these variables. This paper presents an overview of the methods and tools used by Motorola BMC fabrication facility to characterize an Applied Materials polysilicon etcher. Tool performance data obtained from our traditional measurement techniques are limited in their scope and do not provide a complete picture of the ultimate tool performance. Presently the BMC traditional characterization tools provide a snapshot of the static operation of the equipment under test (EUT); however, complete evaluation of the dynamic performance cannot be monitored without the aid of specialized diagnostic equipment. To provide us with a complete system baseline evaluation of the polysilicon etcher, three diagnostic tools were utilized: Lucas Labs Vacuum Diagnostic System, Residual Gas Analyzer, and the ENI Voltage/Impedance Probe. The diagnostic methodology used to baseline and match key parameters of qualified production equipment has had an immense impact on other equipment characterization in the facility. It has resulted in reduced cycle time for new equipment introduction as well.

  4. Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam

    NASA Astrophysics Data System (ADS)

    Vyacheslavov, L. N.; Ivantsivskii, M. V.; Meshkov, O. I.; Popov, S. S.; Smaluk, V. V.

    2012-03-01

    Optical diagnostics is widely used, both in plasma-physics experiments and in measuring parameters of electron and positron beams in accelerators. In doing so, the approaches with the same methodological base are often applied, which is explained by similarity of certain properties of objects under study despite the fact that these fields of physics are absolutely specific and require using the specialized techniques. The possibility of close contacts and cooperation among scientists concerned with similar problems in different fields of physics contributes to the fruitful exchange of ideas and helps to overcome these problems. It is especially characteristic of the Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, which is famous for pioneering works in the field of electron-positron colliders and controlled thermonuclear fusion. The first part of this paper presents a review of optical diagnostics of the stationary beam parameters in cyclic accelerators of electrons and positrons. The only techniques considered are those that became the recognized tools at colliders and storage rings of the latest generation, without which the routine operation of the facility is difficult to imagine. The second part of the paper describes optical diagnostics used in experiments of heating the plasma by a high-current electron beam.

  5. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  6. Recent Advances in Optically Controlled Bulk Semiconductor Switches

    DTIC Science & Technology

    1985-06-01

    REO!NT AIJifl,NCES IN (FTICALIX ~1Ra.LW IILK SHttiaHlOCIOR swrrams L. Bovino , T. Burke, R. Youmans, M. Weiner, J. Carter U.S. Ar~ Electronics...fabrication of all of our optically activated switches. B.e.fer.enc.es. 1. L. Bovino , R. Youmans, T. Burke, M.Weiner, "Modulator Circuits Using Q...tically Activated Switches", Record of 16th Power Modulator SYJll>o- siurn, pp 235-239, June 1984. 2. M. Weiner, T. Burke, R. Youmans, L. Bovino , J

  7. Advances in optical property measurements of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Dever, Joyce A.; Jaworske, Donald A.

    1997-01-01

    Some of the instruments and experimental approaches, used for measuring the optical properties of thermal control systems, are presented. The instruments' use in studies concerning the effects of combined contaminants and space environment on these materials, and in the qualification of hardware for spacecraft, are described. Instruments for measuring the solar absorptance and infrared emittance offer improved speed, accuracy and data handling. A transient method for directly measuring material infrared emittance is described. It is shown that oxygen exposure before measuring the solar absorptance should be avoided.

  8. Innovative advanced occlusion planning with superimposed CT and optical scans.

    PubMed

    Tremblay, Gilbert

    2011-04-01

    In order to increase the likelihood of a successful treatment plan outcome, it is critical to be able to effectively view the patient's underlying bony skeletal relationship of his or her TMJ. An innovative approach suggested to achieve this is to use the CT scan, optical scan, and Kois deprogrammer. Once the vertical dimension has been increased, the novelty of this approach is the ability to superimpose both scans along with the Kois deprogrammer and, using computer software, evaluate the TMJ position in three dimensions. This case presentation describes how TMJ CT scan evaluation is used in planning a complex rehabilitation case, given that the occlusion structures can be visualized independently and interactively.

  9. Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples

    PubMed Central

    Schröder, Ulrich-Christian; Bokeloh, Frank; O'Sullivan, Mary; Glaser, Uwe; Wolf, Katharina; Pfister, Wolfgang; Popp, Jürgen; Ducrée, Jens; Neugebauer, Ute

    2015-01-01

    This work presents a polymeric centrifugal microfluidic platform for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps. This “Lab-on-a-Disc” platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria. Utilising fluorescence microscopy, quantification of the bacterial load has been achieved for concentrations above 2 × 10−7 cells ml−1 within a 4 μl sample. As a pilot application, we characterize urine samples from patients with urinary tract infections. Following minimal sample preparation, Raman spectra of the bacteria are recorded following centrifugal capture in stopped-flow sedimentation mode. Utilizing advanced analysis algorithms, including extended multiplicative scattering correction, high-quality Raman spectra of different pathogens, such as Escherichia coli or Enterococcus faecalis, are obtained from the analyzed patient samples. The whole procedure, including sample preparation, requires about 1 h to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 h and more typically required for standard microbiological methods. As this cost-efficient centrifugal cartridge can be operated using low-complexity, widely automated instrumentation, while providing valuable bacterial identification in urine samples in a greatly reduced time-period, our opto-microfluidic Lab-on-a-Disc device demonstrates great potential for next-generation patient diagnostics at the of point-of-care. PMID:26339318

  10. Collagen bioengineered systems: in situ advanced optical spatiotemporal analysis

    NASA Astrophysics Data System (ADS)

    Hwang, Yu Jer; Lang, Xuye; Granelli, Joseph; Turgman, Cassandra C.; Gigante, Jackie; Lyubovitsky, Julia G.

    2014-05-01

    The architecture of collagen is important in maintenance and regeneration of higher vertebrates' tissues. We had been studying the changes to this architecture with in situ multi-photon optical microscopy that combines nonlinear optical phenomena of second harmonic generation (SHG) and two-photon fluorescence (TPF) signals from collagen hydrogels prepared from different collagen solid content, polymerized at different temperatures, with different ions as well as modified with reducing sugars. We incubated 2 g/l collagen hydrogels with 0.1 M fructose at 37 °C and after about 20 days observed a significant induction of in situ fluorescence. The twophoton fluorescence emission was centered at about 460 nm for 730 nm excitation wavelength and shifted to 480 nm when we changed the excitation wavelength to 790 nm. The one-photon fluorescence emission was centered at about 416 nm when excitation was 330 nm. It red shifted and split into two peaks centered at about 430 nm and 460 nm for 370 nm excitation; 460 nm peak became predominant for 385 nm excitation and further shifted to 470 nm for 390 nm excitation. SHG and TPF imaging showed restructuring of hydrogels upon this modification. We will discuss these findings within the context of our ongoing dermal wound repair research.

  11. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Moy, Anthony J. E.; Hughes, Andrew D.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development within BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  12. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew D.; Moy, Anthony J. E.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development with BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  13. Diagnostics and Monitoring of a Plasma Beam Source based on Optical Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harhausen, Jens; Foest, Rüdiger; Loffhagen, Detlef; Ohl, Andreas; Schäfer, Jan

    2013-09-01

    Plasma ion assisted deposition (PIAD) is employed for the production of high performance optical coatings. Here, the assist-source is a hot cathode DC discharge (Advanced Plasma Source APS) which generates an ion beam (ion energy Ei ~ 50 - 150eV) based on an expansion process at a chamber pressure of p ~ 20mPa . Efforts in plasma characterization have been made to improve the PIAD concept in terms of quality and reproducibility. In this contribution results on the electron energy distribution function (EEDF) and local emission of argon neutral and ion species in the plasma plume are presented. The interpretation of emission is supported by collisional radiative modeling. Main findings are the occurrence of a nonlocal EEDF and an inhomogeneous distribution of emission which is sensitive to the conditioning of the APS, like the cathode temperature. This detailed view allows a novel approach to monitor the plasma state in this particular deposition environment along with employing a control scheme for PIAD. First results obtained for oxide layers (TiO2, Al2O3) are discussed. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  14. SINET3: advanced optical and IP hybrid network

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2007-11-01

    This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.

