Status of advanced propulsion for space based orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Cooper, Larry P.; Scheer, Dean D.
1986-01-01
A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.
Status of advanced propulsion for space based orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Cooper, L. P.; Scheer, D. D.
1986-01-01
A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.
Electric propulsion for geostationary orbit insertion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Curran, Francis M.; Myers, Roger M.
1995-01-01
Solar electric propulsion (SEP) technology is already being used for geostationary satellite stationkeeping to increase payload mass. By using this same technology to perform part of the orbit transfer additional increases in payload mass can be achieved. Advanced chemical and N2H4 arcjet systems are used to increase the payload mass by performing stationkeeping and part of the orbit transfer. Four mission options are analyzed which show the impact of either sharing the orbit transfer between chemical and SEP systems or having either complete the transfer alone. Results show that for an Atlas 2AS payload increases in net mass (geostationary satellite mass less wet propulsion system mass) of up to 100 kg can be achieved using advanced chemical for the transfer and advanced N2H4 arcjets for stationkeeping. An additional 100 kg can be added using advanced N2H4 arcjets for part of a 40 day orbit transfer.
Propulsion issues for advanced orbit transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1984-01-01
Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.
1978-01-01
The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.
Advanced technology and future earth-orbit transportation systems
NASA Technical Reports Server (NTRS)
Henry, B. Z.; Eldred, C. H.
1977-01-01
The paper is concerned with the identification and evaluation of technology developments which offer potential for high return on investment when applied to advanced transportation systems. These procedures are applied in a study of winged single-stage-to-orbit (SSTO) vehicles, which are considered feasible by the 1990s. Advanced technology is considered a key element in achieving improved economics, and near term investment in selected technology areas is recommended.
Auxiliary propulsion technology for advanced Earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1987-01-01
The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.
1989-01-01
This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.
Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles
NASA Technical Reports Server (NTRS)
Martin, J. A.
1978-01-01
Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.
The development of an advanced generic solar dynamic heat receiver thermal model
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Roschke, E. J.; Kohout, L.
1988-01-01
An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.
Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James
2011-01-01
A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.
NASA Technical Reports Server (NTRS)
1987-01-01
This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.
2012-01-01
Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA
Design options for advanced manned launch systems
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.
1995-03-01
Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.
Advanced long term cryogenic storage systems
NASA Technical Reports Server (NTRS)
Brown, Norman S.
1987-01-01
Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.
System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag
NASA Technical Reports Server (NTRS)
Florence, D. E.; Fischer, G.
1983-01-01
The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.
Advanced orbiting systems test-bedding and protocol verification
NASA Technical Reports Server (NTRS)
Noles, James; De Gree, Melvin
1989-01-01
The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
NASA Technical Reports Server (NTRS)
Stern, Martin O.
1992-01-01
This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.
Advanced orbit transfer vehicle propulsion system study
NASA Technical Reports Server (NTRS)
Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.
1985-01-01
A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.
Advanced fuel cell concepts for future NASA missions
NASA Technical Reports Server (NTRS)
Stedman, J. K.
1987-01-01
Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.
Systems design and analysis of the microwave radiometer spacecraft
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.
Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.
The Advanced Orbiting Systems Testbed Program: Results to date
NASA Technical Reports Server (NTRS)
Otranto, John F.; Newsome, Penny A.
1994-01-01
The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.
A white paper: Operational efficiency. New approaches to future propulsion systems
NASA Technical Reports Server (NTRS)
Rhodes, Russel; Wong, George
1991-01-01
Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
NASA's advanced space transportation system launch vehicles
NASA Technical Reports Server (NTRS)
Branscome, Darrell R.
1991-01-01
Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.
NASA Advanced Exploration Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.
Rebuilding the space technology base
NASA Technical Reports Server (NTRS)
Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry
1989-01-01
NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.
Advanced propulsion for LEO-Moon transport. 3: Transportation model. M.S. Thesis - California Univ.
NASA Technical Reports Server (NTRS)
Henley, Mark W.
1992-01-01
A simplified computational model of low Earth orbit-Moon transportation system has been developed to provide insight into the benefits of new transportation technologies. A reference transportation infrastructure, based upon near-term technology developments, is used as a departure point for assessing other, more advanced alternatives. Comparison of the benefits of technology application, measured in terms of a mass payback ratio, suggests that several of the advanced technology alternatives could substantially improve the efficiency of low Earth orbit-Moon transportation.
The performance of components in the Skylab refrigeration system
NASA Technical Reports Server (NTRS)
Daniher, C. E., Jr.
1975-01-01
The on-orbit performance of the Skylab refrigeration system components is presented. Flight anomalies are analyzed and performance of the newly developed components is described. Nine months of orbit data proved the practicality of the leak-free coolant system design. Flight proven application of a thermal capacitor and development test results of the first all-mechanical, low temperature mixing valve represent a significant advance in single-phase, low temperature coolant loop design. System flight data suggest that additional instrumentation and fluid filters could have prevented system orbit performance anomalies.
NASA Technical Reports Server (NTRS)
Shoji, James M.
1992-01-01
Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.
An Earth Orbiting Satellite Service and Repair Facility
NASA Technical Reports Server (NTRS)
Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne
1989-01-01
A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.
Electrochemical Energy Storage for an Orbiting Space Station
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.
Advanced Communications Technology Satellite Now Operating in an Inclined Orbit
NASA Technical Reports Server (NTRS)
Bauer, Robert A.
1999-01-01
The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States
Servicer system demonstration plan and capability development
NASA Technical Reports Server (NTRS)
1987-01-01
An orbital maneuvering vehicle (OMV) front end kit is defined which is capable of performing in-situ fluid resupply and modular maintenance of free flying spacecraft based on the integrated orbital servicing system (IOSS) concept. The compatibility of the IOSS to perform gas and fluid umbilical connect and disconnect functions utilizing connect systems currently available or in development is addressed. A series of tasks involving on-orbit servicing and the engineering test unit (ETU) of the on-orbit service were studied. The objective is the advancement of orbital servicing by expanding the Spacecraft Servicing Demonstration Plan (SSDP) to include detail demonstration planning using the Multimission Modular Spacecraft (MMS) and upgrading the ETU control.
Prospects for tracking spacecrafts within 2 million Km of Earth with phased array antennas
NASA Technical Reports Server (NTRS)
Amoozegar, F.; Jamnejad, V.; Cesarone, R.
2003-01-01
Recent advances in space technology for Earth observations, global communications, and positioning systems have created heavy traffic at a variety of orbits. These include smart sensors in low Earth orbits (LEO), internet satellites in LEO and GEO orbits, Earth observing satellites in high Earth orbits (HEO), observatory class satellites at Lagrangian libration points, and those heading for deep space.
Advanced power systems for EOS
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.
1991-01-01
The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.
Space Propulsion Technology Program Overview
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1991-01-01
The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).
OTV propulsion tecnology programmatic overview
NASA Astrophysics Data System (ADS)
Cooper, L. P.
1984-04-01
An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.
OTV propulsion tecnology programmatic overview
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1984-01-01
An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.
Advanced beamed-energy and field propulsion concepts
NASA Technical Reports Server (NTRS)
Myrabo, L. N.
1983-01-01
Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.
Space nuclear power applied to electric propulsion
NASA Technical Reports Server (NTRS)
Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.
1989-01-01
Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
Advanced propulsion for LEO and GEO platforms
NASA Technical Reports Server (NTRS)
Sovey, James S.; Pidgeon, David J.
1990-01-01
Mission requirements and mass savings applicable to specific low earth orbit and geostationary earth orbit platforms using three highly developed propulsion systems are described. Advanced hypergolic bipropellant thrusters and hydrazine arcjets can provide about 11 percent additional instrument payload to 14,000 kg LEO platforms. By using electric propulsion on a 8,000 kg class GEO platform, mass savings in excess of 15 percent of the beginning-of-life platform mass are obtained. Effects of large, advanced technology solar arrays and antennas on platform propulsion requirements are also discussed.
Aqua Satellite Orbiting Earth Artist Concept
2002-05-08
NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156
NASA Technical Reports Server (NTRS)
Klich, P. J.; Macconochie, I. O.
1979-01-01
A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
ERIC Educational Resources Information Center
Wilkinson, John
2013-01-01
Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…
Silver ion bactericide system. [for Space Shuttle Orbiter potable water
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.
The advanced photovoltaic solar array program
NASA Technical Reports Server (NTRS)
Kurland, R. M.; Stella, Paul M.
1989-01-01
The background and development status of an ultralightweight flexible-blanket flatpack, fold-out solar array is presented. It is scheduled for prototype demonstration in late 1989. The Advanced Photovoltaic Solar Array (APSA) design represents a critical intermediate milestone of the goal of 300 W/kg at beginning-of-life (BOL) with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at end-of-life (EOL) for a 10-year geosynchronous geostationary earth orbit 10-kW (BOL) space power system. The APSA wing design is scalable over a power range of 2 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to geostationary earth orbit and interplanetary flight.
Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Zurawski, Robert L.; Rapp, Douglas C.
1987-01-01
A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.
Feasibility and tradeoff study of an aeromaneuvering orbit-to-orbit shuttle (AMOOS)
NASA Technical Reports Server (NTRS)
White, J.
1974-01-01
This study establishes that configurations satisfying the aeromaneuvering orbit-to-orbit shuttle (AMOOS) requirements can be designed with performance capabilities in excess of the purely propulsive space tug. In view of this improved potential of the AMOOS vehicle over the propulsive space tug concept it is recommended that the AMOOS studies be advanced to a stage comparable to those performed for the space tug. This advancement is needed in particular in areas that are either peculiar to AMOOS or not addressed in sufficient detail in these studies to date. These areas include the thermodynamics problems, navigation and guidance, operations and economics analyses, subsystems and interfaces. The aeromaneuvering orbit-to-orbit shuttle (AMOOS) is evaluated as a candidate reusable third stage to the two-stage earth-to-orbit shuttle (EOS). AMOOS has the potential for increased payload capability over the purely propulsive space tug by trading a savings in consumables for an increase in structural and thermal protection system (TPS) mass.
NASA Technical Reports Server (NTRS)
Caluori, V. A.
1980-01-01
Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.
NASA Technical Reports Server (NTRS)
Grant, M.; Vernucci, A.
1991-01-01
A possible Data Relay Satellite System (DRSS) topology and network architecture is introduced. An asynchronous network concept, whereby each link (Inter-orbit, Inter-satellite, Feeder) is allowed to operate on its own clock, without causing loss of information, in conjunction with packet data structures, such as those specified by the CCSDS for advanced orbiting systems is discussed. A matching OBP payload architecture is described, highlighting the advantages provided by the OBP-based concept and then giving some indications on the OBP mass/power requirements.
Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1984-01-01
Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.
Precise GPS orbits for geodesy
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1994-01-01
The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1996-01-01
This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.
Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications
NASA Astrophysics Data System (ADS)
Jin, Shuanggen
2017-12-01
The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.
Cargo launch vehicles to low earth orbit
NASA Technical Reports Server (NTRS)
Austin, Robert E.
1990-01-01
There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.
Extravehicular activity at geosynchronous earth orbit
NASA Technical Reports Server (NTRS)
Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William
1988-01-01
The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.
Symposium on Space Industrialization, Huntsville, Ala., May 26, 27, 1976, Proceedings
NASA Technical Reports Server (NTRS)
1976-01-01
Space habitats are considered, with attention given the evolution of space station systems, space station habitability, space settlement planning methodology, and orbital assembly. Various aspects of the Space Transportation System are discussed, including Shuttle booster/propulsion growth concept, advanced earth orbital transportation systems technology, single-stage-to-orbit vehicles and aeromaneuvering orbit transfer vehicles. Materials processing in space is examined, with emphasis on biological materials, metallurgical materials, the uses of space ultrahigh vacuum, and extraterrestrial mining and industrial processing. Solar space power is investigated, with attention given the potential of satellite solar power stations, thermal engine power satellites and microwave power transmission to earth. Individual items are announced in this issue.
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Smith, Wayne L. (Editor); Decusatis, Casimer; Frazier, Scott R.; Garrison, James L., Jr.; Meltzer, Jonathan S.; Minucci, Marco A.; Moder, Jeffrey P.; Morales, Ciro; Mueller, Mark T.
1988-01-01
This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics.
NASA Astrophysics Data System (ADS)
Liu, Bin; Tang, Jingshi; Hou, Xiyun
2016-07-01
Current studies indicate that there are stable orbits around but far away from the triangular libration points .Two special quasi-periodic orbits around each triangular libration points L4 , L5 in the Earth-Moon sys-tem perturbed by Sun are gain , and the stable orbits discussed in this work are ideal places for space colonies because no orbit control is needed. These stable orbits can also be used as nominal orbits for space VLBI (Very Long Baseline Interferometry) stations. The two stations can also form baselines with stations on the Earth and the Moon, or with stations located around another TLP. Due to the long distance between the stations, the observation precision can be greatly enhanced compared with the VLBI stations on the Earth. Such a VLBI constellation not only can advance the radio astronomy, but also can be used as a navigation system for human activities in the Earth-Moon system and even in the solar system. This paper will focus on the navigation constellation coverage issues, and the orbit determination accuracy problems within the Earth-Moon sys-tem and interplanetary space.
Advanced Earth-to-Orbit Propulsion Technology 1986, volume 2
NASA Technical Reports Server (NTRS)
Richmond, R. J.; Wu, S. T.
1986-01-01
Technology issues related to oxygen/hydrogen and oxygen/hydrocarbon propulsion are addressed. Specific topics addressed include: rotor dynamics; fatigue/fracture and life; bearings; combustion and cooling processes; and hydrogen environment embrittlement in advanced propulsion systems.
Lunar orbiting microwave beam power system
NASA Technical Reports Server (NTRS)
Fay, Edgar H.; Cull, Ronald C.
1990-01-01
A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.
SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems
NASA Technical Reports Server (NTRS)
1991-01-01
The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.
Long term orbital storage of cryogenic propellants for advanced space transportation missions
NASA Technical Reports Server (NTRS)
Schuster, John R.; Brown, Norman S.
1987-01-01
A comprehensive study has developed the major features of a large capacity orbital propellant depot for the space-based, cryogenic OTV. The study has treated both the Dual-Keel Space Station and co-orbiting platforms as the accommodations base for the propellant storage facilities, and trades have examined both tethered and hard-docked options. Five tank set concepts were developed for storing the propellants, and along with layout options for the station and platform, were evaluated from the standpoints of servicing, propellant delivery, boiloff, micrometeoroid/debris shielding, development requirements, and cost. These trades led to the recommendation that an all-passive storage concept be considered for the platform and an actively refrigerated concept providing for reliquefaction of all boiloff be considered for the Space Station. The tank sets are modular, each storing up to 45,400 kg of LO2/LH2, and employ many advanced features to provide for microgravity fluid management and to limit boiloff. The features include such technologies as zero-gravity mass gauging, total communication capillary liquid acquisition devices, autogenous pressurization, thermodynamic vent systems, thick multilayer insulation, vapor-cooled shields, solar-selective coatings, advanced micrometeoroid/debris protection systems, and long-lived cryogenic refrigeration systems.
Reusable aerospace system with horizontal take-off
NASA Astrophysics Data System (ADS)
Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.
1990-10-01
An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.
NASA Technical Reports Server (NTRS)
Gluzek, F.; Mokadam, R. G.; To, I. H.; Stanitz, J. D.; Wollschlager, J.
1979-01-01
A rotating, positive displacement vane pump with an integral boost stage was designed to pump saturated liquid oxygen and liquid hydrogen for auxiliary propulsion system of orbit transfer vehicle. This unit is designed to ingest 10% vapor by volume, contamination free liquid oxygen and liquid hydrogen. The final pump configuration and the predicted performance are included.
An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls
NASA Technical Reports Server (NTRS)
Lantz, Renee; Vykukal, H.; Webbon, Bruce
1987-01-01
An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.
Conceptual design of a two stage to orbit spacecraft
NASA Technical Reports Server (NTRS)
Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.
1993-01-01
This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.
The PROPEL Electrodynamic Tether Demonstration Mission
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael
2012-01-01
The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.
Patient Selection and Procedural Considerations for Coronary Orbital Atherectomy System
Sotomi, Yohei; Shlofmitz, Richard A; Colombo, Antonio; Serruys, Patrick W
2016-01-01
Despite advances in technology, percutaneous coronary intervention (PCI) of severely calcified coronary lesions remains challenging. Rotational atherectomy is one of the current therapeutic options to manage calcified lesions, but has a limited role in facilitating the dilation or stenting of lesions that cannot be crossed or expanded with other PCI techniques due to unfavourable clinical outcome in long-term follow-up. However the results of orbital atherectomy presented in the ORBIT I and ORBIT II trials were encouraging. In addition to these encouraging data, necessity for sufficient lesion preparation before implantation of bioresorbable scaffolds lead to resurgence in the use of atherectomy. This article summarises currently available publications on orbital atherectomy (Cardiovascular Systems Inc.) and compares them with rotational atherectomy. PMID:29588702
Advanced information processing system for advanced launch system: Avionics architecture synthesis
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.
