Science.gov

Sample records for advanced optical diagnostic

  1. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  2. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  3. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at

  4. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics

    PubMed Central

    Hellebust, Anne; Richards-Kortum, Rebecca

    2012-01-01

    Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

  5. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.

    PubMed

    Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L

    2013-08-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST. PMID:24007102

  6. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics

    SciTech Connect

    Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L.; Yang, X. F.

    2013-08-15

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  7. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  8. Advanced diagnostics for reacting flows

    NASA Astrophysics Data System (ADS)

    Hanson, R. K.; Baganoff, D.; Bowman, C. T.; Byer, R. L.; Cantwell, B. J.

    1983-11-01

    Progress is reported for the third year of an interdisciplinary program to innovate modern diagnostic techniques for application to reacting flows. Project areas are: (1) fiber optic absorption/fluorescence probes for species measurements employing tunable ultraviolet, visable and infrared laser sources; (2) wavelength modulation spectroscopy, using rapid-scanning ultraviolet, visible and infrared laser sources, for measurements of species, temperature and absorption lineshapes, (3) quantitative flow visualization, including temporally and spatially resolved species measurements in a plane, using laser-induced fluorescence; (4) multiple-point velocity visualization; (5) plasma diagnostics, utilizing planar laser-induced fluorescence and wavelength modulation techniques; (6) diagnostic techniques for thermionic converter plasmas; (7) application of advanced diagnostic techniques for studies of turbulent reacting flows; (8) development of measurement techniques and a novel facility for investigations of droplet evaporation in turbulent flows; (9) holographic display techniques for 3-D visualization of flowfield data; (10) coherent anti-Stokes Raman spectroscopy (CARS) for temperature and velocity measurements in a supersonic jet; and (11) computed absorption tomography system for species measurements in a plane.

  9. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  10. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    NASA Technical Reports Server (NTRS)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  11. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  12. Recent Advances in Beam Diagnostic Techniques

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  13. Quantification of the absorbed dose in 3D by means of advanced optical diagnostics based on structured illumination

    NASA Astrophysics Data System (ADS)

    Kristensson, Elias; Ceberg, Sofie; Bäck, Sven; Jordan, Kevin

    2015-01-01

    The purpose of this study was to present a novel optical diagnostic tool that corrects for undesired contribution of multiply scattered light, thus opening up for e.g. quantitative optical CT measurements of opaque samples. The approach is based on a technique called Structured Illumination (SI), which is commonly employed within microscopic imaging to enhance the depth-resolution. The concept of SI applies for many types of source-detector arrangements and the configuration employed in this paper relies on side-scattering detection. A nPAG polymer gel phantom was irradiated using 6 MV beam. Three-dimensional information was obtained by translating the sample perpendicular to the direction of light, thus sequentially probing different sections. These were then stacked together to form a 3D representation of the sample. By altering the polarization of the laser light during the data acquisition it was discovered that the aggregates responsible for the scattering of light followed Rayleigh scattering, implying that their individual sizes are smaller than, or in the order of, 500 nm.

  14. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  15. Advanced diagnostics for plasma chemistry

    SciTech Connect

    Kruger, C.H.

    1994-03-01

    Since July 15, 1992, the High Temperature Gasdynamics Laboratory in the Department of Mechanical Engineering at Stanford University has been engaged in a four-year research program on Advanced Diagnostics for Plasma Chemistry. The goal of this program is to develop state-of-the-art laser-based diagnostics of molecular species in harsh chemical environments, particularly those encountered in plasma synthesis of new materials. Emphasis has been placed on exploiting a new nonlinear spectroscopy, degenerate four wave mixing, as well as linear laser induced fluorescence to accomplish these goals. The present submittal is a proposal for the continuation funding for the third year of this program, from July 15, 1994, until July 14, 1995. Section 2 summarizes the research accomplished during the first eighteen months of the program. Section 3 discusses the plans for continuing research activities. Publications and presentations to date resulting from this program are listed in Section 4. The proposed budget for the third year is given in Section 5.

  16. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  17. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  18. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  19. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  20. Latest advances in advanced diagnostic and therapeutic pulmonary procedures.

    PubMed

    Silvestri, Gerard A; Feller-Kopman, David; Chen, Alexander; Wahidi, Momen; Yasufuku, Kazuhiro; Ernst, Armin

    2012-12-01

    Over the past 15 years, patients with a myriad of pulmonary conditions have been diagnosed and treated with new technologies developed for the pulmonary community. Advanced diagnostic and therapeutic procedures once performed in an operating theater under general anesthesia are now routinely performed in a bronchoscopy suite under moderate sedation with clinically meaningful improvements in outcome. With the miniaturization of scopes and instruments, improvements in optics, and creative engineers, a host of new devices has become available for clinical testing and use. A growing community of pulmonologists is doing comparative effectiveness trials that test new technologies against the current standard of care. While more research is needed, it seems reasonable to provide an overview of pulmonary procedures that are in various stages of development, testing, and practice at this time. Five areas are covered: navigational bronchoscopy, endobronchial ultrasound, endoscopic lung volume reduction, bronchial thermoplasty, and pleural procedure. Appropriate training for clinicians who wish to provide these services will become an area of intense scrutiny as new skills will need to be acquired to ensure patient safety and a good clinical result. PMID:23208336

  1. Advanced plasma diagnostics for plasma processing

    NASA Astrophysics Data System (ADS)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  2. Optical signal acquisition and processing in future accelerator diagnostics

    SciTech Connect

    Jackson, G.P. ); Elliott, A. )

    1992-01-01

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented.

  3. Optical signal acquisition and processing in future accelerator diagnostics

    SciTech Connect

    Jackson, G.P.; Elliott, A.

    1992-12-31

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented.

  4. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  5. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  6. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  7. Optical Diagnostic Imaging Of Surface Topography And Body Deformity

    NASA Astrophysics Data System (ADS)

    Windischbauer, Gerhard

    1989-04-01

    Modern diagnostic imaging techniques are providing three-dimensional images by the combination of analog sensing devices, powerful digital processors and graphic displays. Computer based optical imaging systems are used for detection and tracking of body deformities in Orthopaedics. To establish a morphometric data-base means for comparing and averaging similar shapes have to be prepared. Assuming fast technological advancements use at present and prospective applications are given.

  8. The optical diagnostics of DECLIC

    NASA Astrophysics Data System (ADS)

    Laubier, D.; Martin, B.; Durieux, A.

    2004-06-01

    DECLIC is a joint CNES/NASA research program to be implemented in the International Space Station (ISS). The facility is dedicated to the study of materials science under microgravity, and the processing operations will take place in an ISS EXPRESS rack from 2006 to 2008. Command and control will be performed from ground thanks to the possibility for scientists to monitor quasi real time images from their space experiment. Its modular design will make it able to accommodate a large variety of experiments. Cells containing the materials are placed together with their specific instrumentation (heaters, actuators, and scientific probes) in inserts that can easily be put in and removed from an experiment locker. The latter provides several illumination sources to the samples, that are used for interferometry or microscopy observations as well as optical transmission or light scattering measurements. These measurements are done in the other side of the locker by different sensors (cameras, photodiode). A second locker provides power, supplies temperature regulation or experiment control as well as data handling. This paper focuses on the optical measurements: it will describe the different sources and sensors available in the facility and give their performance based on models or measurements done on different types of experiments along the qualification process of the engineering model.

  9. Main challenges for ITER optical diagnostics

    NASA Astrophysics Data System (ADS)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-01

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  10. Optical diagnostics of dusty plasmas

    NASA Astrophysics Data System (ADS)

    Remy, Jerome Alphonse Robert

    The central topic of this thesis is dusty plasmas, in which particles are generated or injected. Such plasmas, when ignited in silane-based gas mixtures, are widely used in the semiconductor industry for depositing silicon layers (amorphous, micro-crystalline or polymorphous). These layers have applications in flat panel displays, sensors, and solar cells for instance. The inclusion of nano-crystallites in the amorphous silicon layer produces cells with enhanced properties but calls at the same time for a better comprehension and control of the particles' formation and growth. The role played by silicon-based radical species in these processes more particularly prompts detailed studies. Dusty plasmas are also a field of enduring interest to the astrophysics community. The interstellar medium can be simulated in a laboratory plasma to identify the carbon-based molecular complexes (Polycyclic Aromatic Hydrocarbons or PAHs) whose ions are thought to be responsible for unidentified emission and absorption bands seen in the spectra of starlight. This thesis covers some aspects of both industry-oriented and astrophysical dusty plasmas. The experimental study on silane-based plasmas includes optical measurements performed in emission, absorption, and by analyzing the light scattered by particles grown in-situ. The negative charge acquired by the particles while immersed in the plasma disturbs their dynamics but also the electrical properties of the discharge. Based on the monitoring of the plasma impedance, it is shown that the plasma is affected by the particles' presence, independently from the nature of the silane carrier gas. Optical emission spectroscopy performed on SiH, H a and H 2 excited states indicates that the silane dissociation occurs in the vicinity of the RF-powered electrode. A Fourier Transform Infrared (FTIR) time-dependent analysis of the silane consumption after plasma ignition demonstrates that the silane dissociation is actually a slow but

  11. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines. PMID:26632539

  12. Disposable optics for microscopy diagnostics.

    PubMed

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-01-01

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications. PMID:26586153

  13. Disposable optics for microscopy diagnostics

    NASA Astrophysics Data System (ADS)

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-01

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  14. Disposable optics for microscopy diagnostics

    PubMed Central

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-01-01

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications. PMID:26586153

  15. Advances In Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Cole, J. H.; Giallorenzi, T. G.; Bucaro, J. A.

    1981-07-01

    Over the past several years, a new non-communication optical fiber application has emerged. This application utilizes optical fibers for sensing. Initial interest centered around rate rotation sensing. Since that time, however, acoustic, magnetic, and temperature sensing utilizing optical fibers has evolved into a viable research effort with significant potential payoff. As an example, laboratory fiber optic acoustic sensors now rival the best sensitivity obtained with piezoelectric ceramics. These sensors possess a unique geometric versatility previously unavailable. In conjunction with the Defense Advanced Research Projects Agency (DARPA), the Navy has begun a Fiber Optic Sensor System (FOSS) program to develop associated technology necessary to realize these sensors. Substantial effort is ongoing at the Naval Research Laboratory (NRL) and other Navy laboratories with considerable contractual effort from universities and industry. This paper reviews the status of the FOSS program.

  16. Modular initiator with integrated optical diagnostic

    SciTech Connect

    Alam, M. Kathleen; Schmitt, Randal L.; Welle, Eric J.; Madden, Sean P.

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  17. Advanced Diagnostics for Developing High-Brightness Electron Beams

    SciTech Connect

    Ben-Zvi, I.; Babzien, M.; Malone, R.; Wang, X.-J.; Yakimenko, V.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  18. ADVANCED DIAGNOSTICS FOR DEVELOPING HIGH-BRIGHTNESS ELECTRON BEAMS.

    SciTech Connect

    BEN-ZVI,I.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  19. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  20. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  1. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  2. Optical Diagnostics for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Bencic, T. J.; Martin, R. E.

    2004-01-01

    The translucent nature of ceramic oxide thermal barrier coatings (TBCs) provides an opportunity to employ optical probes to monitor temperature gradients and buried damage propagation within the coating. An important advantage of noncontact optical diagnostics is that they are amendable to health monitoring of TBCs in service. In this paper, two optical diagnostic approaches, operating in different wavelength regimes, are discussed. The first approach is the use of mid-infrared reflectance (MIR) to monitor the progression of TBC delamination produced by thermal cycling. This approach takes advantage of the maximum transparency of the TBCs at mid-infrared wavelengths, in particular, between 3 and 5 microns. Recent progress in extending the MIR method to a more practical visual inspection tool will be presented. A second approach, using visible wavelengths, is the embedding of thermographic phosphors within the TBC to add sensing functions to the coating that can provide depth-selective information about temperature gradients and TBC integrity. Emphasis will be given to the use of fluorescence decay time measurements to provide temperature readings from a thermographic phosphor layer residing beneath the TBC.

  3. Optical spectra analysis for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  4. Optical Diagnostic System for the TLS

    SciTech Connect

    Kuan, C. K.; Tseng, T. C.; Wang, D. J.; Hsiung, G. Y.; Perng, S. Y.; Tsai, Z. D.; Ueng, T. S.; Hsueh, H. P.; Chen, J. R.

    2007-01-19

    The Taiwan light source (TLS) uses a photon beam intensity system (Io monitor) to index the electron beam stability. This index combines the information of the fluctuations of electron beam position and size. For understanding the impact of these fluctuations to the electron beam instability, a set of the optical diagnostic system was installed in the TLS BL10 diagnostics beamline. This system includes the photon beam position monitor (PBPM), the beam size monitor (BSM) and the Io monitor. From the result, we concluded that about one-third impact of beam instability came from the fluctuation of electron beam position and about two-thirds impact of beam instability came from the fluctuation of electron beam size. The hardware configuration is described in this paper.

  5. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  6. Advances in molecular diagnostics for Mycobacterium bovis.

    PubMed

    Collins, Desmond M

    2011-07-01

    The two most important molecular diagnostic techniques for bovine tuberculosis are the polymerase chain reaction (PCR) because of its rapid determination of infection, and DNA strain typing because of its ability to answer important epidemiological questions. PCR tests for Mycobacterium bovis have been improved through recent advances in PCR technology, but still lack the sensitivity of good culture methods, and in some situations are susceptible to giving both false negative and false positive results. Therefore, PCR does not usually replace the need for culture, but is used to provide fast preliminary results. DNA typing of M. bovis isolates by restriction endonuclease analysis (REA) was developed 25 years ago in New Zealand, and remains an important tool in the New Zealand control scheme, where the typing results are combined with other information to determine large and expensive possum poisoning operations. A range of other DNA typing systems developed for M. bovis in the 1990 s have assisted epidemiological investigations in some countries but are now less commonly used. Variable number tandem repeat (VNTR) typing and spoligotyping, either alone or together, have now become the preferred approaches as they are robust and amenable to electronic analysis and comparison. Spoligotyping gives only moderate discrimination but can be easily applied to large numbers of isolates, and VNTR typing provides better discrimination than all other methods except for REA. While the current typing techniques are sufficient for most epidemiological purposes, more discriminating methods are likely to become available in the near future. PMID:21420257

  7. Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

    SciTech Connect

    O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.

    1997-01-01

    This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

  8. Atherosclerosis diagnostic imaging by optical spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hewko, M. D.; Choo-Smith, L. P.; Ko, A. C. T.; Smith, M. S. D.; Kohlenberg, E. M.; Bock, E. R.; Leonardi, L.; Sowa, M. G.

    2006-02-01

    Atherosclerosis is traditionally viewed as a disease of uncontrolled plaque growth leading to arterial occlusion. More recently, however, occlusion of the arterial lumen is being viewed as an acute event triggered by plaque rupture and thrombosis. An atheromatous plaque becomes vulnerable to sudden activation and/or rupture when a constellation of processes are activated by various trigger mechanisms. There is growing evidence that the vulnerability (i.e. susceptibility to rupture) and thrombogenic nature of the plaque need to be taken into account in the planning and treatment of the disease. X-ray fluoroscopy and intravascular ultrasound, the current clinical diagnostic tools are not capable of the providing a complete histological picture of the plaque region. Intravascular diagnostic imaging of coronary atherosclerotic plaques by optical means to assess plaque, patient risk and assist in planning treatment strategies represents the future in angioplasty treatment by interventional cardiologists. The techniques which will enable a clinically acceptable and reliable intravascular diagnostic platform are currently being investigated and compared to the clinical standard of histology. Currently, we are investigating the use of a number of optical and imaging techniques for biochemical analysis of arterial tissue including Raman, near infrared and fluorescence spectroscopies. Biochemical imaging will provide compositional information on collagen, elastin, lipid and thrombogenic by-products as well as gauging inflammation and tissue remodeling activity levels. To complement the functional biochemical imaging, optical coherence tomography will be provide structural morphological imaging. The synergistic combination of functional and structural imagery will provide the interventional cardiologist with a complete clinical picture of the atherosclerotic plaque region. The clinician can use this diagnostic information to plan a personalized treatment procedure based on

  9. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design. PMID:26827334

  10. The advanced LIGO input optics

    NASA Astrophysics Data System (ADS)

    Mueller, Chris L.; Arain, Muzammil A.; Ciani, Giacomo; DeRosa, Ryan. T.; Effler, Anamaria; Feldbaum, David; Frolov, Valery V.; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J.; Kokeyama, Keiko; Korth, William Z.; Martin, Rodica M.; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H.; Tanner, David B.; Vorvick, Cheryl; Williams, Luke F.; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  11. Multispectral optical tweezers for molecular diagnostics of single biological cells

    NASA Astrophysics Data System (ADS)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  12. Turfgrass diagnostics and new, advanced technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strategies for sustainable, integrated disease management start with reliable pathogen identification. Conventional identification methods such as disease symptomology, host association, morphology and biochemical tests are still key diagnostic indicators for many phytopathogens; however, nucleic ac...

  13. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  14. Advanced Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    2007-06-01

    This factsheet describes a research project whose objective is to develop and implement technologies that address advanced combustion diagnostics and rapid Btu measurements of fuels. These are the fundamental weaknesses associated with the combustion processes of a furnace.

  15. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  16. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  17. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  18. Advanced optical document security elements

    NASA Astrophysics Data System (ADS)

    Škereš, Marek; Svoboda, Jakub; Possolt, Martin; Květoš, Milan; Fiala, Pavel

    2012-01-01

    ABSTRACT Synthetic diffractive structures represent an important tool in the optical document security. Their macroscopic visual behavior is based on properties of a very fine micro-structure which cannot be copied using common copying techniques. The visual effects can be easily observed by a common observer without any special inspection tools. However, when a high level of security is needed, additional features are often included based on an optical encryption of information. In this paper, a novel encryption technique is presented, which is based on utilizing the plastic holographic foil as a waveguide and special diffractive structures as coupling elements. When an in-coupling area is illuminated with a defined light beam, the light is coupled into the waveguide and travels to an out-coupling part. The encrypted information is encoded either in the shape of the out-coupling area or it can be formed from an out-coupling hologram in free space above the element. Both laser and normal white light sources can be used for reading the information. The coupling areas can be mixed with diffractive micro-structures forming visual effects and can be invisible during a normal observation of the hologram. The couplers can be realized using the technology fully compatible with the standard process for mastering and replication of the security elements. Several extensions of the described idea of waveguide cryptograms are also included. Finally, a set of real samples of the security elements is presented, which were realized using an advanced matrix laser lithography technique.

  19. Optical diagnostics of osteoblast cells and osteogenic drug screening

    NASA Astrophysics Data System (ADS)

    Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.

    2016-02-01

    Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.

  20. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  1. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  2. Optical Diagnostics of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Majewski, Mark Steven

    The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy

  3. Genetics, diagnostics and therapeutic advances in NAFLD

    PubMed Central

    Rinella, Mary E.; Sanyal, Arun J.

    2016-01-01

    In 2014, NAFLD was confirmed as the fastest growing aetiology for hepatocellular cancer in the USA. However, 2014 also saw progress in our understanding of the heritability and pathogenesis of NAFLD, and an important clinical trial targeting the farnesoid X receptor pathway has illustrated advances in developing a pharmacological therapy. PMID:25560844

  4. Role of advanced diagnostics for eosinophilic esophagitis.

    PubMed

    Hirano, Ikuo

    2014-01-01

    In eosinophilic esophagitis (EoE), diagnostic tests aid in the identification of pathophysiologic consequences and accurate detection of the disease. The EoE Endoscopic Reference Score (EREFS) classifies and grades the severity of the five major endoscopically identified esophageal features of EoE (edema, rings, exudates, furrows and strictures). The EREFS may be useful in the evaluation of disease severity and as an objective outcome of response to therapy. pH monitoring identifies the presence of abnormal degrees of acid exposure in the esophagus that characterizes gastroesophageal reflux disease. The presence of acid reflux, however, does not indicate that the reflux is responsible for esophageal eosinophilia. Esophageal manometry has not demonstrated a characteristic abnormality with sufficient sensitivity to make the test of diagnostic value in clinical practice. On the other hand, manometric characteristics of esophageal pressurization and longitudinal muscle dysfunction may help identify important pathophysiologic consequences of EoE. Esophageal impedance testing has demonstrated increased baseline mucosal impedance that correlates with increased epithelial permeability in EoE. Reduced mucosal integrity may provide intraluminal allergens access to antigen-presenting cells, serving as an early event in the pathogenesis of EoE. The functional luminal impedance probe (FLIP) provides quantitative assessment of esophageal mural compliance, a physiologic correlate of remodeling in EoE. Studies using FLIP have associated reductions in esophageal distensibility in EoE with the important outcome of food impaction risk. Finally, confocal endomicroscopy, multiphoton fluorescence microscopy and novel eosinophil-enhancing contrast agents are emerging methods that may allow for in vivo visualization of esophageal eosinophilic inflammation, thereby improving the detection and understanding of this emerging disease. PMID:24603385

  5. Handheld optical coherence tomography scanner for primary care diagnostics.

    PubMed

    Jung, Woonggyu; Kim, Jeehyun; Jeon, Mansik; Chaney, Eric J; Stewart, Charles N; Boppart, Stephen A

    2011-03-01

    The goal of this study is to develop an advanced point-of-care diagnostic instrument for use in a primary care office using handheld optical coherence tomography (OCT). This system has the potential to enable earlier detection of diseases and accurate image-based diagnostics. Our system was designed to be compact, portable, user-friendly, and fast, making it well suited for the primary care office setting. The unique feature of our system is a versatile handheld OCT imaging scanner which consists of a pair of computer-controlled galvanometer-mounted mirrors, interchangeable lens mounts, and miniaturized video camera. This handheld scanner has the capability to guide the physician in real time for finding suspicious regions to be imaged by OCT. In order to evaluate the performance and use of the handheld OCT scanner, the anterior chamber of a rat eye and in vivo human retina, cornea, skin, and tympanic membrane were imaged. Based on this feasibility study, we believe that this new type of handheld OCT device and system has the potential to be an efficient point-of-care imaging tool in primary care medicine. PMID:21134801

  6. Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics

    PubMed Central

    Jung, Woonggyu; Kim, Jeehyun; Jeon, Mansik; Chaney, Eric J.; Stewart, Charles N.

    2011-01-01

    The goal of this study is to develop an advanced point-of-care diagnostic instrument for use in a primary care office using handheld optical coherence tomography (OCT). This system has the potential to enable earlier detection of diseases and accurate image-based diagnostics. Our system was designed to be compact, portable, user-friendly, and fast, making it well suited for the primary care office setting. The unique feature of our system is a versatile handheld OCT imaging scanner which consists of a pair of computer-controlled galvanometer-mounted mirrors, interchangeable lens mounts, and miniaturized video camera. This handheld scanner has the capability to guide the physician in real time for finding suspicious regions to be imaged by OCT. In order to evaluate the performance and use of the handheld OCT scanner, the anterior chamber of a rat eye and in vivo human retina, cornea, skin, and tympanic membrane were imaged. Based on this feasibility study, we believe that this new type of handheld OCT device and system has the potential to be an efficient point-of-care imaging tool in primary care medicine. PMID:21134801

  7. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  8. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  9. Advances in three-dimensional diagnostic radiology

    PubMed Central

    TER HAAR ROMENY, BART M.; ZUIDERVELD, KAREL J.; VAN WAES, PAUL F. G. M.; VAN WALSUM, THEO; VAN DER WEIJDEN, REMKO; WEICKERT, JOACHIM; STOKKING, RIK; WINK, ONNO; KALITZIN, STILIYAN; MAINTZ, TWAN; ZONNEVELD, FRANS; VIERGEVER, MAX A.

    1998-01-01

    The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (<$10000) allow this to be a reality. It is now possible to manipulate 3D images of 2563 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile

  10. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  11. Diagnostics for advanced laser acceleration experiments

    SciTech Connect

    Misuri, Alessio

    2002-06-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  12. Compact collimated fiber optic array diagnostic for railgun plasmas

    NASA Astrophysics Data System (ADS)

    Tang, V.; Solberg, J. M.; Ferriera, T. J.; Tully, L. K.; Stephan, P. L.

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  13. Compact collimated fiber optic array diagnostic for railgun plasmas.

    PubMed

    Tang, V; Solberg, J M; Ferriera, T J; Tully, L K; Stephan, P L

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments. PMID:19191464

  14. Compact collimated fiber optic array diagnostic for railgun plasmas

    SciTech Connect

    Tang, V.; Solberg, J. M.; Ferriera, T. J.; Tully, L. K.; Stephan, P. L.

    2009-01-15

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  15. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  16. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  17. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    NASA Astrophysics Data System (ADS)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  18. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  19. Advanced centering of mounted optics

    NASA Astrophysics Data System (ADS)

    Wenzel, Christian; Winkelmann, Ralf; Klar, Rainer; Philippen, Peter; Garden, Ron; Pearlman, Sasha; Pearlman, Guy

    2016-03-01

    Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of <1 μm and angular errors of < 10 sec are typical alignment results.

  20. Optical diagnostics in the oral cavity: an overview

    PubMed Central

    Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A

    2014-01-01

    As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. PMID:20561224

  1. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  2. X-ray Transport Optics and Diagnostics Commissioning Report

    SciTech Connect

    Bionta, R M

    2004-10-24

    We discuss commissioning work funded through LCLS WBS element 1.5: X-ray Transport Optics and Diagnostics (XTOD.) A short description of the XTOD commissioning diagnostics hardware is followed by a brief discussion of FEL induced damage considerations. The remainder discusses simulation work on the response of the Direct Imager camera to a mix of spontaneous and FEL radiation and a Monte Carlo Calculation of the reflections of the spontaneous radiation in the undulator vacuum tube.

  3. Modern optical diagnostics in engine research

    NASA Astrophysics Data System (ADS)

    Leipertz, A.; Wensing, M.

    2007-10-01

    Different optical diagnistic techniques are used to gain insight into the single steps forming the functioning chain of the engine combustion process and the complex interplay between these single steps. Examples are given for the application of Mie scattering, laser-induced fluorescence, Raman scattering, CARS and laser-induced incandescence to study diesel engine, SI engine and HCCI combustion processes. The careful adaptation of each optical tool to one part of the engine process makes it possible to get valuable information with minimum change of the process investigated. The paper demonstrates that in addition to conventional engine measurement techniques, a number of different optical techniques must be applied -- and sometimes simultaneously -- to successfully determine the critical parameters of the processes and to investigate their influences on the performance and the quality of real engine combustion.

  4. Advanced rotorcraft helmet display sighting system optics

    NASA Astrophysics Data System (ADS)

    Raynal, Francois; Chen, Muh-Fa

    2002-08-01

    Kaiser Electronics' Advanced Rotorcraft Helmet Display Sighting System is a Biocular Helmet Mounted Display (HMD) for Rotary Wing Aviators. Advanced Rotorcraft HMDs requires low head supported weight, low center of mass offsets, low peripheral obstructions of the visual field, large exit pupils, large eye relief, wide field of view (FOV), high resolution, low luning, sun light readability with high contrast and low prismatic deviations. Compliance with these safety, user acceptance and optical performance requirements is challenging. The optical design presented in this paper provides an excellent balance of these different and conflicting requirements. The Advanced Rotorcraft HMD optical design is a pupil forming off axis catadioptric system that incorporates a transmissive SXGA Active Matrix liquid Crystal Display (AMLCD), an LED array backlight and a diopter adjustment mechanism.

  5. Optical control and diagnostics sensors for gas turbine machinery

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke

    2012-10-01

    There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).

  6. Optical Diagnostics of Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, T. G.; Lal, R. B.

    1996-01-01

    Non-contact optical techniques such as, optical heterodyne, ellipsometry and interferometry, for real time in-situ monitoring of solution crystal growth are demonstrated. Optical heterodyne technique has the capability of measuring the growth rate as small as 1A/sec. In a typical Michelson interferometer set up, the crystal is illuminated by a Zeeman laser with frequency omega(sub 1) and the reference beam with frequency omega(sub 2). As the crystal grows, the phase of the rf signal changes with respect to the reference beam and this phase change is related to the crystal growth rate. This technique is demonstrated with two examples: (1) by measuring the copper tip expansion/shrinkage rate and (2) by measuring the crystal growth rate of L-Arginine Phosphate (LAP). The first test shows that the expansion/shrinkage rate of copper tip was fast in the beginning, and gets slower as the expansion begins to stabilize with time. In crystal growth, the phase change due the crystal growth is measured using a phase meter and a strip chart recorder. Our experimental results indicate a varied growth rate from 69.4 to 92.6A per sec. The ellipsometer is used to study the crystal growth interface. From these measurements and a theoretical modeling of the interface, the various optical parameters can be deduced. Interferometry can also be used to measure the growth rate and concentration gradient in the vicinity of the crystal.

  7. Advanced micromoulding of optical components

    NASA Astrophysics Data System (ADS)

    Bauer, Hans-Dieter; Ehrfeld, Wolfgang; Paatzsch, Thomas; Smaglinski, Ingo; Weber, Lutz

    1999-09-01

    There is a growing need for micro-optical components in the field of tele- and datacom applications. Such components have to be very precise and should be available in reasonable numbers. Microtechnology provides manufacturing techniques that fulfill both requirements. Using micro electro discharge machining, laser micromachining, ultra precision milling and deep lithography with subsequent electroforming methods, complex tools for the replication of highly precise plastic parts have been manufactured. In many cases a combination of methods enumerated above gives a tool which shows both functionality and cost-efficiency. As examples we present the realization of integrated-optical components with passive fiber-waveguide coupling used as components in optical networks and as velocity sensors for two-phase flows, like liquids containing small gas bubbles or particles. In the first case multimode 4 X 4 star couplers have been manufactured in a pilot series that show excess loss values below 3 dB and a uniformity better than 3 dB at 830 nm. This performance becomes possible by using a compression molding process. By stamping the microstructured mold into a semifinished PMMA plate exact replication of the molds as well as very low surface roughness of the waveguide side walls could be observed. In the second case the waveguide channels of the flow sensors show dimensions of between 20 micrometer and 100 micrometer and an aspect ratio of about 20. These structures have been replicated by injection molding of PMMA using variotherm process treatment with a cycle time of about 2 - 3 min.

  8. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  9. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  10. Optical sensing for early cardiovascular diagnostics

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Venckus, Girts; Ozols, Maris

    2000-05-01

    A sensor device for noninvasive detection and analysis of the pulsating blood flow waveforms by means of the reflective single-period photoplethysmorgraphy (SPPPG) technique has been designed and clinically tested. The sensor is operated jointly with any standard PC, by connecting the sensor head to the AD-card and using a separate hard disc with the signal processing software; all circuits are fed by the PC power supply. After processing, normalized shape of the mean SPPPG signal and its parameters are calculated and displayed; the measurement/processing time does not exceed 2 minutes. The clinically detected SPPPG signal shapes and corresponding parameters are presented and discussed. The preliminary results confirm good potential of this sensing approach for fast and patient-friendly early cardiovascular diagnostics.

  11. Advanced channel monitoring for optical layer management

    NASA Astrophysics Data System (ADS)

    Yang, Weiguo; Zheng, Zheng

    2003-12-01

    We categorized synchronous optical network (SONET) operations, administration, maintenance, and provisioning (OAM&P) requirements according to their time urgency as related to the network operation and assigned them to a three-layer telecommunications management network for transparent networks accordingly. Because all-optical bit-by-bit processing at data rates is not yet available, a solution that is currently feasible for optical management layer requirements is proposed on the basis of a previously demonstrated advanced channel-monitoring method. Indicators for signal quality as well as channel use can be provided, and the scheme is transparent to current SONET network elements.

  12. Gaseous laser targets and optical diagnostics for studying compressible hydrodynamic instabilities

    SciTech Connect

    Edwards, J M; Robey, H; Mackinnon, A

    2001-06-29

    Explore the combination of optical diagnostics and gaseous targets to obtain important information about compressible turbulent flows that cannot be derived from traditional laser experiments for the purposes of V and V of hydrodynamics models and understanding scaling. First year objectives: Develop and characterize blast wave-gas jet test bed; Perform single pulse shadowgraphy of blast wave interaction with turbulent gas jet as a function of blast wave Mach number; Explore double pulse shadowgraphy and image correlation for extracting velocity spectra in the shock-turbulent flow interaction; and Explore the use/adaptation of advanced diagnostics.