  15. A linear electrostatic accelerator for education and advanced diagnostics development for OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Sinenian, N.; Gatu Johnson, M.; Sio, H.; Waugh, C.; Orozco, D.; Penna, J.; Rinderknecht, H.; Rosenberg, M.; Zylstra, A.; Frenje, J.; Li, C. K.; Seguin, F.; Petrasso, R.; Ruiz, C.; Sangster, T.; Leeper, R.; Kilkenny, J.

    2013-10-01

    The MIT Linear Electrostatic Accelerator generates D-D and D-3He fusion products, which are used for development of nuclear diagnostics for OMEGA and the NIF. Fusion reaction rates of about 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) CVD-diamond-based bang time detector. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  16. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility

    DOE PAGES

    Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; ...

    2016-08-05

    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. As a result, the collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  17. Current companion diagnostics in advanced colorectal cancer; getting a bigger and better piece of the pie

    PubMed Central

    Loree, Jonathan M.; Raghav, Kanwal P. S.

    2017-01-01

    While the treatment of colorectal cancer continues to rely heavily on conventional cytotoxic therapy, an increasing number of targeted agents are under development. Many of these treatments require companion diagnostic tests in order to define an appropriate population that will derive benefit. In addition, a growing number of biomarkers provide prognostic information about a patient’s malignancy. As we learn more about these biomarkers and their assays, selecting the appropriate companion diagnostic becomes increasingly important. In the case of many biomarkers, there are numerous assays which could provide the same information to a treating physician, however each assay has strengths and weaknesses. Institutions must balance cost, assay sensitivity, turn-around time, and labor resources when selecting which assay to offer. In this review we will discuss the current state of companion diagnostics available in metastatic colorectal cancer and explore emerging biomarkers and their assays. We will focus on KRAS, BRAF, HER2, and PIK3CA testing, as well as microsatellite stability assessment and multigene panels. PMID:28280626

  18. Containerless preparation of advanced optical glasses: Experiment 77F095

    NASA Technical Reports Server (NTRS)

    Happe, R. A.; Kim, K. S.

    1982-01-01

    Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment.

  19. Automated interpretation of optic nerve images: a data mining framework for glaucoma diagnostic support.

    PubMed

    Abidi, Syed S R; Artes, Paul H; Yun, Sanjan; Yu, Jin

    2007-01-01

    Confocal Scanning Laser Tomography (CSLT) techniques capture high-quality images of the optic disc (the retinal region where the optic nerve exits the eye) that are used in the diagnosis and monitoring of glaucoma. We present a hybrid framework, combining image processing and data mining methods, to support the interpretation of CSLT optic nerve images. Our framework features (a) Zernike moment methods to derive shape information from optic disc images; (b) classification of optic disc images, based on shape information, to distinguish between healthy and glaucomatous optic discs. We apply Multi Layer Perceptrons, Support Vector Machines and Bayesian Networks for feature sub-set selection and image classification; and (c) clustering of optic disc images, based on shape information, using Self-Organizing Maps to visualize sub-types of glaucomatous optic disc damage. Our framework offers an automated and objective analysis of optic nerve images that can potentially support both diagnosis and monitoring of glaucoma.

  20. A novel precision face grinder for advanced optic manufacture

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Peng, Y.; Wang, Z.; Yang, W.; Bi, G.; Ke, X.; Lin, X.

    2010-10-01

    In this paper, a large-scale NC precision face grinding machine is developed. This grinding machine can be used to the precision machining of brittle materials. The base and the machine body are independent and the whole structure is configured as a "T" type. The vertical column is seat onto the machine body at the middle center part through a double of precision lead rails. The grinding wheel is driven with a hydraulic dynamic and static spindle. The worktable is supported with a novel split thin film throttle hydrostatic lead rails. Each of motion-axis of the grinding machine is equipped with a Heidenhain absolute linear encoder, and then a closed feedback control system is formed with the adopted Fanuc 0i-MD NC system. The machine is capable of machining extremely flat surfaces on workpiece up to 800mmx600mm. The maximums load bearing of the work table is 620Kg. Furthermore, the roughness of the machined surfaces should be smooth (Ra<50nm-100nm), and the form accuracy less than 2μm (+/-1μm)/200x200mm. After the assembly and debugging of the surface grinding machine, the worktable surface has been self-ground with 60# grinding wheel and the form accuracy is 3μm/600mm×800mm. Then the grinding experiment was conduct on a BK7 flat optic glass element (400mmx250mm) and a ceramic disc (Φ100mm) with 60# grinding wheel, and the measuring results show the surface roughness and the form accuracy of the optic glass device are 0.07μm and 1.56μm/200x200mm, and these of the ceramic disc are 0.52μm and 1.28μm respectively.

  1. Advanced Silicon Microring Resonator Devices for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Masilamani, Ashok Prabhu

    Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system. First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1mum were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth

  2. Research and Development for X-Ray Optics and Diagnostics on the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Wootton, A; Arthur, J; Barbee, T; Bionta, R; Jankowski, A; London, R; Ryutov, D; Shepherd, R; Shlyaptse, V; Tatchyn, R; Toor, A

    2001-08-14

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration <300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: experimental and theoretical material damage studies; high resolution multilayer design, fabrication, and testing; replicated closed-form optics design and manufacturing; BeB manufacturing; and low-z Fresnel lens design, fabrication and testing. Finally some novel concepts for optical components are presented.

  3. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  4. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  5. Multimodal optical biopsy probe to improve the safety and diagnostic yield of brain needle biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desroches, Joannie; Pichette, Julien; Goyette, Andréanne; Tremblay, Marie-Andrée.; Jermyn, Michael; Petrecca, Kevin; Leblond, Frédéric

    2016-03-01

    Brain needle biopsy (BNB) is performed to collect tissue when precise neuropathological diagnosis is required to provide information about tumor type, grade, and growth patterns. The principal risks associated with this procedure are intracranial hemorrhage (due to clipping blood vessels during tissue extraction), incorrect tumor typing/grading due to non-representative or non-diagnostic samples (e.g. necrotic tissue), and missing the lesion. We present an innovative device using sub-diffuse optical tomography to detect blood vessels and Raman spectroscopy to detect molecular differences between tissue types, in order to reduce the risks of misdiagnosis, incorrect tumour grading, and non-diagnostic samples. The needle probe integrates optical fibers directly onto the external cannula of a commercial BNB needle, and can perform measurements for both optical techniques through the same fibers. This integrated optical spectroscopy system uses diffuse reflectance signals to perform a 360-degree reconstruction of the tissue adjacent to the biopsy needle, based on the optical contrast associated with hemoglobin light absorption, thereby localizing blood vessels. Raman spectra measurements are also performed interstitially for tissue characterization. A detailed sensitivity of the system is presented to demonstrate that it can detect absorbers with diameters <300 µm located up to ˜2 mm from the biopsy needle core, for bulk optical properties consistent with brain tissue. Results from animal experiments are presented to validate blood vessel detection and Raman spectrum measurement without disruption of the surgical workflow. We also present phantom measurements of Raman spectra with the needle probe and a comparison with a clinically validated Raman spectroscopy probe.

  6. Research on Nitride Thin Films, Advanced Plasma Diagnostics, and Charged-Particle Processes

    DTIC Science & Technology

    2006-07-01

    Area Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 iii Table of Contents Section Page TASK 1. CARBON-NITRIDE...5.11 Optical Band Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 iv Table of Contents...65 44 Values of εr for Each Sample Condition and Substrate Type . . . . . . . . . . . . . . . . 67 viii List of Tables Table

  7. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    SciTech Connect

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  8. Advanced diagnostic approaches and current management of internal disorders of select species (rodents, sugar gliders, hedgehogs).

    PubMed

    Evans, Erika E; Souza, Marcy J

    2010-09-01

    African pygmy and European hedgehogs, sugar gliders, and rodents such as rats, mice, gerbils, hamsters, guinea pigs, and chinchillas are becoming increasingly popular as pets in the United States, and more practitioners are being asked to examine, diagnose, and treat these animals for a bevy of disorders and diseases. Many procedures and techniques used in traditional small and large animal medicine are used for these species, with minor adaptations or considerations. This article examines available diagnostic tools and treatment methodologies for use in hedgehogs, sugar gliders, and selected rodents.

  9. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  10. Optical contamination control in the Advanced LIGO ultra-high vacuum system

    NASA Astrophysics Data System (ADS)

    Phelps, Margot H.; Gushwa, Kaitlin E.; Torrie, Calum I.