1991-01-01
The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.
Considerations for a Next Generation UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Nein, M. E.; Morgan, S. H.
1989-01-01
During the past 25 years, a remarkable scientific revolution, has occurred in astrophysics as a result of convergence on two advancing fronts. First, instruments and telescopes have been developed to make sensitive measurements throughout the entire electromagnetic spectrum. Secondly, access to space has permitted observations above the obscuring and distorting "dirty window" of our atmosphere. Beginning around the middle of the next decade, a third major path - the availability of the permanently manned Space Station Freedom - will join with the earlier two capabilities, to not only continue this revolution, but to accelerate the quest for answers about the universe that have puzzled mankind for centuries. Beyond Earth-orbit, NASA is actively studying the possibility of a return to the Moon, which would provide a valuable platform for astrophysics observations during the next century. The studies discussed in this paper indicate that the technology requirements associated with the transportation to orbit and the assembly of these telescopes in orbit are major driving forces in the selection of generic design concepts. Ultimately, optical advances which are now becoming available through advanced manufacturing must be matched by technology advances in orbital operations, system modularization, and assembly by man and machine.
NASA Technical Reports Server (NTRS)
Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.
1990-01-01
NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.
RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Burnside, Christopher G.
2013-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed. The results and benefits of the RS-34 Orbital Debris Application Concept Study are presented in this paper.
Orbital ATK CRS-7 What's on Board Science Briefing
2017-04-17
NASA Television held two “What’s on Board” science mission briefings from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on Orbital ATK’s seventh commercial resupply services mission, CRS-7. Orbital ATK’s Cygnus spacecraft will carry more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory. CRS-7 will lift off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Part I Briefing participants were: -Cheryl Warner, NASA Communications -Tara Ruttley, Associate Program Scientist, JSC -Michael Roberts, Deputy Chief Scientist, CASIS -Bryan Onate, Project Manager, Advanced Plant Habitat, Kennedy Space Center -Howard Levine, Project Scientist, Advanced Plant Habitat, Kennedy Space Center -Sourav Sinha, Principle Investigator for ADCs in Microgravity, Oncolinx -Julian Rubinfien, Genes in Space II winner -Sebastian Kraves, Co-founder, Genes in Space -Henry Martin, External Payloads Coordinator, NanoRacks -Davide Massutti, QB50 CubeSats, Von Karman Institute Part II Briefing participants were: -Jason Townsend, NASA Communications -Joe Fust, Mission Integrator, United Launch Alliance -Paul Escalera, Orbital ATK Staff Systems Engineer Part II Briefing participants were: -Jason Townsend, NASA Communications -Joe Fust, Mission Integrator, United Launch Alliance -Paul Escalera, Orbital ATK Staff Systems Engineer
An advanced domestic satellite communications system
NASA Technical Reports Server (NTRS)
1980-01-01
An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.
Recent advances in Ni-H2 technology at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.
1986-01-01
The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.
Future earth orbit transportation systems/technology implications
NASA Technical Reports Server (NTRS)
Henry, B. Z.; Decker, J. P.
1976-01-01
Assuming Space Shuttle technology to be state-of-the-art, projected technological advances to improve the capabilities of single-stage-to-orbit (SSTO) derivatives are examined. An increase of about 30% in payload performance can be expected from upgrading the present Shuttle system through weight and drag reductions and improvements in the propellants and engines. The ODINEX (Optimal Design Integration Executive Computer Program) program has been used to explore design options. An advanced technology SSTO baseline system derived from ODINEX analysis has a conventional wing-body configuration using LOX/LH engines, three with two-position nozzles with expansion ratios of 40 and 200 and four with fixed nozzles with an expansion ratio of 40. Two assisted-takeoff approaches are under consideration in addition to a concept in which the orbital vehicle takes off empty using airbreathing propulsion and carries out a rendezvous with two large cryogenic tankers carrying propellant at an altitude of 6100 m. Further approaches under examination for propulsion, aerothermodynamic design, and design integration are described.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).
NASA Astrophysics Data System (ADS)
Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.
2017-12-01
The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.
Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion
NASA Technical Reports Server (NTRS)
Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.
1977-01-01
The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.
Advanced tracking systems design and analysis
NASA Technical Reports Server (NTRS)
Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.
1989-01-01
The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.
The advanced orbiting systems testbed program: Results to date
NASA Technical Reports Server (NTRS)
Newsome, Penny A.; Otranto, John F.
1993-01-01
The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.
Autonomous satellite navigation with the Global Positioning System
NASA Technical Reports Server (NTRS)
Fuchs, A. J.; Wooden, W. H., II; Long, A. C.
1977-01-01
This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.
NASA Astrophysics Data System (ADS)
Roberts, Lewis C.; Mason, Brian D.
2018-02-01
The adaptive optics system at the 3.6 m Advanced Electro-Optical System telescope was used to measure the astrometry and differential magnitude in I band of binary star systems between 2002 and 2006. We report 413 astrometric and photometric measurements of 373 stellar pairs. The astrometric measurements will be of use for future orbital determination, and the photometric measurements will be of use in estimating the spectral types of the component stars. For 21 binaries that had not been observed in decades, we are able to confirm that the systems share common proper motion. Candidate new companions were detected in 24 systems; for these we show the discovery images. Follow-up observations should be able to determine if these systems share common proper motion and are gravitationally bound objects. We computed orbits for nine binaries. Of these, the orbits of five systems are improved compared to prior orbits and four systems have their orbits computed for the first time. In addition, 315 stars were unresolved and the full-width half maxima of the images are presented.
Autonomous Navigation Using Celestial Objects
NASA Technical Reports Server (NTRS)
Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne
1999-01-01
In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.
The subscale orbital fluid transfer experiment
NASA Technical Reports Server (NTRS)
Collins, Frank G.; Antar, Basil N.; Menzel, Reinhard W.; Meserole, Jere S.; Meserole, Jere S.; Jones, Ogden
1990-01-01
The Subscale Orbital Fluid Transfer Experiment (SOFTE) is a planned Shuttle Orbiter fluid transfer experiment. CASP (Center for Advanced Space Propulsion) performed certain aspects of the conceptual design of this experiment. The CASP work consisted of the conceptual design of the optical system, the search for alternative experimental fluids, the determination of the flow meter specifications and the examination of materials to use for a bladder that will empty one of the tanks in the experiment.
Air-Cored Linear Induction Motor for Earth-to-Orbit Systems
NASA Technical Reports Server (NTRS)
Zabar, Zivan; Levi, Enrico; Birenbaum, Leo
1996-01-01
The need for lowering the cost of Earth-to-Orbit (ETO) launches has prompted consideration of electromagnetic launchers. A preliminary design based on the experience gained in an advanced type of coilgun and on innovative ideas shows that such a launcher is technically feasible with almost off-the-shelf components.
CSTI Earth-to-orbit propulsion research and technology program overview
NASA Technical Reports Server (NTRS)
Gentz, Steven J.
1993-01-01
NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.
AEOSS runtime manual for system analysis on Advanced Earth-Orbital Spacecraft Systems
NASA Technical Reports Server (NTRS)
Lee, Hwa-Ping
1990-01-01
Advanced earth orbital spacecraft system (AEOSS) enables users to project the required power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxiliary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius' 4th Dimension with a Macintosh version. Because of the licensing agreements, two versions of the AEOSS documents were prepared. This version, AEOSS Runtime Manual, is permitted to be distributed with a finite number of the restrictive 4D Runtime version. It can perform all contained applications without any programming alterations.
Critical technology areas of an SPS development and the applicability of European technology
NASA Technical Reports Server (NTRS)
Kassing, D.; Ruth, J.
1980-01-01
Possible system development and implementation scenarios for the hypothetical European part of a cooperative Satellite Power System effort are discussed, and the technology and systems requirements which could be used as an initial guideline for further evaluation studies are characterized. Examples of advanced European space technologies are described including high power microwave amplifiers, antennas, advanced structures, multi-kilowatt solar arrays, attitude and orbit control systems, and electric propulsion.
NASA Astrophysics Data System (ADS)
Silvernail, Nathan L.
This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.
Detail view of the leading and top edge of the ...
Detail view of the leading and top edge of the vertical stabilizer of the Orbiter Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFRSI) blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges. The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar
NASA Technical Reports Server (NTRS)
Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.
2015-01-01
Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.
NASA Technical Reports Server (NTRS)
Obrien, C. J.
1982-01-01
Dual-nozzle engines, such as the dual-throat and dual-expander engines, are being evaluated for advanced earth-to-orbit transportation systems. Potential derivatives of the Space Shuttle and completely new vehicles might benefit from these advanced engines. In this paper, progress in the design of single-fuel and dual-fuel dual-nozzle engines is summarized. Dual-nozzle engines include those burning propellants such as LOX/RP-1/LH2, LOX/LC3H8/LH2, LOX/LCH4/LH2, LOX/LH2/LH2, LOX/LCH4/LCH4, LOX/LC3H8/C3H8 and N2O4/MMH/LH2. Engine data are applicable for thrust levels from 200,000 through 670,000 lbF. The results indicate that several versions of these engines utilize state-of-the-art technology and that even advanced versions of these engines do not require a major breakthrough in technology.
Carbon composites in space vehicle structures
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1974-01-01
Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.
A Laser Optical System to Remove Low Earth Orbit Space Debris
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.
2013-08-01
Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.
SNAP (Space Nuclear Auxiliary Power) Reactor Overview
1984-08-01
so that emphasis could be placed on the development of the space shuttle and the national space station . During 1969 NASA came up with a requirement...which would need the Zr-H reactor system which was the semipermanent orbiting space station . This helped the Zr-H system weather through the major FY 71...provide power for advanced space missions, such as lunar stations or orbiting space platforms, and for interplanetary com- munications. In addition
Advanced Solar-propelled Cargo Spacecraft for Mars Missions
NASA Technical Reports Server (NTRS)
Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie
1989-01-01
Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).
Satellite services system analysis study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1981-01-01
Service requirements are considered. Topics include development of on-orbit operations scenarios, service equipment summary, crew interaction, and satellite features facilitating servicing. Service equipment concepts are considered. Topics include payload deployment, close proximity retrieval, on-orbit servicing, backup/contingency, delivery/retrieval of high energy payloads, Earth return, optional service, and advanced capabilities. Program requirements are assessed.
Advanced-technology space station study: Summary of systems and pacing technologies
NASA Technical Reports Server (NTRS)
Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.
1990-01-01
The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.
Zhang, X; Bishof, M; Bromley, S L; Kraus, C V; Safronova, M S; Zoller, P; Rey, A M; Ye, J
2014-09-19
SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from interparticle interactions. Taking advantage of the high measurement precision offered by an ultrastable laser, we report a spectroscopic observation of SU(N ≤ 10) symmetry in (87)Sr. By encoding the electronic orbital degree of freedom in two clock states while keeping the system open to as many as 10 nuclear spin sublevels, we probed the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps; we studied the spin-orbital quantum dynamics and determined the relevant interaction parameters. This study lays the groundwork for using alkaline-earth atoms as testbeds for important orbital models. Copyright © 2014, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
Graduate Student Researchers Program (GSRP)
NASA Technical Reports Server (NTRS)
Westerhoff, John
2004-01-01
An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The MXER system is a permanently orbiting platform designed to boost payloads from low earth orbit (LEO). Unlike conventional rockets that use propellants, MXER acts as a large momentum wheel, imparting a Av to a payload at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth s magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions. As such, this technology is a valuable addition to NASA s mission for in-space transportation.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie K.
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
PSR J1930-1852: a Pulsar in the Widest Known Orbit around Another Neutron Star
NASA Astrophysics Data System (ADS)
Swiggum, J. K.; Rosen, R.; McLaughlin, M. A.; Lorimer, D. R.; Heatherly, S.; Lynch, R.; Scoles, S.; Hockett, T.; Filik, E.; Marlowe, J. A.; Barlow, B. N.; Weaver, M.; Hilzendeger, M.; Ernst, S.; Crowley, R.; Stone, E.; Miller, B.; Nunez, R.; Trevino, G.; Doehler, M.; Cramer, A.; Yencsik, D.; Thorley, J.; Andrews, R.; Laws, A.; Wenger, K.; Teter, L.; Snyder, T.; Dittmann, A.; Gray, S.; Carter, M.; McGough, C.; Dydiw, S.; Pruett, C.; Fink, J.; Vanderhout, A.
2015-06-01
In the summer of 2012, during a Pulsar Search Collaboratory workshop, two high-school students discovered J1930-1852, a pulsar in a double neutron star (DNS) system. Most DNS systems are characterized by short orbital periods, rapid spin periods, and eccentric orbits. However, J1930-1852 has the longest spin period ({{P}spin} ˜ 185 ms) and orbital period ({{P}b} ˜ 45 days) yet measured among known, recycled pulsars in DNS systems, implying a shorter than average and/or inefficient recycling period before its companion went supernova. We measure the relativistic advance of periastron for J1930-1852, \\dot{ω }=0.00078 (4) deg yr-1, which implies a total mass ({{M}tot}=2.59 (4) {{M}⊙ }) consistent with other DNS systems. The 2σ constraints on {{M}tot} place limits on the pulsar and companion masses ({{m}p}\\lt 1.32 {{M}⊙ } and {{m}c}\\gt 1.30 {{M}⊙ } respectively). J1930-1852’s spin and orbital parameters challenge current DNS population models and make J1930-1852 an important system for further investigation.
NASA Technical Reports Server (NTRS)
Riha, Andrew P.
2005-01-01
As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.
Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements
NASA Technical Reports Server (NTRS)
Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.
1995-01-01
The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.
Autonomous formation flying based on GPS — PRISMA flight results
NASA Astrophysics Data System (ADS)
D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio
2013-01-01
This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.
Advances in Orion's On-Orbit Guidance and Targeting System Architecture
NASA Technical Reports Server (NTRS)
Scarritt, Sara K.; Fill, Thomas; Robinson, Shane
2015-01-01
NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.
Autonomous RPRV Navigation, Guidance and Control
NASA Technical Reports Server (NTRS)
Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.
1983-01-01
Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.
Bipolar Nickel-Metal Hydride Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
1998-01-01
The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.
Secular perihelion advances of the inner planets and asteroid Icarus
NASA Astrophysics Data System (ADS)
Wilhelm, Klaus; Dwivedi, Bhola N.
2014-08-01
A small effect expected from a recently proposed gravitational impact model (Wilhelm et al., 2013) is used to explain the remaining secular perihelion advance rates of the planets Mercury, Venus, Earth, Mars, and the asteroid (1566) Icarus-after taking into account the disturbances related to Newton’s Theory of Gravity. Such a rate was discovered by Le Verrier (1859) for Mercury and calculated by Einstein (1915, 1916) in the framework of his General Theory of Relativity (GTR). Accurate observations are now available for the inner Solar System objects with different orbital parameters. This is important, because it allowed us to demonstrate that the quantitative amount of the deviation from an 1/r potential is-under certain conditions-only dependent on the specific mass distribution of the Sun and not on the characteristics of the orbiting objects and their orbits. A displacement of the effective gravitational from the geometric centre of the Sun by about 4400 m towards each object is consistent with the observations and explains the secular perihelion advance rates.
Precise Orbit Determination for ALOS
NASA Technical Reports Server (NTRS)
Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji
2007-01-01
The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.
Orbital ATK CRS-7 Launch Coverage
2017-04-18
NASA Television conducted a live broadcast from Kennedy Space Center as Orbital ATK’s CRS-7 lifted off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Orbital ATK’s Cygnus spacecraft carried more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory as Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Launch commentary conducted by: -George Diller, NASA Communications Special guests included: -Frank DeMauro, VP & GM, Advanced Programs Division, Space Systems Group, Orbital ATK -Tori McLendon, NASA Communications -Robert Cabana, Kennedy Space Center Director -Tara Ruttley, Associate Program Scientist, International Space Station -Vern Thorp, Program Manager for Commercial Missions, United Launch Alliance
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
NASA Technical Reports Server (NTRS)
Haines, B.; Christensen, E.; Guinn, J.; Norman, R.; Marshall, J.
1995-01-01
Satellite altimetry must measure variations in ocean topography with cm-level accuracy. The TOPEX/Poseidon mission is designed to do this by measuring the radial component of the orbit with an accuracy of 13 cm or better RMS. Recent advances, however, have improved this accuracy by about an order of magnitude.
NASA Technical Reports Server (NTRS)
1994-01-01
This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.
A confirmation of the general relativistic prediction of the Lense-Thirring effect.
Ciufolini, I; Pavlis, E C
2004-10-21
An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.
Relative navigation for spacecraft formation flying
NASA Technical Reports Server (NTRS)
Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.
1998-01-01
The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.
Relative Navigation for Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.
1998-01-01
The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.