  13. Neurogenic thoracic outlet syndrome: current diagnostic criteria and advances in MRI diagnostics.

    PubMed

    Magill, Stephen T; Brus-Ramer, Marcel; Weinstein, Philip R; Chin, Cynthia T; Jacques, Line

    2015-09-01

    Neurogenic thoracic outlet syndrome (nTOS) is caused by compression of the brachial plexus as it traverses from the thoracic outlet to the axilla. Diagnosing nTOS can be difficult because of overlap with other complex pain and entrapment syndromes. An nTOS diagnosis is made based on patient history, physical exam, electrodiagnostic studies, and, more recently, interpretation of MR neurograms with tractography. Advances in high-resolution MRI and tractography can confirm an nTOS diagnosis and identify the location of nerve compression, allowing tailored surgical decompression. In this report, the authors review the current diagnostic criteria, present an update on advances in MRI, and provide case examples demonstrating how MR neurography (MRN) can aid in diagnosing nTOS. The authors conclude that improved high-resolution MRN and tractography are valuable tools for identifying the source of nerve compression in patients with nTOS and can augment current diagnostic modalities for this syndrome. PMID:26323825

  14. Advanced Geothermal Optical Transducer (AGOT)

    SciTech Connect

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full scale. Employing a pair of identical, low

  15. Diagnostics of optical anisotropy changesin biological tissues using Mueller matrix

    SciTech Connect

    Ushenko, Yu A; Tomka, Yu Ya; Dubolazov, A V; Telen'ga, O Yu

    2011-03-31

    We study the efficiency of Mueller matrix diagnostics of birefringence in biological tissue layers with different optical thickness by measuring a set of third- and fourth-order statistical moments, characterising the coordinate distributions of the matrix element Z{sub 44} at different points of the histological section. (laser applications and other problems in quantum electronics)

  16. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Della Vecchia, Michael A.

    1996-03-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (˜few μW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to ``dissolve'' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  17. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-11-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  18. A Compact Fiber Optic Eye Diagnostics System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen; Zigler, J. Samuel, Jr.

    1995-01-01

    A new fiber optic probe development for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of the eye. The probe positioned in front of an eye, delivers a low power (approximately a few mu W) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. For a clinical use, the probe is mounted on a standard slit-lamp apparatus simply using Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  19. Optical diagnostics of a gliding arc.

    PubMed

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity. PMID:23482171

  20. A Compact Fiber Optic Eye Diagnostic System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  1. Optical real-time defect-enhancement diagnostic system.

    PubMed

    Gaeta, C J; Mitchell, P V; Pepper, D M

    1992-12-15

    We have demonstrated an all-optical diagnostic system that enhances the observation of defects in periodic structures. This real-time technique employs a spatial light modulator as a smart-pixel array for information processing in the Fourier transform plane of a lens. The system also includes a phase-conjugate mirror for autoalignment and for correction of optical wave-front aberrations that are imparted on the object light by the smart-pixel processor and its associated optical train. PMID:19798320

  2. A fiber optic sensor for ophthalmic refractive diagnostics

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.

    1992-01-01

    This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.

  3. Optical, x-ray and microwave diagnostics

    SciTech Connect

    Tudisco, S.; Mascali, D.; Altana, C.; Anzalone, A.; Gammino, S.; Musumarra, A.; Musumeci, F.; Scordino, A.; Romano, F. P.; Tramontana, A.

    2013-07-26

    Laser-driven ion acceleration is a new approach for the particles acceleration, which allows obtaining ion beams with unique properties, such as short burst duration, large particle number, small size source size, low transverse emittance. Currently, two main acceleration mechanisms have been identified and investigated: target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). Electrons dynamics and energies are strongly coupled to these acceleration mechanisms and they can be investigated with optical and X-ray techniques. The main aim of these studies are the identification of few physical observables that can be directly correlated to the proton emission obtained (in terms of reproducibility and intensity) in operations with different target material and structure and laser-target interaction parameters.

  4. Advanced optics in an interdisciplinary graduate program

    NASA Astrophysics Data System (ADS)

    Nic Chormaic, S.

    2014-07-01

    The Okinawa Institute of Science and Technology Graduate University, established in November 2011, provides a 5- year interdisciplinary PhD program, through English, within Japan. International and Japanese students entering the program undertake coursework and laboratory rotations across a range of topics, including neuroscience, molecular science, physics, chemistry, marine science and mathematics, regardless of previous educational background. To facilitate interdisciplinarity, the university has no departments, ensuring seamless interactions between researchers from all sectors. As part of the PhD program a course in Advanced Optics has been developed to provide PhD students with the practical and theoretical skills to enable them to use optics tools in any research environment. The theoretical aspect of the course introduces students to procedures for complex beam generation (e.g. Laguerre-Gaussian), optical trapping, beam analysis and photon optics, and is supported through a practical program covering introductory interference/diffraction experiments through to more applied fiber optics. It is hoped that, through early exposure to optics handling and measurement techniques, students will be able to develop and utilize optics tools regardless of research field. In addition to the formal course in Advanced Optics, a selection of students also undertakes 13 week laboratory rotations in the Light-Matter Interactions research laboratory, where they work side-by-side with physicists in developing optics tools for laser cooling, photonics or bio-applications. While currently in the first year, conclusive results about the success of such an interdisciplinary PhD training are speculative. However, initial observations indicate a rich cross-fertilization of ideas stemming from the diverse backgrounds of all participants.

  5. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  6. Cutaneous leishmaniasis: advances in disease pathogenesis, diagnostics and therapeutics.

    PubMed

    Ameen, M

    2010-10-01

    Cutaneous leishmaniasis is one of the most common tropical dermatoses worldwide and is of major public health importance. It is caused by numerous Leishmania protozoa species, which are responsible for its clinical diversity. With changes in vector (sandfly) habitat and increased travel among human populations, its incidence is rising, and in nonendemic countries, including the UK, it is increasingly diagnosed in migrants, returned travellers, and military personnel. Diagnostic tests have not always been sufficiently sensitive, and despite a wide range of treatments, poor therapeutic responses and adverse effects are common. In the past decade, there have been notable advances in molecular diagnostics, in the understanding of host immune responses to infection, and in new therapeutic interventions and vaccine development. PMID:20831602

  7. Advances in optical imaging for pharmacological studies

    PubMed Central

    Arranz, Alicia; Ripoll, Jorge

    2015-01-01

    Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering. PMID:26441646

  8. Chemical Approaches for Advanced Optical Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhixing

    Advances in optical microscopy have been constantly expanding our knowledge of biological systems. The achievements therein are a result of close collaborations between physicists/engineers who build the imaging instruments and chemists/biochemists who design the corresponding probe molecules. In this work I present a number of chemical approaches for the development of advanced optical imaging methods. Chapter 1 provides an overview of the recent advances of novel imaging approaches taking advantage of chemical tag technologies. Chapter 2 describes the second-generation covalent trimethoprim-tag as a viable tool for live cell protein-specific labeling and imaging. In Chapter 3 we present a fluorescence lifetime imaging approach to map protein-specific micro-environment in live cells using TMP-Cy3 as a chemical probe. In Chapter 4, we present a method harnessing photo-activatable fluorophores to extend the fundamental depth limit in multi-photon microscopy. Chapter 5 describes the development of isotopically edited alkyne palette for multi-color live cell vibrational imaging of cellular small molecules. These studies exemplify the impact of modern chemical approaches in the development of advanced optical microscopies.

  9. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well. PMID:26520954

  10. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  11. Initial diagnostics commissioning results for the Advanced Photon Source (APS)

    SciTech Connect

    Lumpkin, A.; Patterson, D.; Wang, X.

    1995-07-01

    Principal diagnostics systems have been installed and nearly all have been commissioned on the subsystems of the Advanced Photon Source (APS) facility. Data have been obtained on beam position, beam profile, current, beam loss rate, and synchrotron radiation monitors on both injector rings and most recently the main 7-GeV storage ring. Results for the 150- to 450-MeV electron beams in the accumulator ring, up to 7 GeV in the injector synchrotron, and 4.5 to 7 GeV in the SR will be presented.

  12. Development of an otolaryngological interferometric fiber optic diagnostic probe

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Saravia, Eduardo; Parnes, Steven M.; Cacace, Anthony T.

    1992-08-01

    Current medical instrumentation research at InterScience, Inc. is aimed at utilizing state of the art electro-optics in the development of a diagnostic fiber optic instrument capable of quantifying vibration patterns in real time. This work is in collaboration with the Division of Otolaryngology of the Albany Medical College. The innovative diagnostic probe system design involves the miniaturization of an electronic speckle pattern interferometry (ESPI) system through the use of fiber optic elements coupled with high speed image acquisition from a solid state matrix detector. Subsequent frame by frame processing produces a high quality three-dimensional spatial representation of the vibrational pattern. The diagnostic probe system is being developed for quantitative tympanic membrane and vocal cord vibration analysis. The significance of the introduction of this instrument to the medical community is the contribution it could make in the efficiency and effectiveness of the diagnosis of otolaryngological disorders. Specific applications include the evaluation of tympanosclerosis, stiffness related middle ear disorders, ossicular chain abnormalities, tympanic membrane replacement, vocal dysphonias, and early detection of laryngeal carcinomas, cysts, and phenomenological properties of mucosal wave dynamics. The current instrumentation research is focused on the production of a prototype system for clinical trials. This research is based in ESPI optical system development and miniaturization, system hardware and software development, and clinical design of the probe heads within anatomical limitations. Significant advantages of this diagnostic tool over currently used instrumentation and procedures are the real time capabilities of the instrument, the ability to quantify the vibrational pattern in time and space, and the possibility of establishing a database of patient history and disorder characteristics. Once fully developed and integrated into the clinical

  13. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  14. Intraoral fiber optic-based diagnostic for periodontal disease

    SciTech Connect

    Johnson, P W; Gutierrez, D M; Everett, M J; Brown, S B; Langry, K C; Colston, B W; Roe, J N

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research tool.

  15. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  16. Advance lightpath provisioning in interdomain optical networks

    NASA Astrophysics Data System (ADS)

    Hafid, A.; Maach, A.; Khair, M. G.; Drissi, J.

    2005-11-01

    In interconnected optical networks, users submit lightpath requests at the time they wish to establish the lightpath. The service provider consults the information gathered by the interdomain routing protocols for available resources. For each request, the network must decide immediately whether to accept or reject the request. In this model, there is always the uncertainty of whether the user will be able to establish the desired lightpath at the desired time or not. Furthermore, in the context of a number of applications, e.g., grid applications, users need to set up lightpaths in advance to perform their activities that are planned in advance. We propose a new interdomain routing protocol called Advance Optical Routing Border Gateway Protocol (AORBGP) and a scheme that allows the setup of interdomain lightpaths in advance. AORBGP allows gathering information about interdomain paths and availability of wavelengths in the future. The proposed advance lightpath setup scheme makes use of AORBGP to get information about available resources (i.e., wavelengths) required to process lightpath setup requests. One of the key innovations of the scheme is that it provides the user with alternatives, carefully selected, when his or her request cannot be accommodated because of resource shortages. Indeed, the scheme provides the user with options to set up a lightpath later than the requested start time or with shorter duration than the requested duration. We performed a set of simulations to evaluate the benefits of the proposed scheme and the effect of a number of parameters on the performance of AORBGP.

  17. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  18. Diagnostic imaging advances in murine models of colitis

    PubMed Central

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-01

    Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD. PMID:26811642

  19. Advancements in metro optical network architectures

    NASA Astrophysics Data System (ADS)

    Paraschis, Loukas

    2005-02-01

    This paper discusses the innovation in network architectures, and optical transport, that enables metropolitan networks to cost-effectively scale to hundreds Gb/s of capacity, and to hundreds km of reach, and to also meet the diverse service needs of enterprise and residential applications. A converged metro network, where Ethernet/IP services, and traditional TDM traffic operate over an intelligent WDM transport layer is increasingly becoming the most attractive architecture addressing the primary need of network operators for significantly improved capital and operational network cost. At the same time, this converged network has to leverage advanced technology, and introduce intelligence in order to significantly improve the deployment and manageability of WDM transport. The most important system advancements and the associated technology innovations that enhance the cost-effectiveness of metropolitan optical networks are being reviewed.

  20. Recent advances in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ding, Zhihua; Wang, Chuan; Shen, Yi; Huang, Liangming; Wu, Lan; Du, Chixin

    2012-12-01

    This paper reports recent advances in spectral domain Doppler optical coherence tomography (SD-DOCT) in our group. A high speed SD-DOCT system is developed and applied to animal study and microchip evaluation. Further improvements concerning SD-DOCT are presented, those including higher-order cross-correlation for phase retrieval, transit-time analysis for velocity quantification, and orthogonal dispersive SD-OCT for depth extension.

  1. Novel optical spectroscopy system for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Shakhova, Natalia; Turchin, Ilya; Kamensky, Vladislav; Sergeeva, Ekaterina; Golubyatnikov, German; Da Silva, Luiz; Kasthuri, Usha; Pavlycheva, Irina; Smetanina, Svetlana; Artifeksova, Anna; Belkov, Sergey; Kochemasov, Gennady

    2007-02-01

    We report on development of minimally invasive system for immediate diagnostics of breast cancer and on the results of its pilot clinical testing. The system designed by BioTelligent Inc is based on analysis of optical diffusion spectra (ODS) measured by a probe inserted into breast tissue during standard punch biopsy. Analysis of scattered spectra aimed to distinction of benign tumors from malignant ones is done by original procedure of data processing. Clinical testing of the created diagnostic system has been performed by classification of spectra collected from 146 patients with previously detected mammary neoplasms. The data of ODS study in each patient have been compared to the results of histology. The proposed technique has to date demonstrated sensitivity of 96%, specificity of 80% and diagnostic accuracy of 88%. These values are expected to improve as the data sets continue to grow and more sophisticated data processing is employed.

  2. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor.

    PubMed

    Evans, Mark I; Wapner, Ronald J; Berkowitz, Richard L

    2016-09-01

    The past few years have seen extraordinary advances in prenatal genetic practice led by 2 major technological advances; next-generation sequencing of cell-free DNA in the maternal plasma to noninvasively identify fetal chromosome abnormalities, and microarray analysis of chorionic villus sampling and amniotic fluid samples, resulting in increased cytogenetic resolution. Noninvasive prenatal screening of cell-free DNA has demonstrated sensitivity and specificity for trisomy 21 superior to all previous screening approaches with slightly lower performance for other common aneuploidies. These tests have rapidly captured an increasing market share, with substantial reductions in the number of chorionic villus sampling and amniocentesis performed suggesting that physicians and patients regard such screening approaches as an equivalent replacement for diagnostic testing. Simultaneously, many clinical programs have noted significant decreases in patient counseling. In 2012 the Eunice Kennedy Shriver National Institute of Child Health and Human Development funded a blinded comparison of karyotype with the emerging technology of array comparative genomic hybridization showing that in patients with a normal karyotype, 2.5% had a clinically relevant microdeletion or duplication identified. In pregnancies with an ultrasound-detected structural anomaly, 6% had an incremental finding, and of those with a normal scan, 1.6% had a copy number variant. For patients of any age with a normal ultrasound and karyotype, the chance of a pathogenic copy number variant is greater than 1%, similar to the age-related risk of aneuploidy in the fetus of a 38 year old. This risk is 4-fold higher than the risk of trisomy 21 in a woman younger than 30 years and 5- to 10-fold higher than the present accepted risk of a diagnostic procedure. Based on this, we contend that every patient, regardless of her age, be educated about these risks and offered the opportunity to have a diagnostic procedure with

  3. Optics, Diagnostics and Applications for Fourth-Generation Light Sources

    SciTech Connect

    Wootton, A; Barbee, T; Bionta, R; Chapman, H; Ditmire, T; Dyer, G; Kuba, J; Jankowski, A; London, R; Ryutov, R; Shepherd, R; Shlyaptsev, V; Toor, A

    2003-02-05

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), proposed for the Stanford Linear Accelerator Centre (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: (1) radiation field modeling, (2) experimental and theoretical material damage studies, (3) high resolution, high fluence-tolerant optical design, fabrication, and testing, (including material manufacturing), and (4) diagnostic design and testing.

  4. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  5. Adaptive optics for improved retinal surgery and diagnostics

    SciTech Connect

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  6. Optical system design for high-energy particle beam diagnostics.

    SciTech Connect

    Yang, B. X. Y.

    2002-08-29

    Radiation generated by high-energy particle beams is widely used to characterize the beam properties. While the wavelengths of radiation may vary from visible to x-rays, the physics underlying the engineering designs are similar. In this tutorial, we discuss the basic considerations for the optical system design in the context of beam instrumentation and the constraints applied by high-radiation environments. We cover commonly used optical diagnostics: fluorescence flags, visible and x-ray synchrotron radiation imaging. Emphases will be on achieving desired resolution, accuracy, and reproducibility.

  7. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  8. Russian collaborations on lasers and advanced optics

    SciTech Connect

    Munroe, J.; Cooper, D.; Koym, V.; Salesky, E.

    1996-09-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. There are several technological areas where the Russians appear to be well ahead of the West. Russian work in lasers and advanced optics, high power nonlinear optics, and optical phase conjugation in particular, are some of these areas. The objective of this project is to establish collaboration with key Russian scientists in this area to analytically and experimentally validate the technologies and identify potential applications. This technology has the potential to solve very important military, civil, and commercial problems. The emphasis of this project is on civil and commercial applications, but the technologies have dual-use applications.

  9. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  10. Optical phenomena in microprism diagnostic set KK-42

    NASA Astrophysics Data System (ADS)

    Petrov, Viacheslav; Kryuchyn, Andriy; Antonov, Eugene; Lapchuk, Anatoly; Shanoylo, Semen

    2011-08-01

    Microprism diagnostic set KK-42 for ophthalmology application comprises 42 separate microprism elements - strabismus optical compensators and it is designed for the image displacement at vision diagnostics. The main requirement for optical compensators is high quality of observed images. However, strong diffraction phenomena and chromatic aberrations due to light dispersion exist for microprisms similar to any other prismatic systems. Structure simulation was carried out to minimize the acuity degradation and to avoid observed image discretization. The simplest method to diminish aberrations is the application of filters and colour plastics. Experiments and calculations were performed which showed the opportunity to diminish twice the chromatism zone by filters to the value of 20-25 angular minutes. Another method of decreasing chromatic aberrations is application of additional prism microrelief - saw tooth diffractive optical element. In optical compensators the first microrelief with the pitch of 600-800 μm serves as a refractive prism. Diffractive element with the pitch of 15-20 μm operating in first diffractive order is optimized in such a way that dispersion of the first diffractive order compensates dispersion of the compensator. This method allows to compensate dispersion totally at any spectrum zone.

  11. Optical diagnostics of mercury jet for an intense proton target.

    PubMed

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper. PMID:18447556

  12. The Optical Lightpipe as a High-Bandwidth Fusion Diagnostic

    SciTech Connect

    Moran, M J; Lerche, R A; Mant, G; Glebov, V Y; Sangster, T C; Mack, J M

    2006-07-21

    A recent series of experiments at the University of Rochester Laboratory for Laser Energetics OMEGA facility studied the feasibility of using radiation-to-light converters and high bandwidth optical signal transmission to remote recording devices as an alternate nuclear diagnostic method. A prototype system included a radiation-to-light converter, a multiple-section light pipe consisting of stainless steel tubes with polished interiors and turning mirrors, and a streak camera or photomultiplier/digitizer combination for signal recording. Several different radiation-to-light converters (scintillators, glasses, plastics, and pressurized CO{sub 2}) performed well and produced predictable optical emissions. The lightpipe transmitted high-bandwidth optical signals to the recording stations. Data were recorded with the streak camera, the photomultiplier/digitizer, and with both recorders simultaneously.

  13. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines.

    PubMed

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-10-15

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. PMID:26409271

  14. Optical alignment and diagnostics for the ATF microundulator FEL oscillator

    SciTech Connect

    Babzien, M.; Ben-Zvi, I.; Fang, J.M.

    1995-12-31

    The microundulator FEL oscillator has a wiggler period of 8.8 mm, and is designed for initial lasing at 0.5 microns with a 50 MeV electron beam. The design and performance of the optical diagnostics and alignment are discussed. A HeNe coalignment laser is mode-matched to the resonator cavity for transverse alignment. Interference fringes are observed in the cavity with a pellicle, allowing an alignment tolerance of +/- 10 micro-radians. The same pellicle is used to produce transition radiation by the electron beam. This enables precise transverse alignment of the electron beam to the resonator axis. The HeNe laser is also used to align the wiggler by backlighting its bore. This method aligns the wiggler to the optic axis to a tolerance of +/- 50 microns. A frequency-doubled,pulsed Nd:YAG laser that produces the electron bunch train is also mode-matched to the FEL cavity. The cavity length is adjusted to resonate with this pulse train. Light from the FEL is transported to the diagnostic room using two separate paths: one for the single pass spontaneous emission, and the second for the multipass cavity output. Several diagnostics (CCD camera, photodiode, photomultiplier tube, joulemeter, spectrometer, and streak camera) are used to characterize the light. These instruments measure light energy per micropulse ranging from 10 femto-Joules to 10 micro-Joules.

  15. The input optics of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.; Arain, M. A.; Ciani, G.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Heintze, M.; Martin, R. M.; Mueller, C. L.; Williams, L. F.; Mueller, G.; Quetschke, V.; Korth, W. Z.; Reitze, D. H.; Derosa, R. T.; Effler, A.; Kokeyama, K.; Frolov, V. V.; Mullavey, A.; Poeld, J.

    2016-03-01

    The Input Optics (IO) of advanced LIGO will be described. The IO consists of all the optics between the laser and the power recycling mirror. The scope of the IO includes the following hardware: phase modulators, power control, input mode cleaner, an in-vacuum Faraday isolator, and mode matching telescopes. The IO group has developed and characterized RTP-based phase modulators capable of operation at 180 W cw input power. In addition, the Faraday isolator is compensated for depolarization and thermal lensing effects up to the same power and is capable of achieving greater than 40 dB isolation. This research has been supported by the NSF through Grants PHY-1205512 and PHY-1505598. LIGO-G1600067.

  16. New advanced radio diagnostics tools for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Rothkaehl, H.; Atamaniuk, B.; Morawski, M.; Zakharenkova, I.; Cherniak, I.; Otmianowska-Mazur, K.

    2013-12-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities.

  17. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Akca, B. I.; Považay, B.; Chang, L.; Alex, A.; Wörhoff, K.; de Ridder, R. M.; Drexler, W.; Pollnau, M.

    2013-06-01

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, the central components of a spectral-domain OCT (SD-OCT) system can be integrated on a chip. Arrayed-waveguide grating (AWG) spectrometers with their high spectral resolution and compactness are excellent candidates for on-chip SD-OCT systems. However, specific design-related issues of AWG spectrometers limit the performance of on-chip SD-OCT systems. Here we present advanced AWG designs which could overcome the limitations arising from free spectral range, polarization dependency, and curved focal plane of the AWG spectrometers. Using these advanced AWG designs in an SD-OCT system can provide not only better overall performance but also some unique aspects that a commercial system does not have. Additionally, a partially integrated OCT system comprising an AWG spectrometer and an integrated beam splitter, as well as the in vivo imaging using this system are demonstrated.

  18. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  19. Real-time caries diagnostics by optical PNC method

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-11-01

    The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC-method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be sued as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.

  20. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  1. Recent Advances in Miniaturized Optical Gyroscopes

    NASA Astrophysics Data System (ADS)

    Dell'Olio, F.; Tatoli, T.; Ciminelli, C.; Armenise, M. N.

    2014-03-01

    Low-cost chip-scale optoelectronic gyroscopes having a resolution ≤ 10 °/h and a good reliability also in harsh environments could have a strong impact on the medium/high performance gyro market, which is currently dominated by well-established bulk optical angular velocity sensors. The R&D activity aiming at the demonstration of those miniaturized sensors is crucial for aerospace/defense industry, and thus it is attracting an increasing research effort and notably funds. In this paper the recent technological advances on the compact optoelectronic gyroscopes with low weight and high energy saving are reviewed. Attention is paid to both the so-called gyroscope-on-a-chip, which is a novel sensor, at the infantile stage, whose optical components are monolithically integrated on a single indium phosphide chip, and to a new ultra-high Q ring resonator for gyro applications with a configuration including a 1D photonic crystal in the resonant path. The emerging field of the gyros based on passive ring cavities, which have already shown performance comparable with that of optical fiber gyros, is also discussed.

  2. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  3. Advanced X-ray diffractive optics

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Jefimovs, K.; Pilvi, T.; Ritala, M.; Sarkar, S. S.; Solak, H. H.; Guzenko, V. A.; Stampanoni, M.; Marone, F.; Raabe, J.; Tzvetkov, G.; Fink, R. H.; Grolimund, D.; Borca, C. N.; Kaulich, B.; David, C.

    2009-09-01

    X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

  4. Advanced tomographic flow diagnostics for opaque multiphase fluids

    SciTech Connect

    Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

    1997-05-01

    This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

  5. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10129808

  6. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a

  7. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  8. Fourier-domain optical coherence tomography: recent advances toward clinical utility

    PubMed Central

    Bouma, Brett E; Yun, Seok-Hyun; Vakoc, Benjamin J; Suter, Melissa J; Tearney, Guillermo J

    2009-01-01

    With the advent of Fourier-domain techniques, optical coherence tomography (OCT) has advanced from high-resolution ‘point’ imaging over small fields-of-view to comprehensive microscopic imaging over three-dimensional volumes that are comparable to the dimensions of luminal internal organs. This advance has required the development of new lasers, improved spectrometers, minimally invasive catheters and endoscopes, and novel optical and signal processing strategies. In recent cardiovascular, ophthalmic, and gastrointestinal clinical studies, the capabilities of Fourier-domain OCT have enabled a new paradigm for diagnostic screening of large tissue areas, which addresses the shortcomings of existing technologies and focal biopsy. PMID:19264475

  9. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  10. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  11. Experimental diagnostics using optical transition radiation at CEBAF

    NASA Astrophysics Data System (ADS)

    Denard, J.-C.; Rule, D.; Fiorito, R.; Adderley, P.; Jordan, K.; Capek, K.

    1995-05-01

    Optical Transition Radiation (OTR) devices have unique properties that allow them to complement the diagnostic tools more commonly used in particle accelerators. CEBAF is designed to produce a continuous electron beam accelerated up to 4 GeV by recirculating it five times through two 400 MeV superconducting linacs. We present two OTR applications that cannot be performed with standard fluorescent screens. The goal of the first one is to provide a multiturn ``viewer'' using the backward OTR emitted from a 0.8 μm thick aluminum foil. The foil must be thin enough to keep most of the beam in the machine after each passage. Looking at the successive turns in the linacs on the same screen will provide a new diagnostic device to help tune the machine. Replacing the ceramic of the present viewers with an Al foil is relatively simple and inexpensive. The preliminary results in single pass are encouraging. The goal of the second OTR application is to measure the emittance of high current continuous beams (≊200 μA) of low emittance (5 10-9 mrad) and size (≤50 μm rms). Standard fluorescent screens or wire scanners cannot withstand such an intense beam.

  12. Electromagnetism, Optics and Lasers: Handbook of Coherent Domain Optical Methods, Biomedical Diagnostics, Environment and Material Science

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research c ontaining the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters.

  13. Advanced Integrated Optical Signal Processing Components.

    NASA Astrophysics Data System (ADS)

    Rastani, Kasra

    This research was aimed at the development of advanced integrated optical components suitable for devices capable of processing multi-dimensional inputs. In such processors, densely packed waveguide arrays with low crosstalk are needed to provide dissection of the information that has been partially processed. Waveguide arrays also expand the information in the plane of the processor while maintaining its coherence. Rib waveguide arrays with low loss, high mode confinement and highly uniform surface quality (660 elements, 8 μm wide, 1 μm high, and 1 cm long with 2 mu m separations) were fabricated on LiNbO _3 substrates through the ion beam milling technique. A novel feature of the multi-dimensional IO processor architecture proposed herein is the implementation of large area uniform outcoupling (with low to moderate outcoupling efficiencies) from rib waveguide arrays in order to access the third dimension of the processor structure. As a means of outcoupling, uniform surface gratings (2 μm and 4 μm grating periods, 0.05 μm high and 1 mm long) with low outcoupling efficiencies (of approximately 2-18%/mm) were fabricated on the nonuniform surface of the rib waveguide arrays. As a practical technique of modulating the low outcoupling efficiencies of the surface gratings, it was proposed to alter the period of the grating as a function of position along each waveguide. Large aperture (2.5 mm) integrated lenses with short positive focal lengths (1.2-2.5 cm) were developed through a modification of the titanium-indiffused proton exchanged (TIPE) technique. Such integrated lenses were fabricated by increasing the refractive index of the slab waveguides by the TIPE process while maintaining the refractive index of the lenses at the lower level of Ti:LiNbO _3 waveguide. By means of curvature reversal of the integrated lenses, positive focal length lenses have been fabricated while providing high mode confinement for the slab waveguide. The above elements performed as

  14. Multiplexed label-free optical biosensor for medical diagnostics.

    PubMed

    Bottazzi, Barbara; Fornasari, Lucia; Frangolho, Ana; Giudicatti, Silvia; Mantovani, Alberto; Marabelli, Franco; Marchesini, Gerardo; Pellacani, Paola; Therisod, Rita; Valsesia, Andrea

    2014-01-01

    This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive index changes. Moreover, by studying the progressive adhesion of molecular monolayers of polyelectrolytes, the decay of the plasmonic mode electric field above the surface has been reconstructed. A multiplexed label-free biosensing device is then described and characterized in terms of sensitivity, lateral resolution, and sensitivity to a model biological assay. The sensitivity in imaging mode of the device is of the order of 10-6 refractive index units, while the measured lateral resolution is 6.25 μm within a field of view of several tenths of mm2, making the instrument unique in terms of multiplexing capability. Finally, the proof-of-concept application of the technology as a point-of-care diagnostic tool for an inflammatory marker is demonstrated. PMID:24474511

  15. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  16. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T.; Story-Held, K.; Glickman, R.D.; Conn, R.

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  17. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  18. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    NASA Technical Reports Server (NTRS)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and

  19. Recent advances in optical computing in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Satoshi

    The results of recent Japanese research in optical and hybrid computer systems and components are summarized and illustrated with drawings and diagrams, and the organizational structure of the research efforts is outlined. Topics addressed include optical logic devices, spatial light modulators, two-dimensional lasers, optical bistable devices, device theory, optically controlled array processing, an optical bus for a multiprocessor system, real-time multiple-matrix-product processing, optical numerical processing, optical parallel-array logic systems, optical associative memory, and neural-network computation. Consideration is given to the roles of the Optical Computer Group of the Japan Society of Applied Physics, industry, and government (through the universities and Ministry of Education and through the Ministry of International Trade and Industry).

  20. Advanced smile diagnostics using CAD/CAM mock-ups.

    PubMed

    Sancho-Puchades, Manuel; Fehmer, Vincent; Hämmerle, Christoph; Sailer, Irena

    2015-01-01

    Diagnostics are essential for predictable restorative dentistry. Both patient and clinician must agree on a treatment goal before the final restorations are delivered to avoid future disappointments. However, fully understanding the patient's desires is difficult. A useful tool to overcome this problem is the diagnostic wax-up and mock-up. A potential treatment outcome is modeled in wax prior to treatment and transferred into the patient's mouth using silicon indexes and autopolymerizing resin to obtain the patient's approval. Yet, this time-consuming procedure only produces a single version of the possible treatment outcome, which can be unsatisfactory for both the patient and the restorative team. Contemporary digital technologies may provide advantageous features to aid in this diagnostic treatment step. This article reviews opportunities digital technologies offer in the diagnostic phase, and presents clinical cases to illustrate the procedures. PMID:26171442

  1. Advanced manufacturing methods for chalcogenide molded optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-06-01

    As Chalcogenide glass and Precision Molded Optics (PMO) have developed and matured to a point of being accepted as replacements for Germanium Single Point Diamond Turned (SPDT) optics; technological research is being dedicated to developing infrared PMO that can be used in a broader application base. These include laser arrays, large aperture molded chalcogenide optics, and molded in mount infrared optics. This paper presents applications for infrared laser arrays and the corresponding optics that must be closely mechanically mounted to avoid clipping the beams. Different molding and mounting techniques will be discussed to solve this issue which include; dicing chalcogenide optic lenses, molded in mount chalcogenide optics and stepped optic shape molding for mounting purposes. Accompanying the research and discussion of these techniques will be experiments and molded chalcogenide glass lenses showing the results and application for each lens type.