    2013-11-01

    Fused silica optics in the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors are extremely sensitive to optical scattering and absorption losses induced by both particulate and hydrocarbon contamination. At full power, the optical surfaces are illuminated with up to 200 kW/cm2. Additionally, the round-trip test mass cavity loss budget is limited to 70 ppm total from all sources. Even low-level contaminants can result in laser damage to optics during the operation the interferometers, and/or the unacceptable reduction of overall detector sensitivity. These risks are mitigated by a two-pronged approach: quantifying contamination sources and the extent of contamination, then reducing sources and cleaning optics in-situ. As a result of these ongoing efforts, we now have a better understanding of what the contamination levels and sources are, and have made significant improvements to methods of controlling contamination, thus protecting the optics from losses and laser damage in the Advanced LIGO Interferometers.

  11. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  12. Advanced optical smoke meters for jet engine exhaust measurement

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1986-01-01

    Smoke meters with increased sensitivity, improved accuracy, and rapid response are needed to measure the smoke levels emitted by modern jet engines. The standard soiled tape meter in current use is based on filtering, which yields long term averages and is insensitive to low smoke levels. Two new optical smoke meter techniques that promise to overcome these difficulties have been experimentally evaluated: modulated transmission (MODTRAN) and photothermal deflection spectroscopy (PDS). Both techniques are based on light absorption by smoke, which is closely related to smoke density. They are variations on direct transmission measurements which produce a modulated signal that can be easily measured with phase sensitive detection. The MODTRAN and PDS techniques were tested on low levels of smoke and diluted samples of NO2 in nitrogen, simulating light adsorption due to smoke. The results are evaluated against a set of ideal smoke meter criteria that include a desired smoke measurement range of 0.1 to 12 mg cu.m. (smoke numbers of 1 to 50) and a frequency response of 1 per second. The MODTRAN instrument is found to be inaccurate for smoke levels below 3 mg/cu.m. and is able to make a only about once every 20 seconds because of its large sample cell. The PDS instrument meets nearly all the characteristics of an ideal smoke meter: it has excellent sensitivity over a range of smoke levels from 0.1 to 20 mg/cu.m. (smoke numbers of 1 to 60) and good frequency response (1 per second).

  13. Advances in diagnostic and treatment options in patients with fibromyalgia syndrome

    PubMed Central

    Gur, Ali; Oktayoglu, Pelin

    2009-01-01

    Fibromyalgia (FM) is characterized as a chronic, painful, noninflammatory syndrome affecting the musculoskeletal system. In addition to pain, common co-morbid symptoms associated with FM include sleep disturbances, fatigue, morning stiffness, affective disorders, chronic daily headache, dyscognition, irritable bowel syndrome, and irritable bladder. Fibromyalgia is usually classified by application of the American College of Rheumatology (ACR) criteria. Although these criteria are accepted among investigators who agree with the concept of fibromyalgia, they do so with some reservations. Tender points and widespread pain alone does not describe the esence of fibromyalgia. New diagnostic tools including either clinical or radiological components are studied to diminish these problems. Although various pharmacological solutions have been studied for treating fibromyalgia, no single drug or groups of drugs have proved to be useful in treating fibromyalgia patients. Recently, three drugs, pregabalin, duloxetine and milnacipran, were approved for the treatment of FM by the US Food and Drug Administration (FDA). Novel therapeutic approaches to the management of FM include cannabinoids, sodium channel blockade and new generation antiepileptics. This review evaluates both new diagnostic tools, including clinical or radiological regimes, and tries to highlight the efficacy of medicinal and nonmedicinal treatments with new therapeutic approaches in the management of FM with a wide perspective. PMID:27789991

  14. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  15. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  16. Advances in Optical Characterization of Methane Seeps and Bubble Plumes

    NASA Astrophysics Data System (ADS)

    Pizarro, O.; Farr, N.; Camilli, R.; Whelan, J.; Martens, C.; Goudreau, J.; Mendlovitz, H.; Camilli, L.

    2005-12-01

    Methane seeps are potentially a key contributor to the atmospheric methane reservoir and to the global greenhouse gas budget. Improved estimates of methane flux from ocean floor seeps are required to understand the magnitude and characteristics of this potential source. At less active, deep water seeps a large portion of the migrating gas is dissolved and oxidized before reaching the surface. However, in high-intensity, shallow water methane seeps the bubble density, speed and size are such that a significant fraction of the gas may reach the atmosphere. New types of in-situ chemical sensors are now available to quickly and reliably quantify dissolved methane throughout the water column. However, quantifying methane within the water column in the free gas phase (i.e., in bubbles) remains a challenging problem. Current approaches rely either on indirect acoustic methods or direct collection of bubbles. Acoustic methods have the disadvantage of requiring extensive calibration, and can fail to distinguish the bubble signal from other sources of acoustic noise. Gas-capture techniques are mechanically complex, have a surface expression that introduces some noise, and can potentially alias episodic events. In both cases the fine scale structure such as heterogeneity of the rising bubbling plume is lost. We describe a vision-based system to characterize bubble plumes and the seep features from which they emanate. Video-rate optical imagery from 3 cameras is used to generate precise measurements of the motion of bubbles. Lighting is provided by a distributed array of LED modules synchronized to the cameras. In order to conserve power and extend deployment times the system can be configured to be dormant until triggered by chemical sensors indicating high concentrations of methane. Plume characterization is based on the identification of the individual bubbles (and rejection of other particles). Additional image processing steps are then used to estimate each bubble

  17. Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes

    SciTech Connect

    Kuranov, R V; Sapozhnikova, V V; Shakhova, N M; Gelikonov, V M; Zagainova, E V; Petrova, S A

    2002-11-30

    A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma of the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm. (laser biology and medicine)

  18. Optical disk archiving using a personal computer: a solution to image storage problems in diagnostic imaging departments.

    PubMed

    Parkin, A; Norwood, H; Erdentug, A; Hall, A J

    1990-01-01

    The paper describes an approach to solving the problem of providing a large-capacity image archive for diagnostic imaging departments at reasonable cost. Optical disk stores, when fitted retrospectively to scanners, are very expensive and may not be compatible with existing computer hardware. We describe the use of an industry standard personal computer (PC) linked to a standard 5 1/4-in. optical disk drive as a 'stand-alone' image store. Image data are transferred from the scanner using 8-in. floppy disks, and these are read into the PC using an attached 8-in. floppy disk drive and then transferred to the optical disk. The patient details (patient name, ID, date, etc.) are entered into a database program held on the PC and these are used to generate a reference pointer to the optical disk file through which the data can be retrieved. Data retrieval involves entering the patient details into the data base and inserting a blank 8-in. floppy disk into the drive attached to the PC. A sector copy is then made from the optical disk to the 8-in. floppy disk, which can then be used at the viewing station at the scanner. The system is flexible since it can accept data from a variety of sources in any format; it is also low cost and operates independently of the scanner. The hardware is industry standard, ensuring low maintenance costs.

  19. Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning

    PubMed Central

    Long, Feng; Zhu, Anna; Shi, Hanchang

    2013-01-01

    The growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for legislative actions on environmental pollution control and early warning. Optical biosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. This article reviews important advances in functional biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells) that facilitate the increasing application of optical biosensors. This work further examines the significant improvements in optical biosensor instrumentation and their environmental applications. Innovative developments of optical biosensors for environmental pollution control and early warning are also discussed. PMID:24132229

  20. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms

    PubMed Central

    Munang'andu, Hetron M.; Mugimba, Kizito K.; Byarugaba, Denis K.; Mutoloki, Stephen; Evensen, Øystein

    2017-01-01

    The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture. PMID:28382024

  1. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP (invited)

    SciTech Connect

    Demers, D. R.; Fimognari, P. J.