NASA Technical Reports Server (NTRS)
Bruegman, Otto; Thakore, Kamal; Loewenthal, Stu; Cymerman, John
2016-01-01
The Advanced Technology Microwave Sounder (ATMS) instrument scan system on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft has experienced several randomly occurring increased torque 'events' since its on-orbit activation in November 2011. Based on a review of on-orbit telemetry data and data gathered from scan mechanism bearing life testing on the ground, the conclusion was drawn that some degradation of Teflon toroid ball retainers was occurring in the instrument Scan Drive Mechanism. A life extension program was developed and executed on-orbit with very good results to date. The life extension program consisted of reversing the mechanism for a limited number of consecutive scans every day.
Advanced Electric Propulsion for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Oleson, Steve
1999-01-01
The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
1996-11-01
Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses
Assessment of Alternate Thermal Protection Systems for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Kelly, H. N.; Webb, G. L.
1982-01-01
Candidate concepts are identified. The impact on the Shuttle Orbiter performance life cycle cost, and risk was assessed and technology advances required to bring the selected TPS to operational readiness are defined. The best system is shown to be a hybrid blend of metallic and carbon-carbon TPS concepts. These alternate concepts offer significant improvements in reusability and are mass competitive with the current ceramic tile reusable surface insulation. Programmatic analysis indicates approximately five years are required to bring the concepts to operational readiness.
Detail view of the vertical stabilizer of the Orbiter Discovery ...
Detail view of the vertical stabilizer of the Orbiter Discovery looking at the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. Note the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation Blanket and the black High-temperature Reusable Surface Insulation tiles along the outer edges (HRSI tiles). The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Detail view of the vertical stabilizer of the Orbiter Discovery ...
Detail view of the vertical stabilizer of the Orbiter Discovery Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFSI) Blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges . The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view also a good detailed view of the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Regetz, J. D., Jr.; Terwilliger, C. H.
1979-01-01
The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.
Using Real and Simulated TNOs to Constrain the Outer Solar System
NASA Astrophysics Data System (ADS)
Kaib, Nathan
2018-04-01
Over the past 2-3 decades our understanding of the outer solar system’s history and current state has evolved dramatically. An explosion in the number of detected trans-Neptunian objects (TNOs) coupled with simultaneous advances in numerical models of orbital dynamics has driven this rapid evolution. However, successfully constraining the orbital architecture and evolution of the outer solar system requires accurately comparing simulation results with observational datasets. This process is challenging because observed datasets are influenced by orbital discovery biases as well as TNO size and albedo distributions. Meanwhile, such influences are generally absent from numerical results. Here I will review recent work I and others have undertaken using numerical simulations in concert with catalogs of observed TNOs to constrain the outer solar system’s current orbital architecture and past evolution.
Mars NanoOrbiter: A CubeSat for Mars System Science
NASA Astrophysics Data System (ADS)
Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal
2017-10-01
The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.
Space construction system analysis study: Project systems and missions descriptions
NASA Technical Reports Server (NTRS)
1979-01-01
Three project systems are defined and summarized. The systems are: (1) a Solar Power Satellite (SPS) Development Flight Test Vehicle configured for fabrication and compatible with solar electric propulsion orbit transfer; (2) an Advanced Communications Platform configured for space fabrication and compatible with low thrust chemical orbit transfer propulsion; and (3) the same Platform, configured to be space erectable but still compatible with low thrust chemical orbit transfer propulsion. These project systems are intended to serve as configuration models for use in detailed analyses of space construction techniques and processes. They represent feasible concepts for real projects; real in the sense that they are realistic contenders on the list of candidate missions currently projected for the national space program. Thus, they represent reasonable configurations upon which to base early studies of alternative space construction processes.
NASA Technical Reports Server (NTRS)
1981-01-01
The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.
Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)
NASA Technical Reports Server (NTRS)
Smith, Terry; Kessler, John
1999-01-01
An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.
NASA Technical Reports Server (NTRS)
Loomis, Audrey; Kellner, Albrecht
1988-01-01
The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern
1992-01-01
This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
Economics of ion propulsion for large space systems
NASA Technical Reports Server (NTRS)
Masek, T. D.; Ward, J. W.; Rawlin, V. K.
1978-01-01
This study of advanced electrostatic ion thrusters for space propulsion was initiated to determine the suitability of the baseline 30-cm thruster for future missions and to identify other thruster concepts that would better satisfy mission requirements. The general scope of the study was to review mission requirements, select thruster designs to meet these requirements, assess the associated thruster technology requirements, and recommend short- and long-term technology directions that would support future thruster needs. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. This study produced useful general methodologies for assessing both planetary and earth orbit missions. For planetary missions, the assessment is in terms of payload performance as a function of propulsion system technology level. For earth orbit missions, the assessment is made on the basis of cost (cost sensitivity to propulsion system technology level).
Advanced Exploration Systems Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2013-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
Terahertz Tools Advance Imaging for Security, Industry
NASA Technical Reports Server (NTRS)
2010-01-01
Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.
Conceptual definition of a 50-100 kWe NEP system for planetary science missions
NASA Technical Reports Server (NTRS)
Friedlander, Alan
1993-01-01
The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.
Spacecraft applications of advanced global positioning system technology
NASA Technical Reports Server (NTRS)
Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III
1988-01-01
The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.
Biconic cargo return vehicle with an advanced recovery system
NASA Technical Reports Server (NTRS)
1990-01-01
The current space exploration initiative is focused around the development of the Space Station Freedom (SSF). Regular resupply missions must support a full crew on the station. The present mission capability of the shuttle is insufficient, making it necessary to find an alternative. One alternative is a reusable Cargo Return Vehicle (CRV). The suggested design is a biconic shaped, dry land recovery CRV with an advance recovery system (ARC). A liquid rocket booster will insert the CRV into a low Earth orbit. Three onboard liquid hydrogen/liquid oxygen engines are used to reach the orbit of the station. The CRV will dock to the station and cargo exchange will take place. Within the command and control zone (CCZ), the CRV will be controlled by a gaseous nitrogen reaction control system (RCS). The CRV will have the capability to exchange the payload with the Orbital Maneuvering Vehicle (OMV). The bent biconic shape will give the CRV sufficient crossrange to reach Edwards Air Force Base and several alternative sites. Near the landing site, a parafoil-shaped ARS is deployed. The CRV is designed to carry a payload of 40 klb, and has an unloaded weight of 35 klb.
Critical Technologies for the Development of Future Space Elevator Systems
NASA Technical Reports Server (NTRS)
Smitherman, David V., Jr.
2005-01-01
A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.
Survey of Enabling Technologies for CAPS
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.
2005-01-01
The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.
NASA Technical Reports Server (NTRS)
Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.
2015-01-01
We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteoroid applications. The outcomes of this work show that, given SAAMERs location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janches, D.; Swarnalingam, N.; Close, S.
2015-08-10
We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operatingmore » parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.« less
One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/JASON-2
NASA Technical Reports Server (NTRS)
Haines, Bruce; Armatys, Michael; Bar-Sever, Yoaz; Bertiger, Willy; Desai, Shailen; Dorsey, Angela; Lane, Christopher; Weiss, Jan
2010-01-01
The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within 3-5 hrs of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting.
Shuttle ku-band communications/radar technical concepts
NASA Technical Reports Server (NTRS)
Griffin, J. W.; Kelley, J. S.; Steiner, A. W.; Vang, H. A.; Zrubek, W. E.; Huth, G. K.
1985-01-01
Technical data on the Shuttle Orbiter K sub u-band communications/radar system are presented. The more challenging aspects of the system design and development are emphasized. The technical problems encountered and the advancements made in solving them are discussed. The radar functions are presented first. Requirements and design/implementation approaches are discussed. Advanced features are explained, including Doppler measurement, frequency diversity, multiple pulse repetition frequencies and pulse widths, and multiple modes. The communications functions that are presented include advances made because of the requirements for multiple communications modes. Spread spectrum, quadrature phase shift keying (QPSK), variable bit rates, and other advanced techniques are discussed. Performance results and conclusions reached are outlined.
The Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Mitchell, Royce E.
1992-01-01
The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.
Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Gustafson, N. B.; Harmon, T. J.
1993-01-01
An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.
AEOSS design guide for system analysis on Advanced Earth-Orbital Spacecraft Systems
NASA Technical Reports Server (NTRS)
Lee, Hwa-Ping
1990-01-01
Advanced Earth Orbital Spacecraft System (AEOSS) enables users to project the requried power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxillary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius; 4th Dimension with a Macintosh version. Because of the licensing agreement, two versions of the AEOSS documents were prepared. This version AEOSS Design Guide, is for users to exploit the full capacity of the 4th Dimension. It is for a user who wants to alter or expand the program structures, the program statements, and the program procedures. The user has to possess a 4th Dimension first.
Propulsion requirements for reusable single-stage-to-orbit rocket vehicles
NASA Astrophysics Data System (ADS)
Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger
1994-05-01
The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.
Operator Station Design System - A computer aided design approach to work station layout
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1979-01-01
The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.
Advanced Earth-to-orbit propulsion technology information, dissemination and research
NASA Technical Reports Server (NTRS)
Wu, S. T.
1995-01-01
In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.
Low cost booster and high performance orbit injection propulsion extended abstract
NASA Technical Reports Server (NTRS)
Sackheim, R. L.
1994-01-01
Space transportation is currently a major element of cost for communications satellite systems. For every dollar spent in manufacturing the satellite, somewhere between 1 and 3 dollars must be spent to launch the satellite into its initial operational orbit. This also makes the weight of the satellite a very critical cost factor because it is important to maximize the useful payload that is placed into orbit to maximize the return on the original investment. It seems apparent then, that tremendous economic advantage for satellite communications systems can be gained from improvements in two key highly leveraged propulsion areas. The first and most important economic improvement can be achieved by significantly lowering the cost of today's launch vehicles. The second gain that would greatly benefit the communications satellite business position is to increase both the useful (payload) weight placed into the orbit and the revenue generating lifetime of the satellite on-orbit. The point of this paper is to first explain that these two goals can best be achieved by cost reduction and performance increasing advancements in rocket propulsion for both the launch vehicle and for the satellite on-board apogee insertion and on-orbit velocity control systems.
The world state of orbital debris measurements and modeling
NASA Astrophysics Data System (ADS)
Johnson, Nicholas L.
2004-02-01
For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.
Slow Orbit Feedback at the ALS Using Matlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.
1999-03-25
The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less
BEAMLINE-CONTROLLED STEERING OF SOURCE-POINT ANGLE AT THE ADVANCED PHOTON SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, L.; Fystro, G.; Shang, H.
An EPICS-based steering software system has been implemented for beamline personnel to directly steer the angle of the synchrotron radiation sources at the Advanced Photon Source. A script running on a workstation monitors "start steering" beamline EPICS records, and effects a steering given by the value of the "angle request" EPICS record. The new system makes the steering process much faster than before, although the older steering protocols can still be used. The robustness features of the original steering remain. Feedback messages are provided to the beamlines and the accelerator operators. Underpinning this new steering protocol is the recent refinementmore » of the global orbit feedback process whereby feedforward of dipole corrector set points and orbit set points are used to create a local steering bump in a rapid and seamless way.« less
Benefits of Nuclear Electric Propulsion for Outer Planet Exploration
NASA Technical Reports Server (NTRS)
Kos, Larry; Johnson, Les; Jones, Jonathan; Trausch, Ann; Eberle, Bill; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
Nuclear electric propulsion (NEP) offers significant benefits to missions for outer planet exploration. Reaching outer planet destinations, especially beyond Jupiter, is a struggle against time and distance. For relatively near missions, such as a Europa lander, conventional chemical propulsion and NEP offer similar performance and capabilities. For challenging missions such as a Pluto orbiter, neither chemical nor solar electric propulsion are capable while NEP offers acceptable performance. Three missions are compared in this paper: Europa lander, Pluto orbiter, and Titan sample return, illustrating how performance of conventional and advanced propulsion systems vary with increasing difficulty. The paper presents parametric trajectory performance data for NEP. Preliminary mass/performance estimates are provided for a Europa lander and a Titan sample return system, to derive net payloads for NEP. The NEP system delivers payloads and ascent/descent spacecraft to orbit around the target body, and for sample return, delivers the sample carrier system from Titan orbit to an Earth transfer trajectory. A representative scientific payload 500 kg was assumed, typical for a robotic mission. The resulting NEP systems are 100-kWe class, with specific impulse from 6000 to 9000 seconds.
The challenge of assembling a space station in orbit
NASA Technical Reports Server (NTRS)
Brand, Vance D.
1990-01-01
Assembly of a space station in orbit is a challenging and complicated task. If mankind is to exploit the knowledge already gained from space flight and continue to advance the frontiers of space exploration, then space stations in orbit must be part of the overall space infrastructure. Space stations, like the Freedom, having relatively large mass which greatly exceeds the lifting capability of their transportation system, are candidates for on-orbit assembly. However, when a large wide-body booster is available, there are significant advantages to having a deployable space station assembled on Earth and transported into orbit intact or in a few large pieces. The United States will build the Space Station Freedom by the assembly method. Freedom's assembly is feasible, but a significant challenge, and it will absorb much of NASA's effort in the next 8 years. The Space Station Freedom is an international program which will be the centerpiece of the free world's space activities in the late 1990's. Scientific information and products from the Space Station Freedom and its use as a transportation depot will advance technology and facilitate the anticipated manned space exploration surge to the Moon and Mars early in the 21st century.
Hodaj, Irgen; Kutlay, Murat; Gonul, Engin; Solmaz, Ilker; Tehli, Ozkan; Temiz, Caglar; Kural, Cahit; Daneyemez, Mehmet K; Izci, Yusuf
2014-01-01
We aimed to show the effects of neuronavigation and intraoperative imaging systems on the surgical outcomes of orbital tumors. Seventeen patients who underwent surgical treatment for orbital tumors by transcranial and transnasal approaches between 2008 and 2013 were analyzed retrospectively. Twelve of them were male and 5 were female. The mean age was 41.6 years. Neuronavigation systems were used in all cases. Four patients were operated using intraoperative imaging systems. The transcranial approach was used in 9 (53%) patients, endoscopic medial orbital approach in 4 (23.5%), endoscopic inferolateral approach in 1 (6%), cranioorbitozygomatic approach in 1, lateral approach in 1, and the combined (medial endoscopic and lateral) approach in 1 patients. Total resection was achieved in 5 patients, gross total excision in 2, subtotal in 9 and partial in 1 patients. Modern technology has made a significant contribution to the treatment of orbital tumors. Although technological equipments facilitate the excision of tumors, the level of resection is mainly determined by the nature of tumor and adhesion to the adjacent neurovascular structures. It should not be forgotten that advanced technology never replaces a good anatomical knowledge and surgical experience, but has a complementary role.
Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis
NASA Technical Reports Server (NTRS)
Pelton, Joseph N.
1991-01-01
The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.
COTS Initiative Panel Discussion
2013-11-13
L-R: Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program, NASA; Gwynne Shotwell, President, SpaceX; Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group; Frank Slazer, Vice President of Space Systems, Aerospace Industries Association and Phil McAlister, Director of Commercial Spaceflight Development at NASA, participate in a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)
NASA Technical Reports Server (NTRS)
Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry
2012-01-01
NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple sensors (including advanced star trackers), real-time vehicle pointing inputs, and more complex orbital debris images. This system is also adaptable to other sensor optics, missions, and installed sensor testing.
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems.
Advanced design for orbital debris removal in support of solar system exploration
NASA Technical Reports Server (NTRS)
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.
Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.
Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M
2014-07-04
Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution. Copyright © 2014, American Association for the Advancement of Science.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
eLaunch Hypersonics: An Advanced Launch System
NASA Technical Reports Server (NTRS)
Starr, Stanley
2010-01-01
This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.
MagLifter Site Investigation and Implementation Strategies
NASA Technical Reports Server (NTRS)
Burke, Pamela; Slaughter, Maynard; Beer, C. Neil
1995-01-01
MagLifter, as defined here, is an advanced, earth-bound catapult system to provide the initial lift for earth orbiting vehicles to reduce or eliminate the need for multistage propulsion, thus reducing the cost of orbital space flight. It is presumed that magnetic levitation will catapult the vehicle to a desired initial velocity sufficient for reaching orbit with the vehicles own engines. Of necessity, the system must be located on and around a mountain with sufficient relief to allow the catapult to accelerate the launch vehicle to a sufficient speed in the desired direction to allow it to reach orbit. Such a mountain site must meet criteria consistent with current and future space launch needs and conditions. It is the purpose of this report to set forth preliminary criteria for choosing a suitable maglifter site. The report is divided into four major sections: (1) Assumed Launch System and Flight Vehicle Characteristics; (2) Task 1.A - Initial Site Selection Criteria; (3) Conclusions; and (4) Appendix - Phases of the Site Selection Process.
Demonstration of the advanced photovoltaic solar array
NASA Technical Reports Server (NTRS)
Kurland, R. M.; Stella, P. M.
1991-01-01
The Advanced Photovoltaic Solar Array (APSA) design is reviewed. The testing results and performance estimates are summarized. The APSA design represents a critical intermediate milestone for the NASA Office of Aeronautics, Exploration, and Technology (OAET) goal of 300 W/kg at Beginning Of Life (BOL), with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at End Of Life (EOL) for a 10 year geosynchronous (GEO) 10 kW (BOL) space power system. The APSA wing design is scalable over a power range of 1 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to GEO and interplanetary out to 5 AU.