  2. Optical Mass Flow Diagnostics in Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Johns-Krull, Christopher M.

    2015-09-01

    We examine a broad range of mass flow diagnostics in a large sample of Herbig Ae/Be stars (HAEBES) using high resolution optical spectra. The Hβ and He i 5876 Å lines show the highest incidence of P Cygni (30%) and inverse P Cygni (14%) morphologies, respectively. The Fe ii 4924 Å line also shows a large incidence of P Cygni profiles (11%). We find support for many of the conclusions reached in a study based on the analysis of the He i λ10830 line in a large sample of HAEBES. Namely, HAEBES exhibit smaller fractions of both blueshifted absorption (i.e., mass outflow) and redshifted absorption (i.e., mass infall or accretion) than their lower mass cousins, the classical T Tauri stars (CTTSs). In particular, the optical data supports the conclusion that HAEBES displaying redshifted absorption, in general, show maximum redshifted absorption velocities that are smaller fractions of their stellar escape velocities than is found for CTTSs. This suggests that HAEBE accretion flows are originating deeper in the gravitational potentials of their stars than in CTTS systems. In addition, we find a lack of inner disk wind signatures in the blueshifted absorption objects; only stellar wind signatures are clearly observed. These findings, along with the lack of detected magnetic fields around HAEBES, support the idea that large magnetospheres are not prevalent around HAEBES and that accretion flows are instead mediated by significantly smaller magnetospheres with relatively smaller truncation radii (e.g., 1-2 R*). Redshifted absorption is much more common around Herbig Ae stars than Be stars, suggesting that Herbig Be stars may accrete via a boundary layer rather than along magnetic field lines.

  3. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  4. Application of advanced millimeter/far-infrared sources to collective Thomson scattering plasma diagnostics

    SciTech Connect

    Woskoboinikow, P.; Cohn, D.R.; Temkin, R.J.

    1983-01-01

    The application of advanced millimeter/far infrared sources to substantially improve the effectiveness of collective Thomson scattering plasma diagnostics is discussed. Gyrotrons, CO/sub 2/ lasers and far infrared lasers which are optically pumped with CO/sub 2/ laser radiation can now provide important new capabilities in terms of combined high peak power and high average power, fine frequency tunability and a wide range of operating frequencies. Their capabilities can improve the signal to noise ratio and make possible time dependent scattering measurements. Both thermal level scattering used for determination of ion temperature and low level non-thermal measurements used for the investigation of plasma turbulence and wave phenomena are considered. Rapidly pulsed gyrotrons, CO/sub 2/, and optically pumped lasers can provide a range of combinations of high peak power and high energy during a given time interval. The use of this high peak power - high energy trade off capability to maximize signal to noise ratios is discussed. Dramatic reduction in stray light, using fine frequency source tunability and gas absorption cell technology, is also discussed.

  5. Optical diagnostics of streamer discharges in atmospheric gases

    NASA Astrophysics Data System (ADS)

    Šimek, M.

    2014-11-01

    This paper reviews optical diagnostic methods and approaches applied to study the fundamentals of streamer discharges, considering the peculiarities of streamers developing in atmospheric gases at high (1 bar) as well as low (<10 mbar) pressures. A critical discussion is devoted to the cross-sections for electron-impact excitation/ionization/dissociation processes and corresponding rate constants in relation to methods used to probe streamer properties. The most important spectrometric signatures of radiative transitions of diatomic as well as atomic species are discussed on the basis of their synthetic models with a brief guide on how to simulate the most important emissions. Basic differences between UV-vis-NIR spectra produced by electron-impact and various heavy-particle energy-transfer processes during streamer evolution are presented and possible strategies based on 2D projections of cylindrically symmetric streamers to determine radial distributions of excited species within the streamer channel are discussed. The use of emission techniques to obtain the rotational temperatures and vibrational distributions of excited states of diatomics and laser-induced fluorescence techniques to probe the vibrational manifold of the lowest triplet metastable state of the nitrogen molecule is addressed.

  6. Tabletop Optical Diagnostics for Shock Compression of Liquids

    NASA Astrophysics Data System (ADS)

    Bassett, Will

    2015-06-01

    A novel platform for probing chemical properties in shocked liquids has recently been developed. A target cell consisting of around two hundred cuvettes roughly fifty microns deep for use with the laser-launched flyer plate apparatus developed in our group which takes advantage of our ability to perform more than a hundred launches per day. Modeling of the shock events suggests that we can access pressures between two and thirty GPa and temperatures as high as 1500 kelvin in liquid phase materials through impact driven shocks lasting tens of nanoseconds. The tabletop scale of our laser-launched flyer apparatus allows for a variety of techniques for optical diagnostics of shocked states such as fluorescence emission, infrared absorption, and Raman scattering. Preliminary results on Rhodamine 6G in glycerol shocked to 4 GPa show fluorescence red shifts of tens of nanometers. Initially, fluorescence emission of pH-indicator dyes will be used to monitor dissociation of water under shock. Future efforts will include temperature measurements during shocks using the Stokes:anti-Stokes ratios in Raman scattering and chemical compositions of reacting liquids determined through infrared absorption.

  7. New optical, acoustic, and electrical diagnostics for the developing world

    NASA Astrophysics Data System (ADS)

    Neale, S. L.; Witte, C.; Bourquin, Y.; Kremer, C.; Menachery, A.; Zhang, Y.; Wilson, R.; Reboud, J.; Cooper, J. M.

    2012-03-01

    Infectious diseases cause 10 million deaths each year worldwide, accounting for ~60% of all deaths of children aged 5- 14. Although these deaths arise primarily through pneumonia, TB, malaria and HIV, there are also the so called "neglected diseases" such as sleeping sickness and bilharzia, which have a devastating impact on rural communities, in sub-Sahara Africa. There, the demands for a successful Developing World diagnostic are particularly rigorous, requiring low cost instrumentation with low power consumption (there is often no fixed power infrastructure). In many cases, the levels of infection within individuals are also sufficiently low that instruments must show extraordinary sensitivity, with measurements being made in blood or saliva. In this talk, a description of these demands will be given, together with a review of some of the solutions that have been developed, which include using acoustics, optics and electrotechnologies, and their combinations to manipulate the fluid samples. In one example, we show how to find a single trypanosome, as the causative agent of sleeping sickness.

  8. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  9. Optical Diagnostics for High-Temperature Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2009-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

  10. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  11. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  12. Rapid diagnostics for avian influenza -- Advances in testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of tools are available for the diagnosis of avian influenza virus. They can be generally divided into the serologic diagnostic tests and direct virus detection tests. The serologic tests are important primarily for active surveillance to assure our poultry flocks are free of avian influe...

  13. Advanced clinical monitoring: considerations for real-time hemodynamic diagnostics.

    PubMed Central

    Goldman, J. M.; Cordova, M. J.

    1994-01-01

    In an effort to ease staffing burdens and potentially improve patient outcome in an intensive care unit (ICU) environment, we are developing a real-time system to accurately and efficiently diagnose cardiopulmonary emergencies. The system is being designed to utilize all relevant routinely-monitored physiological data in order to automatically diagnose potentially fatal events. The initial stage of this project involved formulating the overall system design and appropriate methods for real-time data acquisition, data storage, data trending, waveform analysis, and implementing diagnostic rules. Initially, we defined a conceptual analysis of the minimum physiologic data set, and the monitoring time-frames (trends) which would be required to diagnose cardiopulmonary emergencies. Following that analysis, we used a fuzzy logic diagnostic engine to analyze physiological data during a simulated arrhythmic cardiac arrest (ACA) in order to assess the validity of our diagnostic methodology. We used rate, trend, and morphologic data extracted from the following signals: expired CO2 time-concentration curve (capnogram), electrocardiogram, and arterial blood pressure. The system performed well: The fuzzy logic engine effectively diagnosed the likelihood of ACA from the subtle hemodynamic trends which preceded the complete arrest. As the clinical picture worsened, the fuzzy logic-based system accurately indicated the change in patient condition. Termination of the simulated arrest was rapidly detected by the diagnostic engine. In view of the effectiveness of this fuzzy logic implementation, we plan to develop additional fuzzy logic modules to diagnose other cardiopulmonary emergencies. PMID:7950025

  14. A comprehensive review of diagnostic imaging technologies to evaluate the retina and the optic disk.

    PubMed

    Bajwa, Asima; Aman, Rabia; Reddy, Ashvini K

    2015-10-01

    Ophthalmic imaging has undergone a revolution over the past 20 years with increasingly efficient and high-definition modalities now available. The use of wide-field retinal angiography, fundus autofluorescence, state-of-the-art spectral domain, and enhanced depth imaging optical coherence tomography has proven to be effective in this field. This comprehensive review is devoted to retinal and optic disk imaging modalities and their clinical implications. It is based on the published literature in the field of ophthalmic imaging with a focus on recent advances. Ophthalmic imaging plays a crucial role in the management of patients with both isolated retinal disease and systemic diseases with ocular manifestations. Evolving technology enables imaging of ocular disease in vivo, facilitating objective assessment of disease progression and response to treatment. These latest technical improvements in ophthalmic imaging are now a part of standard ophthalmic assessment in academic centers and most private practices. In the coming years, further advances may improve diagnostic sensitivity and enable cost-effective screening of large populations. PMID:26043677

  15. Optical diagnostics based on elastic scattering: An update of clinical demonstrations with the Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Boyer, J.; Johnson, T.M.; Lacey, J.; Mourant, J.R.; Conn, R.; Bohorfoush, A.

    1994-10-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.

  16. Optical protocols for advanced spacecraft networks

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1991-01-01

    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  17. The general optics structure of millimeter-wave imaging diagnostic on TOKAMAK

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Xie, J.; Liu, W. D.; Luo, C.; Zhao, Z.; Chen, D.; Domier, C. W.; Luhmann, N. C., Jr.; Chen, M.; Hu, X.

    2016-01-01

    Advanced imaging optics techniques have significantly improved the performance of millimeter-wave imaging diagnostics, such as Electron Cyclotron Emission imaging and Microwave Imaging of Reflectometry. The fundamental functions of millimeter-wave imaging optics are focusing, collecting the emission or reflected microwave signal from the target area in the plasma and focusing the emitted (reflected) signal on the detector array. The location of the observation area can be changed using the focus lens. Another important function of the imaging optics is zooming. The size of the observation area in poloidal direction can be adjusted by the zoom lenses and the poloidal spatial resolution is determined by the level of zoom. The field curvature adjustment lenses are employed to adjust the shape of the image plane in the poloidal direction to reduce crosstalk between neighboring channels. The incident angle on each channel is controlled using the specific surface type of the front-side lenses to increase the signal-to-noise ratio. All functions are decoupled with the minimum number of lenses. Successful applications are given.

  18. Advanced photonic integrated technologies for optical routing and switching

    NASA Astrophysics Data System (ADS)

    Masanovic, Milan L.; Burmeister, Emily; Dummer, Matthew M.; Koch, Brian; Nicholes, Steven C.; Jevremovic, Biljana; Nguyen, Kim; Lal, Vikrant; Bowers, John E.; Coldren, Larry A.; Blumenthal, Daniel J.

    2009-02-01

    In this paper, we report on the latest advances in implementation of the photonic integrated circuits (PICs) required for optical routing. These components include high-speed, high-performance integrated tunable wavelength converters and packet forwarding chips, integrated optical buffers, and integrated mode-locked lasers.

  19. Galaxy evolution across the optical emission-line diagnostic diagrams?

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Fuhrmann, L.; García-Marín, M.; Eckart, A.; Zuther, J.; Hopkins, A. M.

    2015-01-01

    Context. The discovery of the M - σ relation, the local galaxy bimodality, and the link between black-hole and host-galaxy properties have raised the question of whether active galactic nuclei (AGN) play a role in galaxy evolution. AGN feedback is one of the biggest observational challenges of modern extragalactic astrophysics. Several theoretical models implement AGN feedback to explain the observed galaxy luminosity function and, possibly, the color and morphological transformation of spiral galaxies into passive ellipticals. Aims: For understanding the importance of AGN feedback, a study of the AGN populations in the radio-optical domain is crucial. A mass sequence linking star-forming galaxies and AGN has already been noted in previous works, and it is now investigated as a possible evolutionary sequence. Methods: We observed a sample of 119 intermediate-redshift (0.04 ≤ z< 0.4) SDSS-FIRST radio emitters with the Effelsberg 100-m telescope at 4.85 and 10.45 GHz and obtained spectral indices. The sample includes star-forming galaxies, composite galaxies (with mixed contribution to line emission from star formation and AGN activity), Seyferts, and low ionization narrow emission region (LINER) galaxies. With these sources we search for possible evidence of spectral evolution and a link between optical and radio emission in intermediate-redshift galaxies. Results: We find indications of spectral index flattening in high-metallicity star-forming galaxies, composite galaxies, and Seyferts. This "flattening sequence" along the [NII]-based emission-line diagnostic diagram is consistent with the hardening of galaxy ionizing field, thanks to nuclear activity. After combining our data with FIRST measurements at 1.4 GHz, we find that the three-point radio spectra of Seyferts and LINERs show substantial differences, which are attributable to small radio core components and larger (arcsecond sized) jet/lobe components, respectively. A visual inspection of FIRST images

  20. Advances in telecom and datacom optical components

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2001-07-01

    We review and contrast key technologies developed to address the optical components market for telecom and datacom applications. We first look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include glass fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then look at the most commonly used classes of technology and present their pros and cons as well as the functions achieved to date in each. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering (e.g., AWG), Bragg gratings, diffraction gratings, holographic elements, thin film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto- optics, magneto-optics, liquid crystals, total internal reflection technologies (e.g., bubble technology), and mechanical actuation (e.g., moving fibers and MEMS). We finally describe active technologies including heterostructures, quantum wells, rare earth doping, and semiconductor optical amplifiers. We also investigate the use of different material systems and technologies to achieve building block functions including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, nonreciprocal elements (Faraday rotators or nonreciprocal phase shifters) for isolators and circulators, wavelength converters, and dispersion compensators.

  1. Advanced lithography for micro-optics

    NASA Astrophysics Data System (ADS)

    Zeitner, U. D.; Kley, E.-B.

    2006-08-01

    Since the beginning of micro-optics fabrication most of the used technologies have been adapted from or are related to semiconductor fabrication techniques. These are widely known and the special microelectronics fabrication tools, especially lithography machines, are available at numerous places. Besides the fact that therefore micro-optics was able to took advantage of the steady development of semiconductor technology this tight linkage has also a lot of drawbacks. The adaptation of element properties to the fabrication limits given by the available technologies is very often connected with compromises in optical performance. In nowadays micro-optics fabrication has reached a level which justifies the development of fabrication tools specialized to its own demands. In the article the special demands of optical microstructures on the fabrication technologies are discussed and newly developed mico-optics fabrication tools are introduced. The first one is an electron-beam lithography machine for use with up substrates up to 300mm large and 15mm thick achieving a very high overlay accuracy and writing speed. The second one is a laser-lithography system capable to expose micro-optical structures onto non-planar substrates.

  2. Recent advances in digital camera optics

    NASA Astrophysics Data System (ADS)

    Ishiguro, Keizo

    2012-10-01

    The digital camera market has extremely expanded in the last ten years. The zoom lens for digital camera is especially the key determining factor of the camera body size and image quality. Its technologies have been based on several analog technological progresses including the method of aspherical lens manufacturing and the mechanism of image stabilization. Panasonic is one of the pioneers of both technologies. I will introduce the previous trend in optics of zoom lens as well as original optical technologies of Panasonic digital camera "LUMIX", and in addition optics in 3D camera system. Besides, I would like to suppose the future trend in digital cameras.

  3. Key notes to the advancement of optical scanning (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    Beiser, Leo

    2005-08-01

    In forming an historical perspective of the development of optical scanning, we ask a probing question: What was the first major optical scanning innovation? We offer one having unexpected attributes, and seek audience ideas. We then demonstrate the pioneering work in Optical Scanning for information transfer, some created long before we arrived on the scene. Our job has been and is: Make it Faster and Better. The body of the presentation addresses how our technology advanced to this useful state.

  4. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-01

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed. PMID:27505793

  5. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  6. Sub-micrometer transverse beam size diagnostics using optical transition radiation

    NASA Astrophysics Data System (ADS)

    Kruchinin, K.; Aryshev, A.; Karataev, P.; Bolzon, B.; Lefevre, T.; Mazzoni, S.; Shevelev, M.; Boogert, S. T.; Nevay, L. J.; Terunuma, N.; Urakawa, J.

    2014-05-01

    Optical transition radiation (OTR) arising when a relativistic charged particle crosses a boundary between two media with different optical properties is widely used as a tool for diagnostics of particle beams in modern accelerator facilities. The resolution of the beam profile monitors based on OTR depends on different effects of the optical system such as spherical and chromatic aberrations and diffraction. In this paper we present a systematic study of the different optical effects influencing the OTR beam profile monitor resolution. Obtained results have shown that such monitors can be used for sub-micrometer beam profile diagnostics. Further improvements and studies of the monitor are discussed.

  7. Advanced data services over optical transport networks

    NASA Astrophysics Data System (ADS)

    Ong, Lyndon; Razdan, Rajender; Wang, Yalin

    2005-11-01

    Work on optical network control plane protocols has enabled faster and more efficient provisioning and management of carrier core optical networks, thereby reducing operational costs and capital expenditure. Many potential data applications for such capabilities, however, require Ethernet as the physical interface into the network, rather than SONET/SDH or OTN (Optical Transport Network) interfaces. Support of such services over an optical network becomes a multi-layer networking problem, wherein the client layer is packet based (e.g., Ethernet) and the server layer is optical (SONET/SDH or OTN). This paper discusses the enhancements that have been created in SONET/SDH and OTN networks (e.g., GFP, VCAT, LCAS) for the efficient transport of Ethernet and other data networking protocols, and the related extensions to control plane protocols that are necessary to allow for the support of multi-layer networking. Different control-plane models are being pursued in standards bodies such as ITU-T and IETF, and prototyping is being carried out and tested in the OIF. These various approaches are discussed in detail here, with focus placed on the prototyping work that has been done in the OIF, especially for the OIF 2005 Interoperability Demonstration.

  8. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings

    PubMed Central

    Wang, ShuQi; Lifson, Mark A.; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan

    2016-01-01

    The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725

  9. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings.

    PubMed

    Wang, ShuQi; Lifson, Mark A; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan

    2016-04-01

    The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725

  10. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  11. Point of care diagnostics for sexually transmitted infections: perspectives and advances

    PubMed Central

    Gaydos, Charlotte; Hardick, Justin

    2014-01-01

    Accurate and inexpensive point-of-care (POC) tests are urgently needed to control sexually transmitted infection (STI) epidemics, so that patients can receive immediate diagnoses and treatment. Current POC assays for Chlamydia trachomatis and Neisseria gonorrhoeae perform inadequately and require better assays. Diagnostics for Trichomonas vaginalis rely on wet preparation, with some notable advances. Serological POC assays for syphilis can impact resource-poor settings, with many assays available, but only one available in the U.S. HIV POC diagnostics demonstrate the best performance, with excellent assays available. There is a rapid assay for HSV lesion detection; but no POC serological assays are available. Despite the inadequacy of POC assays for treatable bacterial infections, application of technological advances offers the promise of advancing POC diagnostics for all STIs. PMID:24484215

  12. Recent Advances in Diagnostic Strategies for Diabetic Peripheral Neuropathy

    PubMed Central

    2016-01-01

    Diabetes is an increasing epidemic in Korea, and associated diabetic peripheral neuropathy (DPN) is its most common and disabling complication. DPN has an insidious onset and heterogeneous clinical manifestations, making it difficult to detect high-risk patients of DPN. Early diagnosis is recommended and is the key factor for a better prognosis and preventing diabetic foot ulcers, amputation, or disability. However, diagnostic tests for DPN are not clearly established because of the various pathophysiology developing from the nerve injury to clinical manifestations, differences in mechanisms according to the type of diabetes, comorbidities, and the unclear natural history of DPN. Therefore, DPN remains a challenge for physicians to screen, diagnose, follow up, and evaluate for treatment response. In this review, diagnosing DPN using various methods to assess clinical symptoms and/or signs, sensorineural impairment, and nerve conduction studies will be discussed. Clinicians should rely on established modalities and utilize current available testing as complementary to specific clinical situations. PMID:27246283

  13. Endoscopy and polyps-diagnostic and therapeutic advances in management

    PubMed Central

    Steele, Scott R; Johnson, Eric K; Champagne, Bradley; Davis, Brad; Lee, Sang; Rivadeneira, David; Ross, Howard; Hayden, Dana A; Maykel, Justin A

    2013-01-01

    Despite multiple efforts aimed at early detection through screening, colon cancer remains the third leading cause of cancer-related deaths in the United States, with an estimated 51000 deaths during 2013 alone. The goal remains to identify and remove benign neoplastic polyps prior to becoming invasive cancers. Polypoid lesions of the colon vary widely from hyperplastic, hamartomatous and inflammatory to neoplastic adenomatous growths. Although these lesions are all benign, they are common, with up to one-quarter of patients over 60 years old will develop pre-malignant adenomatous polyps. Colonoscopy is the most effective screening tool to detect polyps and colon cancer, although several studies have demonstrated missed polyp rates from 6%-29%, largely due to variations in polyp size. This number can be as high as 40%, even with advanced (> 1 cm) adenomas. Other factors including sub-optimal bowel preparation, experience of the endoscopist, and patient anatomical variations all affect the detection rate. Additional challenges in decision-making exist when dealing with more advanced, and typically larger, polyps that have traditionally required formal resection. In this brief review, we will explore the recent advances in polyp detection and therapeutic options. PMID:23885138

  14. Picosecond electron-optic diagnostics in laser studies

    NASA Astrophysics Data System (ADS)

    Prokhorov, A. M.

    The papers included in this volume provide an overview of research aimed at the development of methods and instrumentation for ultrahigh-speed electron-optic detection and of their applications in laser physics, laser fusion, fiber-optic communication, picosecond spectroscopy, and photobiology. Topics discussed include the physics of a picosecond electron-optic converter, the aberration theory for cathode lenses, picosecond and subpicosecond laser sources, and a beam deflection system for a subpicosecond electron-optic converter.

  15. Advanced lightweight optics development for space applications

    SciTech Connect

    Bilbro, James W.

    1998-01-15

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  16. Advanced lightweight optics development for space applications

    NASA Astrophysics Data System (ADS)

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed.

  17. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  18. Testing of optical diagnostics for ion-beam-driven WDM experiments at NDCX-1

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Bieniosek, F. M.; Leitner, M.; Weber, C.; Waldron, W. L.

    2009-07-01

    We report on the testing of optical diagnostics developed for warm-dense-matter (WDM) experiments on the neutralized drift compression experiments (NDCX-1) at Lawrence Berkeley National Laboratory (LBNL). The diagnostics consists of a fast optical pyrometer, a streak camera spectrometer, and a Doppler-shift laser interferometer (VISAR). While the NDCX is in the last stage of commissioning for the target experiments, the diagnostics were tested elsewhere in an experiment where an intense laser pulse was used to generate the WDM state in metallic and carbon samples.

  19. Recent advances in the molecular diagnostics of gastric cancer

    PubMed Central

    Kanda, Mitsuro; Kodera, Yasuhiro

    2015-01-01

    Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined. PMID:26379391

  20. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  1. A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin; Kumar, Amrita; Zhang, Chang; Gonzalez, Ignacio F.; Guo, Guangping; Chang, Fu-Kuo

    2005-06-01

    A hybrid piezoelectric/fiber optic diagnostic system has been developed for quick non-destructive evaluation and long term health monitoring of aerospace vehicles and structures. The hybrid diagnostic system uses piezoelectric actuators to input a controlled excitation to the structure and fiber optic sensors to capture the corresponding structural response. The system consists of three major parts: a diagnostic layer with a network of piezoelectric elements and fiber gratings to offer a simple and efficient way to integrate a large network of transducers onto a structure; diagnostic hardware consisting of an arbitrary waveform generator and a high speed fiber grating demodulation unit together with a high speed data acquisition card to provide actuation input, data collection, and information processing; and diagnostic software to determine the condition of the structure. This paper presents key development issues related to the manufacturing of the hybrid piezoelectric/fiber optic diagnostic layer and integration of a highly portable diagnostic hardware. Validation and proof testing of this integrated diagnostic system are also presented.

  2. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  3. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  4. Optical control, diagnostic and power supply system for a solid state induction modulator

    SciTech Connect

    Saethre, R.; Kirbie, H.; Hickman, B.; Lee, B.; Ollis, C.

    1997-06-01

    A new high speed optical control, diagnostic and power supply system has been developed for a solid state induction modulator. The modulator consists of a large array of field effect transistors (FETs) that switch a high-voltage pulse across a tape-wound magnetic core. The FETs within the modulator are mounted on numerous circuit boards that are stacked in series for high-voltage operation. The new optical system overcomes the issue of voltage isolation by supplying each circuit board with optically coupled control power and high bandwidth signal information. An optical fiber is used to transmit laser light to a custom photovoltaic cell that provides dc power to the on-board control circuits. Optical fiber technology is again used to convey a pulse that contains detailed analog features to the FET gate controls. Diagnostic data and status information are also obtained from each board by similar optical methods. 8 refs., 6 figs., 1 tab.

  5. Applications of fiber optic sensors in advanced engine controls

    NASA Astrophysics Data System (ADS)

    Nitka, Edward F., II

    1989-06-01

    Measured parameters, operating ranges, accuracy requirements, environmental constraints, and speed of response of fiber optic sensors are identified for three categories of engines. The three engine categories are: (1) current turbojet, turbofan, and turboprop engines; (2) next generation and turbofan engines to be built in the 1990s; and (3) advanced supersonic/hypersonic engines represented by ramjet, scramjet, and air-turbo-ramjet concepts. The key development and test efforts in engine control applications of fiber optic sensors are discussed.

  6. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  7. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  8. DIAGNOSTIC EVALUATION OF AIR QUALITY MODELS USING ADVANCED METHODS WITH SPECIALIZED OBSERVATIONS OF SELECTED AMBIENT SPECIES -PART II

    EPA Science Inventory

    This is Part 2 of "Diagnostic Evaluation of Air Quality Models Using Advanced Methods with Specialized Observations of Selected Ambient Species". A limited field campaign to make specialized observations of selected ambient species using advanced and innovative instrumentation f...

  9. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  10. The optically thick O III spectrum. I - Diagnostic ratios involving the intercombination lines

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1989-01-01

    An escape-probability calculation of the optically thick O III spectrum is carried out to obtain the optical depth dependence of the intercombination doublet at 1663 A and of resonance lines between the 2p2, 2s2p3, and 2p4 configurations. The effect of optical depth on diagnostic ratios involving the intercombination lines is quantitatively established. The general question raised is whether such effects may occur in actual sources.

  11. Advanced shape tracking to improve flexible endoscopic diagnostics

    NASA Astrophysics Data System (ADS)

    Cao, Caroline G. L.; Wong, Peter Y.; Lilge, Lothar; Gavalis, Robb M.; Xing, Hua; Zamarripa, Nate

    2008-03-01

    Colonoscopy is the gold standard for screening for inflammatory bowel disease and colorectal cancer. Flexible endoscopes are difficult to manipulate, especially in the distensible and tortuous colon, sometimes leading to disorientation during the procedure and missed diagnosis of lesions. Our goal is to design a navigational aid to guide colonoscopies, presenting a three dimensional representation of the endoscope in real-time. Therefore, a flexible sensor that can track the position and shape of the entire length of the endoscope is needed. We describe a novel shape-tracking technology utilizing a single modified optical fiber. By embedding fluorophores in the buffer of the fiber, we demonstrated a relationship between fluorescence intensity and fiber curvature. As much as a 40% increase in fluorescence intensity was achieved when the fiber's local bend radius decreased from 58 mm to 11 mm. This approach allows for the construction of a three-dimensional shape tracker that is small enough to be easily inserted into the biopsy channel of current endoscopes.

  12. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  13. Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis.

    PubMed

    Kumar, L Dinesh; Karthik, R; Gayathri, N; Sivasudha, T

    2016-04-01

    This review is intended to provide a summary of the pathogenesis, diagnosis and therapies for rheumatoid arthritis. Rheumatoid arthritis (RA) is a common form of inflammatory autoimmune disease with unknown aetiology. Bone degradation, cartilage and synovial destruction are three major pathways of RA pathology. Sentinel cells includes dendritic cells, macrophages and mast cells bound with the auto antigens and initiate the inflammation of the joints. Those cells further activates the immune cells on synovial membrane by releasing inflammatory cytokines Interleukin 1, 6, 17, etc., Diagnosis of this disease is a combinational approach comprises radiological imaging, blood and serology markers assessment. The treatment of RA still remain inadequate due to the lack of knowledge in disease development. Non-steroidal anti-inflammatory drugs, disease modifying anti rheumatic drugs and corticosteroid are the commercial drugs to reduce pain, swelling and suppressing several disease factors. Arthroscopy will be an useful method while severe degradation of joint tissues. Gene therapy is a major advancement in RA. Suppressor gene locus of inflammatory mediators and matrix degrading enzymes were inserted into the affected area to reduce the disease progression. To overcome the issues aroused from those therapies like side effects and expenses, phytocompounds have been investigated and certain compounds are proved for their anti-arthritic potential. Furthermore certain complementary alternative therapies like yoga, acupuncture, massage therapy and tai chi have also been proved for their capability in RA treatment. PMID:27044812

  14. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop; request...

  15. Recent advancements towards green optical networks

    NASA Astrophysics Data System (ADS)

    Davidson, Alan; Glesk, Ivan; Buis, Adrianus; Wang, Junjia; Chen, Lawrence

    2014-12-01

    Recent years have seen a rapid growth in demand for ultra high speed data transmission with end users expecting fast, high bandwidth network access. With this rapid growth in demand, data centres are under pressure to provide ever increasing data rates through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present technology based on well-established CMOS technology is becoming increasingly difficult to scale and consequently data networks are struggling to satisfy current network demand. In this paper the interrelated issues of electronic scalability, power consumption, limited copper interconnect bandwidth and the limited speed of CMOS electronics will be explored alongside the tremendous bandwidth potential of optical fibre based photonic networks. Some applications of photonics to help alleviate the speed and latency in data networks will be discussed.

  16. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  17. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria.

    PubMed

    Dubois, Bruno; Feldman, Howard H; Jacova, Claudia; Hampel, Harald; Molinuevo, José Luis; Blennow, Kaj; DeKosky, Steven T; Gauthier, Serge; Selkoe, Dennis; Bateman, Randall; Cappa, Stefano; Crutch, Sebastian; Engelborghs, Sebastiaan; Frisoni, Giovanni B; Fox, Nick C; Galasko, Douglas; Habert, Marie-Odile; Jicha, Gregory A; Nordberg, Agneta; Pasquier, Florence; Rabinovici, Gil; Robert, Philippe; Rowe, Christopher; Salloway, Stephen; Sarazin, Marie; Epelbaum, Stéphane; de Souza, Leonardo C; Vellas, Bruno; Visser, Pieter J; Schneider, Lon; Stern, Yaakov; Scheltens, Philip; Cummings, Jeffrey L

    2014-06-01

    In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD. PMID:24849862

  18. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1992-01-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  19. Optical diagnosis of mammary ductal carcinoma using advanced optical technology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-02-01

    Clinical imaging techniques for diagnosing breast cancer mainly include X-ray mammography, ultrasound, and magnetic resonance imaging (MRI), which have respective drawbacks. Multiphoton microscopy (MPM) has become a potentially attractive optical technique to bridge the current gap in clinical utility. In this paper, MPM was used to image normal and ductal cancerous breast tissues, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our results showed that MPM has the ability to exhibit the microstructure of normal breast tissue, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) lesions at the molecular level comparable to histopathology. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time histological diagnosis of mammary ductal carcinoma in vivo.

  20. Advanced fiber optic face plate quality detector design

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Su, Liping; Zhao, Jingxia

    2010-10-01

    A fiber optic face plate is defined by a plurality of fibers of transparent material that are fused and compressed together to transmit an image from one end to another end. Fiber optic face plates exhibit utility in the image intensifiers, cathoderay tubes, and other media displays. In this paper, the design of an advanced fiber optic face plate quality detector is presented. Modern optoelectronic imaging techniques are being used to form fiber optic plate transmission images that are suitable for analyzing the quality parameters of fiber optic face plate. The diffusing light from a halogen lamp is condensed by condenser lens then through a fiber optic face plate, a set of lenses are used to magnify the transmission image, a computer controls a long linear CCD to scan the transmission image, a data grabber captures the CCD's output data and the computer transforms the data into frame image for further analysis. Digital image processing techniques are adopted to analyze the transmission image to obtain the required quality parameters. The image analysis software combines the API that a company provided and programed API is used to acquire the quality parameter that a relevant criteria required. With the long linear CCD scanning and image analysis being computerized, it accomplishes the detection of quality parameters of fiber optic face plates automaticly. The detector can replace the manual detection method and can be widely used for the quality detection of fiber optic face plate. Manufacturers of fiber optic face plates can benefit from the detector for quality control.