    2012-10-15

    Heavy ion beam probes have been installed on a variety of toroidal devices, but the first and only application on a reversed field pinch is the diagnostic on the Madison Symmetric Torus. Simultaneous measurements of spatially localized equilibrium potential and fluctuations of density and potential, previously inaccessible in the core of the reversed field pinch (RFP), are now attainable. These measurements reflect the unique strength of the heavy ion beam probe (HIBP) diagnostic. They will help determine the characteristics and evolution of electrostatic fluctuations and their role in transport, and determine the relation of the interior electric field and flows. Many aspects of the RFP present original challenges to HIBP operation and inference of plasma quantities. The magnetic field contributes to a number of the issues: the comparable magnitudes of the toroidal and poloidal fields and edge reversal result in highly three-dimensional beam trajectories; partial generation of the magnetic field by plasma current cause it and hence the beam trajectories to vary with time; and temporal topology and amplitude changes are common. Associated complications include strong ultraviolet radiation and elevated particle losses that can alter functionality of the electrostatic systems and generate noise on the detectors. These complexities have necessitated the development of new operation and data analysis techniques: the implementation of primary and secondary beamlines, adoption of alternative beam steering methods, development of higher precision electrostatic system models, refinement of trajectory calculations and sample volume modeling, establishment of stray particle and noise reduction methods, and formulation of alternative data analysis techniques. These innovative methods and the knowledge gained with this system are likely to translate to future HIBP operation on large scale stellarators and tokamaks.

  2. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms.

    PubMed

    Munang'andu, Hetron M; Mugimba, Kizito K; Byarugaba, Denis K; Mutoloki, Stephen; Evensen, Øystein

    2017-01-01

    The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.

  3. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas.

    PubMed

    Deng, B H; Beall, M; Schroeder, J; Settles, G; Feng, P; Kinley, J S; Gota, H; Thompson, M C

    2016-11-01

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10(16) m(-2) at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  4. Evaluation of an Advanced-Practice Physical Therapist in a Specialty Shoulder Clinic: Diagnostic Agreement and Effect on Wait Times

    PubMed Central

    Robarts, Susan; Kennedy, Deborah; McKnight, Cheryl; MacLeod, Anne Marie; Holtby, Richard

    2013-01-01

    ABSTRACT Purpose: To examine the role of an advanced-practice physiotherapist (APP) with respect to (1) agreement with an orthopaedic surgeon on diagnosis and management of patients with shoulder problems; (2) wait times; and (3) satisfaction with care. Methods: This prospective study involved patients with shoulder complaints who were referred to a shoulder specialist in a tertiary care centre. Agreement was examined on seven major diagnostic categories, need for further examination and surgery, and type of surgical procedure. Wait times were compared between the APP- and surgeon-led clinics from referral date to date of initial consultation, date of final diagnostic test, and date of confirmed diagnosis and planned treatment. A modified and validated version of the Visit-Specific Satisfaction Instrument assessed satisfaction in seven domains. Kappa (κ) coefficients and bias- and prevalence-adjusted kappa (PABAK) values were calculated, and strength of agreement was categorized. Wait time and satisfaction data were examined using non-parametric statistics. Results: Agreement on major diagnostic categories varied from 0.68 (good) to 0.96 (excellent). Agreement with respect to indication for surgery was κ=0.75, p<0.001; 95% CI, 0.62–0.88 (good). Wait time for APP assessment was significantly shorter than wait time for surgeon consultation at all time points (p<0.001); the surgeon's wait time was significantly reduced over 3 years. High satisfaction was reported in all components of care received from both health care providers. Conclusions: Using experienced physiotherapists in an extended role reduces wait times without compromising patient clinical management and overall satisfaction. PMID:24381382

  5. Application of nanotechnology in miniaturized systems and its use for advanced analytics and diagnostics - an updated review.

    PubMed

    Sandetskaya, Natalia; Allelein, Susann; Kuhlmeier, Dirk

    2013-12-01

    A combination of Micro-Electro-Mechanical Systems and nanoscale structures allows for the creation of novel miniaturized devices, which broaden the boundaries of the diagnostic approaches. Some materials possess unique properties at the nanolevel, which are different from those in bulk materials. In the last few years these properties became a focus of interest for many researchers, as well as methods of production, design and operation of the nanoobjects. Intensive research and development work resulted in numerous inventions exploiting nanotechnology in miniaturized systems. Modern technical and laboratory equipment allows for the precise control of such devices, making them suitable for sensitive and accurate detection of the analytes. The current review highlights recent patents in the field of nanotechnology in microdevices, applicable for medical, environmental or food analysis. The paper covers the structural and functional basis of such systems and describes specific embodiments in three principal branches: application of nanoparticles, nanofluidics, and nanosensors in the miniaturized systems for advanced analytics and diagnostics. This overview is an update of an earlier review article.

  6. Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER

    SciTech Connect

    Moro, A.; Alessi, E.; Bruschi, A.; Platania, P.; Sozzi, C.; Chavan, R.; Collazos, A.; Goodman, T. P.; Udintsev, V. S.; Henderson, M. A.

    2009-11-26

    A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effects with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.

  7. The fiber optic system for the advanced topographic laser altimeter system instrument (ATLAS)

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-09-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  8. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    PubMed

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  9. Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Kukulis, Indulis; Fridenberga, Eva; Venckus, Girts

    2002-06-01

    Advanced sensor device for shape analysis of the tissue- reflected mean single period photoplethysmography (SPPPG) signals has been designed and clinically tested. The SPPPG signal shape reveals individual features of the patient's cardio-vascular state. Clinical studies of several patient groups (e.g. diabetes mellitus, atherosclerosis obliterans, Raynaud's syndrome) made possible to specify components of the SPPPG signal that are sensitive to the corresponding organic or functional pathologies. Comparison of the right and left arm finger SPPPG signal shapes, for instance, appears to be efficient tool for early screening of unilateral atherosclerosis obliterans.

  10. Neutrophil CD64 expression: a reliable diagnostic marker of infection in advanced cancer patients?

    PubMed

    Comolli, Giuditta; Torchio, Martina; Lenta, Elisa; Franceschetti, Benvenuto; Chiesa, Antonella; Calarota, Sandra A; Baldanti, Fausto; Scudeller, Luigia; Marone, Piero; Danova, Marco; Marco, Danova

    2015-07-01

    Infection and sepsis are major health problems in cancer patients. There is a need for the identification and validation of biomarkers to improve their early diagnosis and treatment. Emerging evidence showed that neutrophil CD64 is a highly sensitive and specific marker for systemic infection and sepsis in critically ill patients with various diseases but data on patients bearing solid tumors are still lacking. Using a dedicated flow cytometric assay we evaluated neutrophil CD64 expression in patients with advanced cancer without active infections to verify if it could be utilized as a reliable biomarker of early infections also in oncologic patients.

  11. Optical property measurements as a diagnostic tool for control of materials processing in space and on Earth

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    A new method is described, including results, to measure, control, and follow containerless processing in ground based levitators. This technique enables instantaneous optical property measurements from a transient solid or liquid surface concurrent with true temperature measurement. This was used successfully as a diagnostic tool to follow processing of Al, Si, and Ti during electromagnetic levitation. Experiments on Al show the disappearance of the oxide (emittance 0.33) at ca. 1300 C leaving a liquid surface with an emittance of 0.06. Electromagnetic levitation of silicon shows a liquid with a constant emittance (0.2) but with a solid whose emittance decreases very rapidly with increasing temperature. Consequently, the processing of materials at high temperatures can be controlled quite well through the control of surface optical properties.

  12. Recent developments of advanced structures for space optics at Astrium, Germany

    NASA Astrophysics Data System (ADS)

    Stute, Thomas; Wulz, Georg; Scheulen, Dietmar

    2003-12-01

    The mechanical division of EADS Astrium GmbH, Friedrichshafen Germany, the former Dornier Satellitensystem GmbH is currently engaged with the development, manufacturing and testing of three different advanced dimensionally stable composite and ceramic material structures for satellite borne optics: -CFRP Camera Structure -Planck Telescope Reflectors -NIRSpec Optical Bench Breadboard for James Web Space Telescope The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  13. Advancement of photonics for space and other platforms: open optical interconnect architecture (OOIA)

    NASA Astrophysics Data System (ADS)

    Gaydeski, Michael S.

    1997-07-01

    Continuous investigation of new technologies for avionics and space processing has led to the improvement of applications capabilities and processing for tactical platforms (commercial and government satellites, tactical asset such as the USN Reconnaissance Fighter F/A-18R, USAF Fighter F-16, various helicopters, etc.,) and surveillance platforms (commercial and government satellites, Joint Surveillance Target Attack Radar System, Advanced Warning and Control System). This paper focuses on the potential benefits of inserting optical interconnect technology into these platforms while subscribing an Open Optical Interconnect Architecture concept and a methodology for systems development and integration.