Advanced Earth Observation System Instrumentation Study (aeosis)
NASA Technical Reports Server (NTRS)
White, R.; Grant, F.; Malchow, H.; Walker, B.
1975-01-01
Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.
The Vehicle Control Systems Branch at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Barret, Chris
1990-01-01
This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.
Mars Molniya Orbit Atmospheric Resource Mining
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham
2016-01-01
This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.
What's New for Laser Orbital Debris Removal
NASA Astrophysics Data System (ADS)
Phipps, Claude; Lander, Mike
2011-11-01
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm is now a reality that we ignore at our peril. The least costly, and most comprehensive, solution is Laser Orbital Debris Removal (LODR). In this approach, a high power pulsed laser on the Earth creates a laser-ablation jet on the debris object's surface which provides the small impulse required to cause it to re-enter and burn up in the atmosphere. The LODR system should be located near the Equator, and includes the laser, a large, agile mirror, and systems for active detection, tracking and atmospheric path correction. In this paper, we discuss advances that have occurred since LODR was first proposed, which make this solution to the debris problem look quite realistic.
Advanced simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1988-01-01
Computer simulations have been performed for an orbital gradiometer mission to assist in the study of high degree and order gravity field recovery. The simulations were conducted for a satellite in near-circular, frozen orbit at a 160-km altitude using a gravitational field complete to degree and order 360. The mission duration is taken to be 32 days. The simulation provides a set of measurements to assist in the evaluation of techniques developed for the determination of the gravity field. Also, the simulation provides an ephemeris to study available tracking systems to satisfy the orbit determination requirements of the mission.
Global change technology architecture trade study
NASA Technical Reports Server (NTRS)
Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)
1991-01-01
Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.
Mars Radar Opens a Planet's Third Dimension
NASA Technical Reports Server (NTRS)
2008-01-01
Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders. The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
NASA Orbit Transfer Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
1984-01-01
The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.
Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle
NASA Technical Reports Server (NTRS)
Redd, L.
1985-01-01
Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.
Affordable Launch Services using the Sport Orbit Transfer System
NASA Astrophysics Data System (ADS)
Goldstein, D. J.
2002-01-01
Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.
NASA's future Earth observation plans
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.
2004-11-01
NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for geostationary orbit to facilitate continuous measurements of weather-related phenomena, improve "nowcasting" of extreme weather events, and measure important atmospheric gases. NASA is currently developing with its partners the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and the next-generation geostationary system, GOES-R. Future missions will migrate today's capabilities in low Earth orbit to higher orbits such as L1 and L2 to enable more continuous monitoring of changes in the Earth system with a smaller number of satellites.
Cascade Distillation System Development
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah
2014-01-01
NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
Shuttle Upgrade Program: Tile TPS
NASA Technical Reports Server (NTRS)
Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)
2001-01-01
One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Bruno, Cy
2012-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy
2013-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed.
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1989-01-01
Over the years, NASA has been conducting the Advanced Earth-to-Orbit (AETO) Propulsion Technology Program to provide the knowledge, understanding, and design methodology that will allow the development of advanced Earth-to-orbit propulsion systems with high performance, extended service life, automated operations, and diagnostics for in-flight health monitoring. The objective of the Aerothermodynamic Loads Definition Study is to develop methods to more accurately predict the operating environment in AETO propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. The approach taken consists of 2 parts: to modify, apply, and disseminate existing computational fluid dynamics tools in response to current needs and to develop new technology that will enable more accurate computation of the time averaged and unsteady aerothermodynamic loads in the SSME powerhead. The software tools are detailed. Significant progress was made in the area of turbomachinery, where there is an overlap between the AETO efforts and research in the aeronautical gas turbine field.
Application of single crystal superalloys for Earth-to-orbit propulsion systems
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Parr, R. A.
1987-01-01
Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960's. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The space shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.
A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Stnaley, Douglas O.
1991-01-01
A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.
Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.
Chemical Microthruster Options
NASA Technical Reports Server (NTRS)
DeGroot, Wim; Oleson, Steve
1996-01-01
Chemical propulsion systems with potential application to microsatellites are classified by propellant phase, i.e. gas, liquid, or solid. Four promising concepts are selected based on performance, weight, size, cost, and reliability. The selected concepts, in varying stages of development, are advanced monopropellants, tridyne(TM), electrolysis, and solid gas generator propulsion. Tridyne(TM) and electrolysis propulsion are compared vs. existing cold gas and monopropellant systems for selected microsatellite missions. Electrolysis is shown to provide a significant weight advantage over monopropellant propulsion for an orbit transfer and plane change mission. Tridyne(TM) is shown to provide a significant advantage over cold gas thrusters for orbit trimming and spacecraft separation.
Liquid Hydrogen Sensor Considerations for Space Exploration
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2006-01-01
The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.
Advanced space system analysis software. Technical, user, and programmer guide
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Zimbelman, H. F.
1981-01-01
The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.
Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles
NASA Technical Reports Server (NTRS)
London, John, III; Sumrall, Phil
1999-01-01
The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.
Space Shuttle development update
NASA Technical Reports Server (NTRS)
Brand, V.
1984-01-01
The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.
NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star
NASA Astrophysics Data System (ADS)
Zurbuchen, T.
2017-12-01
This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.
Flight Demonstrations of Orbital Space Plane (OSP) Technologies
NASA Technical Reports Server (NTRS)
Turner, Susan
2003-01-01
The Orbital Space Plane (OSP) Program embodies NASA s priority to transport Space Station crews safely, reliably, and affordably, while it empowers the Nation s greater strategies for scientific exploration and space leadership. As early in the development cycle as possible, the OSP will provide crew rescue capability, offering an emergency ride home from the Space Station, while accommodating astronauts who are deconditioned due to long- duration missions, or those that may be ill or injured. As the OSP Program develops a fully integrated system, it will use existing technologies and employ computer modeling and simulation. Select flight demonstrator projects will provide valuable data on launch, orbital, reentry, and landing conditions to validate thermal protection systems, autonomous operations, and other advancements, especially those related to crew safety and survival.
NASA Technical Reports Server (NTRS)
Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail
2015-01-01
The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Carpenter, James R.
2011-01-01
The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.
With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017
2017-12-27
NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall
Potential for on-orbit manufacture of large space structures using the pultrusion process
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.
1987-01-01
On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.
Investigation of electrodynamic stabilization and control of long orbiting tethers
NASA Technical Reports Server (NTRS)
Colombo, G.; Arnold, D.
1984-01-01
The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.
Advanced extravehicular protective systems
NASA Technical Reports Server (NTRS)
Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.
1972-01-01
New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.
Evaluation of advanced geopotential models for operational orbit determination
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Davis, B. E.; Samii, M. V.; Engel, C. J.; Doll, C. E.
1988-01-01
To meet future orbit determination accuracy requirements for different NASA projects, analyses are performed using Tracking and Data Relay Satellite System (TDRSS) tracking measurements and orbit determination improvements in areas such as the modeling of the Earth's gravitational field. Current operational requirements are satisfied using the Goddard Earth Model-9 (GEM-9) geopotential model with the harmonic expansion truncated at order and degree 21 (21-by-21). This study evaluates the performance of 36-by-36 geopotential models, such as the GEM-10B and Preliminary Goddard Solution-3117 (PGS-3117) models. The Earth Radiation Budget Satellite (ERBS) and LANDSAT-5 are the spacecraft considered in this study.
Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Oeftering, Richard; Soeder, James F.; Beach, Ray
2014-01-01
The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.
Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters
NASA Technical Reports Server (NTRS)
Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith
2016-01-01
Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andy; Greene, William D.
2017-01-01
Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters
NASA Technical Reports Server (NTRS)
Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig
2005-01-01
Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.
Health management and controls for earth to orbit propulsion systems
NASA Technical Reports Server (NTRS)
Bickford, R. L.
1992-01-01
Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.
Cost analysis of water recovery systems
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1972-01-01
Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced life support subsystems for long range planning in support of earth orbital programs. Cost analysis are presented for five leading water reclamation systems; (1) RITE waste management-water system;(2) reverse osmosis system;(3) multifiltration system;(4) vapor compression system; and(5) closed air evaporation system with electrolytic pretreatment.
Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris
NASA Technical Reports Server (NTRS)
Hill, Nicole M.
2009-01-01
There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.
High-Performance CCSDS AOS Protocol Implementation in FPGA
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.
Advanced electrostatic ion thruster for space propulsion
NASA Technical Reports Server (NTRS)
Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.
1978-01-01
The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.
Advances in the management of orbital fractures.
Nguyen, P N; Sullivan, P
1992-01-01
Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
An advanced analysis method of initial orbit determination with too short arc data
NASA Astrophysics Data System (ADS)
Li, Binzhe; Fang, Li
2018-02-01
This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.
NASA Astrophysics Data System (ADS)
Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan
2016-07-01
Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.
Status of advanced orbital transfer propulsion
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1985-01-01
A new Orbital Transfer Vehicle (OTV) propulsion system that will be used in conjunction with the Space Shuttle, Space Station and Orbit Maneuvering Vehicle is discussed. The OTV will transfer men, large space structures and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. Critical engine design considerations based upon the need for low cost payload delivery, space basing, reusability, aeroassist maneuvering, low g transfers of large space structures and man rating are described. The importance of each of these to propulsion design is addressed. Specific propulsion requirements discussed are: (1) high performance H2/O2 engine; (2) multiple engine configurations totalling no more than 15,000 lbf thrust 15 to 20 hr life; (3) space maintainable modular design; (4) health monitoring capability; and (5) safety and mission success with backup auxiliary propulsion.
Developing an Advanced Life Support System for the Flexible Path into Deep Space
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Kliss, Mark H.
2010-01-01
Long duration human missions beyond low Earth orbit, such as a permanent lunar base, an asteroid rendezvous, or exploring Mars, will use recycling life support systems to preclude supplying large amounts of metabolic consumables. The International Space Station (ISS) life support design provides a historic guiding basis for future systems, but both its system architecture and the subsystem technologies should be reconsidered. Different technologies for the functional subsystems have been investigated and some past alternates appear better for flexible path destinations beyond low Earth orbit. There is a need to develop more capable technologies that provide lower mass, increased closure, and higher reliability. A major objective of redesigning the life support system for the flexible path is achieving the maintainability and ultra-reliability necessary for deep space operations.
Tony Rollins prepares a new tile for the Space Shuttle orbiter
NASA Technical Reports Server (NTRS)
1998-01-01
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the 'eyeballs' on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.
Evolution of the Baseline ISS ECLSS Technologies: The Next Logical Steps
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn L.; Bagdigian, Bob; Perry, Jay; Lewis, John; Williams, Dave
2004-01-01
The baseline Environmental Control and Life Support Systems which are currently deployed on the International Space Station or planned to be launched in Node 3 are based on technologies selected in the early 1990's. While they are generally meeting or exceeding requirements for supporting the ISS crew, lessons learned from years of on orbit and ground testing, new advances in technology state of the art, and requirements for future manned missions prompt consideration of the next logical step to enhance these systems to increase performance, robustness, reliability, and reduce on-orbit and logistical resource requirements. This paper discusses the current state of the art in ISS ECLSS technologies, and possible areas for enhancement/improvement. Potential utilization of the ISS as a testbed for on-orbit checkout of selected technology improvements is also addressed.
Experimental evaluation of three leak detection and location concepts for space stations
NASA Technical Reports Server (NTRS)
Scherb, M. V.; Kazokas, G. P.; Zelik, J. A.; Mastandrea, J. R.; Mackallor, D. C.
1972-01-01
Three leak (or precursor damage modes) detection and location concepts for space station overboard leakage were evaluated experimentally. The techniques are: (1) static and dynamic seal leak detector sensing of moisture or all gases in space cabin atmosphere, (2) active ultrasonic Lamb-wave detection of flaws or cracks in cabin wall, and (3) impact gage detection of stress waves induced in cabin pressure wall by meteoroid or orbital impact. The experimental results obtained in the program demonstrated that all three leak detection and location concepts are feasible. With further development, the methods can be integrated into an effective damage control system for advanced manned earth-orbital systems.
Crew appliance computer program manual, volume 1
NASA Technical Reports Server (NTRS)
Russell, D. J.
1975-01-01
Trade studies of numerous appliance concepts for advanced spacecraft galley, personal hygiene, housekeeping, and other areas were made to determine which best satisfy the space shuttle orbiter and modular space station mission requirements. Analytical models of selected appliance concepts not currently included in the G-189A Generalized Environmental/Thermal Control and Life Support Systems (ETCLSS) Computer Program subroutine library were developed. The new appliance subroutines are given along with complete analytical model descriptions, solution methods, user's input instructions, and validation run results. The appliance components modeled were integrated with G-189A ETCLSS models for shuttle orbiter and modular space station, and results from computer runs of these systems are presented.
Enhanced EOS photovoltaic power system capability with InP solar cells
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.
1991-01-01
The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.
SPIN–SPIN COUPLING IN THE SOLAR SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batygin, Konstantin; Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu
The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In thismore » work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.« less
Dissemination and Use of NPOESS Data in AWIPS II
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Burks, Jason
2008-01-01
Real-time satellite information provides one of many data sources used by NWS forecast offices to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting data has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. The multispectral polar orbiting satellite capabilities allow for the derivation of image and sounding products not available from geostationary orbit. The utility of these polar orbiting measurements to forecasters has been demonstrated with NASA EOS observations as part of the Short-term Prediction and Research Transition (SPORT) program at Marshall Space Flight Center. SPORT scientists have been providing real-time MODIS data to NWS forecasters on an experimental basis to address a variety of short-term weather forecasting problems since 2003. The launch of the NPOESS Preparatory Project (NPP) satellite in 2009 will extend the continuity of high-resolution data provided by the NASA EOS satellites into future operational weather systems. The NPP data will be available in a timeframe consistent with the early installation of the next generation Advanced Weather Information Processing System (AWIPS) under development by Raytheon for the NWS. The AWIPS II system will be a JAVA-based decision support system which preserves the functionality of the existing systems and offers unique development opportunities for new data sources and applications in the Service Orientated Architecture (SOA) environment. The poster will highlight some of the advanced observing and display- capabilities of these new systems such as plug-ins for NASA and NPP datasets, and the development of local applications which are not well handled in the current AWIPS (e.g., 3D displays of LMA data, generation and display of 3-channel color composites, etc.).
Peroxide Propulsion at the Turn of the Century
NASA Technical Reports Server (NTRS)
Anderson, William E.; Butler, Kathy; Crocket, Dave; Lewis, Tim; McNeal, Curtis
2000-01-01
A resurgence of interest in peroxide propulsion has occurred in the last years of the 21st Century. This interest is driven by the need for lower cost propulsion systems and the need for storable reusable propulsion systems to meet future space transportation system architectures. NASA and the Air Force are jointly developing two propulsion systems for flight demonstration early in the 21st Century. One system will be a development of Boeing's AR2-3 engine, which was successfully fielded in the 1960s. The other is a new pressure-fed design by Orbital Sciences Corporation for expendable mission requirements. Concurrently NASA and industry are pursuing the key peroxide technologies needed to design, fabricate, and test advanced peroxide engines to meet the mission needs beyond 2005. This paper will present a description of the AR2-3, report the status of its current test program, and describe its intended flight demonstration. This paper will then describe the Orbital 10K engine, the status of its test program, and describe its planned flight demonstration. Finally the paper will present a plan, or technology roadmap, for the development of an advanced peroxide engine for the 21st Century.
NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel
2005-01-01
Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.
State-of-the-art satellite laser range modeling for geodetic and oceanographic applications
NASA Technical Reports Server (NTRS)
Klosko, Steve M.; Smith, David E.
1993-01-01
Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.
AES Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam J.
2012-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
Van Yperen-De Deyne, A; Pauwels, E; Van Speybroeck, V; Waroquier, M
2012-08-14
In this paper an overview is presented of several approximations within Density Functional Theory (DFT) to calculate g-tensors in transition metal containing systems and a new accurate description of the spin-other-orbit contribution for high spin systems is suggested. Various implementations in a broad variety of software packages (ORCA, ADF, Gaussian, CP2K, GIPAW and BAND) are critically assessed on various aspects including (i) non-relativistic versus relativistic Hamiltonians, (ii) spin-orbit coupling contributions and (iii) the gauge. Particular attention is given to the level of accuracy that can be achieved for codes that allow g-tensor calculations under periodic boundary conditions, as these are ideally suited to efficiently describe extended condensed-phase systems containing transition metals. In periodic codes like CP2K and GIPAW, the g-tensor calculation schemes currently suffer from an incorrect treatment of the exchange spin-orbit interaction and a deficient description of the spin-other-orbit term. In this paper a protocol is proposed, making the predictions of the exchange part to the g-tensor shift more plausible. Focus is also put on the influence of the spin-other-orbit interaction which becomes of higher importance for high-spin systems. In a revisited derivation of the various terms arising from the two-electron spin-orbit and spin-other-orbit interaction (SOO), new insight has been obtained revealing amongst other issues new terms for the SOO contribution. The periodic CP2K code has been adapted in view of this new development. One of the objectives of this study is indeed a serious enhancement of the performance of periodic codes in predicting g-tensors in transition metal containing systems at the same level of accuracy as the most advanced but time consuming spin-orbit mean-field approach. The methods are first applied on rhodium carbide but afterwards extended to a broad test set of molecules containing transition metals from the fourth, fifth and sixth row of the periodic table. The set contains doublets as well as high-spin molecules.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Space shuttle propulsion systems
NASA Technical Reports Server (NTRS)
Bardos, Russell
1991-01-01
This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.
Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman
2017-02-28
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman
2017-01-01
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770
Benefits from synergies and advanced technologies for an advanced-technology space station
NASA Technical Reports Server (NTRS)
Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.
1991-01-01
A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.
NASA Astrophysics Data System (ADS)
Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.
2009-12-01
The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.
Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael
2007-01-01
Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos; Lukashin, Constantine; Speth, Paul W.; Kopp, Gregg; Thome, Kurt; Wielicki, Bruce A.; Young, David F.
2014-01-01
The implementation of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission was recommended by the National Research Council in 2007 to provide an on-orbit intercalibration standard with accuracy of 0.3% (k = 2) for relevant Earth observing sensors. The goal of reference intercalibration, as established in the Decadal Survey, is to enable rigorous high-accuracy observations of critical climate change parameters, including reflected broadband radiation [Clouds and Earth's Radiant Energy System (CERES)], cloud properties [Visible Infrared Imaging Radiometer Suite (VIIRS)], and changes in surface albedo, including snow and ice albedo feedback. In this paper, we describe the CLARREO approach for performing intercalibration on orbit in the reflected solar (RS) wavelength domain. It is based on providing highly accurate spectral reflectance and reflected radiance measurements from the CLARREO Reflected Solar Spectrometer (RSS) to establish an on-orbit reference for existing sensors, namely, CERES and VIIRS on Joint Polar Satellite System satellites, Advanced Very High Resolution Radiometer and follow-on imagers on MetOp, Landsat imagers, and imagers on geostationary platforms. One of two fundamental CLARREO mission goals is to provide sufficient sampling of high-accuracy observations that are matched in time, space, and viewing angles with measurements made by existing instruments, to a degree that overcomes the random error sources from imperfect data matching and instrument noise. The data matching is achieved through CLARREO RSS pointing operations on orbit that align its line of sight with the intercalibrated sensor. These operations must be planned in advance; therefore, intercalibration events must be predicted by orbital modeling. If two competing opportunities are identified, one target sensor must be given priority over the other. The intercalibration method is to monitor changes in targeted sensor response function parameters: effective offset, gain, nonlinearity, optics spectral response, and sensitivity to polarization. In this paper, we use existing satellite data and orbital simulationmethods to determinemission requirements for CLARREO, its instrument pointing ability, methodology, and needed intercalibration sampling and data matching for accurate intercalibration of RS radiation sensors on orbit.
NASA Technical Reports Server (NTRS)
Rehder, J. J.; Wurster, K. E.
1978-01-01
Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.
Mercury orbiter transport study
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Feingold, H.
1977-01-01
A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Mccollum, Timothy A.
1994-01-01
The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.
Green Propulsion Advancement and Infusion
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Maynard, Andrew P.; Anflo, Kjell
2018-01-01
All space missions benefit from increased propulsion system performance, allowing lower spacecraft launch mass, larger scientific payloads, or extended on-orbit lifetimes. Likewise, long-term storable liquid propellant candidates that offer significant reduction in personnel hazards and shorter payload processing schedules present a more attractive propulsion subsystem solution to spacecraft builders. Aiming to reduce risk to potential infusion missions and fully comprehend the alternative propellant performance, the work presented herein represents many years of development and collaborative efforts to successfully align higher performance, low toxicity green propellants into NASA Goddard Space Flight Center (GSFC) missions. High Performance Green Propulsion (HPGP), and the associated propellant technology, has advanced significantly in maturity with increased familiarity with LMP-103S propellant handling, the proven reduction in loading hazards, successful launches conducted at multiple international Ranges, and HPGP on-orbit flight heritage. As science missions move forward to the potential infusion of HPGP technology, the National Aeronautics and Space Administration (NASA) and its partners are working to address gaps in system performance and operational considerations.
Advanced Space Transportation Program (ASTP)
2000-09-07
The `once upon a time' science fiction concept of a space elevator has been envisioned and studied as a real mass transportation system in the latter part of the 21st century. David Smitherman of NASA's Marshall Space Flight Center's Advanced Projects Office has compiled plans for such an elevator. The space elevator concept is a structure extending from the surface of the Earth to geostationary Earth orbit (GEO) at 35,786 km in altitude. The tower would be approximately 50 km tall with a cable tethered to the top. Its center mass would be at GEO such that the entire structure orbits the Earth in sync with the Earth's rotation maintaining a stationary position over its base attachment at the equator. Electromagnetic vehicles traveling along the cable could serve as a mass transportation system for transporting people, payloads, and power between space and Earth. This illustration by artist Pat Rawling shows the concept of a space elevator as viewed from the geostationary transfer station looking down the length of the elevator towards the Earth.
Orbit transfer rocket engine technology program: Automated preflight methods concept definition
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Hertzberg, D. W.
1991-01-01
The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.
Nano Goes Magnetic to Attract Big Business
NASA Technical Reports Server (NTRS)
2006-01-01
Glenn Research Center has combined state-of-the-art electrical designs with complex, computer-aided analyses to develop some of today s most advanced power systems, in space and on Earth. The center s Power and On-Board Propulsion Technology Division is the brain behind many of these power systems. For space, this division builds technologies that help power the International Space Station, the Hubble Space Telescope, and Earth-orbiting satellites. For Earth, it has woven advanced aerospace power concepts into commercial energy applications that include solar and nuclear power generation, battery and fuel cell energy storage, communications and telecommunications satellites, cryocoolers, hybrid and electric vehicles, and heating and air-conditioning systems.
Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016
NASA Technical Reports Server (NTRS)
Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.
2016-01-01
Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.
NASA Technical Reports Server (NTRS)
Levak, Daniel
1993-01-01
The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.
NASA Technical Reports Server (NTRS)
Levack, Daniel J. H.
2000-01-01
The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.
Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.
Tanaka, Shigenori; Mochizuki, Yuji; Komeiji, Yuto; Okiyama, Yoshio; Fukuzawa, Kaori
2014-06-14
Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.
Space transportation propulsion application - A development challenge
NASA Astrophysics Data System (ADS)
Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.
1989-10-01
This paper presents an approach to achieving a cost-effective vertical takeoff, horizontal landing earth-to-orbit vehicle. The key propulsion system problems are addressed. The approach leads to a near-term rocket-powered single-stage-to-orbit system. A flying test-bed vehicle development program is described which allows the orderly development of vital advanced propulsion system and vehicle structural technology within a reasonable cost. The experimental (X-n) vehicle approach also allows the development of operational procedures that result in airline-type costs to space, and permits concepts, such as heavy-lift flight configurations, to be tested in a stepwise manner. Thrust modulation, instead of gimballed engines, allows a significant weight reduction in the propulsion system. Air-breathing airturborocket engines are used for loiter and landing to ensure safe return to earth.
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Beach, Raymond F.; Soeder, James F.; McNelis, Nancy B.; May, Ryan; Dever, Timothy P.; Trase, Larry
2014-01-01
The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper.
Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.
1995-01-01
Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.
NASA 2nd Generation RLV Program Introduction, Status and Future Plans
NASA Technical Reports Server (NTRS)
Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)
2002-01-01
The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
NASA Astrophysics Data System (ADS)
Steuer, C. J.
2016-12-01
Nanosatellite capabilities continue to steadily increase, showcasing ongoing advancement in key systems including GNC, communications, and power utilization. With focused high impact payloads, these small spacecraft can produce extraordinarily valuable planetary science datasets previously only retrievable by large, expensive, flagship science missions. The new capabilities provided by these nano-class spacecraft, in conjunction with, or even in lieu of, more traditional large monolithic spacecraft, can clear the way for a paradigm shift in the logistics and architecture of planetary science missions. Key near term targets for this technology are the icy moons of the outer solar system where advances in propulsion technology coupled with the low mass of nanosatellites and the shallow gravity wells of the moons allow for orbital capture. As part of a JPL funded study, the authors investigated the feasibility of placing a nanosatellite with magnetometer payload in Europa orbit to enhance and compliment the upcoming flagship mission to Europa through multi-frequency magnetic induction sounding. The study concluded that the enhanced dataset provided by coordinated observation between flagship, in Jovian orbit, and nanosatellite, in Europa orbit, using a fluxgate magnetometer of Rosetta heritage, would enable a more complete understanding of Europa's induction response by providing synchronous datasets between the Jovian plasma torus and the induced magnetosphere of Europa. We propose that these Magnetic INduction Ocean Sounders or MINOS spacecraft can play a similar role for all of the icy moons of the Jovian and Saturnian systems, providing close proximity multi-period magnetic induction sounding to compliment plasma suites and ice penetrating radar while setting the stage for alternative payloads and enhanced exploration of these potentially habitable worlds.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians remove the protective cover wrapped around the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians move the test stand with the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians remove the protective cover wrapped around the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the solar arrays on the GOES-O satellite are revealed. GOES-O will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lifted out of its shipping container to a vertical position. It will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lifted out of its shipping container. It will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians help guide the cables lifting the GOES-O satellite toward the stand at right. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lowered toward a test stand. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the protective shipping cover has been removed from the GOES-O satellite. GOES-O will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lowered toward a stand. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
Aerocapture Technology Development Needs for Outer Planet Exploration
NASA Technical Reports Server (NTRS)
Wercinski, Paul; Munk, Michelle; Powell, Richard; Hall, Jeff; Graves, Claude; Partridge, Harry (Technical Monitor)
2002-01-01
The purpose of this white paper is to identify aerocapture technology and system level development needs to enable NASA future mission planning to support Outer Planet Exploration. Aerocapture is a flight maneuver that takes place at very high speeds within a planet's atmosphere that provides a change in velocity using aerodynamic forces (in contrast to propulsive thrust) for orbit insertion. Aerocapture is very much a system level technology where individual disciplines such as system analysis and integrated vehicle design, aerodynamics, aerothermal environments, thermal protection systems (TPS), guidance, navigation and control (GN&C) instrumentation need to be integrated and optimized to meet mission specific requirements. This paper identifies on-going activities, their relevance and potential benefit to outer planet aerocapture that include New Millennium ST7 Aerocapture concept definition study, Mars Exploration Program aeroassist project level support, and FY01 Aeroassist In-Space Guideline tasks. The challenges of performing aerocapture for outer planet missions such as Titan Explorer or Neptune Orbiter require investments to advance the technology readiness of the aerocapture technology disciplines for the unique application of outer planet aerocapture. This white paper will identify critical technology gaps (with emphasis on aeroshell concepts) and strategies for advancement.
Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.
1984-01-01
Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.
Ionizing radiation environment for the TOMS mission
NASA Technical Reports Server (NTRS)
Lauriente, M.; Maloy, J. O.; Vampola, A. L.
1992-01-01
The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.
Anatomy of an entry vehicle experiment
NASA Technical Reports Server (NTRS)
Eide, D. G.; Wurster, K. E.; Helms, V. T.; Ashby, G. C.
1981-01-01
The anatomy and evolution of a simple small-scale unmanned entry vehicle is described that is delivered to orbit by the shuttle and entered into the atmosphere from orbit to acquire flight data to improve our knowledge of boundary-layer behavior and evaluate advanced thermal protection systems. The anatomy of the experiment includes the justification for the experiments, instrumentation, configuration, material, and operational needs, and the translation of these needs into a configuration, weight statement, aerodynamics, program cost, and trajectory. Candidates for new instrumentation development are also identified for nonintrusive measurements of the boundary-layer properties.
Laser Propulsion for LOTV Space Missions
NASA Astrophysics Data System (ADS)
Rezunkov, Yuri A.
2004-03-01
Advanced Space Propulsion-Investigation Committee (ASPIC) of the Japan Society for Aeronautics and Space Sciences (JSASS) selected the Laser Orbital Transfer Vehicle (LOTV) project for development of non-chemical space propulsion systems that have a capability to sustain expanded human space activities in the 21st century. This talk is presenting an analysis of the laser propulsion researches made within the frames of the ISTC Project 1801 as applied to the LOTV Project. The study includes the development of techniques for low-thrust maneuvers of the spacecraft to achieve geostationary orbits.
Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Irlbeck, Bradley W.
2004-01-01
Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.
NASA Technical Reports Server (NTRS)
Korzeniowski, E. S.
1983-01-01
This paper describes the requirements, design development, and qualification of the mounting and jettison assembly (MJA) which serves as the base structure for the advanced gimbal system (AGS) developed for NASA, Marshall Space Flight Center, for use during shuttle missions. An engineering model of the MJA has been built and subjected to the following testing: stiffness and modal characterization, sine and random vibration, and a jettison function and energy release. A qualitative summary of the results and the problems encountered during testing, together with the design solutions, is presented.
Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview
NASA Technical Reports Server (NTRS)
Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim;
2009-01-01
Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.
NASA Astrophysics Data System (ADS)
Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent
2016-04-01
The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.
Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.
Smart active pilot-in-the-loop systems
NASA Astrophysics Data System (ADS)
Thomas, Segun
1995-04-01
Representation of on-orbit microgravity environment in a 1-g environment is a continuing problem in space engineering analysis, procedures development and crew training. A way of adequately depicting weightlessness in the performance of on-orbit tasks is by a realistic (or real-time) computer based representation that provides the look, touch, and feel of on-orbit operation. This paper describes how a facility, the Systems Engineering Simulator at the Johnson Space Center, is utilizing recent advances in computer processing power and multi- processing capability to intelligently represent all systems, sub-systems and environmental elements associated with space flight operations. It first describes the computer hardware and interconnection between processors; the computer software responsible for task scheduling, health monitoring, sub-system and environment representation; control room and crew station. It then describes, the mathematical models that represent the dynamics of contact between the Mir and the Space Shuttle during the upcoming US and Russian Shuttle/Mir space mission. Results are presented comparing the response of the smart, active pilot-in-the-loop system to non-time critical CRAY model. A final example of how these systems are utilized is given in the development that supported the highly successful Hubble Space Telescope repair mission.
NASA Astrophysics Data System (ADS)
Hagan, D. E.; Bingham, G. E.; Predina, J.; Gu, D.; Sabet-Peyman, F.; Wang, C.; de Amici, G.; Plonski, M.; Farrow, S. V.; Hohn, J.; Esplin, M.; Zavyalov, V.; Fish, C. S.; Glumb, R.; Wells, S.; Suwinski, L.; Strong, J.; Behrens, C.; Kilcoyne, H.; Feeley, J.; Kratz, G.; Tremblay, D. A.
2009-12-01
The Cross-Track Infrared Sounder (CrIS) together with the Advanced Technology Microwave Sounder will provide retrievals of atmospheric moisture and temperature profiles for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The NPOESS is the next generation of low Earth orbiting weather and climate satellites managed by the tri-agency Integrated Program Office, which includes the Department of Commerce, Department of Defense and the National Aeronautics and Space Administration. The CrIS is a Fourier-transform Michelson interferometer covering the spectral range of 3.9 to 15.4 microns (650 to 2550 wavenumbers) developed by ITT under contract to Northrop Grumman Aerospace Systems. The first deployment of the CrIS (Flight Model 1) is scheduled for 2010 on the NPOESS Preparatory Project (NPP) satellite, an early instrument risk reduction component of the NPOESS mission. The analysis and data results from comprehensive TVAC testing of the CrIS FM1 sensor demonstrate a very accurate radiometric and spectral calibration system. We describe instrument performance parameters, and the end-to-end plans and analysis tools for on-orbit verification of sensor characteristics and validation of the SDR radiance products.
Orbital Propagation of Momentum Exchange Tether Systems
NASA Technical Reports Server (NTRS)
Westerhoff, John
2002-01-01
An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
Space station support of manned Mars missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1986-01-01
The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.
Management of periorbital basal cell carcinoma with orbital invasion.
Sun, Michelle T; Wu, Albert; Figueira, Edwin; Huilgol, Shyamala; Selva, Dinesh
2015-11-01
Basal cell carcinoma (BCC) is the most common eyelid malignancy; however, orbital invasion by periocular BCC is rare, and management remains challenging. Established risk factors for orbital invasion by BCC include male gender, advanced age, medial canthal location, previous recurrences, large tumor size, aggressive histologic subtype and perineural invasion. Management requires a multidisciplinary approach with orbital exenteration remaining the treatment of choice. Globe-sparing treatment may be appropriate in selected patients and radiotherapy and chemotherapy are often used as adjuvant therapies for advanced or inoperable cases, although the evidence remains limited. We aim to summarize the presentation and treatment of BCC with orbital invasion to better guide the management of this complex condition.