  1. Advanced optical interference filters based on metal and dielectric layers.

    PubMed

    Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien

    2016-09-01

    In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target. PMID:27607695

  2. Advanced studies on the Polycapillary Optics use at XLab Frascati

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.

    2015-07-01

    X-ray analytical techniques are widely used in the world. By the way, due to the strong radiation-matter interaction, to design optical devices suitable for X-ray radiation remains still of wide interest. As a consequence of novel advanced material studies, in the last 30 years several typologies of X-ray lenses have been developed. In this work, a short review on the status of Polycapillary Optics (polyCO), from design and fabrication to various applications, has been presented making comparison of the results achieved by several groups through different X-ray optical elements. A focus is regarded for advanced X-ray imaging and spectroscopy tools based on combination of the modern polyCO hardware and the reconstruction software, available as homemade and commercially ones. Recent results (in three main fields, high resolution X-ray imaging, micro-XRF spectroscopy and micro-tomography) obtained at XLab Frascati have been discussed.

  3. Chromatic-free spatially resolved optical emission spectroscopy diagnostics for microplasma

    NASA Astrophysics Data System (ADS)

    Zhu, Li-Guo; Chen, Wen-Cong; Zhu, Xi-Ming; Pu, Yi-Kang; Li, Ze-Ren

    2009-02-01

    A chromatic-free spatially resolved diagnostic system for microplasma measurement is proposed and demonstrated, which consists of an optical chromatic-free microscope mirror system, an electron multiplying charge coupled device (EMCCD), and bandpass filters. The diagnostic system free of chromatic aberrations with a spatial resolution of about 6 μm is achieved. The factors that limit the resolution of this diagnostic system have been analyzed, which are optical diffraction, the pixel size of the EMCCD, and the thickness of the microplasma. In this paper, the optimal condition for achieving a maximum resolution power has been analyzed. With this diagnostic system, we revealed the spatial nonuniformity of a microwave atmospheric-pressure argon microplasma. Furthermore, the spatial distribution of the time-averaged effective electron temperature has been estimated from the intensity distributions of 750.4 and 415.8 nm emissions.

  4. Optical diagnostics for plasma physics and accelerator science: commonalities and differences

    NASA Astrophysics Data System (ADS)

    Meshkov, Oleg

    2016-04-01

    Optical diagnostics are widely used both for experiments of plasma physics and for measurements of parameters of electron/positron beams in accelerators. The approaches applied for these often have the same methodological basis explained by the similarity of the properties of the studied phenomena. Nevertheless, these branches of physics are very specific and require special diagnostics. The possibility of closed contacts and cooperation between scientists solving similar problems in different areas of physics helps to overcome these problems. It is especially typical for BINP SB RAS known by pioneering works on electron-positron colliders and nuclear fusion. This paper describes the diagnostics that are used in plasma physics experiments, especially for plasma heating by a high-current electron beam, and contains a comparison with optical diagnostics which are recognized tools in colliders and storage rings.

  5. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  6. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  7. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  8. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. PMID:26574729

  9. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  10. Comparison of the fiber optic dosimeter and semiconductor dosimeter for use in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Yoo, W. J.; Shin, S. H.; Sim, H. I.; Hong, S.; Kim, S. G.; Jang, J. S.; Kim, J. S.; Jeon, H. S.; Kwon, G. W.; Jang, K. W.; Cho, S.; Lee, B.

    2014-05-01

    A fiber-optic dosimeter (FOD) was fabricated using a plstic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure entrance surface dose (ESD) in diagnostic radiology. Under changing tube current and irradition time of the digital radiography (DR) system, we measured the scintillating light and the ESD simultaneously. As experiemtnal results, the total counts of the FOD were changed in a manner similar to the ESDs of the semiconductor dosimeter (SCD). In conclusion, we demonstrated that the proposed FOD minimally affected the diagnostic information of DR image while the SCD caused serious image artifacts.

  11. Optical methods for diagnostic of cell-tissue grafts

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Volova, L. T.; Boltovskaya, V. V.; Zherdeva, L. A.; Belousov, N. V.; Pershutkina, S. V.

    2015-08-01

    In this work the results of cell-tissue grafts research with a complex of optical methods - confocal fluorescent microscopy and Raman spectroscopy are presented. It was established that coefficient M scatter is related to irregularity of demineralization process. It was microscopically shown that the quantity of integrated cells into these types of transplants amounts to 20% of its surface.

  12. Electron kinetic effects on optical diagnostics in fusion plasmas

    SciTech Connect

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E.; Brower, D. L. Ding, W. X.

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  13. Advancing the science of measurement of diagnostic errors in healthcare: the Safer Dx framework

    PubMed Central

    Singh, Hardeep; Sittig, Dean F

    2015-01-01

    Diagnostic errors are major contributors to harmful patient outcomes, yet they remain a relatively understudied and unmeasured area of patient safety. Although they are estimated to affect about 12 million Americans each year in ambulatory care settings alone, both the conceptual and pragmatic scientific foundation for their measurement is under-developed. Health care organizations do not have the tools and strategies to measure diagnostic safety and most have not integrated diagnostic error into their existing patient safety programs. Further progress toward reducing diagnostic errors will hinge on our ability to overcome measurement-related challenges. In order to lay a robust groundwork for measurement and monitoring techniques to ensure diagnostic safety, we recently developed a multifaceted framework to advance the science of measuring diagnostic errors (The Safer Dx framework). In this paper, we describe how the framework serves as a conceptual foundation for system-wide safety measurement, monitoring and improvement of diagnostic error. The framework accounts for the complex adaptive sociotechnical system in which diagnosis takes place (the structure), the distributed process dimensions in which diagnoses evolve beyond the doctor's visit (the process) and the outcomes of a correct and timely “safe diagnosis” as well as patient and health care outcomes (the outcomes). We posit that the Safer Dx framework can be used by a variety of stakeholders including researchers, clinicians, health care organizations and policymakers, to stimulate both retrospective and more proactive measurement of diagnostic errors. The feedback and learning that would result will help develop subsequent interventions that lead to safer diagnosis, improved value of health care delivery and improved patient outcomes. PMID:25589094

  14. Optical and Mechanical Design of C-Mod Motional Stark Effect Diagnostic

    SciTech Connect

    D.I. Simon; E. Marmar; N.L. Bretz; R. Bravenec; R.F. Parsells

    1999-11-01

    A Motional Stark Effect (MSE) instrument is being installed on the Alcator C-Mod tokamak at MIT. This MSE diagnostic will provide measurements of the spatial profile of the internal poloidal magnetic field. The MSE has its primary collection optics inside the vacuum vessel. The light collected by the internal optics passes through a vacuum window and is relayed to a fiber optic array. The MSE optics are shared by a Beam Emission Spectroscopy (BES) diagnostic which measures electron density fluctuations and their spatial correlations. This optical system requires high throughput and spatial resolution of less than 1 cm at the focal plane in the plasma. The design requirements for the internal optics also include the effects associated with plasma impingement, plasma disruptions, and thermal excursions. The parameters that affect polarization measurement include the location and orientation of optical elements, the choice of substrates and optical materials. These unique design requirements led to a number of interesting optical and mechanical design features which are presented here.

  15. Optical spatial solitons: historical overview and recent advances

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N.

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  16. Optical spatial solitons: historical overview and recent advances.

    PubMed

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  17. Optical design and characterization of an advanced computational imaging system

    NASA Astrophysics Data System (ADS)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  18. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.

    PubMed

    Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented. PMID:25430314

  19. Radiation resistance diagnostics of wide-gap optical materials

    NASA Astrophysics Data System (ADS)

    Feldbach, Eduard; Tõldsepp, Eliko; Kirm, Marco; Lushchik, Aleksandr; Mizohata, Kenichiro; Räisänen, Jyrki

    2016-05-01

    Novel approach in the detection of radiation damage created by ion beams in optical materials was demonstrated. Protons of the energy of 100 keV and fluence of 1017 cm-2 create sufficient amount of crystal lattice defects in the thin surface layer for testing of optical materials needed for future fusion reactors. These structural defects can be detected and analysed using the spectra of cathodoluminescence excited in the irradiated layer by an electron beam with adjustable energy. The method was verified by the enhanced intensity of F-type luminescence that reflects the creation of radiation-induced oxygen vacancies in MgO and Al2O3 crystals. Low radiation resistance of nominally pure (Lu1-xGdx)2SiO5 crystals was demonstrated by almost total suppression of intrinsic luminescence after the same irradiation.

  20. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  1. Advances in DOE modeling and optical performance for SMO applications

    NASA Astrophysics Data System (ADS)

    Carriere, James; Stack, Jared; Childers, John; Welch, Kevin; Himel, Marc D.

    2010-04-01

    The introduction of source mask optimization (SMO) to the design process addresses an urgent need for the 32nm node and beyond as alternative lithography approaches continue to push out. To take full advantage of SMO routines, an understanding of the characteristic properties of diffractive optical elements (DOEs) is required. Greater flexibility in the DOE output is needed to optimize lithographic process windows. In addition, new and tighter constraints on the DOEs used for off-axis illumination (OAI) are being introduced to precisely predict, control and reduce the effects of pole imbalance and stray light on the CD budget. We present recent advancements in the modeling and optical performance of these DOEs.

  2. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOEpatents

    Karl, Jr., Robert R.

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  3. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOEpatents

    Karl JR., Robert R.

    1990-03-06

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  4. Recent advances in ultrafast optical parametric oscillator frequency combs

    NASA Astrophysics Data System (ADS)

    McCracken, Richard A.; Zhang, Zhaowei; Reid, Derryck T.

    2014-12-01

    We discuss recent advances in the stabilization and application of femtosecond frequency combs based on optical parametric oscillators (OPOs) pumped by femtosecond lasers at 800 and 1060 nm. A method for locking to zero the carrier-envelope-offset of a Ti:sapphire-pumped OPO comb is described. The application of Yb:KYW-laser-pumped dual-combs for mid-infrared spectroscopy is detailed, specifically methane spectroscopy at approximately a 0.7% concentration at 1 atm.

  5. Designing of Phantom Head Used in Optical Diagnostics of Brain Injury

    NASA Astrophysics Data System (ADS)

    Aristov, A.; Timchenko, K.; Novoseltseva, A.; Kustov, D.; Larioshina, I. A.

    2016-01-01

    This article shows the results of an experimental research on properties of the materials chosen for designing of a phantom head, which is to be used in testing of a brain hematoma diagnostics device. We have conducted a comparative research of the optical properties of model materials and real head tissues

  6. Principles for new optical techniques in medical diagnostics for mHealth applications

    NASA Astrophysics Data System (ADS)

    Balsam, Joshua Michael

    Medical diagnostics is a critical element of effective medical treatment. However, many modern and emerging diagnostic technologies are not affordable or compatible with the needs and conditions found in low-income and middle-income countries and regions. Resource-poor areas require low-cost, robust, easy-to-use, and portable diagnostics devices compatible with telemedicine (i.e. mHealth) that can be adapted to meet diverse medical needs. Many suitable devices will need to be based on optical technologies, which are used for many types of biological analyses. This dissertation describes the fabrication and detection principles for several low-cost optical technologies for mHealth applications including: (1) a webcam based multi-wavelength fluorescence plate reader, (2) a lens-free optical detector used for the detection of Botulinum A neurotoxin activity, (3) a low cost micro-array reader that allows the performance of typical fluorescence based assays demonstrated for the detection of the toxin staphylococcal enterotoxin (SEB), and (4) a wide-field flow cytometer for high throughput detection of fluorescently labeled rare cells. This dissertation discusses how these technologies can be harnessed using readily available consumer electronics components such as webcams, cell phones, CCD cameras, LEDs, and laser diodes. There are challenges in developing devices with sufficient sensitivity and specificity, and approaches are presented to overcoming these challenges to create optical detectors that can serve as low cost medical diagnostics in resource-poor settings for mHealth.

  7. Optical sensors for accelerator diagnostics. Final report for the period September 15, 1998 - September 14, 2001

    SciTech Connect

    Yakymyshyn, Christopher P.

    2002-04-08

    DARHT utilizes a long pulse electron beam having a duration in excess of 2 microseconds. An electro-optic voltage sensor technology has been developed and commissioned to address this unique diagnostic environment. Over 200 sensors have demonstrated 0.25% accuracy. Deployment is expected in 2002.

  8. Measurements of entrance surface dose using a fiber-optic dosimeter in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Seo, Jeong Ki; Shin, Sang Hun; Han, Ki-Tek; Jeon, Dayeong; Jang, Kyoung Won; Sim, Hyeok In; Lee, Bongsoo; Park, Jang-Yeon

    2013-03-01

    In this study, a fiber-optic dosimeter (FOD) was developed to measure entrance surface dose (ESD) in diagnostic radiology. We measured the scintillating lights in order to obtain ESDs, which changed with the various exposure parameters of a digital radiography (DR) system, such as tube potential, current-time product, focus-surface distance (FSD), and field size, using the fabricated FOD system. From the experimental results, the output light signals of the FOD were similar to the ESDs of the conventional semiconductor dosimeter. In conclusion, we characterized the measured ESDs as functions of exposure parameters by using two different types of dosimeters and demonstrated that the proposed FOD using a plastic scintillating fiber and a plastic optical fiber (POF) makes it possible to measure ESDs in the energy range of diagnostic radiology. From the results of this study, it is anticipated that the FOD will be a useful dosimeter in low-energy photon applications including diagnostic radiology.

  9. Survey Talk--New Laser and Optical RadiationDiagnostics

    SciTech Connect

    Leemans, W.P.

    1998-09-01

    New techniques am reported for electron beam monitoring, that rely either on the analysis of the properties of wiggler radiation (from static magnetic fields as well as from laser "undulators", also referred to as Thomson scattering) or on the non-linear mixing of laser radiation with electron beam radiation. The different techniques reviewed are capable of providing information on femtosecond time scales and micron or even sub-micron spatial scales. The laser undulator is also proposed as a useful tool for non- destructive measurement of high power electron beams. An example is given of measuring electron beam energy and energy spread through spectral filtering of spontaneous wiggler radiation [1]. A novel technique based on fluctuational characteristics of radiation is described, for single shot, nondestructive measurement of the electron beam bunch length [2,3]. Thomson scattering based beam monitoring techniques are discussed which, through analysis of the radiated beam properties, allow non-destructive detailed measurement of transverse and longitudinal distributions of relativistic electron beams [4]. Two new techniques are discussed which rely on non-linear optical mixing of laser radiation with electron bunch emission: differential optical gating (DOG) [5] and electron bunch length measurement in a storage ring based on sum-frequency generation [6].

  10. Optical diagnostic test of stress conditions of aquatic organisms.

    PubMed

    Axenov-Gribanov, Denis V; Gurkov, Anton N; Shakhtanova, Nadezhda S; Bedulina, Daria S; Timofeyev, Maxim A; Meglinski, Igor

    2011-09-01

    Global climate change has become a dire reality and its impact is expected to rise dramatically in the near future. Combined with the day-to-day human activities the climatic changes heavily affect the environment. In particular, a global temperature increase accompanied by a number of anthropogenic chemicals falling within the freshwater ecosystem results in a dramatic enhancement of the overall stress for most aquatic organisms. This leads to a significant shift in the species inventory and potential breakdown of the water ecosystem with severe consequences for local economies and water supply. In order to understand and predict the influence of climatic changes on the physiological and biochemical processes that take place in living aquatic organisms we explore the application of optical spectroscopy for monitoring and quantitative assessment of antioxidant enzymes activity in benthic amphipods of Lake Baikal. We demonstrate that the changes of the enzymes activity in Baikal amphipods undergoing thermal and/or hypoxia stress can be observed and documented by UV and optical spectroscopy both in vivo and in vitro. PMID:21548104

  11. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... COMMISSION Advanced Optics Electronics, Inc.; Order of Suspension of Trading March 2, 2011. It appears to the... securities of Advanced Optics Electronics, Inc. because it has not filed any periodic reports since the... of investors require a suspension of trading in Advanced Optics Electronics, Inc. Therefore, it...

  12. Novel x-ray optics for medical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, A.; Arvanian, V.; Kuyumchyan, D.; Aristov, V.; Shulakov, E.

    2009-08-01

    A new hard X - ray hologram with using crystal Fresnel zone plates (ZP) has been described. An image of Fourier hologram for hard X- ray is presented. X-ray phase contrast methods for medical diagnostics techniques are presented. We have developed an X-ray microscope, based on micro focus source which is capable of high resolution phasecontrast imaging and holograms. We propose a new imaging technique with the x-ray energy 8 keV. The method is expected to have wide applications in imaging of low absorbing samples such as biological and medical tissue. We used FIB to reproduction three dimension structures of damaged spinal cord of rat before and after combined treatment with NT3 and NR2D. PUBLISHER'S NOTE 12/16/09: This SPIE Proceedings paper has been updated with an erratum correcting several issues throughout the paper. The corrected paper was published in place of the earlier version on 9/1/2009. If you purchased the original version of the paper and no longer have access, please contact SPIE Digital Library Customer Service at CustomerService@SPIEDigitalLibrary.org for assistance.

  13. Whole-field optical diagnostics for structural analysis in the automotive industry

    NASA Astrophysics Data System (ADS)

    Buckberry, C. H.; Towers, D. P.; Stockley, B. C.; Tavender, B.; Jones, M. P.; Jones, J. D. C.; Valera, J. D. R.

    1996-12-01

    This paper reviews the whole-field optical diagnostic methods developed by the Applied Optics Laboratory (AOL) of the Rover Group for structural analysis. The techniques discussed provide measurements of a range of parameters, specifically: deformation, vibration amplitude and phase, shear stress, surface form, and flow velocity. The paper describes the philosophy used to develop the techniques and the overall business issues and applications which have driven their development. Each measurement system is then discussed in turn with emphasis on the novelty of the optical device or data analysis procedure used, and their relevance to automotive engineering applications. Illustrative examples are presented for each technique.

  14. Unique Diagnostic of Magneto Optical Trap Relative Populations

    NASA Astrophysics Data System (ADS)

    Brédy, Richard; Nguyen, Hai; Camp, Howard A.; Wilson, Kyle M.; Awata, Takaaki; Depaola, Brett D.

    2003-05-01

    In the studies of population trapping, electromagnetically induced transparency, and other processes associated with coherent excitation, knowledge of excited state populations can provide greatly needed insights. However, methodologies often used to determine relative populations in laser-excited system often rely on a model-dependent measurement. Furthermore, lasers used to probe the system can modify the very system one wishes to make measurements on. An accurate, non-intrusive and perusing method has been developed to circumvent this problem. MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) uses charge transfer as a non-intrusive probe of temporal evolution of excited state fraction, in particular the 5p of Rb. The generalization of these measurements to more complicated systems, e.g. a Rubidium sample having mixture of 5s, 5p, 4d, and Rydberg states will be presented.

  15. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  16. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  17. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  18. Advancements in integrated structural/thermal/optical (STOP) analysis of optical systems

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard; Crompton, David; Perron, Gerard

    2007-09-01

    Applications involving optical systems with a variety of transient loading conditions in conjunction with tight optical error budgets require new tools to assess system performance accurately and quickly. For example, an optical telescope in geostationary orbit (e.g.: laser communications or weather satellite) may be required to maintain excellent optical performance with sun intermittently crossing near, or even within the telescope's field of view. To optimize the design, the designer would wish to analyze a large number of time steps through the orbit without sacrificing accuracy of the results. Historically, shortcuts have been taken to make the analysis effort manageable: contributing errors are combined in a root-sum-squared fashion; non-linear optical sensitivities to optical motions are made linear; and the surface deformation of non-circular optics and/or footprints are fit with zernike polynomials. L-3 SSG-Tinsley presents a method that eliminates these errors while allowing very fast processing of many cases. The method uses a software application that interfaces with both structural and optical analysis codes, and achieves raytrace-generated results from the optical model. This technique is shown to provide more accurate results than previous methods, as well as provide critical insights into the performance of the system that may be exploited in the design process. Results from the Advanced Baseline Imager ABI telescope are presented as an example.

  19. Methods for integrating optical fibers with advanced aerospace materials

    NASA Astrophysics Data System (ADS)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  20. Optical diagnostics in the MOCHI LabJet experiment

    NASA Astrophysics Data System (ADS)

    Card, Alexander; Vereen, Keon; Cretel, Chris; You, Setthivoine

    2014-10-01

    The MOCHI LabJet experiment is designed to observe the dynamics of canonical flux tubes and measure the conversion of magnetic helicity into ion flow helicity. In addition to magnetic probes capable of measuring 3D magnetic fields, Ion Doppler spectroscopy will reconstruct 3D flow fields from computed vector tomography of line-integrated ion Doppler measurements. About 500 collimated lines-of-sight are distributed into 64 viewports regularly arranged around the 1.4 m diameter spherical vacuum chamber. The custom fiber-bundles are arranged into a 2D array and coupled to a 1m focal length Czerny-Turner monochromator with custom matching optics. The spectral light is recorded with a dual-frame 1024 × 1024 intensified CCD camera with a 2 μs phosphor decay time capable of taking two measurements in a single plasma shot. A Mach-Zehnder HeNe interferometerer with unequal path lengths is also under construction for line-integrated plasma density measurements. This work is supported by US DOE Grant DE-SC0010340.

  1. Optical Diagnostics of Electron Energy Distributions in Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Wendt, Amy

    2011-05-01

    Passive, non-invasive optical emission measurements provide a means of probing important plasma parameters without introducing contaminants into plasma systems. We investigate the electron energy distribution function (EEDF) in argon containing inductively-coupled plasmas due to dominant role in rates of gas-phase reactions for processing plasmas. EEDFs are determined using measurements of 3p5 4 p --> 3p5 4 s emissions in the 650-1150 nm wavelength range and measured metastable and resonant level concentrations, in conjunction with a radiation model that includes contributions from often neglected but critical processes such as radiation trapping and electron-impact excitation from metastable and resonant levels. Measurements over a wide range of operating conditions (pressure, RF power, Ar/Ne/N2 gas mixtures) show a depletion of the EEDF relative to the Maxwell- Boltzmann form at higher electron energy, in good agreement with measurements made with Langmuir probes and predictions of a global discharge model. This result is consistent with predictions of electron kinetics and can be explained in terms of reduced life times for energetic electrons due to wall losses and inelastic collisions. This example highlights the potential utility of this method as a tool for probing kinetics of many types of low-temperature plasma systems, which are typically characterized by non-Maxwellian EEDFs. This work was supported by the Wisconsin Alumni Research Foundation (WARF) and by NSF Grant CBET 0714600.

  2. Optical Diagnostics for Classifying Stages of Dental Erythema

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Splinter, Robert; Lockhart, Peter; Brennan, Michael; Fox, Philip C.

    2003-02-01

    Periodontal disease is a term used to describe an inflammatory disease affecting the tissues surrounding and supporting the teeth. Periodontal diseases are some of the most common chronic disorders, which affect humans in all parts of the world. Treatment usually involves the removal of plaque and calculus by scaling and polishing the tooth. In some cases a surgical reduction of hyperplastic tissue, may also be required. In addition, periodontitis is a risk factor for systemic disorders such as cardiovascular disease and diabetes. Current detection methods are qualitative, inaccurate, and often do not detect the periodontal disease in its early, reversible stages. Therefore, an early detection method should be implemented identifying the relationship of periodontal disease with erythema. In order to achieve this purpose we are developing an optical erythema meter to diagnose the periodontal disease in its reversible, gingival stage. The discrimination between healthy and diseased gum tissue was made by using the reflection of two illuminating wavelengths provided by light emitting diodes operating at wavelengths that target the absorption and reflection spectra of the highlights of each particular tissue type (healthy or diseased, and what kind of disease). Three different color gels could successfully be distinguished with a statistical significance of P < 0.05.

  3. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  4. Advanced optical system simulation in a coupled CAD/optical analysis package

    NASA Astrophysics Data System (ADS)

    Stevenson, Michael A.; Campillo, Chris J.; Jenkins, David G.

    1999-05-01

    Software packages capable of simulating complex optical systems have the power to shorten the design process for non-imaging illumination, projection display, and other imaging illumination systems, Breault Research Organization's Advanced Systems Analysis Program (ASAP) and Robert McNeel and Associates' Rhinoceros computer aided design software, together, allow complicated optical systems to be simulated and analyzed. Through the use of Rhinoceros, an optical system can be accurately modeled in a 3D design environment. ASAP is then used to assign optical properties to the Rhinoceros CAD model. After the optical system has been characterized, it can be analyzed and optimized, by way of features specific to the ASAP optical analysis engine. Using this simulation technique, an HID arc source manufactured by Ushio America, Inc. is accurately represented. 2D CCD images are gathered for the source's emitting-volume across its spectral bandwidth. The images are processed within ASAP, via the inverse Abel command, to produce a 3D emitting-volume. This emitting-volume is combined with an accurate model of the source geometry and its optical properties, to finalize a functioning virtual source model. The characterized source is then joined with a simulated optical system for detailed performance analysis: namely, a projection display system.

  5. Advances in Microfluidic PCR for Point-of-Care Infectious Disease Diagnostics

    PubMed Central

    Park, Seungkyung; Zhang, Yi; Lin, Shin; Wang, Tza-Huei; Yang, Samuel

    2011-01-01

    Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics. PMID:21741465

  6. Advances in optical technologies at Pontificia Universidad Católica del Perú

    NASA Astrophysics Data System (ADS)

    Baldwin, Guillermo; Asmad, Miguel; Romero, Sandra; Gonzales, Franco; Gálvez, Gonzalo; Sánchez, Rubén; Córdova, Darwin

    2011-05-01

    In this work, it is shown a panoramically view of advances and works on fundamental optical technology developed and Physics Section at Pontificia Universidad Católica del Perú PUCP in Lima Peru. This includes works in, precision optics manufacturing, optical testing, and optical design and simulation and also in optical thin film evaporation and its design techniques

  7. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1982-09-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements are outlined. Activities are described in four program areas: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels); (2) optical switching materials (e.g., electrochromic, photochromic); (3) selective transmitters; and (4) daylight enhancement techniques.

  8. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1983-11-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program are outlined, the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements. Activities in four program areas are described: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels) (2) optical switching materials (e.g., electrochromic, photochromic) (3) selective transmitters and (4) daylight enhancement techniques.

  9. Recent advances in optical coherence tomography for the diagnoses of lung disorders

    PubMed Central

    Hou, Randy; Le, Tho; Murgu, Septimiu D; Chen, Zhongping; Brenner, Matt

    2012-01-01

    There have been many advances in the field of diagnostic and therapeutic pulmonary medicine in the past several years, with major progress in the field of imaging. Optical coherence tomography (OCT) is a high-resolution (micron level) imaging modality currently being advanced with the potential to image airway wall structures in real time and at higher resolution than previously possible. OCT has the potential to increase the sensitivity and specificity of biopsies, create 3D images of the airway to guide diagnostics, and may have a future role in diverse areas such as the evaluation and treatment of patients with obstructive sleep apnea, tracheal stenosis, airway remodeling and inhalation injury. OCT has recently been investigated to monitor airway compliance in chronic obstructive pulmonary disease and asthma patients as well as differentiate causes of pulmonary hypertension. In future clinical and research applications, OCT will likely be combined with other endoscopic based modalities such as ultrasound, spectroscopy, confocal, and/or photoacoustic tomography to determine functional and biomolecular properties. This article discusses the current uses of OCT, its potential applications, as it relates to specific pulmonary diseases, and the future directions for OCT. PMID:21955240

  10. Optical metrology for advanced process control: full module metrology solutions

    NASA Astrophysics Data System (ADS)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  11. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  12. Data and Analysis from a Time-Resolved Tomographic Optical Beam Diagnostic

    SciTech Connect

    Daniel K. Frayer, Douglas Johnson, Carl Ekdahl

    2010-05-02

    An optical tomographic diagnostic instrument developed for the acquisition of high-speed time-resolved images has been fielded at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory. The instrument was developed for the creation of time histories of electron-beam cross section through the collection of Cerenkov light. Four optical lines of sight optically collapse an image and relay projections via an optical fiber relay to recording instruments; a tomographic reconstruction algorithm creates the time history. Because the instrument may be operated in an adverse environment, it may be operated, adjusted, and calibrated remotely. The instrument was operated over the course of various activities during and after DARHT commissioning, and tomographic reconstructions reported verifiable beam characteristics. Results from the collected data and reconstructions and analysis of the data are discussed.

  13. Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas

    SciTech Connect

    Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.

    2004-10-01

    A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.

  14. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics

    SciTech Connect

    Mourant, Judith B.; Hielscher, Andreas H.; Eick, Angelica A.; Johnson, Tamara M.; Shen, Dan

    1998-06-01

    We have studied the optical properties of mammalian cell suspensions to provide a mechanistic basis for interpreting the optical properties of tissues {ital in vivo}. Measurements of the wavelength dependence of the reduced scattering coefficient and measurements of the phase function demonstrated that there is a distribution of scatterer sizes. The volumes of the scatterers are equivalent to those of spheres with diameters in the range between {approximately}0.4 and 2.0 {mu}m. Measurements of isolated organelles indicate that mitochondria and other similarly sized organelles are responsible for scattering at large angles, whereas nuclei are responsible for small-angle scattering. Therefore optical diagnostics are expected to be sensitive to organelle morphology but not directly to the size and shape of the cells. {copyright} 1998 Optical Society of America

  15. Investigation of implosion dynamics and magnetic fields in 1-MA wire arrays by optical probing diagnostics

    NASA Astrophysics Data System (ADS)

    Laca, P. J.; Sarkisov, G. S.

    2005-10-01

    Multiframe optical probing diagnostics were applied for the investigation of implosion dynamics and magnetic fields in z-pinch plasma of wire arrays and x-pinches at the Nevada Terawatt Facility (NTF). Five shadow frames per shot, with a long 34-ns or short 9-ns pulse train, presents fine details of plasma evolution in the wire array. A Faraday rotation diagnostic consists of identical shadow and Faraday channels, shearing air-wedge interferometer, and schlieren channel. Evolution of the wire array z-pinch in different regimes of implosion was investigated. Fast dynamics of bubbles in plasma streams were studied in detail. A current in the plasma column of Al wire arrays and magnetic bubbles were found by the Faraday rotation diagnostic.

  16. Optical coherence tomography demonstrating macular retinal nerve fiber thinning in advanced optic disc drusen

    PubMed Central

    Hassan, Ali; Gouws, Pieter

    2014-01-01

    Optic disc drusen (ODD) are extracellular proteinaceous excrescences in the optic nerve head. They enlarge over time and can cause damage to nerve fibers with resulting loss of visual field. The authors report a case of advanced ODD in which macular optical coherence tomography demonstrated retinal nerve fiber thinning. A single case report of a 42-year-old woman with known ODD presented to the eye clinic with worsening field of vision which was impacting on her daily life. The patient was subject to full ophthalmic examination as well as Goldmann visual field testing, optic disc photography and optical coherence tomography (OCT) of both her optic discs and maculae. ODD although rare, can be visually devastating. No treatment is currently available however patients should be counseled about progressive nature of ODD and the potential for visual loss. OCT imaging of the maculae as well as optic discs may serve a role in monitoring the damage disc drusen cause to the eye. PMID:25136235

  17. Optical coherence tomography demonstrating macular retinal nerve fiber thinning in advanced optic disc drusen.

    PubMed

    Hassan, Ali; Gouws, Pieter

    2014-05-01

    Optic disc drusen (ODD) are extracellular proteinaceous excrescences in the optic nerve head. They enlarge over time and can cause damage to nerve fibers with resulting loss of visual field. The authors report a case of advanced ODD in which macular optical coherence tomography demonstrated retinal nerve fiber thinning. A single case report of a 42-year-old woman with known ODD presented to the eye clinic with worsening field of vision which was impacting on her daily life. The patient was subject to full ophthalmic examination as well as Goldmann visual field testing, optic disc photography and optical coherence tomography (OCT) of both her optic discs and maculae. ODD although rare, can be visually devastating. No treatment is currently available however patients should be counseled about progressive nature of ODD and the potential for visual loss. OCT imaging of the maculae as well as optic discs may serve a role in monitoring the damage disc drusen cause to the eye. PMID:25136235

  18. Numerical Raytrace Verification of Optical Diagnostics of Ice Surface Roughness for Inertial Confinement Fusion Experiments

    SciTech Connect

    Koch, Jeffrey A.; Bernat, Thomas P.; Collins, Gilbert W.; Hammel, Bruce A.; MacKinnon, Andrew J.; Still, Charles H.; Sater, James D.; Bittner, Donald N

    2003-01-15

    Targets for future laser-fusion ignition experiments will consist of a frozen deuterium-tritium ice layer adhering to the inner surface of a spherical shell, and the specifications for the inner surface quality of this ice layer are extremely demanding. We have developed a numerical raytrace model in order to validate backlit optical shadowgraphy as an ice-surface diagnostic, and we have used the code to simulate shadowgraph data obtained from mathematical ice layers having known modal imperfections. We find that backlit optical shadowgraphy is a valid diagnostic of the mode spectrum of ice-surface imperfections for mode numbers as high as 80 provided the experimental data are analyzed appropriately. We also describe alternative measurement techniques, which may be more sensitive than conventional backlit shadowgraphy.