  14. REVIEWS OF TOPICAL PROBLEMS: Recent advances in X-ray refractive optics

    NASA Astrophysics Data System (ADS)

    Aristov, V. V.; Shabel'nikov, L. G.

    2008-01-01

    X-ray refractive optics has made rapid strides to a large degree due to the work of Russian scientists, and has now become one of the most rapidly advancing areas in modern physical optics. This review outlines the results of investigation of refractive devices and analysis of their properties. The conception of planar lenses made of silicon and other materials is set forth. We discuss the applications of refractive lenses to the transformation of X-ray images, photonic crystal research, and the development of focusing devices in high-energy X-ray telescopes.

  15. Fast Electrical and Optical Diagnostic Principles and Techniques: A NATO Advanced Study Institute.

    DTIC Science & Technology

    1983-11-21

    ments and applications of X-ray micro- Flash radiography has always been scopy at Sandia National Laboratories, used and was primarily developed for...State University of New York- Buffalo France Dept. of Electrical and Computer Engr. 4232 Ridge Lea Road Dr. Christos Capellos Amherst, NY 14226 Energetic...80303 Dr. Javaid R. Laghari Dept. of Electrical and Computer Engr. State University of New York- Buffalo Andre Nicholas 4232 Ridge Lea Road Comissariat

  16. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    NASA Astrophysics Data System (ADS)

    Granstedt, E. M.; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V.

    2016-11-01

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  17. Advanced Molecular Diagnostic Techniques for Detection of Food-borne Pathogens; Current Applications and Future Challenges.

    PubMed

    Umesha, S; Manukumar, H M

    2016-01-08

    The elimination of disease-causing microbes from the food supply is a primary goal and this review deals with the overall techniques availavle for detection of food-borne pathogens. Now-a-days conventional methods are replaced by advanced methods like Biosensors, Nucleic Acid-based Tests (NAT) and different PCR based techniques used in molecular biology to identify specific pathogens. Bacillus cereus, Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Campylobacter, Listeria monocytogenes, Salmonella spp, Aspergillus spp. Fusarium spp. Penicillium spp., and pathogens are detected in contaminated food items which cause always diseases in human in any one or the other way. Identification of food-borne pathogens in a short period of time is still a challenge to the scientific field in general and food technology in particular. The low level of food contamination by major pathogens requires specific sensitive detection platforms and the present area of hot research looking forward to new nanomolecular techniques for nanomaterials, make them suitable for the development of assays with high sensitivity, response time and portability. With the sound of these we attemet to highlight a comprehensive overview about food-borne pathogen detection by rapid, sensitive, accurate and cost affordable in situ analytical methods from conventional methods to recent molecular approaches for advanced food and microbiology research.

  18. Diagnostics and electron-optics of a high current electron beam in the TANDEM free electron laser - status report

    SciTech Connect

    Arensburg, A.; Avramovich, A.; Chairman, D.

    1995-12-31

    In the construction of the Israeli TANDEM FEL the major task is to develop a high quality electron optic system. The goal is to focus the e-beam to a minimal radius (1 mm) in the interaction region (the wiggler). Furthermore, good focusing throughout the accelerator is essential in order to achieve high transport efficiency avoiding discharge and voltage drop of the high voltage terminal. We have completed the electron optical design and component procurement, including 8 quadrupole lenses 4 steering coils and an electrostatic control system. All are being assembled into the high voltage terminal and controlled by a fiber optic link. Diagnostic means based on fluorescent screens and compact CCD camera cards placed at the HV terminal and at the end of the e-gun injector have been developed. We report first measurements of the beam emittance at the entrance to the Tandem accelerator tube using the {open_quote}pepper pot{close_quote} technique. The experiment consists of passing the 0.5 Amp beam through a thin plate which is perforated with an army of 0.5 mm holes. The spots produced on a fluorescent screen placed 90 cm from the pepper pot were recorded with a CCD camera and a frame grabber. The measured normalized emittance is lower than 10{pi} mm mR which is quite close to the technical limit of dispenser cathode e-guns of the kind we have. Recent results of the measured transport efficiency and the diagnostics of the high current (1A, 1.5MV) electron-optical system will be reported.

  19. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    PubMed Central

    Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos

    2016-01-01

    Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects. PMID:28025506

  20. [Tick-borne rickettsioses in the Americas: clinical and epidemiological advances, and diagnostic challenges].

    PubMed

    Hidalgo, Marylin; Faccini-Martínez, Álvaro A; Valbuena, Gustavo

    2013-09-01

    Rickettsioses are a group of zoonotic diseases caused by strict intracellular bacteria of the genus Rickettsia and Orientia which belong to the Rickettsiaceae family. Their ecology is influenced by environmental factors and the presence of specific vectors that determine the establishment and epidemiology in different world regions. In America, during the 20 th century, only three of these diseases were recognized: Rocky Mountain spotted fever, epidemic typhus and endemic typhus. However, since 2000, more than 10 different species that had previously been unknown in this continent have been described, both in arthropods and in clinical cases, fact that classifies them as emerging and re-emerging diseases. Given the clinical manifestations of the diseases caused by rickettsias, being the majority unspecific and, therefore, shared with other infectious diseases, especially viral and bacterial, they have been framed within the differential diagnoses of acute febrile syndrome in urban and tropical areas. Nowadays, there are direct and indirect diagnostic methods, which are useful in the definition of the infectious agent, in this case, the cause of rickettsioses.

  1. Microelectromechanical system assembled ion optics: An advance to miniaturization and assembly of electron and ion optics

    SciTech Connect

    Fox, J.; Verbeck, G.; Saini, R.; Tsui, K.

    2009-09-15

    Deep-reactive ion etching of n-doped silicon-on-insulator is utilized to make ion optical components to aid in the miniaturization of mass analyzers. The microelectromechanical system components are bound to aluminum nitride substrates and employed three-dimensional assembly. The assembly methods are tested for breakdown (V{sub b}), durability, and alignment. Demonstration of ion manipulation is shown with a 1 mm Bradbury-Nielsen gate, 500 {mu}m Einzel lens, 500 {mu}m coaxial ring ion trap, and reflectron optics. Data are presented showing the resolution, attenuation, and performance of each of these devices. We demonstrate advantages and disadvantages of this technology and its applications to mass analysis.

  2. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  3. Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    NASA Technical Reports Server (NTRS)

    Morrow, John H.; Hooker, Stanford B.; Booth, Charles R.; Bernhard, Germar; Lind, Randall N.; Brown, James W.

    2010-01-01

    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats.

  4. Improving on-wafer CD correlation analysis using advanced diagnostics and across-wafer light-source monitoring

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Rechtsteiner, Gregory; Lalovic, Ivan; Bekaert, Joost

    2014-04-01

    With the implementation of multi-patterning ArF-immersion for sub 20nm integrated circuits (IC), advances in equipment monitoring and control are needed to support on-wafer yield performance. These in-situ equipment monitoring improvements, along with advanced litho-cell corrections based on on-wafer measurements, enable meeting stringent overlay and CD control requirements for advanced lithography patterning. The importance of light-source performance on lithography pattering (CD and overlay) has been discussed in previous publications.[1-3] Recent developments of Cymer ArF light-source metrology and on-board monitoring enable end-users to detect, for each exposed wafer, changes in the near-field and far-field spatial profiles and polarization performance, [4-6] in addition to the key `optical' scalar parameters, such as bandwidth, wavelength and energy. The major advantage of this capability is that the key performance metrics are sampled at rates matched to wafer performance, e.g. every exposure field across the wafer, which is critical for direct correlation with on-wafer performance for process control and excursion detection.

  5. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs

    PubMed Central

    Molinaro, Marilisa; Ameri, Pietro; Marone, Giancarlo; Petretta, Mario; Abete, Pasquale; Di Lisa, Fabio; De Placido, Sabino; Bonaduce, Domenico; Tocchetti, Carlo G.

    2015-01-01

    Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV) dysfunction, and heart failure (HF). The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF) is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure. PMID:26583088

  6. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  7. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  8. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  9. Technological advances in diagnostic testing for von Willebrand disease: new approaches and challenges.