A Constellation of Microsatellites Promises to Help in a Range of Geoscience Research
NASA Technical Reports Server (NTRS)
Kuo, Y. H.; Chao, B. F.; Lee, L. C.
1999-01-01
An octet of microsatellites to be launched in 2003 promises to deliver a large amount of useful data for meteorological, climatic, ionospheric, and geodetic research as well as for operational weather forecasting and space weather monitoring. Known as the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), the joint Taiwan-U.S. scientific satellite project makes use of Global Positioning System (GPS) occultation and tracking signals. COSMIC's final operational configuration is depicted in Figure 1. Each of the eight microsatellites in low-Earth-orbit (LEO, shown relative to the high-altitude GPS satellite orbits) will carry in particular an advanced limb-sounding GPS receiver, a Tiny Ionospheric Photometer, and a triband beacon transmitter.
The limits of direct satellite tracking with the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Bertiger, W. I.; Yunck, T. P.
1988-01-01
Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.
NASA Technical Reports Server (NTRS)
Willcockson, W. H.
1988-01-01
Work conducted in the second extension of the Phase A Orbit Transfer Vehicle Concept Definition and Systems Analysis Study is summarized. Four major tasks were identified: (1) define an initial OTV program consistent with near term Civil Space Leadership Initiative missions; (2) develop program evolution to long term advanced missions; (3) investigate the implications of current STS safety policy on an Aft Cargo Carrier based OTV; and (4) expand the analysis of high entry velocity aeroassist. An increased emphasis on the breath of OTV applications was undertaken to show the need for the program on the basis of the expansion of the nation's capabilities in space.
Utilizing Solar Power Technologies for On-Orbit Propellant Production
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark W.
2006-01-01
The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
New Propulsion Technologies For Exploration of the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.
Orbital Debris Quarterly News, Volume 13, Issue 4
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)
2009-01-01
Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
Research and technology, fiscal year 1986, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
1986-01-01
The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.
Direct imaging discovery of a Jovian exoplanet within a triple-star system.
Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc
2016-08-12
Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged. Copyright © 2016, American Association for the Advancement of Science.
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
Advanced Life Support Research and Technology Development Metric
NASA Technical Reports Server (NTRS)
Hanford, A. J.
2004-01-01
The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.
Design and performance analysis of an aero-maneuvering orbital-transfer vehicle concept
NASA Technical Reports Server (NTRS)
Menees, G. P.
1985-01-01
Systems requirements for design-optimized, lateral-turn performance were determined for reusable, space-based applications and low-Earth orbits involving large multiple plane-inclination changes. The aerothermodynamic analysis is the most advanced available for rarefield-hypersonic flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermal heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capacity for delivery, retrieval, and combined operations was determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational vehicles.
Tethered orbital propellant depot
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a log tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity given transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John
2005-01-01
The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.
Gravitational anomalies in the solar system?
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2015-02-01
Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.
A Technology Plan for Enabling Commercial Space Business
NASA Technical Reports Server (NTRS)
Lyles, Garry M.
1997-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.
NASA Technical Reports Server (NTRS)
1988-01-01
The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.
Ground-to-orbit laser propulsion: Advanced applications
NASA Technical Reports Server (NTRS)
Kare, Jordin T.
1990-01-01
Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
Orbital Express fluid transfer demonstration system
NASA Astrophysics Data System (ADS)
Rotenberger, Scott; SooHoo, David; Abraham, Gabriel
2008-04-01
Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging of receiving tank, purging of coupling and de-mate of the coupling.
2015-04-22
This simulated image shows how a cloud of glitter in geostationary orbit would be illuminated and controlled by two laser beams. As the cloud orbits Earth, grains scatter the sun's light at different angles like many tiny prisms, similar to how rainbows are produced from light being dispersed by water droplets. That is why the project concept is called "Orbiting Rainbows." The cloud functions like a reflective surface, allowing the exoplanet (displayed in the bottom right) to be imaged. The orbit path is shown in the top right. On the bottom left, Earth's image is seen behind the cloud. To image an exoplanet, the cloud would need to have a diameter of nearly 98 feet (30 meters). This simulation confines the cloud to a 3.3 x 3.3 x 3.3 foot volume (1 x 1 x 1 meter volume) to simplify the computations. The elements of the orbiting telescope are not to scale. Orbiting Rainbows is currently in Phase II development through the NASA Innovative Advanced Concepts (NIAC) Program. It was one of five technology proposals chosen for continued study in 2014. In the current phase, Orbiting Rainbows researchers are conducting small-scale ground experiments to demonstrate how granular materials can be manipulated using lasers and simulations of how the imaging system would behave in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA19318
NASA Technical Reports Server (NTRS)
Wilson, Gregory S.; Huntress, Wesley T.
1990-01-01
The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.
GEM: Geospace Environment Modeling
NASA Astrophysics Data System (ADS)
Roederer, Juan G.
Shortly after the beginning of the “space age” with the launching of the first man made object into terrestrial orbit, geospace assumed a fundamental role as a technological resource for all countries, advanced and developing alike. Today, satellite systems for communications, weather prediction, navigation, and remote sensing of natural resources are supporting, in an essential way, many facets of societal operations. We must expect that this trend will continue; for instance, in perhaps less than 3 decades, transatmospheric transportation will be routine and satellite systems will sustain human colonies in space.The medium in which Earth-orbiting systems operate is hostile. Far from a perfect vacuum, it is made up of high-temperature gas and corpuscular radiation of varying densities and intensities; these solar-activity controlled variations can reach proportions dangerous to orbital stability, to electronic systems performance, to shuttle and spaceplane reentry, and to the life of humans in orbit. Dramatic examples of solar-activity-induced satellite failures are the unexpected early degradation of the orbit of Skylab due to unusual upper atmosphere heating and the demise of satellite GOES-5, most probably caused by a large injection of energetic electrons from the outer magnetoshere. The need to predict “weather and climate” in geospace is becoming as important as the need to predict weather and climate in the inhospitable regions on Earth into which industrial activity has moved during the last decades, such as the Arctic and some of the arid lands.
Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2004-01-01
NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.
NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.
2012-01-01
The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.
2012-01-01
The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.
NASA Technical Reports Server (NTRS)
Cornelison, C. J.; Watts, Eric T.
1998-01-01
Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.
Biconic cargo return vehicle with an advanced recovery system. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
1990-01-01
The conceptual design of the biconic Cargo Return Vehicle (CRV) is presented. The CRV will be able to meet all of the Space Station Freedom (SSF's) resupply needs. Worth note is the absence of a backup recovery chute in case of Advanced Recovery System (ARS) failure. The high reliability of ram-air parachutes does not warrant the penalty weight that such a system would create on successful missions. The CRV will launch vertically integrated with an Liquid Rocket Booster (LRB) vehicle and meets all NASA restrictions on fuel type for all phases of the mission. Because of the downscaled Orbital Maneuvering Vehicle (OMV) program, the CRV has been designed to be able to transfer cargo by docking directly to the Space Station Freedom as well as with OMV assistance. The CRV will cover enough crossrange to reach its primary landing site, Edwards Airforce Base, and all secondary landing sites with the exception of one orbit. Transportation back to KSC will be via the Boeing Super Guppy. Due to difficulties with man-rating the CRV, it will not be used in a CERV role. A brief summary of the CRV's specifications is given.
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.
NASA Technical Reports Server (NTRS)
McEachen, Michael E.; Murphy, Dave; Meinhold, Shen; Spink, Jim; Eskenazi, Mike; O'Neill, Mark
2017-01-01
Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management.
Definition study for an extended manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
1971-01-01
A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.
Evaluation of Low Power Hall Thruster Propulsion
NASA Technical Reports Server (NTRS)
Manzella, David; Oleson, Steve; Sankovic, John; Haag, Tom; Semenkin, Alexander; Kim, Vladimir
1996-01-01
Hall thruster systems based on the SPT-50 and the TAL D-38 were evaluated and mission studies were performed. The 0.3 kilowatt SPT-50 operated with a specific impulse of 1160 seconds and an efficiency of 0.32. The 0.8 kilowatt D-38 provided a specific impulse above 1700 seconds at an efficiency of 0.5. The D-38 system was shown to offer a 56 kilogram propulsion system mass savings over a 101 kilogram hydrazine monopropellant system designed to perform North-South station keeping maneuvers on board a 430 kilogram geostationary satellite. The SPIT-50 system offered a greater than 50% propulsion system mass reduction in comparison to the chemical system on board a 200 kilogram low Earth orbit spacecraft performing two orbit raises and drag makeup over two years. The performance characteristics of the SPF-50 were experimentally evaluated at a number of operating conditions. The ion current density distribution of this engine was measured. The performance and system mass benefits of advanced systems based on both engines were considered.
A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Hyde, James L.
2008-01-01
Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.
Multipoint Geospace Science in 3D: The Paired Ionosphere-Thermosphere Orbiters(PITO) Mission
NASA Technical Reports Server (NTRS)
Clemmons, J.; Walterscheid, R.; Nigg, D.; Judnick, D.; Lang, J.; Spann, J.
2010-01-01
The science enabled by the Paired Ionosphere-Thermosphere Orbiters (PITO) mission is described and discussed. PITO has been designed to provide the concurrent, three-dimensional, multipoint measurements needed to advance geospace science while staying within a stringent resource envelope. The mission utilizes a pair of orbiting vehicles in eccentric, high-inclination, coplanar orbits. The orbits have arguments of perigee that differ by 180 degrees and are phased such that one vehicle is at perigee (200 km) while the second is at apogee (2000 km). Half an orbit later, the vehicles switch positions. Three complementary types of measurements exploit this scenario: local, in-situ measurements on both satellites, two-dimensional imaging from the higher satellite, and vertical sounders. The main idea is that two-dimensional context information for the low-altitude measurements is obtained by the high altitude imagers, while information on the third dimension is provided by vertical profiling. Such an observation system is capable of providing elements of global coverage, regional coverage, and concurrent coverage in three dimensions. Science goals are presented, as are the results of a detailed implementation plan, including several trade studies on key elements of the mission. The conclusion is that the mission would enable significant new understanding of the ionosphere-thermosphere system within a resource envelope that is consistent with that of NASA's Medium Explorer (MIDEX) line of science missions.
Pointing and control system enabling technology for future automated space missions
NASA Technical Reports Server (NTRS)
Dahlgren, J. B.
1978-01-01
Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.
NASA Technical Reports Server (NTRS)
Ehsani, M.; Tchamdjou, A.
1997-01-01
This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.
Advanced space solar dynamic receivers
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.
1988-01-01
A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.
NASA Astrophysics Data System (ADS)
Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian
2018-02-01
Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
NASA Technical Reports Server (NTRS)
Obrien, Charles J.
1993-01-01
Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.
1982-01-01
Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.
Civil space technology initiative
NASA Technical Reports Server (NTRS)
1990-01-01
The Civil Space Technology Initiative (CSTI) is a major, focused, space technology program of the Office of Aeronautics, Exploration and Technology (OAET) of NASA. The program was initiated to advance technology beyond basic research in order to expand and enhance system and vehicle capabilities for near-term missions. CSTI takes critical technologies to the point at which a user can confidently incorporate the new or expanded capabilities into relatively near-term, high-priority NASA missions. In particular, the CSTI program emphasizes technologies necessary for reliable and efficient access to and operation in Earth orbit as well as for support of scientific missions from Earth orbit.
NASA Technical Reports Server (NTRS)
1978-01-01
An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.
Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix
NASA Technical Reports Server (NTRS)
1981-01-01
Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.
Structures and mechanisms - Streamlining for fuel economy
NASA Technical Reports Server (NTRS)
Card, M. F.
1983-01-01
The design of prospective NASA space station components which inherently possess the means for structural growth without compromising initial system characteristics is considered. In structural design terms, space station growth can be achieved by increasing design safety factors, introducing dynamic isolators to prevent loads from reaching the initial components, or preplanning the refurbishment of the original structure with stronger elements. Design tradeoffs will be based on the definition of on-orbit loads, including docking and maneuvering, whose derived load spectra will allow the estimation of fatigue life. Improvements must be made in structural materials selection in order to reduce contamination, slow degradation, and extend the life of coatings. To minimize on-orbit maintenance, long service life lubrication systems with advanced sealing devices must be developed.
Medical evaluations on the KC-135 1991 flight report summary
NASA Technical Reports Server (NTRS)
Lloyd, Charles W.
1993-01-01
The medical investigations completed on the KC-135 during FY 1991 in support of the development of the Health Maintenance Facility and Medical Operations are presented. The experiments consisted of medical and engineering evaluations of medical hardware and procedures and were conducted by medical and engineering personnel. The hardware evaluated included prototypes of a crew medical restraint system and advanced life support pack, a shuttle orbiter medical system, an airway medical accessory kit, a supplementary extended duration orbiter medical kit, and a surgical overhead canopy. The evaluations will be used to design flight hardware and identify hardware-specific training requirements. The following procedures were evaluated: transport of an ill or injured crewmember at man-tended capability, surgical technique in microgravity, transfer of liquids in microgravity, advanced cardiac life support using man-tended capability Health Maintenance Facility hardware, medical transport using a model of the assured crew return vehicle, and evaluation of delivery mechanisms for aerosolized medications in microgravity. The results of these evaluation flights allow for a better understanding of the types of procedures that can be performed in a microgravity environment.
Orbital stability analysis and chaotic dynamics of exoplanets in multi-stellar systems
NASA Astrophysics Data System (ADS)
Satyal, Suman
The advancement in detection technology has substantially increased the discovery rate of exoplanets in the last two decades. The confirmation of thousands of exoplanets orbiting the solar type stars has raised new astrophysical challenges, including the studies of orbital dynamics and long-term stability of such planets. Continuous orbital stability of the planet in stellar habitable zone is considered vital for life to develop. Hence, these studies furthers one self-evident aim of mankind to find an answer to the century old question: Are we alone?. This dissertation investigates the planetary orbits in single and binary star systems. Within binaries, a planet could orbit either one or both stars as S-type or P-type, respectively. I have considered S-type planets in two binaries, gamma Cephei and HD 196885, and compute their orbits by using various numerical techniques to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS) function, which measures the orbital perturbation induced by the nearby companion, is calculated for each system and then its efficacy as a new chaos indicator is tested against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with an emphasis on the planet's higher orbital inclination relative to the binary plane. I have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space, which indicates a likely regime of the planet's inclination. In, addition, the resonant angle is inspected to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a large inclination. The studies of planetary system in GJ 832 shows potential of hosting multiple planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass test planet(s) are analyzed for periodic-aperiodic orbits. The stability of the system is defined in terms of its lifetime and maximum eccentricity during the integration period then a regime is established for the known and injected planet's orbital parameters. The de-stabilizing resonances due to the outer planet extend by 1.36 AU towards the star, nonetheless, existence of two Earth-mass planets seems plausible. The radial velocity (RV) curves generated for the test planets reveals a weak RV signal that cannot be measured by currently available instruments. A theory has been developed by extrapolating the radio emission processes in the Jupiter-Io system, which could reveal the presence of exomoons around the giant exoplanets. Based on this theory, maximum distance, radius and masses of exoplanets and exomoons are calculated that could be detected by the available radio telescopes. Observation time at the Low Frequency Array (LOFAR) radio telescope has been proposed to detect exomoon in five different stellar systems. Subjects of my future studies include analysis of the data from LOFAR, search for the additional transiting planets in Kepler 47 circumbinary system and observation at the Subaru telescope to verify the predicted planets in GJ 832 system by the method of direct imaging.
Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.
2012-01-01
NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.
Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.
2011-01-01
NASA's goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.
COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2011-01-01
Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage
NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Schneider, Walter F.; Shull, Sarah A.
2017-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.
Trajectory optimization for an asymmetric launch vehicle. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Jeanne Marie
1990-01-01
A numerical optimization technique is used to fully automate the trajectory design process for an symmetric configuration of the proposed Advanced Launch System (ALS). The objective of the ALS trajectory design process is the maximization of the vehicle mass when it reaches the desired orbit. The trajectories used were based on a simple shape that could be described by a small set of parameters. The use of a simple trajectory model can significantly reduce the computation time required for trajectory optimization. A predictive simulation was developed to determine the on-orbit mass given an initial vehicle state, wind information, and a set of trajectory parameters. This simulation utilizes an idealized control system to speed computation by increasing the integration time step. The conjugate gradient method is used for the numerical optimization of on-orbit mass. The method requires only the evaluation of the on-orbit mass function using the predictive simulation, and the gradient of the on-orbit mass function with respect to the trajectory parameters. The gradient is approximated with finite differencing. Prelaunch trajectory designs were carried out using the optimization procedure. The predictive simulation is used in flight to redesign the trajectory to account for trajectory deviations produced by off-nominal conditions, e.g., stronger than expected head winds.
Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1
NASA Astrophysics Data System (ADS)
Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.
2018-06-01
Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.