  19. Integrated optical system for investigation and diagnostics of abnormal combustion in an automotive engine

    NASA Astrophysics Data System (ADS)

    Piernikarski, Dariusz

    2004-09-01

    The paper presents a research project oriented towards development of existing measurement methods which use optical sensors for the research and diagnostics of the combustion process in the internal-combustion automotive enigne. Experiments assume usage of photometric techniques and in particular spectrophotometry of the flames existing in the combustion chamber. Gathered results will enable expanding knowledge about processes taking place during combustion of air-fuel mixture and accompanying phenomena (i.e. knock, misfires). The work is also aimed at designing a diagnostic system which will enable an on-line identification of unfavorable phenomena like knocking combustion or misfires (lack of combustion). Extracted synthetic quality indexes will be used in the improvement of combustion process and as a feedback signals in the engine control algorithms. Research is made on the typical automotive engine equipped with an optical sensor located in the engine head and having direct access into the combustion chamber. The sensor enables on-line transmission of the optical signal during the combustion through the bundle of optical waveguides and two parallel filtering paths. Then optical signal was filtered with set of interference filters. The paper is illustrated with some results obtained during preliminary experiments.

  20. Vibration analysis of the Thomson Scattering diagnostics optical transmission system on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Shao, Chunqiang; Zang, Qing; Zhao, Junyu; Hu, Ailan; Han, Xiaofeng; Chen, Hui; He, Liangliang; Wang, Tengfei

    2014-09-01

    A series of vibration source from the EAST tokamak complicated experimental environment would result in the laser path misalignment and the collected scattered laser signal attenuation, which leads to a measurement error of the Thomson Scattering (TS) diagnostics system. Two methods have been designed for the vibration analysis of the TS diagnostics optical transmission system, a passive one and an active one. The optical transmission system contains of a double deck optical table with 4 reflectors and a photon collection system. The vibration analysis includes 4 points of reflectors along the laser path, 1 point of the photon collection system, and the ground of EAST experimental hall. The passive method used a vibration spectrum analyzer and 7 vertical speed sensors measuring the standard deviation of the vibration noise, which refers to the virtual value of vibration, and a data analysis system. The active method used a hammer to simulate the vibration source of the experimental hall ground, and 15 accelerometers to measure the three-dimensional vibration spectrum of 5 points along the optical transmission system. The vibration isolation efficiency (IE) of the optical transmission system has been presented, and the vibration asynchrony of the 5 points also has been observed. The results of two methods are comparatively studied, and the active one is considered to be more credible.

  1. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2

  2. Optical biosensor technologies for molecular diagnostics at the point-of-care

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  3. Design of a new optical system for Alcator C-Mod motional Stark effect diagnostic

    SciTech Connect

    Ko, Jinseok; Scott, Steve; Bitter, Manfred; Lerner, Scott

    2008-10-15

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources.

  4. Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic

    SciTech Connect

    Ko, Jinseok; Scott, Steve; Manfred, Bitter; Lerner, Lerner

    2009-11-12

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.

  5. Advances in optics in the medieval Islamic world

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2015-04-01

    This paper reviews the state of knowledge in the field of optics, mainly in catoptrics and dioptrics, before the birth of modern science and the well-documented contributions of men such as Kepler and Newton. The paper is not intended to be a comprehensive survey of the subject such as one might find in history of science journals; instead, it is aimed at the curious physicist who has probably been taught that nothing much of note was understood about the behaviour of light, beyond outdated philosophical musings, prior to the seventeenth century. The paper will focus on advances during the medieval period between the ninth and fourteenth centuries, in both the east and the west, when the theories of the Ancient Greeks were tested, advanced, corrected and mathematised. In particular, it concentrates on a multivolume treatise on optics written one thousand years ago by the Arab scholar, Ibn al-Haytham, and examines how it influenced our understanding of the nature of reflection and refraction of light. Even the well-informed physicist should find a few surprises here, which will alter his or her view of the debt we owe to these forgotten scholars.

  6. Optical diagnostics for condensed-phase shock-compressed molecular systems

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.

    1983-01-01

    Experimental techniques capable of obtaining information about the molecular phenomenology in the region through and immediately behind the shockfront during the shock-compression of condensed-phase molecular systems are discussed and compared. Difficulties associated with performing measurements in this region are briefly reviewed. Some concomitant static experiments that can be used to complement the dynamic measurements are suggested. Developments and advances expected in diagnostic techniques during the next few years are summarized.

  7. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    SciTech Connect

    Barry, Walter; Chin, Mike; Robin, David; Sannibale, Fernando; Scarvie, Tom; Steier, Christoph

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is described in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.

  8. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10. PMID:24089826

  9. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  10. Pinned, optically aligned diagnostic dock for use on the Z facility.

    PubMed

    Gomez, M R; Rochau, G A; Bailey, J E; Dunham, G S; Kernaghan, M D; Gard, P; Robertson, G K; Owen, A C; Argo, J W; Nielsen, D S; Lake, P W

    2012-10-01

    The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented. PMID:23126888

  11. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  12. Recent advances toward a fiber optic sensor for nerve agent

    NASA Astrophysics Data System (ADS)

    Beshay, Manal; Cordero, Steven R.; Mukamal, Harold; Ruiz, David; Lieberman, Robert A.

    2008-04-01

    We report advances made on the development of a fiber optic nerve agent sensor having its entire length as the sensing element. Upon exposure to sarin gas or its simulant, diisopropyl fluorophosphate, the cladding changes color resulting in an alteration of the light intensity throughput. The optical fiber is multimode and consists of a fused-silica core and a nerve agent sensitive cladding. The absorption characteristics of the cladding affect the fiber's spectral attenuation and limit the length of light guiding fiber that can be deployed continuously. The absorption of the cladding is also dependent on the sensor formulation, which in turn influences the sensitivity of the fiber. In this paper, data related to the trade-off of sensitivity, spectral attenuation, and length of fiber challenged will be reported. The fiber is mass produced using a conventional fiber optic draw tower. This technology could be used to protect human resources and buildings from dangerous chemical attacks, particularly when large areas or perimeters must be covered. It may also be used passively to determine how well such areas have been decontaminated.

  13. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  14. Diagnostics of abnormal combustion in a SI automotive engine using in-cylinder optical combustion sensor

    NASA Astrophysics Data System (ADS)

    Piernikarski, Dariusz; Hunicz, Jacek

    2004-08-01

    The paper presents development of a research project oriented towards application of optical sensors and optical wave-guides for the investigation and diagnostics of the combustion process in the internal-combustion automotive engine. Applied measurement method assumes usage of photometric techniques, and in particular spectrophotometry of the flames existing in the combustion chamber. Emission signal during combustion is picked up by an optical sensor with direct access to the combustion chamber, then transmitted using two parallel fiber-optic bundles. The signal can be filtered with set of interference filters and finally it is converted using grating monochromator or photodetector. The main goal of the project is to develop a laboratory diagnostic system enabling on-line identification of the abnormal combustion phenomena like knocking or misfires (lack of combustion). Extracted synthetic quality indexes will be used in the improvement of combustion process and as a feedback signals in the engine control algorithms. The paper is illustrated with some results obtained during previous experiments.

  15. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Charlot, S.; Gutkin, J.

    2016-03-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as C IV λλ1548, 1551, O III] λλ1661, 1666, N III] λ1750, [Si III] λ1883+Si III] λ1892 and [C III] λ1907+C III] λ1909, with the He II λ1640 recombination line are individually good discriminants of the nature of the ionizing source. Diagrams involving at least three of these lines allow an even more stringent distinction between active and inactive galaxies, as well as valuable constraints on interstellar gas parameters and the shape of the ionizing radiation. Several line ratios involving Ne-based emission lines, such as [Ne IV] λ2424, [Ne III] λ3343 and [Ne V] λ3426, are also good diagnostics of nuclear activity. Our results provide a comprehensive framework to identify the sources of photoionization and physical conditions of the ionized gas from the ultraviolet and optical nebular emission from galaxies. This will be particularly useful to interpret observations of high-redshift galaxies with future facilities, such as the James Webb Space Telescope and extremely large ground-based telescopes.

  16. Optical diagnostics of tumour cells at different stages of pathology development

    SciTech Connect

    Shcheglova, L S; Maryakhina, V S; Abramova, L L

    2013-11-30

    The differences in optical and biophysical properties between the cells of mammary gland tumour extracted from tumours of different diameter are described. It is shown that the spectral and spectrokinetic properties of fluorescent probes in the cells extracted from the tumours 1 – 3 cm in diameter are essentially different. Thus, the extinction coefficient of rhodamine 6G gradually increases with the pathology development. At the same time the rate of interaction of the triplet states of molecular probes with the oxygen, diluted in the tumour cells cytoplasm, decreases with the growth of the tumour capsule diameter. The observed regularities can be due to the changes in the cell structure, biochemical and biophysical properties. The reported data may be useful for developing optical methods of diagnostics of biotissue pathological conditions. (optical methods in biology and medicine)

  17. Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer

    PubMed Central

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  18. Advances in bio-optical imaging for the diagnosis of early oral cancer.

    PubMed

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2-3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  19. An optical design and accuracy estimation for a JT-60SA edge Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Tojo, H.; Hatae, T.; Hamano, T.; Sakuma, T.; Itami, K.

    2013-12-01

    This paper presents the design of a collection optics used for the Thomson scattering diagnostic in JT-60SA. Good spatial resolution ( ~ 10mm) is necessary for the optics to measure detailed profiles of electron temperature (Te) and density (ne) in the plasma edge region. Six lenses forming a Petzval-like lens are employed in this design. The use of an anomalous dispersion glass material for two lenses suppresses severe chromatic aberration; two flat mirrors prevent interference with the port plug in which the collection optics is to be installed. The resultant spot radius (resolution) at the image for the peripheral region is approximately 0.2 mm. When another collection optics previously designed for core measurements is used simultaneously, the angle of laser polarization must be considered because the two collection optics are to be installed in different port-plugs accessing the vacuum vessel from the cryostat. Otherwise, the measured signal would be degraded, and the scattered spectra would be different from the expected ones. This paper evaluates the scattered spectra with relativistic effects without any approximations. This paper also provides a means to optimize the polarization angle by considering a simulated profile in JT-60SA and contributes to future devices that have limited space for collection optics.

  20. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  1. Beam Optics Analysis — An Advanced 3D Trajectory Code

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  2. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  3. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    a single spine, with two-photon uncaging) and in rapid, flexible spatial-temporal patterns [10-14]. Nevertheless, current technology generally requires damaging doses of UV or violet illumination and the continuous re-introduction of the caged compound, which, despite interest, makes for a difficult transition beyond in vitro preparations. Thus, the tremendous progress in the in vivo application of photo-stimulation tools over the past five years has been largely facilitated by two 'exciting' new photo-stimulation technologies: photo-biological stimulation of a rapidly increasing arsenal of light-sensitive ion channels and pumps ('optogenetic' probes[15-18]) and direct photo-thermal stimulation of neural tissue with an IR laser [19-21]. The Journal of Neural Engineering has dedicated a special section in this issue to highlight advances in optical stimulation technology, which includes original peer-reviewed contributions dealing with the design of modern optical systems for spatial-temporal control of optical excitation patterns and with the biophysics of neural-thermal interaction mediated by electromagnetic waves. The paper by Nikolenko, Peterka and Yuste [22] presents a compact design of a microscope-photo-stimulator based on a transmissive phase-modulating spatial-light modulator (SLM). Computer-generated holographic photo-stimulation using SLMs [12-14, 23] allows the efficient parallel projection of intense sparse patterns of light, and the welcome development of compact, user-friendly systems will likely reduce the barrier to its widespread adoption. The paper by Losavio et al [24] presents the design and functional characteristics of their acousto-optical deflector (AOD) systems for studying spatial-temporal dendritic integration in single neurons in vitro. Both single-photon (UV) and two-photon (femtosecond pulsed IR) AOD uncaging systems are described in detail. The paper presents an excellent overview of the current state of the art and limitations of

  4. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented. PMID:16926876

  5. Optical coherence tomography for advanced screening in the primary care office

    PubMed Central

    Shelton, Ryan L.; Jung, Woonggyu; Sayegh, Samir I.; McCormick, Daniel T.; Kim, Jeehyun; Boppart, Stephen A.

    2013-01-01

    Optical coherence tomography (OCT) has long been used as a diagnostic tool in the field of ophthalmology. The ability to observe microstructural changes in the tissues of the eye has proved very effective in diagnosing ocular disease. However, this technology has yet to be introduced into the primary care office, where indications of disease are first encountered. We have developed a portable, handheld imaging probe for use in the primary care setting and evaluated its tissue site accessibility, ability to observe diseased tissue, and screening capabilities in in vivo human patients, particularly for pathologies related to the eye, ear and skin. Various stages of diabetic retinopathy were investigated using the handheld probe and early-stage diabetic retinopathy was flagged as abnormal from the OCT images. At such early stages of disease, it is difficult to observe abnormalities with the limited tools that are currently available to primary care physicians. These results indicate that OCT shows promise to transform from being a diagnostic technology in the medical and surgical specialities to a screening technology in the primary care office and at the front-line of healthcare. In vivo cross-sectional images of four examples of common pathologies in humans encountered by a primary care physician. All images were taken using a novel handheld OCT imaging probe. (A) Human cornea after LASIK surgery. (B) Advanced diabetic retinopathy. (C) Tympanic membrane with accompanying biofilm. (D) Skin abscess showing layer separation and fluid-filled pockets. PMID:23606343

  6. Combined information from Raman spectroscopy and optical coherence tomography for enhanced diagnostic accuracy in tissue discrimination

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Bellini, Nicola; Riches, Andrew; Dholakia, Kishan; Herrington, C. Simon

    2014-03-01

    Optical spectroscopy and imaging methods have proved to have potential to discriminate between normal and abnormal tissue types through minimally invasive procedures. Raman spectroscopy and Optical Coherence Tomography (OCT) provides chemical and morphological information of tissues respectively, which are complementary to each other. When used individually they might not be able to obtain high enough sensitivity and specificity that is clinically relevant. In this study we combined Raman spectroscopy information with information obtained from OCT to enhance the sensitivity and specificity in discriminating between Colonic Adenocarcinoma from Normal Colon. OCT being an imaging technique, the information from this technique is conventionally analyzed qualitatively. To combine with Raman spectroscopy information, it was essential to quantify the morphological information obtained from OCT. Texture analysis was used to extract information from OCT images, which in-turn was combined with the information obtained from Raman spectroscopy. The sensitivity and specificity of the classifier was estimated using leave one out cross validation (LOOCV) method where support vector machine (SVM) was used for binary classification of the tissues. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These results demonstrate that a multimodal approach using Raman-OCT would be able to enhance the diagnostic accuracy for identifying normal and cancerous tissue types.

  7. Diagnostic blood-flow monitoring during therapeutic interventions using color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Kulkarni, Manish D.; Wong, Richard C. K.; Sivak, Michael J., Jr.; Willis, Joseph; Barton, Jennifer K.; Welch, Ashley J.; Izatt, Joseph A.

    1998-04-01

    A recently developed modality for blood flow measurement holds high promise in the management of bleeding ulcers. Color Doppler optical coherence tomography (CDOCT) uses low- coherence interferometry and digital signal processing to obtain precise localization of tissue microstructure simultaneous with bi-directional quantitation of blood flow. We discuss CDOCT as a diagnostic tool in the management of bleeding gastrointestinal lesions. Common treatments for bleeding ulcers include local injection of a vasoconstrictor, coagulation of blood via thermal contact or laser treatment, and necrosis of surrounding tissue with a sclerosant. We implemented these procedures in a rat dorsal skin flap model, and acquired CDOCT images before and after treatment. In these studies, CDOCT succeeded in identifying cessation of flow before it could be determined visually. Hence, we demonstrate the diagnostic capabilities of CDOCT in the regulation of bleeding in micron-scale vessels.

  8. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    SciTech Connect

    Moseev, D.; Meo, F.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Bindslev, H.; Furtula, V.; Kantor, M.

    2012-10-15

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic on TEXTOR without a source of probing radiation in discharges with sawtooth oscillations, an elevation angle misalignment of 0.9 Degree-Sign was found with an accuracy of 0.25 Degree-Sign .

  9. Electron-beam and high speed optical diagnostics for the Average Power Laser Experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; McVey, B. D.; Greegor, R. B.; Dowell, D. H.

    The Average Power Laser Experiment (APLE) program is a collaboration of Boeing and Los Alamos to build a free-electron laser (FEL) operating at a wavelength of 10 microns and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to the simulations of the expected electron beam properties, diagnostic plans have been developed for the low-duty and the 25 percent-duty operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near infrared light (optical transition radiation, Cerenkov radiation, synchrotron radiation, and spontaneous emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  10. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    SciTech Connect

    Piccinini, M. Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M.; Ambrosini, F.; Nichelatti, E.

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  11. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  12. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  13. Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2012-04-27

    Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.

  14. Optical diagnostics of biological tissue cells during their cultivation in polymers

    SciTech Connect

    Letuta, S N; Maryakhina, V S; Rakhmatullin, R R

    2011-04-30

    The specific features of long-term luminescence of exogenous molecular probes in cells of pathogenic and normal biological tissues, cultivated on a solid nutrient medium, have been investigated by laser kinetic fluorimetry. It is proposed to use the Hyamatrix biopolymer as a nutrient medium. This polymer is formed on the basis of native, chemically unmodified hyaluronic acid and contains amino acids, microelements, vitamins, and other components. The possibility of using the obtained results to develop an alternative method of fluorescent diagnostics of biological tissues is discussed. (optical technologies in biophysics and medicine)

  15. Using diffuse near-infrared light to characterize tissue optical and physiologic properties for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Hoai

    2001-05-01

    Methods based on near-infrared (NIR) diffuse reflectance offer novel and functional approaches to medical diagnostics. NIR diffuse reflectance techniques are well suited for non-invasive, quantitative characterization of tissue optical properties, namely macroscopic absorption (μa) and reduced scattering (μs') coefficient. Tissue optical properties, in turn, provide unique and clinically relevant functional and structural information about tissues. Needless to say, understanding light- tissue interactions and light transport in multiply scattering (turbid) media is essential in order to fully capitalize on the useful features of NIR diffuse reflectance spectroscopy. This thesis addresses the practical and, to a limited extent, the theoretical issues of NIR diffuse light spectroscopy. The goals of the thesis are two folds: (1)to investigate, from an instrumental and analytical perspectives, the accuracy and limitation of the various diffuse reflectance techniques in quantifying the optical properties of homogenous and layered turbid media, and (2)to evaluate the feasibility and applicability of using NIR diffuse reflectance spectroscopy to quantify in vivo tissue optical and physiologic properties during pathophysiologic processes. With respect to the first objective, we conducted validation studies to assess the accuracy of the frequency-domain and spatially-resolved techniques in quantifying μa and μs' of homogenous turbid media. Similarly, frequency-domain and time-domain approaches were used to characterize the optical properties and thickness of two-layered turbid media. For the second objective, frequency-domain system was used to quantify the changes in the in vivo optical and physiologic properties secondary to cancerous transformation, cardiovascular dysfunction, and photodynamic therapy of tumors. In summary, studies results clearly indicate that NIR diffuse reflectance techniques accurately quantify the in vivo tissue optical and physiologic

  16. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities. This research is partly supported by grant O N517 418440

  17. Express diagnostics of intact and pathological dental hard tissues by optical PNC method

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-03-01

    The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1 mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC- method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be used as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.

  18. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  19. The simulation of optical diagnostics for crystal growth - Models and results

    NASA Astrophysics Data System (ADS)

    Banish, M. R.; Clark, R. L.; Kathman, A. D.; Lawson, S. M.

    A computer simulation of a Two Color Holographic Interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  20. Optical diagnostics of tumour cells at different stages of pathology development

    NASA Astrophysics Data System (ADS)

    Shcheglova, L. S.; Abramova, L. L.; Maryakhina, V. S.

    2013-11-01

    The differences in optical and biophysical properties between the cells of mammary gland tumour extracted from tumours of different diameter are described. It is shown that the spectral and spectrokinetic properties of fluorescent probes in the cells extracted from the tumours 1 - 3 cm in diameter are essentially different. Thus, the extinction coefficient of rhodamine 6G gradually increases with the pathology development. At the same time the rate of interaction of the triplet states of molecular probes with the oxygen, diluted in the tumour cells cytoplasm, decreases with the growth of the tumour capsule diameter. The observed regularities can be due to the changes in the cell structure, biochemical and biophysical properties. The reported data may be useful for developing optical methods of diagnostics of biotissue pathological conditions.

  1. Design and fabrication of an infrared optical pyrometer ASIC as a diagnostic for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Gordon, Jared

    Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more often than not commercial-off-the-shelf (COTS) components are inadequate to satisfy every requirement for the diagnostic, and therefore a custom application specific design has to be considered. This thesis outlines the initial challenges with integrating the photodiode array block with multiple COTS transimpedance amplifiers onto a single chip, and offers a solution to a comparable optical pyrometer that uses the same type of photodiodes in conjunction with a re-designed transimpedance amplifier integrated onto a single chip. The final design includes a thorough analysis of the transimpedance amplifier along with modeling the circuit behavior which entails schematics, simulations, and layout. An alternative circuit is also investigated that incorporates an approach to multiplex the signals from each photodiode onto one data line and not only increases the viable real estate on the chip, but also improves the behavior of the photodiodes as they are subjected to less thermal load. The optical pyrometer application specific integrated circuit (ASIC) for shock physic experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at bandwidth of 30 MHz, and an input-referred noise RMS current of 50 nA that is capable of driving a 50 Ω load.

  2. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.

    2008-09-01

    Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they

  3. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, Steve A.; Shannon, Robert R.

    1987-01-01

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  4. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, S.A.; Shannon, R.R.

    1985-01-18

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  5. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  6. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  7. Femtosecond optical/hard X-ray timing diagnostics at an FEL: implementation and performance

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Weaver, Matt; Chollet, Matthieu; Robinson, Joseph; Glownia, James M.; Zhu, Diling; Bionta, Mina R.; Cammarata, Marco; Harmand, Marion; Coffee, Ryan N.; Fritz, David M.

    2013-05-01

    The development of Free Electron Lasers has opened the possibility to investigate ultrafast processes using femtosecond hard x-ray pulses. In optical/x-ray light pump/probe experiments, however, the time resolution is mainly limited by the ability to synchronize both light sources over a long distance (<100 fs FWHM) rather than their pulse length (<10 fs FWHM). We have implemented a spectrally encoding x-ray to optical laser timing diagnostic into the XPP beamline at LCLS with a timing uncertainty down to 10 fs. An x-ray induced change of refractive index in a solid target is temporally probed for single pulses by a chirped white light pulse [4]. By resorting single shot data to the timestamps obtained by the diagnostics, the temporal data quality can be improved to basically pulse length limited time resolution. By interchangable targets and adjustable x-ray and laser foci, the method was successfully applied for very different x-ray parameters. These are different photon energies in the range of 6-20 keV, which at LCLS also includes application of 3rd Harmonic radiation, pulse energy, and bandwidth, when using a Si(111) monochromator.

  8. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  9. Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology

    SciTech Connect

    Hyer, Daniel E.; Fisher, Ryan F.; Hintenlang, David E.

    2009-05-15

    This work reports on the characterization of a new fiber-optic coupled (FOC) dosimeter for use in the diagnostic radiology energy range. The FOC dosimeter was constructed by coupling a small cylindrical plastic scintillator, 500 {mu}m in diameter and 2 mm in length, to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube (PMT). A serial port interface on the PMT permits real-time monitoring of light output from the dosimeter via a custom computer program. The FOC dosimeter offered excellent sensitivity and reproducibility, allowing doses as low as 0.16 mGy to be measured with a coefficient of variation of only 3.64%. Dose linearity was also excellent with a correlation coefficient of 1.000 over exposures ranging from 0.16 to 57.29 mGy. The FOC dosimeter exhibited little angular dependence from axial irradiation, varying by less than 5% over an entire revolution. A positive energy dependence was observed and measurements performed within a scatter medium yielded a 10% variation in sensitivity as beam quality changed due to hardening and scatter across a 16 cm depth range. The current dosimetry system features an array of five PMTs to allow multiple FOC dosimeters to be monitored simultaneously. Overall, the system allows for rapid and accurate dose measurements relevant to a range of diagnostic imaging applications.

  10. Optical coherence tomography diagnostics for onco–urology. Review of clinical perspectives

    PubMed Central

    Kharchenko, Sergiy; Wojtkowski, Maciej; Drewa, Tomasz

    2013-01-01

    Introduction Optical coherence tomography (OCT) is being investigated widely for use in urologic pathology. The current imaging of urogenital cancers cannot be perfect, thus, routine methods demands new updates or inventions of alternative radiological scope. OCT presents so–called “live” optical biopsy. The authors aim to review this modality for uro–oncological purposes. Matherial and methods A series of 37 publications between 1989 and 2012 was selected and cited from GoogleScholar and PubMED/MEDLINE. The urogenital tract (bladder, ureter, scrotum organs and prostate) was imaged by OCT. Results The overall OCT sensitivity, specificity, accuracy, negative and positive predictive values ranged a lot on example of the urinary bladder's tumors screening. The data were 75–100%, 65–97.9%, 92%, 75%, 100%, respectively. Notwithstanding, a diagnostic importance of OCT may be comparable with urine cytology, cystoscopy, computerized tomography and magnetic resonance imaging. Conclusions OCT demonstrated its imaging potential, while till the present OCT plays role of an additional imaging. Future progress of OCT involvement in experimental and clinical once–urological diagnostics is needed under high evidence control. PMID:24579012

  11. Application of Gaseous Laser Targets and Optical Diagnostics to Study High Mach Number Unstable Plasma Flows

    SciTech Connect

    Edwards, J; MacKinnon, A; Robey, H

    2001-04-01

    The information that can be obtained from current laser driven high Mach number (compressible) hydrodynamics experiments using solid targets and foams is limited by the need to use X-ray diagnostics. These do well at providing the shape of gross 2D structures which we model well, but are a long way from being able to reveal detailed information at the smaller spatial scales, or in 3D turbulent flows, where most of the modeling uncertainties exist. Remedying this is, and will continue to be, an ongoing research effort. An alternative approach that is not being considered is to use gaseous targets coupled with optical diagnostics. The lower density of gases compared to solids or foams means we can use much larger targets for a given laser energy. This should significantly improve spatial resolution, and the dynamic range of scales that are resolvable. In addition, it may be possible to adapt powerful techniques, such as LIF, used by the low Mach number (incompressible) fluid/gas community so that they work in the high Mach number plasma regime. This would provide much more detailed information on turbulent flows than could be achieved with current X-ray diagnostics. We propose a small research effort to use established techniques such as optical interferometry (absolute electron density), and Schlieren photography (electron density gradient), to study compressible hydrodynamic instabilities. We also propose to explore whether techniques such as LIF may be adapted to the plasma regime, thus providing detailed information, particularly about turbulent flows, that is not currently obtainable in plasmas using X-ray diagnostics. The setting will be radiating blast waves, which avoids costly target fabrication, while promising a high physics payoff to the astrophysics community just from using the established diagnostics alone. We propose to conduct the work in collaboration with Dr Todd Ditmire at the University of Texas at Austin, principally on the Janus laser, and

  12. Diagnostic value of the optic nerve sheath diameter in pseudotumor cerebri.

    PubMed

    Bekerman, Inessa; Sigal, Tal; Kimiagar, Itzhak; Almer, Zina Evy; Vaiman, Michael

    2016-08-01

    If persistent severe headache remains the only complaint of a patient, then the diagnosis of pseudotumor cerebri (PTC) can be delayed because in such cases practitioners are hesitant to immediately apply invasive intracranial pressure (ICP) measurement. Our purpose was to apply the technique of measuring diameters of the optic nerve sheath (ONSD) as a diagnostic tool in cases of PTC. Our aim was to provide practitioners with an additional sign to speed up their decision making about implementation of the lumbar puncture. In a retrospective study, CT scan data of 35 consecutive adult patients with PTC were collected and analyzed. ONSD were measured at the point where the ophthalmic artery crosses the optic nerve (anatomical landmark). The correlation analysis was performed with sex, age, and neuro-ophthalmological findings. We found that the ONSD was enlarged in 94.3% of patients with PTC. The enlarged ONSD were 6.2±1.2mm for the right and 6.3±0.9mm for the left (cut-off value >5.5mm). The enlargement was bilateral, and no correlation with age or sex was found (p=0.67 and p=0.76, respectively). Presence of papilledema was detected in 91.4% of patients (32/35) presenting as a slightly less valuable diagnostic sign compared with ONSD. We conclude that in the majority of cases of PTC the ONSD is significantly enlarged, indicating elevated ICP even if CT scans are negative. Implementing this ONSD method as a diagnostic tool in cases of suspected PTC may help in early accurate diagnosis, avoiding misdiagnosis, and providing appropriate early treatment. PMID:27168453

  13. Uncertainty of diagnostic features measured by laser vibrometry: The case of optically non-cooperative surfaces

    NASA Astrophysics Data System (ADS)

    Agostinelli, G.; Paone, N.

    2012-12-01

    This paper discusses the uncertainty in the measurement of characteristic features by laser Doppler vibrometry useful to industrial diagnostics when measuring on polished, highly reflective, low diffusive surfaces, such as the enamelled metal sheet of the cabinet of electrical household appliances. This case is relevant to on-line quality control applications, where it is not possible to adopt any surface treatment to improve optical scattering properties. The paper illustrates in particular the effect of drop-out noise on the measured vibration signal and develops a joint analysis of drop-out noise due to poor optical properties and its effect on the diagnostic process, presented in statistical terms. A non-dimensional quantity is introduced to describe the amplitude of the Doppler signal and the presence of drop-out noise is shown to be correlated to its amplitude. Starting from the consideration that drop-out noise is impulsive, with a pseudo-random occurrence, this paper presents an experimental assessment of uncertainty in the measurement of some spectral features used for the diagnosis of electrical appliances on the production line. It can be seen that the effect of drop-out leads to an increase in scatter and to a systematic shift in the distribution of the features examined; this effect is relatively larger for features with low amplitude. The Monte Carlo simulation of measurement uncertainty propagation confirms the same trend and allows statistical distributions to be obtained for the features, thereby enabling us to draw some conclusions as regards diagnostic errors. This study shows that in the presence of pseudo-random drop-out noise a diagnosis based on spectral features with low amplitude has poor reliability and false-positives are highly probable. An analysis of this occurrence is made for cases of production exhibiting features with different statistical distributions and possible actions to limit such problem are highlighted.

  14. Inside Single Cells: Quantitative Analysis with Advanced Optics and Nanomaterials

    PubMed Central

    Cui, Yi; Irudayaraj, Joseph

    2014-01-01

    Single cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single cell activity. In order to obtain quantitative information (e.g. molecular quantity, kinetics and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single cell studies both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live cell analysis. Although a considerable proportion of single cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single cell analysis. PMID:25430077

  15. Inside single cells: quantitative analysis with advanced optics and nanomaterials.

    PubMed

    Cui, Yi; Irudayaraj, Joseph

    2015-01-01

    Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity. To obtain quantitative information (e.g., molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis. Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis. PMID:25430077

  16. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  17. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  18. Proposal to develop techniques using magneto-optic and electro-optic effects in optical fiber for CTR diagnostics

    SciTech Connect

    Chandler, G.I.; Jahoda, F.C.