    PubMed

    Hayward, C P M; Moffat, K A; Graf, L

    2014-06-01

    Diagnostic tests for von Willebrand disease (VWD) are important for the assessment of VWD, which is a commonly encountered bleeding disorder worldwide. Technical innovations have been applied to improve the precision and lower limit of detection of von Willebrand factor (VWF) assays, including the ristocetin cofactor activity assay (VWF:RCo) that uses the antibiotic ristocetin to induce plasma VWF binding to glycoprotein (GP) IbIXV on target platelets. VWF-collagen-binding assays, depending on the type of collagen used, can improve the detection of forms of VWD with high molecular weight VWF multimer loss, although the best method is debatable. A number of innovations have been applied to VWF:RCo (which is commonly performed on an aggregometer), including replacing the target platelets with immobilized GPIbα, and quantification by an enzyme-linked immunosorbent assay (ELISA), immunoturbidimetric, or chemiluminescent end-point. Some common polymorphisms in the VWF gene that do not cause bleeding are associated with falsely low VWF activity by ristocetin-dependent methods. To overcome the need for ristocetin, some new VWF activity assays use gain-of-function GPIbα mutants that bind VWF without the need for ristocetin, with an improved precision and lower limit of detection than measuring VWF:RCo by aggregometry. ELISA of VWF binding to mutated GPIbα shows promise as a method to identify gain-of-function defects from type 2B VWD. The performance characteristics of many new VWF activity assays suggest that the detection of VWD, and monitoring of VWD therapy, by clinical laboratories could be improved through adopting newer generation VWF assays.

  10. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  11. Nano-sensitizers for multi-modality optical diagnostic imaging and therapy of cancer

    NASA Astrophysics Data System (ADS)

    Olivo, Malini; Lucky, Sasidharan S.; Bhuvaneswari, Ramaswamy; Dendukuri, Nagamani

    2011-07-01

    We report novel bioconjugated nanosensitizers as optical and therapeutic probes for the detection, monitoring and treatment of cancer. These nanosensitisers, consisting of hypericin loaded bioconjugated gold nanoparticles, can act as tumor cell specific therapeutic photosensitizers for photodynamic therapy coupled with additional photothermal effects rendered by plasmonic heating effects of gold nanoparticles. In addition to the therapeutic effects, the nanosensitizer can be developed as optical probes for state-of-the-art multi-modality in-vivo optical imaging technology such as in-vivo 3D confocal fluorescence endomicroscopic imaging, optical coherence tomography (OCT) with improved optical contrast using nano-gold and Surface Enhanced Raman Scattering (SERS) based imaging and bio-sensing. These techniques can be used in tandem or independently as in-vivo optical biopsy techniques to specifically detect and monitor specific cancer cells in-vivo. Such novel nanosensitizer based optical biopsy imaging technique has the potential to provide an alternative to tissue biopsy and will enable clinicians to make real-time diagnosis, determine surgical margins during operative procedures and perform targeted treatment of cancers.

  12. First hydrogen operation of NIO1: Characterization of the source plasma by means of an optical emission spectroscopy diagnostic

    SciTech Connect

    Barbisan, M. Baltador, C.; Zaniol, B.; Pasqualotto, R.; Serianni, G.; Cavenago, M.; Fantz, U.; Wünderlich, D.; Vialetto, L.

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a compact and flexible radio frequency H{sup −} ion source, developed by Consorzio RFX and INFN-LNL. The aim of the experimentation on NIO1 is the optimization of both the production of negative ions and their extraction and beam optics. In the initial phase of its commissioning, NIO1 was operated with nitrogen, but now the source is regularly operated also with hydrogen. To evaluate the source performances, an optical emission spectroscopy diagnostic was installed. The system includes a low resolution spectrometer in the spectral range of 300-850 nm and a high resolution (50 pm) one, to study, respectively, the atomic and the molecular emissions in the visible range. The spectroscopic data have been interpreted also by means of a collisional-radiative model developed at IPP Garching. Besides the diagnostic hardware and the data analysis methods, the paper presents the first plasma measurements across a transition to the full H mode, in a hydrogen discharge. The characteristic signatures of this transition in the plasma parameters are described, in particular, the sudden increase of the light emitted from the plasma above a certain power threshold.

  13. Optical detection of breast tumors: a comparison of diagnostic performance of autofluorescence, diffuse reflectance, and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Majumder, Shovan K.; Keller, Matthew D.; Mahadevan-Jansen, Anita

    2007-02-01

    We report the results of a comparative evaluation of the diagnostic capabilities of autofluorescence, diffuse reflectance, and Raman spectroscopic approaches in differentiating the various types of breast tumors from normal breast tissues. Optical spectra (n=293) were acquired ex-vivo from a total of 75 breast tissue samples belonging to six distinct histopathologic categories: invasive ductal carcinoma, lobular carcinoma, ductal carcinoma in-situ, fibroadenoma, other benign tumors, and normal breast tissue. Autofluorescence, diffuse reflectance, and Raman spectra were measured from the same locations of a given tissue sample. A probability based multivariate statistical algorithm capable of direct multiclass classification was developed to analyze the diagnostic content of the optical spectra measured from the same set of breast tissue sites with these different techniques. The algorithm uses the theory of nonlinear Maximum Representation and Discrimination Feature (MRDF) for feature extraction, and the theory of Sparse Multinomial Logistic Regression (SMLR) for classification. The results of discrimination analyses reveal that the performance of Raman spectroscopy is superior to that of all others in classifying the breast tissues into respective histopathologic categories. The best classification accuracy was observed to be ~96%, 86%, 94%, 98%, 85%, and 100% for invasive ductal carcinoma, lobular carcinoma, ductal carcinoma in-situ, fibroadenoma, benign tumors and normal breast tissues, respectively, on the basis of leave-one-out cross validation, with the overall accuracy being ~97%.

  14. Diagnostic potential of optical coherence tomography in non-melanoma skin cancer: a clinical study

    NASA Astrophysics Data System (ADS)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini; Jemec, Gregor B. E.

    2007-07-01

    Introduction: Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the Western World. OCT has proved potential in assisting clinical diagnosis and perhaps reducing the need for biopsies in NMSC. As non-invasive treatment is increasingly used for NMSC patients with superficial lesions, the development of non-invasive diagnostic technologies is highly relevant. Methods: The aim of this cross-sectional clinical study, enrolling 100 NMSC patients and 20 healthy volunteers, is to investigate the diagnostic accuracy and applicability of OCT in NMSC diagnosis. Our OCT-system has been developed at Risoe National Laboratory, Denmark and offers ppolarization sensitive-OCT (PS-OCT) that may have additional advantaged as NMSC differ in content of birefringent collagens from normal skin. Results: Basal cell carcinomas (BCC) can in some cases be distinguished from normal skin in OCT-images, as normal skin exhibits a layered structure this layering is not present in BCC and sometimes not in actinic keratosis (AK). BCC lesions seem to be clearly less reflective than normal tissue. The predictive value of OCT in NMSC will be presented from a clinical point of view. Discussion: The earlier a skin cancer is diagnosed, the better the prognosis. Estimation of diagnostic accuracy and abilities of OCT in clinical studies of skin cancer patients is essential to establish the role and future set-ups for diagnostic OCT-systems.

  15. Compensating Atmospheric Turbulence Effects at High Zenith Angles with Adaptive Optics Using Advanced Phase Reconstructors

    NASA Astrophysics Data System (ADS)

    Roggemann, M.; Soehnel, G.; Archer, G.

    Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.

  16. Optical design of a near-infrared imaging spectropolarimeter for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Greco, Vincenzo; Cavallini, Fabio

    2013-06-01

    In designing the optics of an imaging multi-etalon spectropolarimeter as a post-focus instrument for the Advanced Technology Solar Telescope (ATST), many constraints must be considered. Among these are the large entrance pupil diameter of the telescope (4 m), the demanded large field of view (≥90 arc sec), high spectral resolving power (≥200,000), and limited field-dependent blue-shift of the instrumental profile [≤3 full width at half maximum (FWHM)], which require Fabry-Perot interferometers of large diameter (≥200 mm), lighted by highly collimated beams. This implies large optical elements and long optical paths. Moreover, to use interference pre-filters with a relatively small diameter (≤70 mm) and placed between the interferometers to reduce the inter-reflections in axial-mount, a "pupil adapter" must be included with a further increase of the optical path length. Although a multi-etalon spectropolarimeter works in quasi-monochromatic light, the Fraunhofer lines of interest cover a wide range of wavelengths (850 to 1650 nm), which demands a good chromatic aberration control. A low instrumental polarization (≤0.5%) is also required to allow a high polarimetric precision. Finally, some secondary optical paths are required to perform the initial instrumental setup and to secure the best instrumental performances. A diffraction-limited optical solution for ATST is described that fulfills all the above requirements in a relative small volume.