Study of Extra-Solar Planets with the Advanced Fiber Optic Echelle
NASA Technical Reports Server (NTRS)
Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)
2002-01-01
This is the final report of NASA Grant NAG5-7505, for 'Study of Extra-solar Planets with the Advanced Fiber Optic Echelle'. This program was funded in response to our proposal submitted under NASA NRA 97-OSS-06, with a total period of performance from June 1, 1998 through Feb 28 2002. Principal Investigator is Robert W. Noyes; co-Investigators are Sylvain G. Korzennik (SAO), Peter Niserison (SAO), and Timothy M. Brown (High Altitude Observatory). Since the start of this program we have carried out more than 30 observing runs, typically of 5 to 7 days duration. We obtained a total of around 2000 usable observations of about 150 stars, where a typical observation consists of 3 exposures of 10 minutes each. Using this data base we detected thc two additional planetary companions to the star Upsilon Andromedae. This detection was made independently of, and essentially simultaneously with, a similar detection by the Berkeley group (Marcy et al): the fact that two data sets were completely independent and gave essentially the same orbital parameters for this three-planet system gave a strong confirmation of this important result. We also extended our previous detection of the planet orbiting Rho Coronae Borealis to get a better determination of its orbital eccentricity: e=0.13 +/- 0.05. We detected a new planet in orbit around the star HD 89744, with orbital period 256 days, semi-major axis 0.88 AU, eccentricity 0.70, and minimum mass m sini = 7.2 m(sub Jup). This discovery is significant because of the very high orbital eccentricity, arid also because HD 89744 has both high metallicity [Fe/H] and at the same time a low [C/Fe] abundance ratio.
Toward large space systems. [Space Construction Base development from shuttles
NASA Technical Reports Server (NTRS)
Daros, C. J.; Freitag, R. F.; Kline, R. L.
1977-01-01
The design of the Space Transportation System, consisting of the Space Shuttle, Spacelab, and upper stages, provides experience for the development of more advanced space systems. The next stage will involve space stations in low earth orbit with limited self-sufficiency, characterized by closed ecological environments, space-generated power, and perhaps the first use of space materials. The third phase would include manned geosynchronous space-station activity and a return to lunar operations. Easier access to space will encourage the use of more complex, maintenance-requiring satellites than those currently used. More advanced space systems could perform a wide range of public services such as electronic mail, personal and police communication, disaster control, earthquake detection/prediction, water availability indication, vehicle speed control, and burglar alarm/intrusion detection. Certain products, including integrated-circuit chips and some enzymes, can be processed to a higher degree of purity in space and might eventually be manufactured there. Hardware including dishes, booms, and planar surfaces necessary for advanced space systems and their development are discussed.
Current Issues in Human Spacecraft Thermal Control Technology
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
S-Boxes Based on Affine Mapping and Orbit of Power Function
NASA Astrophysics Data System (ADS)
Khan, Mubashar; Azam, Naveed Ahmed
2015-06-01
The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.
Advanced water iodinating system. [for potable water aboard manned spacecraft
NASA Technical Reports Server (NTRS)
Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.
1975-01-01
Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.
Artist concept of Magellan spacecraft orbiting Venus
NASA Technical Reports Server (NTRS)
1988-01-01
Magellan spacecraft orbits Venus in this artist concept. The continued quest for detailed topographic measurements of Venus will again be undertaken in April 1989 by Magellan, named after the 16th century Portuguese explorer. Magellan will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperature radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.
Closeup view of the exterior of the starboard side of ...
Close-up view of the exterior of the starboard side of the forward fuselage of the Orbiter Discovery looking at the forward facing observation windows of the flight deck. Note the High-temperature Reusable Surface Insulation (HRSI) surrounding the window openings, the Low-temperature Reusable Surface Insulation (LRSI) immediately beyond the HRSI tiles and the Advanced Flexible Reusable Surface Insulation blankets just beyond the LRSI tiles. The holes in the tiles are injection points for the application of waterproofing material. The windows are composed of redundant pressure window panes of thermal glass. This image was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Orbital Debris Impact Damage to Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Jennifer H.
1998-01-01
In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.
A Space Station tethered orbital refueling facility
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
1990-01-01
The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.
X-34 Main Propulsion System Design and Operation
NASA Technical Reports Server (NTRS)
Champion, R. J., Jr.; Darrow, R. J., Jr.
1998-01-01
The X-34 program is a joint industry/government program to develop, test, and operate a small, fully-reusable hypersonic flight vehicle, utilizing technologies and operating concepts applicable to future Reusable Launch Vehicle (RLV) systems. The vehicle will be capable of Mach 8 flight to 250,000 feet altitude and will demonstrate an all composite structure, composite RP-1 tank, the Marshall Space Flight Center (MSFC) developed Fastrac engine, and the operability of an advanced thermal protection systems. The vehicle will also be capable of carrying flight experiments. MSFC is supporting the X-34 program in three ways: Program Management, the Fastrac engine as Government Furnished Equipment (GFE), and the design of the Main Propulsion System (MPS). The MPS Product Development Team (PDT) at MSFC is responsible for supplying the MPS design, analysis, and drawings to Orbital. The MPS consists of the LOX and RP-1 Fill, Drain, Feed, Vent, & Dump systems and the Helium & Nitrogen Purge, Pressurization, and Pneumatics systems. The Reaction Control System (RCS) design was done by Orbital. Orbital is the prime contractor and has responsibility for integration, procurement, and construction of all subsystems. The paper also discusses the design, operation, management, requirements, trades studies, schedule, and lessons learning with the MPS and RCS designs.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians help guide the cables lifting the GOES-O satellite away from its shipping container. The satellite will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2004-07-16
KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.
2004-07-16
KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.
2004-07-16
KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.
NASA Technical Reports Server (NTRS)
Nix, Michael B.; Escher, William J. d.
1999-01-01
In discussing a new NASA initiative in advanced space transportation systems and technologies, the Director of the NASA Marshall Space Flight Center, Arthur G. Stephenson, noted that, "It would use new propulsion technology, air-breathing engine so you don't have to carry liquid oxygen, at least while your flying through the atmosphere. We are calling it Spaceliner 100 because it would be 100 times cheaper, costing $ 100 dollars a pound to orbit." While airbreathing propulsion is directly named, rocket propulsion is also implied by, "... while you are flying through the atmosphere." In-space final acceleration to orbital speed mandates rocket capabilities. Thus, in this informed view, Spaceliner 100 will be predicated on combined airbreathing/rocket propulsion, the technical subject of this paper. Interestingly, NASA's recently concluded Highly Reusable Space Transportation (HRST) study focused on the same affordability goal as that of the Spaceliner 100 initiative and reflected the decisive contribution of combined propulsion as a way of expanding operability and increasing the design robustness of future space transports, toward "aircraft like" capabilities. The HRST study built on the Access to Space Study and the Reusable Launch Vehicle (RLV) development activities to identify and characterize space transportation concepts, infrastructure and technologies that have the greatest potential for reducing delivery cost by another order of magnitude, from $1,000 to $100-$200 per pound for 20,000 lb. - 40.000 lb. payloads to low earth orbit (LEO). The HRST study investigated a number of near-term, far-term, and very far-term launch vehicle concepts including all-rocket single-stage-to-orbit (SSTO) concepts, two-stage-to-orbit (TSTO) concepts, concepts with launch assist, rocket-based combined cycle (RBCC) concepts, advanced expendable vehicles, and more far term ground-based laser powered launchers. The HRST study consisted of preliminary concept studies, assessments and analysis tool development for advanced space transportation systems, followed by end-to-end system concept definitions and trade analyses, specific system concept definition and analysis, specific key technology and topic analysis, system, operational and economics model development, analysis, and integrated assessments. The HRST Integration Task Force (HITF) was formed to synthesize study results in several specific topic areas and support the development of conclusions from the study: Systems Concepts Definitions, Technology Assessment, Operations Assessment, and Cost Assessment. This paper summarizes the work of the Operations Assessment Team: the six approaches used, the analytical tools and methodologies developed and employed, the issues and concerns, and the results of the assessment. The approaches were deliberately varied in measures of merit and procedure to compensate for the uncertainty inherent in operations data in this early phase of concept exploration. In general, rocket based combined cycle (RBCC) concepts appear to have significantly greater potential than all-rocket concepts for reducing operations costs.
Orbital Space Plane (OSP) Program
NASA Technical Reports Server (NTRS)
McKenzie, Patrick M.
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Orbital Space Plane (OSP) Program at Lockheed Martin
NASA Technical Reports Server (NTRS)
Ford, Robert
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Use of Advanced Solar Cells for Commercial Communication Satellites
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Landis, Geoffrey A.
1995-01-01
The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.
Use of advanced solar cells for commerical communication satellites
NASA Astrophysics Data System (ADS)
Landis, Geoffrey A.; Bailey, Sheila G.
1995-01-01
The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.
Use of advanced solar cells for commercial communication satellites
NASA Astrophysics Data System (ADS)
Bailey, Sheila G.; Landis, Geoffrey A.
1995-03-01
The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.
1992-01-01
The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.
Study of advanced atmospheric entry systems for Mars
NASA Technical Reports Server (NTRS)
1978-01-01
Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.
NASA Technical Reports Server (NTRS)
Hatfield, Jack J.; Villarreal, Diana
1990-01-01
The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.
NASA Technical Reports Server (NTRS)
Gasch, Matthew J.
2011-01-01
NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.
NASA Astrophysics Data System (ADS)
Culp, Robert D.; McQuerry, James P.
1991-07-01
The present conference on guidance and control encompasses advances in guidance, navigation, and control, storyboard displays, approaches to space-borne pointing control, international space programs, recent experiences with systems, and issues regarding navigation in the low-earth-orbit space environment. Specific issues addressed include a scalable architecture for an operational spaceborne autonavigation system, the mitigation of multipath error in GPS-based attitude determination, microgravity flight testing of a laboratory robot, and the application of neural networks. Other issues addressed include image navigation with second-generation Meteosat, Magellan star-scanner experiences, high-precision control systems for telescopes and interferometers, gravitational effects on low-earth orbiters, experimental verification of nanometer-level optical pathlengths, and a flight telerobotic servicer prototype simulator. (For individual items see A93-15577 to A93-15613)
Experiment module concepts study. Volume 2: Experiments and mission operations
NASA Technical Reports Server (NTRS)
Macdonald, J. M.
1970-01-01
The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.
Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites
NASA Technical Reports Server (NTRS)
Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl
2001-01-01
Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.
The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative
NASA Astrophysics Data System (ADS)
Coomes, Edmund P.; Dagle, Jeffery E.
1991-01-01
The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.
The Advanced Video Guidance Sensor: Orbital Express and the Next Generation
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.
2008-01-01
The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.
NASA Technical Reports Server (NTRS)
Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.
Rocket-powered single-stage-to-orbit vehicles for safe economical access to low earth orbit
NASA Astrophysics Data System (ADS)
Andrews, D. G.; Davis, E. E.; Bangsund, E. L.
1991-10-01
Rocket-powered SSTO vehicles were investigated during the SSTO technology demonstration contracts. Vehicle configurations were defined to include various technology concepts such as advanced rocket or air breathing engines, takeoff assist options, and advanced high temperature structural materials. Results of these investigations are summarized and performance and turnaround data are presented.
Primary orbital melanoma without ocular involvement in a Balinese cat
2006-01-01
Abstract A 6.5-year-old spayed female Balinese cat was diagnosed with a large and locally invasive primary orbital melanoma, without ocular involvement or detectable metastatic disease. Advanced imaging and immunohistochemical studies helped in obtaining the diagnosis. Because of advanced unresectable disease and ensuing poor quality of life, the cat was euthanized. PMID:16604977
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave
1990-01-01
Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.
Advanced Chemical Propulsion System Study
NASA Technical Reports Server (NTRS)
Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott
2007-01-01
A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.
Technology Development and Demonstration Concepts for the Space Elevator
NASA Technical Reports Server (NTRS)
Smitherman, David V., Jr.
2004-01-01
During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of space elevator systems in general; and that the critical technologies required for the Earth to GEO space elevator are not required for similar systems at the Moon, Mars, Europa, or for orbital tether systems at GEO, Luna, and other locations.
X-33/RLV System Health Management/Vehicle Health Management
NASA Technical Reports Server (NTRS)
Mouyos, William; Wangu, Srimal
1998-01-01
To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.
Dexterous Orbital Servicing System (DOSS)
NASA Technical Reports Server (NTRS)
Price, Charles R.; Berka, Reginald B.; Chladek, John T.
1994-01-01
The Dexterous Orbiter Servicing System (DOSS) is a dexterous robotic spaceflight system that is based on the manipulator designed as part of the Flight Telerobotics Servicer program for the Space Station Freedom and built during a 'technology capture' effort that was commissioned when the FTS was cancelled from the Space Station Freedom program. The FTS technology capture effort yielded one flight manipulator and the 1 g hydraulic simulator that had been designed as an integrated test tool and crew trainer. The DOSS concept was developed to satisfy needs of the telerobotics research community, the space shuttle, and the space station. As a flight testbed, DOSS would serve as a baseline reference for testing the performance of advanced telerobotics and intelligent robotics components. For shuttle, the DOSS, configured as a movable dexterous tool, would be used to provide operational flexibility for payload operations and contingency operations. As a risk mitigation flight demonstration, the DOSS would serve the International Space Station to characterize the end to end system performance of the Special Purpose Dexterous Manipulator performing assembly and maintenance tasks with actual ISSA orbital replacement units. Currently, the most likely entrance of the DOSS into spaceflight is a risk mitigation flight experiment for the International Space Station.
Autonomous Space Processor for Orbital Debris (ASPOD)
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett
1992-01-01
A project in the Advanced Design Program at the University of Arizona is described. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.
Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.
NASA Technical Reports Server (NTRS)
McCain, Harry G. (Technical Monitor)
2000-01-01
The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.
Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations
NASA Technical Reports Server (NTRS)
Bauer, Robert A.
2000-01-01
The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking to gain greater relevance to the agency s mission from these experiments. One area that is of much interest both to NASA and the commercial world is the investigation of protocol issues related to the interoperability of satellites with terrestrial networks, such as Transmission Control Protocol/Internet Protocol (TCP/IP) and Asynchronous Transfer Mode (ATM) over wideband satellites. Other experiment areas of interest are supporting the U.S. Government and NASA as they begin using commercial space assets to meet their communications needs, evaluating issues related to operating a spot-beam satellite in inclined orbit, and evaluating new Ka-band hardware that requires a satellite link. ACTS is now in its last year of operations. Operations are planned through June 2000, when after 81 months of operations, this very successful spacecraft will be superorbited and made inert.
NASA Technical Reports Server (NTRS)
1991-01-01
Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering.
2014 Summer Series - Harold (Sonny) White - Eaglework Laboratories: Advanced Propulsion
2014-08-12
Human space exploration is currently still in Low Earth Orbit. Although this is much further in the future, we still can ask what would it eventually take for humans to explore the outer solar system? How hard is interstellar flight? We will open with a brief discussion on the types of things we have been thinking about for the next endeavor for human space exploration, and then lean forward and discuss a couple of advanced propulsion concepts that may one day be useful for helping us reach the stars.
Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications
NASA Technical Reports Server (NTRS)
Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric;
2000-01-01
The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.
SensorWeb 3G: Extending On-Orbit Sensor Capabilities to Enable Near Realtime User Configurability
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Tran, Daniel; Davies, Ashley; Sullivan, Don; Ames, Troy;
2010-01-01
This research effort prototypes an implementation of a standard interface, Web Coverage Processing Service (WCPS), which is an Open Geospatial Consortium(OGC) standard, to enable users to define, test, upload and execute algorithms for on-orbit sensor systems. The user is able to customize on-orbit data products that result from raw data streaming from an instrument. This extends the SensorWeb 2.0 concept that was developed under a previous Advanced Information System Technology (AIST) effort in which web services wrap sensors and a standardized Extensible Markup Language (XML) based scripting workflow language orchestrates processing steps across multiple domains. SensorWeb 3G extends the concept by providing the user controls into the flight software modules associated with on-orbit sensor and thus provides a degree of flexibility which does not presently exist. The successful demonstrations to date will be presented, which includes a realistic HyspIRI decadal mission testbed. Furthermore, benchmarks that were run will also be presented along with future demonstration and benchmark tests planned. Finally, we conclude with implications for the future and how this concept dovetails into efforts to develop "cloud computing" methods and standards.
NASA Astrophysics Data System (ADS)
Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.
2014-12-01
The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.
A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.
2003-01-01
The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.
Absolute radiometric calibration of advanced remote sensing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1982-01-01
The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.
Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2010-01-01
Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment.
NASA Technical Reports Server (NTRS)
Mendell, W. W.
1991-01-01
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.
NASA Applications for Computational Electromagnetic Analysis
NASA Technical Reports Server (NTRS)
Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.
2011-01-01
Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 9: Entry technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
An advanced space transportation system heavy lift orbiter, hypersonic atmospheric entry missions, development of an emergency astronaut life boat, and basic research in boundary layer transition are among the topics discussed. Emphasis is placed on the need for space testing and for better mathematical models describing the flow fields around complex structures.
2009-05-05
VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket blasts off from Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., at 1:24 p.m. PDT. The Delta II successfully carried the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. Photo by Carleton Bailie, United Launch Alliance.