    1982-02-01

    We discuss the developing technology of measuring electric and magnetic fields with optical fibers using the Faraday and Kerr effects, magnetostriction, and Sagnac interferometry. We review the measurement of induced birefringence in the presence of natural birefringence. We propose the use of these effects in making measurements in the fusion research program, with ZT-40 as an example.

  19. State of the art: diagnostic tools and innovative therapies for treatment of advanced thymoma and thymic carcinoma.

    PubMed

    Ried, Michael; Marx, Alexander; Götz, Andrea; Hamer, Okka; Schalke, Berthold; Hofmann, Hans-Stefan

    2016-06-01

    In this review article, state-of-the-art diagnostic tools and innovative treatments of thymoma and thymic carcinoma (TC) are described with special respect to advanced tumour stages. Complete surgical resection (R0) remains the standard therapeutic approach for almost all a priori resectable mediastinal tumours as defined by preoperative standard computed tomography (CT). If lymphoma or germ-cell tumours are differential diagnostic considerations, biopsy may be indicated. Resection status is the most important prognostic factor in thymoma and TC, followed by tumour stage. Advanced (Masaoka-Koga stage III and IVa) tumours require interdisciplinary therapy decisions based on distinctive findings of preoperative CT scan and ancillary investigations [magnetic resonance imaging (MRI)] to select cases for primary surgery or neoadjuvant strategies with optional secondary resection. In neoadjuvant settings, octreotide scans and histological evaluation of pretherapeutic needle biopsies may help to choose between somatostatin agonist/prednisolone regimens and neoadjuvant chemotherapy as first-line treatment. Finally, a multimodality treatment regime is recommended for advanced and unresectable thymic tumours. In conclusion, advanced stage thymoma and TC should preferably be treated in experienced centres in order to provide all modern diagnostic tools (imaging, histology) and innovative therapy techniques. Systemic and local (hyperthermic intrathoracic chemotherapy) medical treatments together with extended surgical resections have increased the therapeutic options in patients with advanced or recurrent thymoma and TC. PMID:26670806

  20. Review of current optical diagnostic techniques for non-muscle-invasive bladder cancer

    PubMed Central

    Kołodziej, Anna; Matuszewski, Michał; Tupikowski, Krzysztof

    2016-01-01

    Introduction Urinary bladder urothelial cell carcinoma is one of the most commonly diagnosed cancers in Europe. After prostate, lung and colon cancers, bladder cancer rates as the fourth most common cancer in men in the world. Urinary bladder cancer detection, treatment, and staging have traditionally been based on an endoscopic examination – cystoscopy. Material and methods A Medline, and Web of Science database search was performed on September 2015 without setting time limits, using the terms ‘bladder cancer’ in conjunction with ‘cystoscopy’, ‘diagnosis’, ‘detection’, ‘fluorescence’, ‘blue-light’, ‘PDD’, ‘narrow band imaging’, ‘molecular imaging’, ‘optical coherence tomography’ or ‘confocal laser endomicroscopy’. Results The new imaging techniques can be classified according to their scope as macroscopic, microscopic, and molecular. Macroscopic techniques, such as narrow band imaging, are similar to white light cystoscopy; however, they help visualize even very minute lesions in the bladder mucosa by means of contrast enhancement. Microscopic imaging techniques, such as optical coherence tomography and confocal laser endomicroscopy, provide high-resolution cross-sectional views of vesicular tissues, which resemble images obtained by histopathological examination. Therefore, these are referred as ‘optical biopsy’. Molecular imaging methods offer highly specific real-time visualization of cancer cells and their differentiation from healthy tissue, by combining optical imaging with fluorescent labeling of elements such as antibodies. Conclusions In this article we present a review of studies and literature concerning modern optical diagnostic techniques for non-muscle-invasive bladder cancer. We present available technology with its advantages and disadvantages, and studies regarding its effectiveness. PMID:27551551

  1. Advanced Imaging and Diagnostic Methods in the Assessment of Suspected Ischemic Heart Disease in Women.

    PubMed

    Joly, Joanna M; Bittner, Vera

    2016-09-01

    Although differences diminish with age, outcomes are overall worse for women compared to men who present with suspected acute coronary syndrome. The reasons for this discrepancy are multifactorial, including sex-related differences in atherosclerosis biology and fluid dynamics, as well as a premature conclusion by providers that chest pain must be noncardiac in the absence of obstructive coronary artery disease. In this review of existing literature, we explore the diverse differential diagnosis in this unique set of patients. Especially in women with persistent symptoms, absence of occlusive disease should prompt consideration for subangiographic plaque disruption, epicardial or microvascular endothelial dysfunction, transient neurohormonal imbalance predisposing to Takotsubo cardiomyopathy or spontaneous coronary artery dissection, underlying systemic inflammatory conditions, thromboembolic disease, myocarditis, and sequelae of congenital heart disease. As always, a thorough history and attentive physical exam will help guide further work-up, which in many cases may warrant noninvasive imaging, such as contrast-enhanced echocardiography, cardiac magnetic resonance imaging, or positron emission tomography, with their respective means of measuring myocardial perfusion and myocardial tissue pathology. Lastly, intracoronary imaging such as intravascular ultrasound and optical coherence tomography and invasive diagnostic methods such as coronary reactivity testing continue to add to our understanding that what appear to be atypical presentations of ischemic heart disease in women may in fact be typical presentations of pathologic cousin entities that remain incompletely defined. PMID:27443380

  2. Investigation of the feasibility of temperature profiling optical diagnostics in the SSME fuel pre-burner

    NASA Technical Reports Server (NTRS)

    Shirley, J. A.

    1983-01-01

    Results of an analytical investigation to determine the feasibility of temperature profiling in the space shuttle main engine (SSME) fuel preburner are presented. In this application it is desirable to measure temperature in the preburner combustor with a remote, nonintrusive optical technique. Several techniques using laser excitation were examined with a consideration of the constraints imposed by optical access in the fuel preburner and the problems associated with operation near the functioning space shuttle engine. The potential performance of practical diagnostic systems based on spontaneous Raman backscattering, laser induced fluorescence, and coherent anti-Stokes Raman spectroscopy were compared analytically. A system using collection of spontaneous Raman backscattering excited by a remotely located 5 to 10 watt laser propagated to the SSME through a small diameter optical fiber was selected as the best approach. Difficulties normally associated with Raman scattering: weak signal strength and interference due to background radiation are not expected to be problematic due to the very high density in this application, and the low flame luminosity expected in the fuel rich hydrogen oxygen flame.

  3. Optical Plasma Diagnostics for Magnetic Reconnection Studies in the Versatile Toroidal Facility

    NASA Astrophysics Data System (ADS)

    Tarkowski, David; Fasoli, Ambrogio; Egedal, Jan

    2000-10-01

    Magnetic reconnection studies in a collisionless regime are performed on the MIT Versatile Toroidal Facility (VTF) with emphasis on particle dynamics around the magnetic null point. Plasmas are produced in the VTF by electron cyclotron resonance heating and are confined in a magnetic cusp field. Magnetic reconnection is driven by the ExB drift generated by the combination of the cusp field and the toroidal electric field, which is created by electromagnetic induction using an ohmic transformer. The plasmas are composed primarily of singly ionized argon with typical densities and electron temperatures on the order of 10^17 m-3 and 10 eV. The number of available optical lines and the optical thinness of the plasma suggest that optical diagnostics can play a key role on VTF. Passive spectroscopic measurements yield ion temperature and density and electron temperature as a function of time both before and after the reconnection event. The active measurement is a three level laser induced fluorescence (LIF) scheme. A 10 ns pulsed dye laser is used to pump the 611 nm Argon II line. LIF yields the ion distribution function at a single point in time and can be used to study ion evolution during the reconnection event. Measurement techniques and an analysis of first results will be presented.

  4. Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics.

    PubMed

    Donolato, Marco; Antunes, Paula; Bejhed, Rebecca S; Zardán Gómez de la Torre, Teresa; Østerberg, Frederik W; Strömberg, Mattias; Nilsson, Mats; Strømme, Maria; Svedlindh, Peter; Hansen, Mikkel F; Vavassori, Paolo

    2015-02-01

    We demonstrate detection of DNA coils formed from a Vibrio cholerae DNA target at picomolar concentrations using a novel optomagnetic approach exploiting the dynamic behavior and optical anisotropy of magnetic nanobead (MNB) assemblies. We establish that the complex second harmonic optical transmission spectra of MNB suspensions measured upon application of a weak uniaxial AC magnetic field correlate well with the rotation dynamics of the individual MNBs. Adding a target analyte to the solution leads to the formation of permanent MNB clusters, namely, to the suppression of the dynamic MNB behavior. We prove that the optical transmission spectra are highly sensitive to the formation of permanent MNB clusters and, thereby to the target analyte concentration. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition and isothermal rolling circle amplification and benchmark against a commercial equipment. The results demonstrate the fast optomagnetic readout of rolling circle products from bacterial DNA utilizing the dynamic properties of MNBs in a miniaturized and low-cost platform requiring only a transparent window in the chip. PMID:25539065

  5. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  6. Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME

    NASA Astrophysics Data System (ADS)

    Shirley, John A.; Boedeker, Laurence R.

    1993-07-01

    Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman

  7. Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Boedeker, Laurence R.

    1993-01-01

    Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman

  8. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    PubMed

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen. PMID:27014191

  9. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae

    PubMed Central

    Diaz, Maureen H.; Winchell, Jonas M.

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen. PMID:27014191

  10. Advances in the Treatment of Aortic Valve Disease: is it Time for Companion Diagnostics?

    PubMed Central

    Hinton, Robert B.

    2014-01-01

    Purpose of the review Aortic valve disease (AVD) is a growing public health problem, and the pathogenesis underlying AVD is complex. The lack of durable bioprostheses and pharmacologic therapies remain central needs in care. The purpose of this review is to highlight recent clinical studies that impact the care of children with AVD and to explore ongoing translational research efforts. Recent findings Clinical studies have evaluated the durability of bioprosthetics and surgical strategies, tested statins during early disease, and identified new predictive biomarkers. Large animal models have demonstrated the effectiveness of a novel bioprosthetic scaffold. Mouse models of latent AVD have advanced our ability to elucidate natural history and perform preclinical studies that test new treatments in the context of early disease. Summary Current priorities for AVD patients include identifying new pharmacologic treatments and developing durable bioprostheses. Multidisciplinary efforts are needed that bridge pediatric and adult programs, bring together different types of expertise and leverage network and consortium resources. As our understanding of the underlying complex genetics is better defined, companion diagnostics may transform future clinical trials and ultimately improve the care of patients with AVD by promoting personalized medicine and early intervention. PMID:25089943

  11. Advances in associated-particle neutron probe diagnostics for substance detection

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred

    1995-09-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  12. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  13. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-07-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  14. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks. PMID:26724032

  15. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  16. Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.

    2013-08-01

    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.

  17. Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    GuoBiao, Cai; Jian, Dai; Yang, Zhang; NanJia, Yu

    2016-06-01

    This research evaluates the combustion behaviors of a single-element, swirl-coaxial injector in an atmospheric combustion chamber with gaseous oxygen and gaseous hydrogen (GO2/GH2) as the propellants. A brief simulated flow field schematic comparison between a shear-coaxial injector and the swirl-coaxial injector reveals the distribution characteristics of the temperature field and streamline patterns. Advanced optical diagnostics, i.e., OH planar laser-induced fluorescence and high-speed imaging, are simultaneously employed to determine the OH radical spatial distribution and flame fluctuations, respectively. The present study focuses on the flame structures under varying O/F mixing ratios and center oxygen swirl intensities. The combined use of several image-processing methods aimed at OH instantaneous images, including time-averaged, root-mean-square, and gradient transformation, provides detailed information regarding the distribution of the flow field. The results indicate that the shear layers anchored on the oxygen injector lip are the main zones of chemical heat release and that the O/F mixing ratio significantly affects the flame shape. Furthermore, with high-speed imaging, an intuitionistic ignition process and several consecutive steady-state images reveal that lean conditions make it easy to drive the combustion instabilities and that the center swirl intensity has a moderate influence on the flame oscillation strength. The results of this study provide a visualized analysis for future optimal swirl-coaxial injector designs.

  18. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    PubMed

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. PMID:26784012

  19. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Morohashi, Isao; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-02-01

    Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

  20. Portable fiber optic coupled doppler interferometer system for detonation and shock wave diagnostics

    SciTech Connect

    Fleming, K.J.

    1993-03-01

    Testing and analysis of shock wave characteristics such as produced by detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses doppler interferometry and has pined wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement non intrusively. The conventional VISAR is not well suited for portability because of its sensitive components, large power and cooling requirements, and hazardous laser beam. A new VISAR using the latest technology in solid state lasers and detectors has been developed and tested. To further enhance this system`s versatility, the unit is fiber optic coupled which allows remote testing, permitting the VISAR to be placed over a kilometer away from the target being measured. Because the laser light is contained in the fiber optic, operation of the system around personnel is far less hazardous. A software package for data reduction has also been developed for use with a personal computer. These new advances have produced a very versatile system with full portability which can be totally powered by batteries or a small generator. This paper describes the solid state VISAR and its peripheral components, fiber optic coupling methods and the fiber optic coupled sensors used for sending and receiving laser radiation.

  1. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  2. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  3. Sub-nanosecond optical diagnostics of laser-material interaction and dynamic microstructure of materials

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1993-03-01

    Several optical diagnostic techniques are used to evaluate the dynamic response of materials to intense dynamic loading and unloading, high stress and strain, and pressure. Velocity interferometry and electronic streak photography, each with sub-nanosecond time resolution, are used to record dynamic material response. Laser-launched flat plates are accelerated to 10{sup 12} m/s{sup 2} with terminal velocities >5 km/s. By impacting these plates into target samples, high strain rates (10{sup 8} sec{sup {minus}1}) and pressures >100 GPa have been generated for a duration of 0.8--5 nanoseconds. The efficacy and limitations of each technique are detailed and applications to other fields discussed.

  4. Sub-nanosecond optical diagnostics of laser-material interaction and dynamic microstructure of materials

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1993-01-01

    Several optical diagnostic techniques are used to evaluate the dynamic response of materials to intense dynamic loading and unloading, high stress and strain, and pressure. Velocity interferometry and electronic streak photography, each with sub-nanosecond time resolution, are used to record dynamic material response. Laser-launched flat plates are accelerated to 10[sup 12] m/s[sup 2] with terminal velocities >5 km/s. By impacting these plates into target samples, high strain rates (10[sup 8] sec[sup [minus]1]) and pressures >100 GPa have been generated for a duration of 0.8--5 nanoseconds. The efficacy and limitations of each technique are detailed and applications to other fields discussed.

  5. Crystallo-optic diagnostics method of the soft laser-induced effects in biological fluids

    NASA Astrophysics Data System (ADS)

    Skopinov, S. A.; Yakovleva, S. V.

    1991-05-01

    Presently, it is well known that individual cells"2 and higher organisms3'4 exhibit a marked response to soft laser irradiation in certain parts of the visible and near infrared spectral ranges. Broad clinical applications of laser therapy and slow progress in understanding of the physical, chemical and biological mechanisms of this phenomenon make the task to search new methods of objectivisation of laser-induces bioeffects very insistent. In this paper we give a short review of the methods of structural-optical diagnostics of the soft laser-induced effects in biofluids (blood and its fractions, saliva, juices, mucuses, exudations, etc.) and suggest their applications in experimental and clinical studies of the soft laser bioeffects.

  6. Reduced optical transmission of SiO{sub 2} fibers used in controlled fusion diagnostics

    SciTech Connect

    Ramsey, A.T.; Adler, H.G.; Hill, K.W.

    1993-02-01

    We have subjected a silica core fiber optic cable to 4 years of low-level neutron and gamma radiation from Princeton`s TFTR controlled fusion experiment The accumulated dose was 200 Gy. As a result of the radiation, we have measured increased attenuations of 100--300 db/km in the visible part of the spectrum, and a decrease of the numerical aperture. An attempt to decrease this damage by photobleaching failed. We argue that this failure is not unexpected, since the rate of damage is so slow and the time scale so long that the self-annealing process keeps the residual damage at the irreducible level seen in other experiments. The implications of these findings for controlled fusion diagnostics during upcoming experiments with highly reactive deuterium-tritium plasmas are discussed.

  7. Reduced optical transmission of SiO[sub 2] fibers used in controlled fusion diagnostics

    SciTech Connect

    Ramsey, A.T.; Adler, H.G.; Hill, K.W.

    1993-02-01

    We have subjected a silica core fiber optic cable to 4 years of low-level neutron and gamma radiation from Princeton's TFTR controlled fusion experiment The accumulated dose was 200 Gy. As a result of the radiation, we have measured increased attenuations of 100--300 db/km in the visible part of the spectrum, and a decrease of the numerical aperture. An attempt to decrease this damage by photobleaching failed. We argue that this failure is not unexpected, since the rate of damage is so slow and the time scale so long that the self-annealing process keeps the residual damage at the irreducible level seen in other experiments. The implications of these findings for controlled fusion diagnostics during upcoming experiments with highly reactive deuterium-tritium plasmas are discussed.

  8. Diagnostics of cancer by fiber optic evanescent wave FTIR (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Sokolov, Victor V.; Frank, George A.

    1996-11-01

    The fiberoptic evanescent wave Fourier transform IR spectroscopy (FEWS) using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the mid-IR region of the spectrum (4 to 16 micrometer) has recently found application in the diagnostics of biotissues. The silver halide fibers used are non-toxic, non-hygroscopic, flexible and soft and are characterized by a low optical loss. The method allows for non-invasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo with the aim of express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications.

  9. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  10. Diagnostics of cancer tissues by fiber optic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Golovkina, Viktoriya N.

    1997-08-01

    Fiber optic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  11. Miteq DR-125G-A, 12-GHZ Fiber-Optic Detector Evaluations for Photonic Doppler Velocimetry Diagnostic

    SciTech Connect

    Araceli Rutkowski; Michael Rutkowski

    2007-04-01

    The 12.5-GHz bandwidth MITEQ DR-125G-A detector is used often in the photonic Doppler velocimetry (PDV) diagnostic of Los Alamos National Laboratory (LANL). This paper presents detector characteristics as applied to optical heterodyning. We propose a test setup to simulate the beat frequency generated when incident and reflected light from a moving surface are mixed by optically combining a small-linewidth, tunable laser with a fixed, 1550-nm, thin-linewidth, high-power laser. The detector's transfer function, harmonic content, and signal-to-noise ratio (SNR) were to be measured and plotted for different optical power levels. Based on these results, appropriate light levels can be set to produce the highest dynamic range and signal level for the beat frequency. The goal is to provide insight into setting up the diagnostic for optimal detector performance using a specific optical input power.

  12. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  13. Utilization of optical image data from the Advanced Test Accelerator (ATA)

    SciTech Connect

    Chambers, F.W.; Kallman, J.S.; Slominski, M.E.; Chong, Y.P.; Donnelly, D.; Cornish, J.P.

    1987-01-01

    Extensive use is made of optical diagnostics to obtain information on the 50-MeV, 10-kA, 70-ns pulsed-electron beam produced by the Advanced Test Accelerator (ATA). Light is generated by the beam striking a foil inserted in the beamline or through excitation of the gas when the beamline is filled with air. The emitted light is collected and digitized. Two-dimensional images are recorded by either a gated framing camera or a streak camera. Extraction of relevant beam parameters, such as current density, current, and beam size, requires an understanding of the physics of the light-generation mechanism and an ability to handle and properly exploit a large digital database of image data. We will present a brief overview of the present understanding of the light-generation mechanisms in foil and gas, with emphasis on experimental observations and trends. We will review our data management and analysis techniques and indicate successful approaches for extracting beam parameters.

  14. Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.

  15. Optical combo sensor for early diagnostics within the built and natural environment

    NASA Astrophysics Data System (ADS)

    Bryce, Emma; Sommerville, James

    2008-04-01

    Within the Built and Natural Environment early analysis of structural conditions, air quality monitoring, pollutant and irritant detection by optical sensor technology is advancing. Combining the two technologies, Surface Plasmon Resonance (SPR) and Surface Enhance Raman Scattering (SERS) into a single instrument is the aim of the research, with a resulting fingerprint library of measurands being produced. The combo sensor will provide unique fingerprints of the measurands, monitoring conditions, such as the carbonation of concrete, microbial and chemical loading and ageing effects of structures, along with their severity. Analysed conditions will be crossed referenced with the library allowing smart feedback for timely maintenance. SPR and SERS work on the principle that specific surfaces, when excited by a light source passing through a glass prism, will change their rate and scale of vibration when their surface holds or is contaminated by particular a component, in this case the monitoring condition analyte. A ligand, which binds specifically to the monitoring analyte, is held in specialised surface coatings which are applied to the surface of the sensor glass or prism itself. The sensing takes place through detection of differences in the original laser light source and reflections/refractions of that light source from the glass prisms. The advances and obstacles of early research are discussed along with initial results and findings being examined in the development a new optical combo sensor.

  16. Overview of advanced components for fiber optic systems

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Stowe, David W.

    1986-01-01

    The basic operating principles and potential performance of several state-of-the-art fiber-optic devices are illustrated with diagrams and briefly characterized. Technologies examined include high-birefringence polarization-maintaining fibers and directional couplers, single-mode fiber polarizers and cut-off polarizers, optical-fiber modulators with radially poled piezoactive polymer (PVF2) jackets, and piezoelectric-squeezer polarization modulators. The need for improved manufacturing techniques to make such fiber-optic devices cost-competitive with their thin-film integrated-optics analogs is indicated.

  17. Integrated analysis of millisecond laser irradiation of steel by comprehensive optical diagnostics and numerical simulation

    NASA Astrophysics Data System (ADS)

    Doubenskaia, M.; Smurov, I.; Nagulin, K. Yu.

    2016-04-01

    Complimentary optical diagnostic tools are applied to provide comprehensive analysis of thermal phenomena in millisecond Nd:YAG laser irradiation of steel substrates. The following optical devices are employed: (a) infrared camera FLIR Phoenix RDASTM equipped by InSb sensor with 3 to 5 µm band pass arranged on 320 × 256 pixels array, (b) ultra-rapid camera Phantom V7.1 with SR-CMOS monochrome sensor in the visible spectral range, up to 105 frames per second for 64 × 88 pixels array, (c) original multi-wavelength pyrometer in the near-infrared range (1.370-1.531 µm). The following laser radiation parameters are applied: variation of energy per pulse in the range 15-30 J at a constant pulse duration of 10 ms with and without application of protective gas (Ar). The evolution of true temperature is restored based on the method of multi-colour pyrometry; by this way, melting/solidification dynamics is analysed. Emissivity variation with temperature is studied, and hysteresis type functional dependence is found. Variation of intensity of surface evaporation visualised by the camera Phantom V7.1 is registered and linked with the surface temperature evolution, different surface roughness and influence of protective gas atmosphere. Determination of the vapour plume temperature based on relatively intensities of spectral lines is done. The numerical simulation is carried out applying the thermal model with phase transitions taken into account.

  18. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    NASA Astrophysics Data System (ADS)

    Schwinkendorf, Jan-Patrick; Wunderlich, Steffen; Schaper, Lucas; Schmidt, Bernhard; Osterhoff, Jens

    2014-03-01

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of time-domain electron-bunch profiles, e.g. uncertainties arising from the phase retrieval of coherent radiation using the Kramers-Kronig relation. We present a novel method of measuring the spectral phase. The measurement is based on upconversion in an electro-optic crystal, where the THz-field spectrum of fs-electron bunches is shifted to the near-infrared. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, enabling the temporal measurement of low-power laser pulses. In this procedure, a narrow-bandwidth laser pulse detecting the longitudinal variations in the transverse electric field of an electron bunch via frequency mixing is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  19. Calibration of laser tomography as a new optical diagnostic tool applied to dosimetric polymer gels

    NASA Astrophysics Data System (ADS)

    Alwan, R.; Guermeur, F.; Bailly, Y.; Simonin, L.; Svoboda, J.; Makovicka, L.; Martin, E.

    2008-03-01

    Numerous medical applications, as radiotherapy for example, require accurate and reproducible three-dimensional dose measurements with high spatial resolution. A solution of great interest and which has been exploited for many years is the use of dosimetric gels based on different physico-chemical principles, as Fricke's gels or polymer gels. Fricke's gels take advantage of the oxidation of ferrous ions in ferric while polymer gels are the result of the synthesis of polyacrylamide hydrogel from monomer and cross-linking agent. Fricke's gels have particular limitations not encountered with polymer gel dosimeters: the time delay between irradiation and measurement must be reduced in order to limit the diffusion of ferric ions which may remove the spatial dose information. That's why, during the past decade, many compositions of polymer gels have been studied (PAG, MAGIC, …), elaborated and even commercialized (BANG gels). However the gel composition remains of great interest regarding its physical properties. In this work, the authors propose a new optical diagnostic tool more flexible and less expensive in comparison with existing techniques like magnetic resonance imaging (MRI) and Optical-CT. This technique is based on light scattering behaviour occurring in an irradiated polymer gel (note that light scattering in Fricke's gels is very feeble, the latter being essentially absorbant).

  20. Optical coherence tomography in diagnostics of precancer and cancer of human bladder

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena V.; Streltsova, Olga S.; Gladkova, Natalia D.; Shakhova, Natalia M.; Feldchtein, Felix I.; Kamensky, Vladislav A.; Gelikonov, Grigory V.; Snopova, Ludmila B.; Donchenko, Ekaterina V.

    2004-07-01

    Our goal was statistical assessment of the in vivo cystoscopic optical coherence tomography (OCT) ability to detect neoplasia in human urinary bladder. We analyzed major reasons of false positive and false negative image recognition results. Optical coherence tomography was performed to image the bladder during cystoscopy. The study enrolled 63 patients with suspicion for bladder cancer and scheduled for cystoscopy. The diagnosis was established by histopathology examination of a biopsy. Each biopsy site was examined by OCT. Benign conditions were diagnosed for 31 patients, and dysplasia or carcinoma were diagnosed for 32 patients. Six physicians blinded to all clinical data participated in the dichotomy recognition (malignant or benign) of the OCT images. 98% sensitivity and 72% specificity for the OCT recognition of dysplastic/malignant versus benign/reactive conditions of the bladder are demonstrated. Total error rate was 14.8%. The interobserver agreement multi-rater kappa coefficient is 0.80. The superficial and invasive bladder cancer and high-grade dysplasia were recognized with minimum error rate ranging from 0 to 3.3%. High sensitivity and good specificity of the OCT method in the diagnostics of bladder neoplasia makes OCT a promising complementary cystoscopic technique for non-invasive evaluation of zones suspicious for high-grade dysplasia and cancer.

  1. Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification

    PubMed Central

    Kansal, Rina

    2016-01-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid malignancy that occurs more commonly in adults, and has an increasing incidence, most likely due to increasing age. Precise diagnostic classification of AML requires clinical and pathologic information, the latter including morphologic, immunophenotypic, cytogenetic and molecular genetic analysis. Risk stratification in AML requires cytogenetics evaluation as the most important predictor, with genetic mutations providing additional necessary information. AML with normal cytogenetics comprises about 40%-50% of all AML, and has been intensively investigated. The currently used 2008 World Health Organization classification of hematopoietic neoplasms has been proposed to be updated in 2016, also to include an update on the classification of AML, due to the continuously increasing application of genomic techniques that have led to major advances in our knowledge of the pathogenesis of AML. The purpose of this review is to describe some of these recent major advances in the diagnostic classification and risk stratification of AML. PMID:27144061

  2. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  3. Research Studies on Advanced Optical Module/Head Designs for Optical Disk Recording Devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.; Seery, Bernard D.

    1993-01-01

    The Annual Report of the Optical Data Storage Center of the University of Arizona is presented. Summary reports on continuing projects are presented. Research areas include: magneto-optic media, optical heads, and signal processing.

  4. Recent advance in application of acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Shakin, Oleg V.; Vaganov, Mikhail A.; Zhdanov, Arseniy Y.; Prokashev, Vadim N.

    2014-09-01

    This paper aims to inform those interested in the scientific work of a large group of scientists: workers of the Department of Electronics and Optical communications of St. Petersburg State University of Aerospace Instrumentation in collaboration with workers of the Department of Quantum Electronics of St. Petersburg State Technical University in the area of researches and development of acousto-optic tunable filters (AOTF). Paper discusses the important features of the AOTF structure and their parameters that affect its work, such as: spectral range of optical radiation, spectral resolution, active aperture of the optical radiation, optical transmission of the working spectral range, optical radiation polarization (linear, circular or arbitrary) , diffraction efficiency, contrast, distortion of the optical radiation's front, frequency range of elastic waves, switching time, maximum electric control power, impedance. Also the AOTF using is considered: AOTF's implications for control of laser radiation, AOTF's application to determine the counterfeit money. The last part of the report focuses on materials that act as antireflection thin films. Spectral characteristics of "clean" and enlightened substrates of ZnSe and Ge are shown. As seen from the examples in the report, antireflection thin films increase transmittance of optical elements.

  5. Research studies on advanced optical module/head designs for optical devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.

    1991-01-01

    A summary is presented of research in optical data storage materials and of research at the center. The first section contains summary reports under the general headings of: (1) Magnetooptic media: modeling, design, fabrication, characterization, and testing; (2) Optical heads: holographic optical elements; and (3) Optical heads: integrated optics. The second section consist of a proposal entitled, Signal Processing Techniques for Optical Data Storage. And section three presents various publications prepared by the center.

  6. NASA SBIR Subtopic S2.04 "Advanced Optical Components"

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.

  7. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  8. Advances in optical CT scanning for gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jordan, K.

    2004-01-01

    Optical computed tomography (CT) is physically similar to x-ray CT but is more versatile since many powerful light sources exist and optical elements such as mirrors, lenses, polarizers and efficient detectors are available. There are many potential forms of optical CT. Attenuation, fluorescence or scatter, polarization and refractive index spatial changes are all examples of optical CT. To date, optical CT for gel dosimetry has been limited to attenuation measurements that are the sum of scatter and absorption along defined lines. Polymerization gels turn white with absorbed dose and attenuation is due to scatter. Radiochromic gels also form a dose image due to changes in visible absorption. This short review concentrates on the papers published since the DOSGEL 2001 meeting and highlights experimental results and issues that are important for obtaining good quality input data for reconstruction. The format involves selected highlights from the papers and associated points from our experience with optical CT experimentation. The comments are intended to assist researchers unfamiliar with optical measurements to obtain high quality transmission data, a necessary step in quantitative gel dosimetry.

  9. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  10. Advances in fiber optic sensors for in-vivo monitoring

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Mignani, Anna G.

    1995-09-01

    Biomedical fiber-optic sensors are attractive for the measurement of both physical and chemical parameters as well as for spectral measurements directly performed on the patient. An overview of fiber-optic sensors for in vivo monitoring is given, with particular attention to the advantages that these sensors are able to offer in different fields of application such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology, and dentistry.

  11. Advances and problems in plasma-optical mass-separation

    SciTech Connect

    Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A.

    2014-03-15

    This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

  12. Recent advances in reaction bonded silicon carbide optics and optical systems

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Schwartz, Jay; Landry, David; Glenn, William; Rider, Brian; Chung, Michael

    2005-08-01

    SSG Precision Optronics, Inc. (SSG) has recently developed a number of Reaction Bonded (RB) Silicon Carbide (SiC) optical systems for space-based remote sensing and astronomical observing applications. RB SiC's superior material properties make it uniquely well suited to meet the image quality and long term dimensional stability requirements associated with these applications. An overview of the RB SiC manufacturing process is presented, along with a summary description of recently delivered RB SiC flight hardware. This hardware includes an RB SiC telescope and Pointing Mirror Assembly (PMA) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) mission and an imaging telescope for the Long-Range Reconnaissance Imager (LORRI) mission. SSG continues to advance the state-of-the-technology with SiC materials and systems. A summary of development activities related to a low-cost, fracture tough, fiber reinforced RB SiC material formulation, novel tooling to produce monolithic, partially closed back mirror geometries, and extension of the technology to large aspheric mirrors is also provided.

  13. Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics.