  17. [Progress in optical imaging].

    PubMed

    Bremer, C; Ntziachristos, V; Mahmood, U; Tung, C H; Weissleder, R

    2001-02-01

    Different optical imaging technologies have significantly progressed over the last years. Besides advances in imaging techniques and image reconstruction, new "smart" optical contrast agents have been developed which can be used to detect molecular targets (such as endogenous enzymes) in vivo. The combination of novel imaging technologies coupled with smart agents bears great diagnostic potential both clinically and experimentally. This overview outlines the basic principles of optical imaging and summarizes the current state of the art.

  18. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    SciTech Connect

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  19. Advanced diagnostics for impact-flash spectroscopy on light-gas guns.

    SciTech Connect

    Breiland, William George; Reinhart, William Dodd; Miller, Paul Albert; Brown, Justin L.; Thornhill, Tom Finley, III; Mangan, Michael A.; Shaner, Eric Arthur; Chhabildas, Lalit Chandra; Grine, Albert D.; Wanke, Michael Clement; Alexander, C. Scott

    2007-03-01

    This study is best characterized as new technology development for implementing new sensors to investigate the optical characteristics of a rapidly expanding debris cloud resulting from hypervelocity impact regimes of 7 to 11 km/s. Our gas guns constitute a unique test bed that match operational conditions relevant to hypervelocity impact encountered in space engagements. We have demonstrated the use of (1) terahertz sensors, (2) silicon diodes for visible regimes, (3) germanium and InGaAs sensors for the near infrared regimes, and (4) the Sandia lightning detectors which are similar to the silicon diodes described in 2. The combination and complementary use of all these techniques has the strong potential of ''thermally'' characterizing the time dependent behavior of the radiating debris cloud. Complementary spectroscopic measurements provide temperature estimates of the impact generated debris by fitting its spectrum to a blackbody radiation function. This debris is time-dependent as its transport/expansion behavior is changing with time. The rapid expansion behavior of the debris cools the cloud rapidly, changing its thermal/temperature characteristics with time. A variety of sensors that span over a wide spectrum, varying from visible regime to THz frequencies, now gives us the potential to cover the impact over a broader temporal regime starting from high pressures (Mbar) high-temperatures (eV) to low pressures (mbar) low temperatures (less than room temperature) as the debris expands and cools.

  20. Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions

    PubMed Central

    Bhatia, Nirav; Lalla, Yastira; Vu, An N.; Farah, Camile S.

    2013-01-01

    Traditional methods of screening for oral potentially malignant disorders and oral malignancies involve a conventional oral examination with digital palpation. Evidence indicates that conventional examination is a poor discriminator of oral mucosal lesions. A number of optical aids have been developed to assist the clinician to detect oral mucosal abnormalities and to differentiate benign lesions from sinister pathology. This paper discusses advances in optical technologies designed for the detection of oral mucosal abnormalities. The literature regarding such devices, VELscope and Identafi, is critically analysed, and the novel use of Narrow Band Imaging within the oral cavity is also discussed. Optical aids are effective in assisting with the detection of oral mucosal abnormalities; however, further research is required to evaluate the usefulness of these devices in differentiating benign lesions from potentially malignant and malignant lesions. PMID:24078812

  1. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  2. Studies of the physical aspects of intumescence using advance diagnostics methods

    NASA Astrophysics Data System (ADS)

    Saeed, Hussain; Huang, Hua Wei; Zhang, Yang

    2014-04-01

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  3. Studies of the physical aspects of intumescence using advance diagnostics methods

    SciTech Connect

    Saeed, Hussain Huang, Hua Wei Zhang, Yang

    2014-04-11

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  4. Advances in developing molecular-diagnostic tools for strongyloid nematodes of equids: fundamental and applied implications.

    PubMed

    Gasser, Robin B; Hung, Guo-Chiuan; Chilton, Neil B; Beveridge, Ian

    2004-02-01

    Infections of equids with parasitic nematodes of the order Strongylida (subfamilies Strongylinae and Cyathostominae) are of major veterinary importance. In last decades, the widespread use of drugs against these parasites has led to problems of resistance within the Cyathostominae, and to an increase in their prevalence and intensity of infection. Novel control strategies, based on improved knowledge of parasite biology and epidemiology, have thus become important. However, there are substantial limitations in the understanding of fundamental biological and systematic aspects of these parasites, which have been due largely to limitations in their specific identification and diagnosis using traditional, morphological approaches. Recently, there has been progress in the development of DNA-based approaches for the specific identification of strongyloids of equids for systematic studies and disease diagnosis. The present article briefly reviews information on the classification, biology, pathogenesis, epidemiology of equine strongyloids and the diagnosis of infections, highlights knowledge gaps in these areas, describes recent advances in the use of molecular techniques for the genetic characterisation, specific identification and differentiation of strongyloids of equids as a basis for fundamental investigations of the systematics, population biology and ecology.

  5. Low coherence full field interference microscopy or optical coherence tomography: recent advances, limitations and future trends

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    2013-04-01

    Although low coherence microscopy (LCM) has been known for long time in the context of interference microscopy, coherence radar and white light interferometry, the whole subject has attracted a wide interest in the last two decades particularly accelerated by the entrance of OCT, as a noninvasive powerful technique for biomedical imaging. Today LCM can be classified into two types, both acts as three-dimensional imaging tool. The first is low temporal coherence microscopy; also known as optical coherence tomography (OCT), which is being used for medical diagnostics. The second is full field OCT in various modes and applied to various applications. FF-OCT uses low spatial and temporal coherence similar to the well-known coherence probe microscope (CPM) that have been in use for long time in optical metrology. The CPM has many advantages over conventional microscopy in its ability to discriminate between different transparent layers in a scattering medium thus allowing for precise noninvasive optical probing of dense tissue and other turbid media. In this paper the status of this technology in optical metrology applications will be discussed, on which we have been working to improve its performance, as well as its limitations and future prospective.

  6. Advances in laser and tissue interactions: laser microbeams and optical trapping (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini; Papadopoulos, Dimitris; Papagiakoumou, Eirini; Pietreanu, D.

    2005-04-01

    The increasing use of lasers in biomedical research and clinical praxis leads to the development and application of new, non-invasive, therapeutic, surgical and diagnostic techniques. In laser surgery, the theory of ablation dictates that pulsed mid-infrared laser beams exhibit strong absorption by soft and hard tissues, restricting residual thermal damage to a minimum zone. Therefore, the development of high quality 3 μm lasers is considered to be an alternative for precise laser ablation of tissue. Among them are the high quality oscillator-two stages amplifier lasers developed, which will be described in this article. The beam quality delivered by these lasers to the biological tissue is of great importance in cutting and ablating operations. As the precision of the ablation is increased, the cutting laser interventions could well move to the microsurgery field. Recently, the combination of a laser scalpel with an optical trapping device, under microscopy control, is becoming increasingly important. Optical manipulation of microscopic particles by focused laser beams, is now widely used as a powerful tool for 'non-contact' micromanipulation of cells and organelles. Several laser sources are employed for trapping and varying laser powers are used in a broad range of applications of optical tweezers. For most of the lasers used, the focal spot of the trapping beam is of the order of a micron. As the trapped objects can vary in size from hundreds of nanometres to hundreds of microns, the technique has recently invaded in to the nanocosomos of genes and molecules. However, the use of optical trapping for quantitative research into biophysical processes requires accurate calculation of the optical forces and torques acting within the trap. The research and development efforts towards a mid-IR microbeam laser system, the design and realization efforts towards a visible laser trapping system and the first results obtained using a relatively new calibration method to

  7. Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Oreshenko, Maria; Heng, Kevin; Demory, Brice-Olivier

    2016-04-01

    Optical phase curves have become one of the common probes of exoplanetary atmospheres, but the information they encode has not been fully elucidated. Building on a diverse body of work, we upgrade the Flexible Modelling System to include scattering in the two-stream, dual-band approximation and generate plausible, three-dimensional structures of irradiated atmospheres to study the radiative effects of aerosols or condensates. In the optical, we treat the scattering of starlight using a generalization of Beer's law that allows for a finite Bond albedo to be prescribed. In the infrared, we implement the two-stream solutions and include scattering via an infrared scattering parameter. We present a suite of four-parameter general circulation models for Kepler-7b and demonstrate that its climatology is expected to be robust to variations in optical and infrared scattering. The westward and eastward shifts of the optical and infrared phase curves, respectively, are shown to be robust outcomes of the simulations. Assuming micron-sized particles and a simplified treatment of local brightness, we further show that the peak offset of the optical phase curve is sensitive to the composition of the aerosols or condensates. However, to within the measurement uncertainties, we cannot distinguish between aerosols made of silicates (enstatite or forsterite), iron, corundum or titanium oxide, based on a comparison to the measured peak offset (41° ± 12°) of the optical phase curve of Kepler-7b. Measuring high-precision optical phase curves will provide important constraints on the atmospheres of cloudy exoplanets and reduce degeneracies in interpreting their infrared spectra.