    PubMed

    Daffara, Claudia; Pampaloni, Enrico; Pezzati, Luca; Barucci, Marco; Fontana, Raffaella

    2010-06-15

    Spectral imaging technology, widely used in remote sensing applications, such as satellite or radar imaging, has recently gained importance in the field of artwork conservation. In particular, multispectral imaging in the near-infrared region (NIR) has proved useful in analyzing ancient paintings because of the transparency of most pigments and their varied reflectance changes over this spectral region. A variety of systems, with different detectors and filtering or dispersing technologies, have been implemented. Despite the recognized potential of multispectral NIR imaging, which provides information on both spectral and spatial domains (thus extending the capabilities of conventional imaging and spectroscopy), most of the systems currently used in art diagnostics have limitations. The technology is still in its early stages of development in this field. In this Account, we present the scanning multispectral IR reflectography (SMIRR) technique for artwork analysis, together with an integrated device for the acquisition of imaging data. The instrument prototype is a no-contact optical scanner with a single-point measurement of the reflectance, capable of simultaneously collecting a set of 14 spatially registered images at different wavelengths in the NIR range of 800-2300 nm. The data can be analyzed as a spectral cube, both as a stack of wavelength resolved images (multi-NIR reflectography) and as a series of point reflectance spectra, one for each sampled pixel on the surface (NIR spectrometry). We explore the potential of SMIRR in the analysis of ancient paintings and show its advantages over the wide-band conventional method. The multispectral option allows the choice of the most effective NIR bands and improves the ability to detect hidden features. The interband comparison aids in localizing areas of different pictorial materials with particular NIR reflectance. In addition to the analysis of single monochromatic images, enhancement procedures involving the

  14. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  15. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  16. Recipes for stellar jets: results of combined optical/infrared diagnostics

    NASA Astrophysics Data System (ADS)

    Podio, L.; Bacciotti, F.; Nisini, B.; Eislöffel, J.; Massi, F.; Giannini, T.; Ray, T. P.

    2006-09-01

    We examine the conditions of the plasma along a sample of "classical" Herbig-Haro (HH) jets located in the Orion and Vela star forming regions, through combined optical-infrared spectral diagnostics. Our sample includes HH 111, HH 34, HH 83, HH 73, HH 24 C/E, HH 24 J, observed quasi-simultaneously and in the same manner at moderate spatial/spectral resolution. Once inter-calibrated, the obtained spectra cover a wide wavelength range from 0.6-2.5 μm, including many transitions from regions of different excitation conditions. This allows us to probe the density and temperature stratification which characterises the cooling zones behind the shock fronts along the jet. From the line ratios we derive the variation of the visual extinction along the flow, the electron density and temperature (ne and T_e), the hydrogen ionisation fraction x_e, and the total density nH in the emission region of different lines. The knowledge of such parameters is essential for testing existing jet models and for planning follow-up high-angular resolution observations. From the diagnostics of optical forbidden lines we find, on average, that in the examined jets, in the region of optical emission, ne varies between 50 cm-3 and 3× 103 cm-3, xe ranges between 0.03 and 0.6, and the electron temperature Te is 1.3× 104 K in the HH 111 and HH 34 jets, while it appears to be higher (1.8× 104 K on average) in the other examined jets. The electron density and temperature derived from [Fe II] lines, turn out to be, respectively, higher and lower in comparison to those determined from optical lines, in agreement with the fact that the [Fe II] lines arise in the more compressed gas located further from the shock front. An even denser component in the jets, with values of ne up to 106 cm-3 is detected using the ratio of calcium lines. The derived physical parameters are used to estimate the depletion onto dust grains of calcium and iron with respect to solar abundances. This turns out to be quite

  17. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  18. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics.

    PubMed

    Mishra, Saswat; Saadat, Darius; Kwon, Ohjin; Lee, Yongkuk; Choi, Woon-Seop; Kim, Jong-Hoon; Yeo, Woon-Hong

    2016-07-15

    There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies. PMID:26946257

  19. Developments Toward Diagnostic Breast Cancer Imaging Using Near-Infrared Optical Measurements and Fluorescent Contrast Agents1

    PubMed Central

    Hawrysz, Daniel J; Sevick-Muraca, Eva M

    2000-01-01

    Abstract The use of near-infrared (NIR) light to interrogate deep tissues has enormous potential for molecular-based imaging when coupled with NIR excitable dyes. More than a decade has now passed since the initial proposals for NIR optical tomography for breast cancer screening using time-dependent measurements of light propagation in the breast. Much accomplishment in the development of optical mammography has been demonstrated, most recently in the application of time-domain, frequency-domain, and continuous-wave measurements that depend on endogenous contrast owing to angiogenesis and increased hemoglobin absorbance for contrast. Although exciting and promising, the necessity of angiogenesis-mediated absorption contrast for diagnostic optical mammography minimizes the potential for using NIR techniques to assess sentinel lymph node staging, metastatic spread, and multifocality of breast disease, among other applications. In this review, we summarize the progress made in the development of optical mammography, and focus on the emerging work underway in the use of diagnostic contrast agents for the molecular-based, diagnostic imaging of breast. PMID:11191107

  20. An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development

    SciTech Connect

    Droemer, Darryl W.; Crain, Marlon D.; Lare, Gregory A.; Bennett, Nichelle L.; Johnston, Mark D.

    2013-06-13

    National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed power–driven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camera–based optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

  1. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  2. Time-resolved analysis and optical diagnostics of Trichel corona in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Qin, Yu; Zhao, Gao; Ouyang, Jiting

    2016-06-01

    Trichel pulses of negative corona discharge in atmospheric air are investigated in a needle-to-plate configuration. Time-resolved images of the pulsed discharge are recorded by using an ICCD camera. Light emission spectra of N2 molecules and \\text{N}2+ ions during the discharge are measured by optical diagnostics. The distributions of the positive \\text{N}2+ ions and the reduced electric field along the discharge channel are analyzed accordingly. The results show that the positive ions that can accumulate in space and distort the electric field play an important role on the formation of the Trichel pulse. The Trichel pulse is a mode transition between low-current Townsend discharge and high-current glow discharge. The rising time of the pulse corresponds to the breakdown and formation of glow discharge, and the decay time is related to destroy the process of positive ion clouds and the quenching of glow discharge. The time interval between the pulses is determined by the re-accumulation of positive ions near the cathode in the low-current Townsend discharge to form the positive ion clouds as well as a strongly-distorted electric field.

  3. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  4. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  5. PIC Simulation of RF Plasma Sheath Formation and Initial Validation of Optical Diagnostics using HPC Resources

    NASA Astrophysics Data System (ADS)

    Icenhour, Casey; Exum, Ashe; Martin, Elijah; Green, David; Smithe, David; Shannon, Steven

    2014-10-01

    The coupling of experiment and simulation to elucidate near field physics above ICRF antennae presents challenges on both the experimental and computational side. In order to analyze this region, a new optical diagnostic utilizing active and passive spectroscopy is used to determine the structure of the electric fields within the sheath region. Parallel and perpendicular magnetic fields with respect to the sheath electric field have been presented. This work focuses on the validation of these measurements utilizing the Particle-in-Cell (PIC) simulation method in conjunction with High Performance Computing (HPC) resources on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Plasma parameters of interest include electron density, electron temperature, plasma potentials, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model of the experimental setup. The overall goal of this study is to develop models for complex RF plasma systems and to help outline the physics of RF sheath formation and subsequent power loss on ICRF antennas in systems such as ITER. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.

  6. Last Advances in Silicon-Based Optical Biosensors.

    PubMed

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  7. Last Advances in Silicon-Based Optical Biosensors

    PubMed Central

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  8. Optical diagnostics of sputtering in magnetically enhanced high-current discharges

    NASA Astrophysics Data System (ADS)

    Smith, David; Aceto, Steven; Trotter, Jason; Sommerer, Timothy; Lawler, James

    2014-10-01

    We have investigated a gallium-based liquid cathode for use in a high-voltage, high-power gas switch for grid-scale electric power conversion. The cathode requirements include conduction of high current density (1--10 A cm-2) , preferably at low voltage, along with minimal loss by evaporation and/or sputtering. The approach to satisfy these criteria has been to operate with a modified commercial magnetron system at high pressure where the choice of working comprises the light elements, such as hydrogen or helium. A separate anode is used to form a plane-parallel geometry. We have demonstrated pulsed operation with current densities exceeding 2 A cm-2 and voltages below 200 V, over a pressure range of 50--800 mTorr. The sputtering rate on gallium and other cathode materials has been estimated for various plasma conditions using a line ratio emission spectroscopy diagnostic based on analysis of the radiation trapping. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  9. Advances in white-light optical signal processing

    NASA Technical Reports Server (NTRS)

    Yu, F. T. S.

    1984-01-01

    A technique that permits signal processing operations which can be carried out by white light source is described. The method performs signal processing that obeys the concept of coherent light rather than incoherent optics. Since the white light source contains all the color wavelengths of the visible light, the technique is very suitable for color signal processing.

  10. Advanced Geometric Optics on a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Nussbaum, Allen

    1979-01-01

    Presents a ray-tracing procedure based on some ideas of Herzberger and the matrix approach to geometrical optics. This method, which can be implemented on a programmable pocket calculator, applies to any conic surface, including paraboloids, spheres, and planes. (Author/GA)

  11. Advanced optical modelling of dynamically deposited silicon nitride layers

    NASA Astrophysics Data System (ADS)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  12. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  13. Data handling at EBR-II (Experimental Breeder Reactor II) for advanced diagnostics and control work

    SciTech Connect

    Lindsay, R.W.; Schorzman, L.W.

    1988-01-01

    Improved control and diagnostics systems are being developed for nuclear and other applications. The Experimental Breeder Reactor II (EBR-II) Division of Argonne National Laboratory has embarked on a project to upgrade the EBR-II control and data handling systems. The nature of the work at EBR-II requires that reactor plant data be readily available for experimenters, and that the plant control systems be flexible to accommodate testing and development needs. In addition, operational concerns require that improved operator interfaces and computerized diagnostics be included in the reactor plant control system. The EBR-II systems have been upgraded to incorporate new data handling computers, new digital plant process controllers, and new displays and diagnostics are being developed and tested for permanent use. In addition, improved engineering surveillance will be possible with the new systems.

  14. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  15. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  16. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  17. Continued advancement of laser damage resistant optically functional microstructures

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.; Sabatino, Ernest

    2012-11-01

    Micro- and nano-structured optically functional surface textures continue to exhibit higher performance and longer term survivability than thin-film coatings for an increasing number of materials used within high energy laser (HEL) systems. Anti-reflection (AR) microstructures (ARMs) produce a graded refractive index yielding high transmission over wide spectral ranges along with a chemical, mechanical and laser damage resistance inherited from the bulk optic material. In this study, ARMs were fabricated in the relevant HEL materials sapphire, neodymium-doped YAG, fused silica, BK7 glass, and the magnesium aluminate known as SPINEL. Standardized pulsed laser induced damage threshold (LiDT) measurements were made using commercial testing services to directly compare the damage resistance of ARMs-treated optics to uncoated and thin-film-AR-coated (TFARC) optics at wavelengths of 532nm, 694nm, 800nm, 1064nm, and 1538nm. As found with prior work, the LiDT of ARMs etched in fused silica was typically in the range of 35 J/cm2 at a wavelength of 1064nm and a pulse width of 10ns, a level that is comparable to uncoated samples and 3.5 times greater than the level specified by six prominent TFARC providers. The Army Research Laboratory measured the pulsed LiDT at 532nm (10ns) of ARMs in fused silica to be up to 5 times the level of the ion beam sputtered TFARC previously employed in their HEL system, and 2 times higher than a low performance single layer MgF2 TFARC. This result was repeated and expanded using a commercial LiDT testing service for ARMs in two types of fused silica and for Schott N-BK7 glass. An average damage threshold of 26.5 J/cm2 was recorded for the ARMs-treated glass materials, a level 4 times higher than the commercial IBS TFARCs tested.

  18. Advanced Optics for the Remote Steering ITER ECRH Upper Launcher

    NASA Astrophysics Data System (ADS)

    Bruschi, A.; Cirant, S.; Moro, A.; Platania, P.; Sozzi, C.

    2005-01-01

    The optics of the ECRH Upper Launcher in ITER based on the Remote Steering concept needs special attention, since any focussing element in front of the waveguide has combined effects on the range of steering angles achievable and the beam width in the plasma region. The effects are studied in detail for a setup composed by 8 beams per port (three ports), for a spherical and a hyperbolic mirror surface. Gaussian beam analysis is compared to beam pattern calculations with the optical physics code GRASP, in order to verify the validity of gaussian optics approximation. The standard description with simply astigmatic beams, not adequate in more complex systems as the proposed two-mirror set-up, requires approximations, which are compared with the generalized astigmatic beam description. The ohmic losses at the end mirrors and the related localized heating due to the very large power density cause deformations that depends on the design of the cooling circuit. The distortion of the beam shape has been evaluated in a realistic case of mirror cooling with a small-channel system. The quantification of the effect depends on the precise evaluation ohmic losses and their enhancement in the long term due to the surface deterioration.

  19. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  20. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G. PMID:25430242

  1. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Fan, T. S.; Chen, J. X.; Li, X. Q.; Zhang, G. H.

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  2. Remote skin tissue diagnostics in vivo by fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.

    1998-04-01

    The new method of fiber-optical evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle IR region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast, remote, and can be applied to many fields Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured and assigned in the regions of 850-4000 cm-1. The lipid structure changes are discussed. We are able to develop the spectral histopathology as a fast and informative tool of analysis.

  3. Remote Skin Tissue Diagnostics In Vivo By Fiber Optic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolyakov, Sergei; Afanasyeva, Natalia; Bruch, Reinhard; Afanasyeva, Natalia

    1998-05-01

    The new method of fiber optical evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal skin tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle infrared (MIR) region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast (several seconds), and can be applied to many fields. Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development of convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured.

  4. Imaging heterogeneous absorption distribution of advanced breast cancer by optical tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Zhu, Quing

    2010-11-01

    Tumor vascular patterns of advanced breast cancers are complex and heterogeneous. Two typical light absorption patterns of periphery enhancement and posterior shadowing have been observed when imaging these advanced cancers using optical tomography guided by ultrasound. We perform a series simulation and phantom experiments to systemically evaluate the effects of target parameters, target locations, and target optical properties on imaging periphery enhancement absorption distribution using reflection geometry. Large tumors are modeled as concentric semiellipsoidal targets of different outer shell and inner core optical properties. We show that larger targets of more than 3 to 4 cm diameter with outer shell thicknesses less than 1 cm can be resolved at a depth less than 3 cm. A clinical example is given to show the complex vasculature distributions seen from an advanced cancer.

  5. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  6. Advanced one-dimensional optical strain measurement system, phase 4

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1992-01-01

    An improved version of the speckle-shift strain measurement system was developed. The system uses a two-dimensional sensor array to maintain speckle correlation in the presence of large off-axis rigid body motions. A digital signal processor (DSP) is used to calculate strains at a rate near the RS-170 camera frame rate. Strain measurements were demonstrated on small diameter wires and fibers used in composite materials research. Accurate values of Young's modulus were measured on tungsten wires, and silicon carbide and sapphire fibers. This optical technique has measured surface strains at specimen temperatures above 750 C and has shown the potential for measurements at much higher temperatures.

  7. Advances in optical property measurements of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Dever, Joyce A.; Jaworske, Donald A.

    1997-01-01

    Some of the instruments and experimental approaches, used for measuring the optical properties of thermal control systems, are presented. The instruments' use in studies concerning the effects of combined contaminants and space environment on these materials, and in the qualification of hardware for spacecraft, are described. Instruments for measuring the solar absorptance and infrared emittance offer improved speed, accuracy and data handling. A transient method for directly measuring material infrared emittance is described. It is shown that oxygen exposure before measuring the solar absorptance should be avoided.

  8. Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples

    PubMed Central

    Schröder, Ulrich-Christian; Bokeloh, Frank; O'Sullivan, Mary; Glaser, Uwe; Wolf, Katharina; Pfister, Wolfgang; Popp, Jürgen; Ducrée, Jens; Neugebauer, Ute

    2015-01-01

    This work presents a polymeric centrifugal microfluidic platform for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps. This “Lab-on-a-Disc” platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria. Utilising fluorescence microscopy, quantification of the bacterial load has been achieved for concentrations above 2 × 10−7 cells ml−1 within a 4 μl sample. As a pilot application, we characterize urine samples from patients with urinary tract infections. Following minimal sample preparation, Raman spectra of the bacteria are recorded following centrifugal capture in stopped-flow sedimentation mode. Utilizing advanced analysis algorithms, including extended multiplicative scattering correction, high-quality Raman spectra of different pathogens, such as Escherichia coli or Enterococcus faecalis, are obtained from the analyzed patient samples. The whole procedure, including sample preparation, requires about 1 h to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 h and more typically required for standard microbiological methods. As this cost-efficient centrifugal cartridge can be operated using low-complexity, widely automated instrumentation, while providing valuable bacterial identification in urine samples in a greatly reduced time-period, our opto-microfluidic Lab-on-a-Disc device demonstrates great potential for next-generation patient diagnostics at the of point-of-care. PMID:26339318

  9. Advances in fiber optic-based UV resonance Raman spectroscopy techniques for anatomical and physiological investigations

    NASA Astrophysics Data System (ADS)

    Schulze, H. Georg; Barbosa, Christopher J.; Greek, L. Shane; Turner, Robin F. B.; Haynes, C. A.; Klein, Karl-Friedrich; Blades, Michael W.

    1999-04-01

    UV resonance Raman spectroscopy (UVRRS) is becoming a very popular spectroscopic method for bioanalytical investigations due to its high sensitivity, lack of fluorescence, and suitability for use in aqueous solutions. We have made a number of technological advances, especially the development of fiber-optic-based technologies, which permit the performance of remote/in-situ UVRRS measurements. We will be reporting on improved optical fiber probes and demonstrate their benefits in performing UVRRS on neurotransmitters, saliva, and urine.

  10. Beyond the technology lists: tracking advanced optics and other critical technologies

    NASA Astrophysics Data System (ADS)

    Sternberg, Ernest

    1992-05-01

    The United States and other governments have increasingly engaged in technology-specific policies toward fields like advanced optics. But the data for making such decisions wisely is not available. Product data, R&D expenditure data, patent data, citation analyses, the industrial census, and technology lists all have serious shortcomings for tracking technical fields like optics. Better information should be obtained through more rigorous data collection on R&D activities and through a series of technology forecasts.

  11. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Astrophysics Data System (ADS)

    1993-11-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  12. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  13. Collagen bioengineered systems: in situ advanced optical spatiotemporal analysis

    NASA Astrophysics Data System (ADS)

    Hwang, Yu Jer; Lang, Xuye; Granelli, Joseph; Turgman, Cassandra C.; Gigante, Jackie; Lyubovitsky, Julia G.

    2014-05-01

    The architecture of collagen is important in maintenance and regeneration of higher vertebrates' tissues. We had been studying the changes to this architecture with in situ multi-photon optical microscopy that combines nonlinear optical phenomena of second harmonic generation (SHG) and two-photon fluorescence (TPF) signals from collagen hydrogels prepared from different collagen solid content, polymerized at different temperatures, with different ions as well as modified with reducing sugars. We incubated 2 g/l collagen hydrogels with 0.1 M fructose at 37 °C and after about 20 days observed a significant induction of in situ fluorescence. The twophoton fluorescence emission was centered at about 460 nm for 730 nm excitation wavelength and shifted to 480 nm when we changed the excitation wavelength to 790 nm. The one-photon fluorescence emission was centered at about 416 nm when excitation was 330 nm. It red shifted and split into two peaks centered at about 430 nm and 460 nm for 370 nm excitation; 460 nm peak became predominant for 385 nm excitation and further shifted to 470 nm for 390 nm excitation. SHG and TPF imaging showed restructuring of hydrogels upon this modification. We will discuss these findings within the context of our ongoing dermal wound repair research.

  14. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2011-10-01

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  15. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew D.; Moy, Anthony J. E.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development with BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  16. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Moy, Anthony J. E.; Hughes, Andrew D.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development within BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  17. SINET3: advanced optical and IP hybrid network

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2007-11-01

    This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.

  18. Advances in X-ray Computed Tomography Diagnostics of Ballistic Impact Damage

    NASA Astrophysics Data System (ADS)

    Wells, Joseph M.; Brannon, Rebecca M.

    2007-12-01

    With the relatively recent introduction of quantitative and volumetric X-ray computed tomography (XCT) applied to ballistic impact damage diagnostics, significant inroads have been made in expanding our knowledge base of the morphological variants of physical impact damage. Yet, the current state of the art in computational and simulation modeling of terminal ballistic performance remains predominantly focused on the penetration phenomenon, without detailed consideration of the physical characteristics of actual impact damage. Similarly, armor ceramic material improvements appear more focused on penetration resistance than on improved intrinsic damage tolerance and damage resistance. Basically, these approaches minimize our understanding of the potential influence that impact damage may play in the mitigation or prevention of ballistic penetration. Examples of current capabilities of XCT characterization, quantification, and visualization of complex impact damage variants are demonstrated and discussed for impacted ceramic and metallic terminal ballistic target materials. Potential benefits of incorporating such impact damage diagnostics in future ballistic computational modeling are also briefly discussed.

  19. Containerless preparation of advanced optical glasses: Experiment 77F095

    NASA Technical Reports Server (NTRS)

    Happe, R. A.; Kim, K. S.

    1982-01-01

    Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment.

  20. A novel precision face grinder for advanced optic manufacture

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Peng, Y.; Wang, Z.; Yang, W.; Bi, G.; Ke, X.; Lin, X.

    2010-10-01

    In this paper, a large-scale NC precision face grinding machine is developed. This grinding machine can be used to the precision machining of brittle materials. The base and the machine body are independent and the whole structure is configured as a "T" type. The vertical column is seat onto the machine body at the middle center part through a double of precision lead rails. The grinding wheel is driven with a hydraulic dynamic and static spindle. The worktable is supported with a novel split thin film throttle hydrostatic lead rails. Each of motion-axis of the grinding machine is equipped with a Heidenhain absolute linear encoder, and then a closed feedback control system is formed with the adopted Fanuc 0i-MD NC system. The machine is capable of machining extremely flat surfaces on workpiece up to 800mmx600mm. The maximums load bearing of the work table is 620Kg. Furthermore, the roughness of the machined surfaces should be smooth (Ra<50nm-100nm), and the form accuracy less than 2μm (+/-1μm)/200x200mm. After the assembly and debugging of the surface grinding machine, the worktable surface has been self-ground with 60# grinding wheel and the form accuracy is 3μm/600mm×800mm. Then the grinding experiment was conduct on a BK7 flat optic glass element (400mmx250mm) and a ceramic disc (Φ100mm) with 60# grinding wheel, and the measuring results show the surface roughness and the form accuracy of the optic glass device are 0.07μm and 1.56μm/200x200mm, and these of the ceramic disc are 0.52μm and 1.28μm respectively.

  1. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  2. Precision manufacturing using advanced optical interference lithography. Final report

    SciTech Connect

    Britten, J.A.; Hawryluk, A.M.

    1997-04-03

    Goal was to develop interference lithography (IL) as a reliable process for patterning large-area, deep-submicron scale field emission arrays for field emission display (FED) applications. We have developed a system based on IL which can easily produce an array of 0.2-0.5 micron emitters over large area (up to 400 sq. in. to date) with better than 5% height and spacing uniformity. Process development as a result of this LDRD project represents a significant advance over the current state of the art for FED manufacturing and is applicable to all types of FEDs, independent of the emitter material. Ability of IL to pattern such structures simultaneously and uniformly on a large format has application to other technology areas, such as dynamic random access memory (DRAM) production and magnetic media recording.

  3. Multimodal optical biopsy probe to improve the safety and diagnostic yield of brain needle biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desroches, Joannie; Pichette, Julien; Goyette, Andréanne; Tremblay, Marie-Andrée.; Jermyn, Michael; Petrecca, Kevin; Leblond, Frédéric

    2016-03-01

    Brain needle biopsy (BNB) is performed to collect tissue when precise neuropathological diagnosis is required to provide information about tumor type, grade, and growth patterns. The principal risks associated with this procedure are intracranial hemorrhage (due to clipping blood vessels during tissue extraction), incorrect tumor typing/grading due to non-representative or non-diagnostic samples (e.g. necrotic tissue), and missing the lesion. We present an innovative device using sub-diffuse optical tomography to detect blood vessels and Raman spectroscopy to detect molecular differences between tissue types, in order to reduce the risks of misdiagnosis, incorrect tumour grading, and non-diagnostic samples. The needle probe integrates optical fibers directly onto the external cannula of a commercial BNB needle, and can perform measurements for both optical techniques through the same fibers. This integrated optical spectroscopy system uses diffuse reflectance signals to perform a 360-degree reconstruction of the tissue adjacent to the biopsy needle, based on the optical contrast associated with hemoglobin light absorption, thereby localizing blood vessels. Raman spectra measurements are also performed interstitially for tissue characterization. A detailed sensitivity of the system is presented to demonstrate that it can detect absorbers with diameters <300 µm located up to ˜2 mm from the biopsy needle core, for bulk optical properties consistent with brain tissue. Results from animal experiments are presented to validate blood vessel detection and Raman spectrum measurement without disruption of the surgical workflow. We also present phantom measurements of Raman spectra with the needle probe and a comparison with a clinically validated Raman spectroscopy probe.

  4. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  5. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    SciTech Connect

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  6. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  7. Optical and UV x-ray imaging diagnostics for imploding plasma experiments

    NASA Astrophysics Data System (ADS)

    Lee, P. H. Y.; Price, R. H.; Reay, J.; Pecos, J.; Seagrave, J.; McGurn, J.; Cochrane, B.; Anderson, B.

    1986-08-01

    The Trailmaster/Pioneer 1 series of imploding plasma experiments are aimed at using an inductive storage driver to implode an ultrathin aluminum foil with a multimegampere, submicrosecond electrical pulse. The power pulse is produced by an explosive flux compression generator and a fast plasma compression opening switch. The goal is to obtain an intense source of soft x rays from the thermalization of the plasma kinetic energy when pinch occurs on axis. An important target diagnostic is a fast camera which measures the dynamics of foil run-in and implosion symmetry. These measurements are made in the visible, UV, and x-ray portions of the electromagnetic spectrum. UV/x-ray images are first converted to visible light, then transmitted by visible light optics to a framing camera, which is located at a safe distance. For UV/soft x-ray imaging, we mount a disposable pinhole camera with a p-terphenyl-coated converter screen on the target chamber. For soft/hard x-ray imaging, a microchannel plate is used in front of the p-terphenyl-coated screen to boost quantum detection efficiency and signal gain. For faster temporal response the p-terphenyl can be replaced by NE-111 or other fast fluors. Image transmission is accomplished by means of two large mirrors (150-250 mm diam) and a large catadioptric telescope. The framing camera consists of four gated microchannel plates with adjustable gate and interframe times. The framing camera is a versatile and rugged instrument, it has performed satisfactorily for each and every Pioneer shot. Experimental data indicate that this camera, which uses individual gated microchannel plates, is far superior to commercial streak/framing cameras, because it has a dynamic range which is orders of magnitude larger than commercial cameras, each channel can be attenuated separately, further increasing the dynamic range of the imaging system. This makes our framing camera especially suitable for recording sequences of events where the brightness

  8. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall. PMID:27379646

  9. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  10. Advanced diagnostic approaches and current management of internal disorders of select species (rodents, sugar gliders, hedgehogs).

    PubMed

    Evans, Erika E; Souza, Marcy J

    2010-09-01

    African pygmy and European hedgehogs, sugar gliders, and rodents such as rats, mice, gerbils, hamsters, guinea pigs, and chinchillas are becoming increasingly popular as pets in the United States, and more practitioners are being asked to examine, diagnose, and treat these animals for a bevy of disorders and diseases. Many procedures and techniques used in traditional small and large animal medicine are used for these species, with minor adaptations or considerations. This article examines available diagnostic tools and treatment methodologies for use in hedgehogs, sugar gliders, and selected rodents. PMID:20682430

  11. Advanced optical smoke meters for jet engine exhaust measurement

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1986-01-01

    Smoke meters with increased sensitivity, improved accuracy, and rapid response are needed to measure the smoke levels emitted by modern jet engines. The standard soiled tape meter in current use is based on filtering, which yields long term averages and is insensitive to low smoke levels. Two new optical smoke meter techniques that promise to overcome these difficulties have been experimentally evaluated: modulated transmission (MODTRAN) and photothermal deflection spectroscopy (PDS). Both techniques are based on light absorption by smoke, which is closely related to smoke density. They are variations on direct transmission measurements which produce a modulated signal that can be easily measured with phase sensitive detection. The MODTRAN and PDS techniques were tested on low levels of smoke and diluted samples of NO2 in nitrogen, simulating light adsorption due to smoke. The results are evaluated against a set of ideal smoke meter criteria that include a desired smoke measurement range of 0.1 to 12 mg cu.m. (smoke numbers of 1 to 50) and a frequency response of 1 per second. The MODTRAN instrument is found to be inaccurate for smoke levels below 3 mg/cu.m. and is able to make a only about once every 20 seconds because of its large sample cell. The PDS instrument meets nearly all the characteristics of an ideal smoke meter: it has excellent sensitivity over a range of smoke levels from 0.1 to 20 mg/cu.m. (smoke numbers of 1 to 60) and good frequency response (1 per second).

  12. Advanced high-resolution mask processes using optical proximity correction

    NASA Astrophysics Data System (ADS)

    Chan, Y. David

    1999-08-01

    The benefits of incorporating some 'distortion' to the design data in order to produce the desired results on the wafers has been recognized for many years. This 'distortion' has come to be commonly referred to as optical proximity correction (OPC) by the lithography community. In today's era of high throughput laser reticle writing tools, line shortening and corner rounding has forced OPC up the lithography tree from wafer imaging to reticle imaging. With the increasing popularity of 4X systems, the comparatively large spot laser reticle writing systems in the field today need to be extended before being rendered useless for critical reticle requirements due to reticle corner rounding, line shortening and scatter bar resolution. These problems must be resolved in order to extend the use of laser tool for technology node below 0.25 micrometer. Some previous work has been done in adding corner serifs to eliminate corner rounding in contact holes. It was clear from the results that the optimal serifs sizes could be different when patterns were written on different tools. However, there is no clear understanding how the process may affect the outcome. A recent paper by W. Ziegler, et al shows the effect of adding small serifs to line ends on line end shortening based on aerial image and wafer measurement. This paper will discuss the effect of Laser Proximity correction (LPC) and the reticle manufacturing processes on pattern fidelity. CAPROX LPCTM is used to correct for distoritons during the mask exposure. Not only will the impact of lithographic tools on OPC be discussed, but an examination of the effect of wet and dry etched processes on corner rounding, image fidelity, and line end shortening will also be presented.

  13. An Epidemiological Survey of Cachexia in Advanced Cancer Patients and Analysis on Its Diagnostic and Treatment Status.

    PubMed

    Sun, Lei; Quan, Xiao-Qing; Yu, Shiying

    2015-01-01

    Recently, an international consensus diagnostic criterion for cancer cachexia was proposed. The aim of the study is to assess the prevalence of cachexia in patients with advanced cancer and to assess the current status of the diagnosis and management of cancer cachexia. A total of 390 patients with advanced cancer were included. There were 140 patients with cachexia and the prevalence was 35.9%. The prevalence was highest in pancreatic cancer (88.9%), followed by gastric cancer (76.5%) and esophageal cancer (52.9%). Sixty-three patients with cancer cachexia have CT scans available for muscle mass evaluation and 98.4% were sarcopenic. Cachectic patients have a significantly lower overall quality of life and a higher symptom burden. According to oncology physicians, only 33 patients were considered to have cancer cachexia. The false negative rate amounted to 76.4%. The positive rate was related to the body mass index and Eastern Cooperative Oncology Group performance status of the patients. There were few types of pharmacological approaches for cancer cachexia and more than half of cachectic patients did not receive any anticachexia treatment. These results indicate that the prevalence of cachexia in advanced cancer patients was high. However, cancer cachexia was rarely recognized and clinical management for cancer cachexia was very inadequate. PMID:26317149

  14. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  15. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-10-15

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.

  16. Electron-beam and high-speed optical diagnostics for the average power laser experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.; McVey, Brian D.; Greegor, Robert B.; Dowell, David H.

    1992-07-01

    The average power laser experiment (APLE) program is a collaboration between Boeing Aerospace and Electronics Company and Los Alamos National Laboratory to build a free-electron laser (FEL) operating at a wavelength of 10 μm and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to simulations of the expected electron beam properties, diagnostic plans have been developed for the low duty factor and the 25% duty factor operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near-infrared light (optical-transition radiation, Cherenkov radiation, synchrotron radiation, and spontaneous-emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  17. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    PubMed

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range. PMID:23127030

  18. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP (invited)

    SciTech Connect

    Demers, D. R.; Fimognari, P. J.

    2012-10-15

    Heavy ion beam probes have been installed on a variety of toroidal devices, but the first and only application on a reversed field pinch is the diagnostic on the Madison Symmetric Torus. Simultaneous measurements of spatially localized equilibrium potential and fluctuations of density and potential, previously inaccessible in the core of the reversed field pinch (RFP), are now attainable. These measurements reflect the unique strength of the heavy ion beam probe (HIBP) diagnostic. They will help determine the characteristics and evolution of electrostatic fluctuations and their role in transport, and determine the relation of the interior electric field and flows. Many aspects of the RFP present original challenges to HIBP operation and inference of plasma quantities. The magnetic field contributes to a number of the issues: the comparable magnitudes of the toroidal and poloidal fields and edge reversal result in highly three-dimensional beam trajectories; partial generation of the magnetic field by plasma current cause it and hence the beam trajectories to vary with time; and temporal topology and amplitude changes are common. Associated complications include strong ultraviolet radiation and elevated particle losses that can alter functionality of the electrostatic systems and generate noise on the detectors. These complexities have necessitated the development of new operation and data analysis techniques: the implementation of primary and secondary beamlines, adoption of alternative beam steering methods, development of higher precision electrostatic system models, refinement of trajectory calculations and sample volume modeling, establishment of stray particle and noise reduction methods, and formulation of alternative data analysis techniques. These innovative methods and the knowledge gained with this system are likely to translate to future HIBP operation on large scale stellarators and tokamaks.

  19. Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning

    PubMed Central

    Long, Feng; Zhu, Anna; Shi, Hanchang

    2013-01-01

    The growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for legislative actions on environmental pollution control and early warning. Optical biosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. This article reviews important advances in functional biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells) that facilitate the increasing application of optical biosensors. This work further examines the significant improvements in optical biosensor instrumentation and their environmental applications. Innovative developments of optical biosensors for environmental pollution control and early warning are also discussed. PMID:24132229

  20. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268

  1. Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Gorsky, M. P.

    2013-08-01

    We present theoretical fundamentals of polarization and correlation analysis of the optical anisotropy of biological tissues. Results of measurements of coordinate distributions of the complex degree of mutual anisotropy (CDMA) that are formed by birefringent structures of the prostate tissue with benign and malignant changes are compared. Magnitudes and ranges of variation of statistical (the firstto fourth-order distribution moments) and correlation (excess of autocorrelation functions) parameters of the coordinate CDMA distributions of histological sections of the prostate postoperative bioptic material are studied. Objective criteria of the diagnostics of the appearance of pathology and of the differentiation of the degree of its severity are determined.

  2. Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER

    SciTech Connect

    Moro, A.; Alessi, E.; Bruschi, A.; Platania, P.; Sozzi, C.; Chavan, R.; Collazos, A.; Goodman, T. P.; Udintsev, V. S.; Henderson, M. A.

    2009-11-26

    A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effects with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.

  3. Application of nanotechnology in miniaturized systems and its use for advanced analytics and diagnostics - an updated review.

    PubMed

    Sandetskaya, Natalia; Allelein, Susann; Kuhlmeier, Dirk

    2013-12-01

    A combination of Micro-Electro-Mechanical Systems and nanoscale structures allows for the creation of novel miniaturized devices, which broaden the boundaries of the diagnostic approaches. Some materials possess unique properties at the nanolevel, which are different from those in bulk materials. In the last few years these properties became a focus of interest for many researchers, as well as methods of production, design and operation of the nanoobjects. Intensive research and development work resulted in numerous inventions exploiting nanotechnology in miniaturized systems. Modern technical and laboratory equipment allows for the precise control of such devices, making them suitable for sensitive and accurate detection of the analytes. The current review highlights recent patents in the field of nanotechnology in microdevices, applicable for medical, environmental or food analysis. The paper covers the structural and functional basis of such systems and describes specific embodiments in three principal branches: application of nanoparticles, nanofluidics, and nanosensors in the miniaturized systems for advanced analytics and diagnostics. This overview is an update of an earlier review article. PMID:24365338

  4. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections--needs, advances, and future prospects.

    PubMed

    Zumla, Alimuddin; Al-Tawfiq, Jaffar A; Enne, Virve I; Kidd, Mike; Drosten, Christian; Breuer, Judy; Muller, Marcel A; Hui, David; Maeurer, Markus; Bates, Matthew; Mwaba, Peter; Al-Hakeem, Rafaat; Gray, Gregory; Gautret, Philippe; Al-Rabeeah, Abdullah A; Memish, Ziad A; Gant, Vanya

    2014-11-01

    Respiratory tract infections rank second as causes of adult and paediatric morbidity and mortality worldwide. Respiratory tract infections are caused by many different bacteria (including mycobacteria) and viruses, and rapid detection of pathogens in individual cases is crucial in achieving the best clinical management, public health surveillance, and control outcomes. Further challenges in improving management outcomes for respiratory tract infections exist: rapid identification of drug resistant pathogens; more widespread surveillance of infections, locally and internationally; and global responses to infections with pandemic potential. Developments in genome amplification have led to the discovery of several new respiratory pathogens, and sensitive PCR methods for the diagnostic work-up of these are available. Advances in technology have allowed for development of single and multiplexed PCR techniques that provide rapid detection of respiratory viruses in clinical specimens. Microarray-based multiplexing and nucleic-acid-based deep-sequencing methods allow simultaneous detection of pathogen nucleic acid and multiple antibiotic resistance, providing further hope in revolutionising rapid point of care respiratory tract infection diagnostics. PMID:25189349

  5. Optical property measurements as a diagnostic tool for control of materials processing in space and on Earth

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    A new method is described, including results, to measure, control, and follow containerless processing in ground based levitators. This technique enables instantaneous optical property measurements from a transient solid or liquid surface concurrent with true temperature measurement. This was used successfully as a diagnostic tool to follow processing of Al, Si, and Ti during electromagnetic levitation. Experiments on Al show the disappearance of the oxide (emittance 0.33) at ca. 1300 C leaving a liquid surface with an emittance of 0.06. Electromagnetic levitation of silicon shows a liquid with a constant emittance (0.2) but with a solid whose emittance decreases very rapidly with increasing temperature. Consequently, the processing of materials at high temperatures can be controlled quite well through the control of surface optical properties.

  6. Some Recent Advances of Ultrasonic Diagnostic Methods Applied to Materials and Structures (Including Biological Ones)

    NASA Astrophysics Data System (ADS)

    Nobile, Lucio; Nobile, Stefano

    This paper gives an overview of some recent advances of ultrasonic methods applied to materials and structures (including biological ones), exploring typical applications of these emerging inspection technologies to civil engineering and medicine. In confirmation of this trend, some results of an experimental research carried out involving both destructive and non-destructive testing methods for the evaluation of structural performance of existing reinforced concrete (RC) structures are discussed in terms of reliability. As a result, Ultrasonic testing can usefully supplement coring thus permitting less expensive and more representative evaluation of the concrete strength throughout the whole structure under examination.

  7. Neutrophil CD64 expression: a reliable diagnostic marker of infection in advanced cancer patients?

    PubMed

    Comolli, Giuditta; Torchio, Martina; Lenta, Elisa; Franceschetti, Benvenuto; Chiesa, Antonella; Calarota, Sandra A; Baldanti, Fausto; Scudeller, Luigia; Marone, Piero; Danova, Marco; Marco, Danova

    2015-07-01

    Infection and sepsis are major health problems in cancer patients. There is a need for the identification and validation of biomarkers to improve their early diagnosis and treatment. Emerging evidence showed that neutrophil CD64 is a highly sensitive and specific marker for systemic infection and sepsis in critically ill patients with various diseases but data on patients bearing solid tumors are still lacking. Using a dedicated flow cytometric assay we evaluated neutrophil CD64 expression in patients with advanced cancer without active infections to verify if it could be utilized as a reliable biomarker of early infections also in oncologic patients. PMID:26147145

  8. Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Kukulis, Indulis; Fridenberga, Eva; Venckus, Girts

    2002-06-01

    Advanced sensor device for shape analysis of the tissue- reflected mean single period photoplethysmography (SPPPG) signals has been designed and clinically tested. The SPPPG signal shape reveals individual features of the patient's cardio-vascular state. Clinical studies of several patient groups (e.g. diabetes mellitus, atherosclerosis obliterans, Raynaud's syndrome) made possible to specify components of the SPPPG signal that are sensitive to the corresponding organic or functional pathologies. Comparison of the right and left arm finger SPPPG signal shapes, for instance, appears to be efficient tool for early screening of unilateral atherosclerosis obliterans.

  9. Diagnostics and electron-optics of a high current electron beam in the TANDEM free electron laser - status report

    SciTech Connect

    Arensburg, A.; Avramovich, A.; Chairman, D.

    1995-12-31

    In the construction of the Israeli TANDEM FEL the major task is to develop a high quality electron optic system. The goal is to focus the e-beam to a minimal radius (1 mm) in the interaction region (the wiggler). Furthermore, good focusing throughout the accelerator is essential in order to achieve high transport efficiency avoiding discharge and voltage drop of the high voltage terminal. We have completed the electron optical design and component procurement, including 8 quadrupole lenses 4 steering coils and an electrostatic control system. All are being assembled into the high voltage terminal and controlled by a fiber optic link. Diagnostic means based on fluorescent screens and compact CCD camera cards placed at the HV terminal and at the end of the e-gun injector have been developed. We report first measurements of the beam emittance at the entrance to the Tandem accelerator tube using the {open_quote}pepper pot{close_quote} technique. The experiment consists of passing the 0.5 Amp beam through a thin plate which is perforated with an army of 0.5 mm holes. The spots produced on a fluorescent screen placed 90 cm from the pepper pot were recorded with a CCD camera and a frame grabber. The measured normalized emittance is lower than 10{pi} mm mR which is quite close to the technical limit of dispenser cathode e-guns of the kind we have. Recent results of the measured transport efficiency and the diagnostics of the high current (1A, 1.5MV) electron-optical system will be reported.

  10. Microelectromechanical system assembled ion optics: An advance to miniaturization and assembly of electron and ion optics

    SciTech Connect

    Fox, J.; Verbeck, G.; Saini, R.; Tsui, K.

    2009-09-15

    Deep-reactive ion etching of n-doped silicon-on-insulator is utilized to make ion optical components to aid in the miniaturization of mass analyzers. The microelectromechanical system components are bound to aluminum nitride substrates and employed three-dimensional assembly. The assembly methods are tested for breakdown (V{sub b}), durability, and alignment. Demonstration of ion manipulation is shown with a 1 mm Bradbury-Nielsen gate, 500 {mu}m Einzel lens, 500 {mu}m coaxial ring ion trap, and reflectron optics. Data are presented showing the resolution, attenuation, and performance of each of these devices. We demonstrate advantages and disadvantages of this technology and its applications to mass analysis.

  11. Advancement of photonics for space and other platforms: open optical interconnect architecture (OOIA)

    NASA Astrophysics Data System (ADS)

    Gaydeski, Michael S.

    1997-07-01

    Continuous investigation of new technologies for avionics and space processing has led to the improvement of applications capabilities and processing for tactical platforms (commercial and government satellites, tactical asset such as the USN Reconnaissance Fighter F/A-18R, USAF Fighter F-16, various helicopters, etc.,) and surveillance platforms (commercial and government satellites, Joint Surveillance Target Attack Radar System, Advanced Warning and Control System). This paper focuses on the potential benefits of inserting optical interconnect technology into these platforms while subscribing an Open Optical Interconnect Architecture concept and a methodology for systems development and integration.

  12. Recent developments of advanced structures for space optics at Astrium, Germany

    NASA Astrophysics Data System (ADS)

    Stute, Thomas; Wulz, Georg; Scheulen, Dietmar

    2003-12-01

    The mechanical division of EADS Astrium GmbH, Friedrichshafen Germany, the former Dornier Satellitensystem GmbH is currently engaged with the development, manufacturing and testing of three different advanced dimensionally stable composite and ceramic material structures for satellite borne optics: -CFRP Camera Structure -Planck Telescope Reflectors -NIRSpec Optical Bench Breadboard for James Web Space Telescope The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  13. Advanced fusion diagnostics. Final technical report, July 15, 1991--July 14, 1993

    SciTech Connect

    Moses, K.G.

    1993-07-14

    Key among various issues of ignited plasmas is understanding the physics of energy transfer between thermal plasma particles and magnetically confined, highly energetic charged ions in a tokamak device. The superthermal particles are products of fusion reactions. The efficiency of energy transfer by collisions, from charged fusion products (e.g., {alpha}-particles) to plasma ions, grossly determines whether or not plasma conditions are self-sustaining without recourse to auxiliary heating. Furthermore, should energy transfer (efficiency be poor, and substantial auxiliary heating power is required to maintain reacting conditions within the plasma, economics may preclude commercial viability of fusion reactors. The required charged fusion product information is contained in the energy distribution function of these particles. Knowledge of temporal variations of the superthermal particle energy distribution function could be used by a fusion reactor control system to balance plasma conditions between thermal runaway and a modicum of fusion product energy transfer. Therefore, diagnostics providing data on the dynamical transfer of alpha-particle and other charged fusion product energy to the plasma ions are essential elements for a fusion reactor control system to insure that proper plasma conditions are maintained. The objective of this work is to assess if spectral analysis of rf radiation emitted by charged fusion products confined in a magnetized plasma, called ion cyclotron emission (ICE), can reveal the vital data of the distribution function of the superthermal particles.

  14. Update in salivary gland cytopathology: Recent molecular advances and diagnostic applications.

    PubMed

    Pusztaszeri, Marc P; Faquin, William C

    2015-07-01

    Salivary gland tumors (SGT) are notorious for their extraordinary diversity and for the morphological overlap that exists between many of these entities. Fine-needle aspiration biopsy (FNAB) has a well-established role in the evaluation of patients with a salivary gland lesion, helping to guide clinical management. However, salivary gland FNAB has several limitations and does not allow for a specific diagnosis in some cases. For these reasons, salivary gland FNAB is considered one of the most challenging areas in cytopathology. Over the last decade, new salivary gland entities have been recognized, enlarging SGT diversity and complexity even more. In addition, a subset of SGT, including common entities such as pleomorphic adenoma and uncommon new entities such as mammary analog secretory carcinoma, have been characterized cytogenetically by the presence of specific translocations. The molecular consequences of these translocations and their potential prognostic and therapeutic values are not yet well characterized. However, these translocations and their resulting fusion oncogenes and oncoproteins can be used as diagnostic clues in salivary gland FNAB material in order to overcome the limitations of cytomorphological evaluation alone. In this review, we focus on SGTs currently known to harbor translocations and fusion genes, including uncommon and recently recognized entities, and discuss their potential application to salivary gland FNAB. PMID:25613003

  15. Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    NASA Technical Reports Server (NTRS)

    Morrow, John H.; Hooker, Stanford B.; Booth, Charles R.; Bernhard, Germar; Lind, Randall N.; Brown, James W.

    2010-01-01

    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats.

  16. Advances in ultrafast time resolved fluorescence physics for cancer detection in optical biopsy

    NASA Astrophysics Data System (ADS)

    Alfano, R. R.

    2012-03-01

    We discuss the use of time resolved fluorescence spectroscopy to extract fundamental kinetic information on molecular species in tissues. The temporal profiles reveal the lifetime and amplitudes associated with key active molecules distinguishing the local spectral environment of tissues. The femtosecond laser pulses at 310 nm excite the tissue. The emission profile at 340 nm from tryptophan is non-exponential due to the micro-environment. The slow and fast amplitudes and lifetimes of emission profiles reveal that cancer and normal states can be distinguished. Time resolved optical methods offer a new cancer diagnostic modality for the medical community.

  17. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  18. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs

    PubMed Central

    Molinaro, Marilisa; Ameri, Pietro; Marone, Giancarlo; Petretta, Mario; Abete, Pasquale; Di Lisa, Fabio; De Placido, Sabino; Bonaduce, Domenico; Tocchetti, Carlo G.

    2015-01-01

    Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV) dysfunction, and heart failure (HF). The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF) is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure. PMID:26583088

  19. Development of a portable non-contact optical diagnostic system for the detection of δ-HMX

    NASA Astrophysics Data System (ADS)

    Dale, Andrew J.; Wright, Mark W.; Hughes, Christopher T.; Bowden, Mike D.

    2007-09-01

    If a HMX-based explosive is subjected to an insult then there is a potential for the insulted β-HMX to undergo a phase change to the more sensitive δ form. AWE has an ongoing programme to develop a science-based model of the response of HMX-based explosives to potential insults. As part of this programme there is a need to identify whether δ-HMX has been formed, as this would subsequently affect the intrinsic safety properties of the formulation. δ-HMX, unlike the more stable β form, exhibits unusual optical properties for an explosive, as it acts as a frequency-doubling material. When illuminated by a high-energy laser pulse areas of the explosive charge that contain δ-HMX emit frequency doubled light. This non-linear optical phenomenon allows for a non-invasive diagnostic to be developed to study creation of the more sensitive δ phase within HMX based formulations. AWE has developed a portable diagnostic system based on this concept to investigate the behaviour of HMX-based explosives after low-speed impacts. The results of the commissioning trials are presented; using both an inert simulant, KDP, to align and prove the system and HMX samples from low-speed impact experiments. The results of these experiments are compared to initial calculations using the Hydrocode EDEN.

  20. Optical detection of breast tumors: a comparison of diagnostic performance of autofluorescence, diffuse reflectance, and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Majumder, Shovan K.; Keller, Matthew D.; Mahadevan-Jansen, Anita

    2007-02-01

    We report the results of a comparative evaluation of the diagnostic capabilities of autofluorescence, diffuse reflectance, and Raman spectroscopic approaches in differentiating the various types of breast tumors from normal breast tissues. Optical spectra (n=293) were acquired ex-vivo from a total of 75 breast tissue samples belonging to six distinct histopathologic categories: invasive ductal carcinoma, lobular carcinoma, ductal carcinoma in-situ, fibroadenoma, other benign tumors, and normal breast tissue. Autofluorescence, diffuse reflectance, and Raman spectra were measured from the same locations of a given tissue sample. A probability based multivariate statistical algorithm capable of direct multiclass classification was developed to analyze the diagnostic content of the optical spectra measured from the same set of breast tissue sites with these different techniques. The algorithm uses the theory of nonlinear Maximum Representation and Discrimination Feature (MRDF) for feature extraction, and the theory of Sparse Multinomial Logistic Regression (SMLR) for classification. The results of discrimination analyses reveal that the performance of Raman spectroscopy is superior to that of all others in classifying the breast tissues into respective histopathologic categories. The best classification accuracy was observed to be ~96%, 86%, 94%, 98%, 85%, and 100% for invasive ductal carcinoma, lobular carcinoma, ductal carcinoma in-situ, fibroadenoma, benign tumors and normal breast tissues, respectively, on the basis of leave-one-out cross validation, with the overall accuracy being ~97%.

  1. First hydrogen operation of NIO1: Characterization of the source plasma by means of an optical emission spectroscopy diagnostic.

    PubMed

    Barbisan, M; Baltador, C; Zaniol, B; Cavenago, M; Fantz, U; Pasqualotto, R; Serianni, G; Vialetto, L; Wünderlich, D

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a compact and flexible radio frequency H(-) ion source, developed by Consorzio RFX and INFN-LNL. The aim of the experimentation on NIO1 is the optimization of both the production of negative ions and their extraction and beam optics. In the initial phase of its commissioning, NIO1 was operated with nitrogen, but now the source is regularly operated also with hydrogen. To evaluate the source performances, an optical emission spectroscopy diagnostic was installed. The system includes a low resolution spectrometer in the spectral range of 300-850 nm and a high resolution (50 pm) one, to study, respectively, the atomic and the molecular emissions in the visible range. The spectroscopic data have been interpreted also by means of a collisional-radiative model developed at IPP Garching. Besides the diagnostic hardware and the data analysis methods, the paper presents the first plasma measurements across a transition to the full H mode, in a hydrogen discharge. The characteristic signatures of this transition in the plasma parameters are described, in particular, the sudden increase of the light emitted from the plasma above a certain power threshold. PMID:26932047

  2. Improving on-wafer CD correlation analysis using advanced diagnostics and across-wafer light-source monitoring

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Rechtsteiner, Gregory; Lalovic, Ivan; Bekaert, Joost

    2014-04-01

    With the implementation of multi-patterning ArF-immersion for sub 20nm integrated circuits (IC), advances in equipment monitoring and control are needed to support on-wafer yield performance. These in-situ equipment monitoring improvements, along with advanced litho-cell corrections based on on-wafer measurements, enable meeting stringent overlay and CD control requirements for advanced lithography patterning. The importance of light-source performance on lithography pattering (CD and overlay) has been discussed in previous publications.[1-3] Recent developments of Cymer ArF light-source metrology and on-board monitoring enable end-users to detect, for each exposed wafer, changes in the near-field and far-field spatial profiles and polarization performance, [4-6] in addition to the key `optical' scalar parameters, such as bandwidth, wavelength and energy. The major advantage of this capability is that the key performance metrics are sampled at rates matched to wafer performance, e.g. every exposure field across the wafer, which is critical for direct correlation with on-wafer performance for process control and excursion detection.

  3. Nano-sensitizers for multi-modality optical diagnostic imaging and therapy of cancer

    NASA Astrophysics Data System (ADS)

    Olivo, Malini; Lucky, Sasidharan S.; Bhuvaneswari, Ramaswamy; Dendukuri, Nagamani

    2011-07-01

    We report novel bioconjugated nanosensitizers as optical and therapeutic probes for the detection, monitoring and treatment of cancer. These nanosensitisers, consisting of hypericin loaded bioconjugated gold nanoparticles, can act as tumor cell specific therapeutic photosensitizers for photodynamic therapy coupled with additional photothermal effects rendered by plasmonic heating effects of gold nanoparticles. In addition to the therapeutic effects, the nanosensitizer can be developed as optical probes for state-of-the-art multi-modality in-vivo optical imaging technology such as in-vivo 3D confocal fluorescence endomicroscopic imaging, optical coherence tomography (OCT) with improved optical contrast using nano-gold and Surface Enhanced Raman Scattering (SERS) based imaging and bio-sensing. These techniques can be used in tandem or independently as in-vivo optical biopsy techniques to specifically detect and monitor specific cancer cells in-vivo. Such novel nanosensitizer based optical biopsy imaging technique has the potential to provide an alternative to tissue biopsy and will enable clinicians to make real-time diagnosis, determine surgical margins during operative procedures and perform targeted treatment of cancers.

  4. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  5. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    NASA Astrophysics Data System (ADS)

    Sannibale, V.; Abbott, B.; Aso, Y.; Boschi, V.; Coyne, D.; DeSalvo, R.; Márka, S.; Ottaway, D.; Stochino, A.

    2008-07-01

    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed.

  6. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  7. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  8. Evaluation of Optical Coherence Tomography as a Means of Identifying Earlier Stage Basal Cell Carcinomas while Reducing the Use of Diagnostic Biopsy

    PubMed Central

    Schwartz, Michelle; Feldman, Eleanor; Bienenfeld, Amanda; Bieber, Amy K.; Ellis, Jeffery; Alapati, Usha; Lebwohl, Mark; Siegel, Daniel M.

    2015-01-01

    Objective: To determine the diagnostic accuracy of optical coherence tomography for basal cell carcinoma and the proportion of biopsies that could be avoided if optical coherence tomography is used to rule-in surgery. Design: Multicenter, prospective, observational study. Setting: Dermatology clinics. Participants: Consecutive patients with clinically challenging pink lesions suspicious for basal cell carcinoma. Measurements: Clinical, dermoscopic, and optical coherence tomography images were obtained for all subjects. At each stage, the clinician made a diagnosis (pathology + subtype if applicable), and assessed his/her own confidence in the diagnosis. Results: Optical coherence tomography significantly (p<0.01) improved sensitivity and specificity over clinical or dermoscopic evaluation. The percentage of correct diagnoses was 57.4 percent (clinical), 69.6 percent (dermoscopy), and 87.8 percent (optical coherence tomography). Optical coherence tomography significantly increased the certainty of diagnosis; clinicians indicated they were certain (>95% confident) in 17 percent of lesions examined clinically, in 38.6 percent examined with dermoscopy, and in 70 percent examined with optical coherence tomography. With the use of optical coherence tomography in the diagnosis of basal cell carcinoma, more than 1 in 3 patients could avoid a diagnostic biopsy. Conclusion: In a population of clinically challenging lesions, optical coherence tomography improved diagnostic certainty by a factor of four over clinical examination alone and improved diagnostic accuracy by 50 percent (57-88%). The addition of optical coherence tomography to other standard assessments can improve the false-positive rate and give a high degree of certainty for ruling in a positive diagnosis for basal cell carcinoma. A reduction of 36 percent in overall biopsies could be achieved by sending high certainty basal cell carcinoma positive optical coherence tomography diagnoses straight to surgery. PMID

  9. Nonlinear optical diagnostics of diesel spray. Final report, August 3, 1987--July 31, 1991

    SciTech Connect

    Chang, R.K.

    1991-09-01

    The mechanisms of fuel spray development within engines, particularly processes including atomization, vaporization, and mixing of the fuel and air, are critical in the design and optimization of diesel engines. During the four years of DOE support, significant progress has been made toward furthering the understanding of nonlinear optical effects in fuel sprays and single liquid droplets with radius (a) much larger than the laser wavelength ({lambda}{sub input}), i.e., droplets with with large size parameters x = 2{pi}a/{lambda}{sub input}. The authors have attempted to apply nonlinear optical spectroscopy to determine the chemical composition of the droplet, the droplet morphology (size, shape, and index of refraction), and the physical properties of the droplet (surface tension and bulk viscosity). This research can be divided into two parts: (1) understanding of nonlinear optical effects: and (2) application of nonlinear optical spectroscopy and imaging to fuel droplets and sprays.

  10. Studies of the physical aspects of intumescence using advance diagnostics methods

    SciTech Connect

    Saeed, Hussain Huang, Hua Wei Zhang, Yang

    2014-04-11

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  11. Studies of the physical aspects of intumescence using advance diagnostics methods

    NASA Astrophysics Data System (ADS)

    Saeed, Hussain; Huang, Hua Wei; Zhang, Yang

    2014-04-01

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  12. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    SciTech Connect

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  13. Advanced diagnostics for impact-flash spectroscopy on light-gas guns.

    SciTech Connect

    Breiland, William George; Reinhart, William Dodd; Miller, Paul Albert; Brown, Justin L.; Thornhill, Tom Finley, III; Mangan, Michael A.; Shaner, Eric Arthur; Chhabildas, Lalit Chandra; Grine, Albert D.; Wanke, Michael Clement; Alexander, C. Scott

    2007-03-01

    This study is best characterized as new technology development for implementing new sensors to investigate the optical characteristics of a rapidly expanding debris cloud resulting from hypervelocity impact regimes of 7 to 11 km/s. Our gas guns constitute a unique test bed that match operational conditions relevant to hypervelocity impact encountered in space engagements. We have demonstrated the use of (1) terahertz sensors, (2) silicon diodes for visible regimes, (3) germanium and InGaAs sensors for the near infrared regimes, and (4) the Sandia lightning detectors which are similar to the silicon diodes described in 2. The combination and complementary use of all these techniques has the strong potential of ''thermally'' characterizing the time dependent behavior of the radiating debris cloud. Complementary spectroscopic measurements provide temperature estimates of the impact generated debris by fitting its spectrum to a blackbody radiation function. This debris is time-dependent as its transport/expansion behavior is changing with time. The rapid expansion behavior of the debris cools the cloud rapidly, changing its thermal/temperature characteristics with time. A variety of sensors that span over a wide spectrum, varying from visible regime to THz frequencies, now gives us the potential to cover the impact over a broader temporal regime starting from high pressures (Mbar) high-temperatures (eV) to low pressures (mbar) low temperatures (less than room temperature) as the debris expands and cools.

  14. Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions

    PubMed Central

    Bhatia, Nirav; Lalla, Yastira; Vu, An N.; Farah, Camile S.

    2013-01-01

    Traditional methods of screening for oral potentially malignant disorders and oral malignancies involve a conventional oral examination with digital palpation. Evidence indicates that conventional examination is a poor discriminator of oral mucosal lesions. A number of optical aids have been developed to assist the clinician to detect oral mucosal abnormalities and to differentiate benign lesions from sinister pathology. This paper discusses advances in optical technologies designed for the detection of oral mucosal abnormalities. The literature regarding such devices, VELscope and Identafi, is critically analysed, and the novel use of Narrow Band Imaging within the oral cavity is also discussed. Optical aids are effective in assisting with the detection of oral mucosal abnormalities; however, further research is required to evaluate the usefulness of these devices in differentiating benign lesions from potentially malignant and malignant lesions. PMID:24078812

  15. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  16. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  17. Microgel photonics and lab on fiber technology for advanced label-free fiber optic nanoprobes

    NASA Astrophysics Data System (ADS)

    Giaquinto, M.; Micco, A.; Aliberti, A.; Ricciardi, A.; Ruvo, M.; Cutolo, A.; Cusano, A.

    2016-05-01

    We experimentally demonstrate a novel optical fiber label free optrode platform resulting from the integration between two rapidly emerging technologies such as Lab-on-Fiber Technology (LOFT) and Microgel Photonics (MPs). The device consists of a microgel (MG) layer painted on a metallic slabs supporting plasmonic resonances, directly integrated on the optical fiber tip. A molecular binding event induces significant changes in the MG layer thickness (and consequently in its 'equivalent' refractive index) resulting in an evident wavelength shift of the resonant feature. As a case of study, glucose-responsive MGs have been synthesized by incorporating into the gel matrix boronic acid moieties, whose interaction with glucose rules the driving forces for gel swelling. Our results pave the way for new technological routes aimed to develop advanced label free fiber optic nanoprobes.

  18. Mechanical design aspects of the Advanced Toroidal Facility Thomson scattering diagnostic

    SciTech Connect

    Shipley, W.D.; Kindsfather, R.R.; Rasmussen, D.A.

    1987-01-01

    A two-dimensional Thomson scattering system has been designed for the Advanced Toroidal Facility (ATF), a torsatron experiment at the Oak Ridge National Laboratory (ORNL). The system is a modification of the Thomson scattering system used on the Impurity Study Experiment (ISX-B) tokamak. It will provide measurements of electron temperature (T/sub e/) and density (n/sub e/) at 15 points along a vertical chord. With multiple shots, a T/sub e/ and n/sub e/ map of a toroidal cross section of ATF can be obtained. The horizontal Thomson scattering viewing port is offset by 15/sup 0/ toroidally from the ports through which the vertical laser beam passes. The modifications to the ISX-B Thomson scattering system are either changes required to adapt the system to the ATF device geometry or changes that result in improvements to the original system. This paper deals with the mechanical design aspects of the laser light baffle plates that reduce the amount of extraneous light entering the plasma, the upper and lower vacuum extensions that contain the baffles and attach to the ATF vacuum vessel, the entrance window assembly, the laser dump assembly, the viewing window and shutter assembly, and the alignment target mechanism and drive used to determine the ampping of data points in the plasma cross section.

  19. Low coherence full field interference microscopy or optical coherence tomography: recent advances, limitations and future trends

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    2013-04-01

    Although low coherence microscopy (LCM) has been known for long time in the context of interference microscopy, coherence radar and white light interferometry, the whole subject has attracted a wide interest in the last two decades particularly accelerated by the entrance of OCT, as a noninvasive powerful technique for biomedical imaging. Today LCM can be classified into two types, both acts as three-dimensional imaging tool. The first is low temporal coherence microscopy; also known as optical coherence tomography (OCT), which is being used for medical diagnostics. The second is full field OCT in various modes and applied to various applications. FF-OCT uses low spatial and temporal coherence similar to the well-known coherence probe microscope (CPM) that have been in use for long time in optical metrology. The CPM has many advantages over conventional microscopy in its ability to discriminate between different transparent layers in a scattering medium thus allowing for precise noninvasive optical probing of dense tissue and other turbid media. In this paper the status of this technology in optical metrology applications will be discussed, on which we have been working to improve its performance, as well as its limitations and future prospective.

  20. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.