  8. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.

  9. Advanced fluorescence imaging endoscopy using an acousto-optic tuneable filter

    NASA Astrophysics Data System (ADS)

    Whelan, Maurice P.; Bouhifd, Mounir; Aprahamian, Marc

    2004-07-01

    Two novel prototype instruments for in vivo fluorescence-based medical diagnostics are described. The devices are based on an acousto-optic tuneable filter (AOTF) and can be easily attached to the eyepiece of most commercially available endoscopes. The instruments developed offer significant advantages over typical fixed-filter or filter-wheel fluorescence imaging systems in terms of flexibility, performance and diagnostic potential. Any filtering center-wavelength in the range from 450 to 700 nm can be rapidly selected either by random access or sequential tuning using simple commands delivered over a PC serial interface. In addition, both filtered and unfiltered light can be imaged to facilitate the direct association of fluorescence signals with specific anatomical sites. To demonstrate the system in vivo, a study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on rats. The aim was to detect extremely low-levels of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response. Results show clearly that the device is effective in diagnosing mild pancreatitis in rats without the necessity of administering PpIX promoting agents such as ALA. Planning of human clinical trials is currently underway to demonstrate its potential as a tool for non-invasive early diagnosis of gastroenterological diseases.

  10. Nebular emission from AGN in the ultraviolet/optical: diagnostics of the ionizing source and gas properties

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2016-08-01

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, forthcoming facilities such as JWST and the E-ELT, will provide rest-frame ultraviolet and optical spectra of the very distant AGN. To lay the groundwork for the interpretation of these revolutionary datasets, we have recently computed new photoionization models of the narrow-line emitting regions (NLR) of AGN and combined them with similar models of the nebular emission from star-forming galaxies. In this talk, I will first describe how new ultraviolet and standard optical spectral diagnostics allow one to distinguish between nuclear activity and star formation. I will then explain how predictions of AGN nebular emission can be best used to understand the physical properties of the AGN NLR gas. In particular, I will present recent results from a study on one of the most comprehensive set of optical spectra (from VIMOS/VLT) sampling the rest-frame ultraviolet range of ~90 type 2 AGN (1.5 < z < 3), drawn from the z-COSMOS deep survey. To conclude, I will show how the implementation of AGN photoionization calculations in an innovative Bayesian fitting code can help us best interpret current, and future, spectro-photometric data on active galaxies.

  11. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    NASA Astrophysics Data System (ADS)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  12. Optical techniques for signal distribution and control in advanced radar and communication systems

    NASA Astrophysics Data System (ADS)

    Forrest, J. R.

    1985-03-01

    It is concluded that optical techniques offer some advantages for signal distribution and control in advanced radar and communication systems. They are clearly ideal for transporting microwave signals over considerable distances, as in remote positioning of radar receivers, provided high dynamic range is not required and an enclosed transmission path is essential. They are an elegant means of distributing low level r.f. or i.f. signals around an active phased array where these signals are of relatively constant amplitude (as in mixer local oscillator applications). However, there is currently a rather restrictive limit on the size of distribution network possible. Optical techniques are obviously suitable for distributing digital control signals to phased array modules and confer considerable immunity to interference. They are less suitable for high dynamic range signals, such as the received radar returns, either at r.f. or when downcovered to i.f. Future developments in coherent optics or in fast optical A/D technology could, however, influence this conclusion. Currently, the optimum applications for optical techniques appear to be i.f. beamformers for multibeam communication satellite systems and in calibration/monitoring systems for phased arrays.

  13. High-Definition Optical Velocimetry: A New Diagnostic Paradigm for Nuclear Security

    SciTech Connect

    Daykin, E; Diaz, A; Gallegos, C; Iverson, A; Perez, C; Rutkowski, A; Holtkamp, D; Strand, T

    2012-06-01

    This slide-show describes work done to address the challenge of high-definition optical velocimetry with hundred(s) of high-fidelity velocity vs. time measurements. After a review of the historical context and a general technical description of how optical velocimetry, particularly photonic Doppler velocimetry, works, the innovation of multiplexed photonic Doppler velocimetry (MPDV) is described as implemented with commercially available telecom products and dense wavelength division multiplexing (DWDM). High amplification of small signals allows for laser-safe operations. The authors have evaluated and leveraged telecom components– optical amplifiers, wavelength multiplexers, and seed lasers–to provide an economical, compact and rugged approach to system architecture. Fourier transform data analysis is seen to be robust and capable of discriminating simultaneous data traces recorded onto a single digitizer channel. The authors successfully fielded demonstration MPDV system on shock driven experiments.

  14. A fiber-optic diagnostic technique for mechanical detection of the laser-metal interaction underwater

    NASA Astrophysics Data System (ADS)

    Xu, R. Q.; Chen, X.; Shen, Z. H.; Lu, J.; Ni, X. W.

    2004-03-01

    A new fiber-optic force sensor based on optical beam deflection for the investigation of the mechanical effects during laser-metal interaction underwater is developed. This sensor is applied to detect the laser-induced plasma ablation force and liquid-jet impact during the cavitation bubble collapse near a solid boundary when a Q-switched laser is focused on a metal in water. The experimental results indicate the liquid-jet effect outweighs the well-known laser-induced plasma ablation force. This technique has the advantages of high-frequency response, simple structure, and nondestructive examination.

  15. Adaptive wavelet analysis of optical coherent tomography data: Application in problems of diagnostics

    NASA Astrophysics Data System (ADS)

    Nazimov, A. I.; Pavlov, A. N.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.

    2013-10-01

    A method of adaptive wavelet analysis permitting one to set parameters of the wavelet transform based on principles of the optimization theory is proposed. Applying the method to optical coherent tomography data processing is considered. The efficiency of the proposed method for diagnosing functional disorders in the dynamics of cerebral vessels is illustrated.

  16. Adaptive optics at the University of Hawaii II: control system with real-time diagnostics

    NASA Astrophysics Data System (ADS)

    Anuskiewicz, Jim; Northcott, Malcolm J.; Graves, J. Elon

    1994-05-01

    The University of Hawaii experimental adaptive optics system is controlled by dual SPARC single board computers on a VME backplane. One processor is dedicated to the feedback loop. The second processor manages loop data flow to a workstation and transfers new control parameters to the loop processor without stopping the loop. This system facilitates cause-effect analysis of the various system parameters.

  17. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  18. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Astaf'eva, N. G.; Meglinski, I. V.

    2014-08-01

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials.

  19. Optical diagnostics of biological tissue cells during their cultivation in polymers

    NASA Astrophysics Data System (ADS)

    Letuta, S. N.; Maryakhina, V. S.; Rakhmatullin, R. R.

    2011-04-01

    The specific features of long-term luminescence of exogenous molecular probes in cells of pathogenic and normal biological tissues, cultivated on a solid nutrient medium, have been investigated by laser kinetic fluorimetry. It is proposed to use the Hyamatrix biopolymer as a nutrient medium. This polymer is formed on the basis of native, chemically unmodified hyaluronic acid and contains amino acids, microelements, vitamins, and other components. The possibility of using the obtained results to develop an alternative method of fluorescent diagnostics of biological tissues is discussed.

  20. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)