Design of multi-mission chemical propulsion modules for planetary orbiters. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1975-01-01
Results are presented of a conceptual design and feasibility study of chemical propulsion stages that can serve as modular propulsion units, with little or no modification, on a variety of planetary orbit missions, including orbiters of Mercury, Saturn, and Uranus. Planetary spacecraft of existing design or currently under development, viz., spacecraft of the Pioneer and Mariner families, are assumed as payload vehicles. Thus, operating requirements of spin-stabilized and 3-axis stabilized spacecraft have to be met by the respective propulsion module designs. As launch vehicle for these missions the Shuttle orbiter and interplanetary injection stage, or Tug, plus solid-propellant kick motor was assumed. Accommodation constraints and interfaces involving the payloads and the launch vehicle are considered in the propulsion module design. The applicability and performance advantages were evaluated of the space-storable high-energy bipropellants. The incentive for using this advanced propulsion technology on planetary missions is the much greater performance potential when orbit insertion velocities in excess of 4 km/sec are required, as in the Mercury orbiter. Design analyses and performance tradeoffs regarding earth-storable versus space-storable propulsion systems are included. Cost and development schedules of multi-mission versus custom-designed propulsion modules are examined.
DARPA Orbital Express program: effecting a revolution in space-based systems
NASA Astrophysics Data System (ADS)
Whelan, David A.; Adler, E. A.; Wilson, Samuel B., III; Roesler, Gordon M., Jr.
2000-11-01
A primary goal of the Defense Advanced Research Projects Agency is to develop innovative, high-risk technologies with the potential of a revolutionary impact on missions of the Department of Defense. DARPA is developing a space experiment to prove the feasibility of autonomous on- orbit servicing of spacecraft. The Orbital Express program will demonstrate autonomous on-orbit refueling, as well as autonomous delivery of a small payload representing an avionics upgrade package. The maneuverability provided to spacecraft from a ready refueling infrastructure will enable radical new capabilities for the military, civil and commercial spacecraft. Module replacement has the potential to extend bus lifetimes, and to upgrade the performance of key subsystems (e.g. processors) at the pace of technology development. The Orbital Express technology development effort will include the necessary autonomy for a viable servicing infrastructure; a universal interface for docking, refueling and module transfers; and a spacecraft bus design compatible with this servicing concept. The servicer spacecraft of the future may be able to act as a host platform for microsatellites, extending their capabilities while reducing risk. An infrastructure based on Orbital Express also benefits from, and stimulates the development of, lower-cost launch strategies.
Cryogenics Testbed Laboratory Flange Baseline Configuration
NASA Technical Reports Server (NTRS)
Acuna, Marie Lei Ysabel D.
2013-01-01
As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.
Satellite services system analysis study. Volume 4: Service equipment concepts
NASA Technical Reports Server (NTRS)
1981-01-01
Payload deployment equipment is discussed, including payload separation, retention structures, the remote manipulator system, tilt tables, the payload installation and deployment aid, the handling and positioning aid, and spin tables. Close proximity retrieval, and on-orbit servicing equipment is discussed. Backup and contingency equipment is also discussed. Delivery and retrieval of high-energy payloads are considered. Earth return equipment, the aft flight deck, optional, and advanced equipment are also discussed.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.
2001-01-01
The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.
A geometric performance assessment of the EO-1 advanced land imager
Storey, James C.; Choate, M.J.; Meyer, D.J.
2004-01-01
The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.
NASA Astrophysics Data System (ADS)
Le Tiec, Alexandre; Buonanno, Alessandra; Mroué, Abdul H.; Pfeiffer, Harald P.; Hemberger, Daniel A.; Lovelace, Geoffrey; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Bela; Taylor, Nicholas W.; Teukolsky, Saul A.
2013-12-01
We study the general relativistic periastron advance in spinning black hole binaries on quasicircular orbits, with spins aligned or antialigned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies’ labels, we devise an improved version of the perturbative result and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a nonspinning particle orbiting a Kerr black hole of mass M and spin S=-0.5M2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.
Technology for increased human productivity and safety on orbit
NASA Technical Reports Server (NTRS)
Ambrus, Judith; Gartrell, Charles F.
1991-01-01
Technologies are addressed that can facilitate the efficient performance of station operations on the Space Station Freedom (SSF) and thereby optimize the utilization of SSF for scientific research. The dedication of SSF capabilities to scientific study and to the payload-user community is a key goal of the program. Robotics applications are discussed in terms of automating the processing of experiment materials on-orbit by transferring ampules to a furnace system or by handling plant-tissue cultures. Noncontact temperature measurement and medical support technology are considered important technologies for maximizing time for scientific purposes. Detailed examinations are conducted of other technologies including advanced data systems and furnace designs. The addition of the listed technologies can provide an environment in which scientific research is more efficient and accurate.
Technology needs of advanced Earth observation spacecraft
NASA Technical Reports Server (NTRS)
Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.
1984-01-01
Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.
Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project
NASA Technical Reports Server (NTRS)
1996-01-01
The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame? See Appendix A for the TIM Agenda and Appendix C for the AIST Program Terms of Reference.
Affordable In-Space Transportation Phase 2: An Advanced Concepts Project
NASA Technical Reports Server (NTRS)
1996-01-01
The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time frame? See Appendix A for the TIM Agenda and Appendix C for the AIST Program Terms of Reference.
Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials
NASA Technical Reports Server (NTRS)
Hill, Charles S.
2012-01-01
The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.
Proposed new test of spin effects in general relativity.
O'Connell, R F
2004-08-20
The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernible. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars.
NASA Technical Reports Server (NTRS)
Crisp, David; Komar, George (Technical Monitor)
2001-01-01
Advancement of our predictive capabilities will require new scientific knowledge, improvement of our modeling capabilities, and new observation strategies to generate the complex data sets needed by coupled modeling networks. New observation strategies must support remote sensing from a variety of vantage points and will include "sensorwebs" of small satellites in low Earth orbit, large aperture sensors in Geostationary orbits, and sentinel satellites at L1 and L2 to provide day/night views of the entire globe. Onboard data processing and high speed computing and communications will enable near real-time tailoring and delivery of information products (i.e., predictions) directly to users.
1975-10-10
This diagram illustrates the Space Shuttle mission sequence. The Space Shuttle was approved as a national program in 1972 and developed through the 1970s. Part spacecraft and part aircraft, the Space Shuttle orbiter, the brain and the heart of the Space Transportation System (STS), required several technological advances, including thousands of insulating tiles able to stand the heat of reentry over the course of many missions, as well as sophisticated engines that could be used again and again without being thrown away. The airplane-like orbiter has three main engines, that burn liquid hydrogen and oxygen stored in the large external tank, the single largest structure in the Shuttle. Attached to the tank are two solid rocket boosters that provide the vehecile with most of the thrust needed for liftoff. Two minutes into the flight, the spent solids drop into the ocean to be recovered and refurbished for reuse, while the orbiter engines continue burning until approximately 8 minutes into the flight. After the mission is completed, the orbiter lands on a runway like an airplane.
NASA’s Hubble Sees Martian Moon Orbiting the Red Planet
2017-12-08
While photographing Mars, NASA’s Hubble Space Telescope captured a cameo appearance of the tiny moon Phobos on its trek around the Red Planet. Discovered in 1877, the diminutive, potato-shaped moon is so small that it appears star-like in the Hubble pictures. Phobos orbits Mars in just 7 hours and 39 minutes, which is faster than Mars rotates. The moon’s orbit is very slowly shrinking, meaning it will eventually shatter under Mars’ gravitational pull, or crash onto the planet. Hubble took 13 separate exposures over 22 minutes to create a time-lapse video showing the moon’s orbital path. Credit: NASA, ESA, and Z. Levay (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Bents, David J.; Lu, Cheng Y.
1989-01-01
Solar Photo Voltaic (PV) and thermal dynamic power systems for application to selected Low Earth Orbit (LEO) and High Eccentric Orbit (Energy) (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied corresponding to anticipated introduction of improved or new technologies. Comparative assessment is made between the two power system types utilizing newly emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage, and thermal management. The assessment is made to common ground rules and assumptions. The four missions (space station, sun-synchronous, Van Allen belt and GEO) are representative of the anticipated range of multi-kWe earth orbit missions. System characterizations include all required subsystems, including power conditioning, cabling, structure, to deliver electrical power to the user. Performance is estimated on the basis of three different levels of component technology: (1) state-of-art, (2) near-term, and (3) advanced technologies. These range from planar array silicon/IPV nickel hydrogen batteries and Brayton systems at 1000 K to thin film GaAs with high energy density secondary batteries or regenerative fuel cells and 1300 K Stirling systems with ultra-lightweight concentrators and radiators. The system estimates include design margin for performance degradations from the known environmental mechanisms (micrometeoroids and space debris, atomic oxygen, electron and proton flux) which are modeled and applied depending on the mission. The results give expected performance, mass and drag of multi-kWe earth orbiting solar power systems and show how overall system figures of merit will improve as new component technologies are incorporated.
Vehicle health management for guidance, navigation and control systems
NASA Technical Reports Server (NTRS)
Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don
1993-01-01
The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.
Options For Development of Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.
Direct Multiple Shooting Optimization with Variable Problem Parameters
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Ocampo, Cesar A.
2009-01-01
Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
1990-01-01
This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.
A scientific assessment of a new technology orbital telescope
NASA Technical Reports Server (NTRS)
1995-01-01
As part of a program designed to test the Alpha chemical laser weapons system in space, the Ballistic Missile Defense Organization (BMDO) developed components of an agile, lightweight, 4-meter telescope, equipped with an advanced active-optics system. BMDO had proposed to make space available in the telescope's focal plane for instrumentation optimized for scientific applications in astrophysics and planetary astronomy for a potential flight mission. Such a flight mission could be undertaken if new or additional sponsorship can be found. Despite this uncertainty, BMDO requested assistance in defining the instrumentation and other design aspects necessary to enhance the scientific value of a pointing and tracking mission. In response to this request, the Space Studies Board established the Task Group on BMDO New Technology Orbital Observatory (TGBNTOO) and charged it to: (1) provide instrumentation, data management, and science-operations advice to BMDO to optimize the scientific value of a 4-meter mission; and (2) support a space studies board assessment of the relative scientific merit of the program. This report deals with the first of these tasks, assisting the Advanced Technology Demonstrator's (ATD's) program scientific potential. Given the potential scientific aspects of the 4-meter telescope, this project is referred to as the New Technology Orbital Telescope (NTOT), or as the ATD/NTOT, to emphasize its dual-use character. The task group's basic conclusion is that the ATD/NTOT mission does have the potential for contributing in a major way to astronomical goals.
Automated biowaste sampling system feces monitoring system
NASA Technical Reports Server (NTRS)
Hunt, S. R.; Glanfield, E. J.
1979-01-01
The Feces Monitoring System (FMS) Program designed, fabricated, assembled and tested an engineering model waste collector system (WCS) to be used in support of life science and medical experiments related to Shuttle missions. The FMS design was patterned closely after the Shuttle WCS, including: interface provisions; mounting; configuration; and operating procedures. These similarities make it possible to eventually substitute an FMS for the Shuttle WCS of Orbiter. In addition, several advanced waste collection features, including the capability of real-time inertial fecal separation and fecal mass measurement and sampling were incorporated into the FMS design.
NASA Astrophysics Data System (ADS)
Escher, William J. D.
1998-01-01
Deriving from the initial planning activity of early 1965, which led to NASA's Advanced Space Transportation Program (ASTP), an early-available airbreathing/rocket combined propulsion system powered ``ultralight payload'' launcher was defined at the conceptual design level. This system, named the ``W Vehicle,'' was targeted to be a ``second generation'' successor to the original Bantam Lifter class, all-rocket powered systems presently being pursued by NASA and a selected set of its contractors. While this all-rocket vehicle is predicated on a fully expendable approach, the W-Vehicle system was to be a fully reusable 2-stage vehicle. The general (original) goal of the Bantam class of launchers was to orbit a 100 kg payload for a recurring per-launch cost of less than one million dollars. Reusability, as the case for larger vehicles focusing on single stage to orbit (SSTO) configurations, is considered the principal key to affordability. In the general context of a range of space transports, covering the payload range of 0.1 to 10 metric ton payloads, the W Vehicle concept-predicated mainly on ground- and flight-test proven hardware-is described in this paper, along with a nominal development schedule and budgetary estimate (recurring costs were not estimated).
Emerging Communication Technologies (ECT) Phase 3 Final Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.
2004-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Pulsar J1411+2551: A Low-mass Double Neutron Star System
NASA Astrophysics Data System (ADS)
Martinez, J. G.; Stovall, K.; Freire, P. C. C.; Deneva, J. S.; Tauris, T. M.; Ridolfi, A.; Wex, N.; Jenet, F. A.; McLaughlin, M. A.; Bagchi, M.
2017-12-01
In this work, we report the discovery and characterization of PSR J1411+2551, a new binary pulsar discovered in the Arecibo 327 MHz Drift Pulsar Survey. Our timing observations of the radio pulsar in the system span a period of about 2.5 years. This timing campaign allowed a precise measurement of its spin period (62.4 ms) and its derivative (9.6 ± 0.7) × 10‑20 s s‑1 from these, we derive a characteristic age of >9.1 Gyr and a surface magnetic field strength of <2.6 × 109 G. These numbers indicate that this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. The system has an eccentric (e = 0.17) 2.61 day orbit. This eccentricity allows a highly significant measurement of the rate of advance of periastron, \\dot{ω } =0.07686+/- 0.00046^\\circ {{yr}}-1. Assuming general relativity accurately describes the orbital motion, this implies a total system mass M = 2.538 ± 0.022 M ⊙. The minimum companion mass is 0.92 M ⊙ and the maximum pulsar mass is 1.62 M ⊙. The large companion mass and the orbital eccentricity suggest that PSR J1411+2551 is a double neutron star system; the lightest known to date including the DNS merger GW170817. Furthermore, the relatively low orbital eccentricity and small proper motion limits suggest that the second supernova had a relatively small associated kick; this and the low system mass suggest that it was an ultra-stripped supernova.
Just in Time in Space or Space Based JIT
NASA Technical Reports Server (NTRS)
VanOrsdel, Kathleen G.
1995-01-01
Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.
A Discussion of Two Challenges of Non-cooperative Satellite Refueling
NASA Technical Reports Server (NTRS)
Coll, Gregory C.; Aranyos, Thomas; Nufer, Brian M.; Kandula, Max; Tomasic, David J.
2015-01-01
There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.
A Discussion of Two Challenges of Non-Cooperative Satellite Refueling
NASA Technical Reports Server (NTRS)
Coll, Gregory T.; Aranyos, Thomas J.; Nufer, Brian M.; Tomasic, David; Kandula, Max
2015-01-01
There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.
Theory and practice of uncommon molecular electronic configurations.
Gryn'ova, Ganna; Coote, Michelle L; Corminboeuf, Clemence
2015-01-01
The electronic configuration of the molecule is the foundation of its structure and reactivity. The spin state is one of the key characteristics arising from the ordering of electrons within the molecule's set of orbitals. Organic molecules that have open-shell ground states and interesting physicochemical properties, particularly those influencing their spin alignment, are of immense interest within the up-and-coming field of molecular electronics. In this advanced review, we scrutinize various qualitative rules of orbital occupation and spin alignment, viz., the aufbau principle, Hund's multiplicity rule, and dynamic spin polarization concept, through the prism of quantum mechanics. While such rules hold in selected simple cases, in general the spin state of a system depends on a combination of electronic factors that include Coulomb and Pauli repulsion, nuclear attraction, kinetic energy, orbital relaxation, and static correlation. A number of fascinating chemical systems with spin states that fluctuate between triplet and open-shell singlet, and are responsive to irradiation, pH, and other external stimuli, are highlighted. In addition, we outline a range of organic molecules with intriguing non-aufbau orbital configurations. In such quasi-closed-shell systems, the singly occupied molecular orbital (SOMO) is energetically lower than one or more doubly occupied orbitals. As a result, the SOMO is not affected by electron attachment to or removal from the molecule, and the products of such redox processes are polyradicals. These peculiar species possess attractive conductive and magnetic properties, and a number of them that have already been developed into molecular electronics applications are highlighted in this review. WIREs Comput Mol Sci 2015, 5:440-459. doi: 10.1002/wcms.1233 For further resources related to this article, please visit the WIREs website.
Covalency in Americium(III) Hexachloride
Cross, Justin Neil; Su, Jing; Batista, Enrigue R.; ...
2017-06-14
Developing a better understanding of covalency (or orbital mixing) is of fundamental importance. Covalency occupies a central role in directing chemical and physical properties for almost any given compound or material. Hence, the concept of covalency has potential to generate broad and substantial scientific advances, ranging from biological applications to condensed matter physics. Given the importance orbital mixing combined with the difficultly in measuring covalency, estimating or inferring covalency often leads to fiery debate. Consider the 60-year controversy sparked by SEABORG and COWORKERS (1954) when it was proposed that covalency from 5f-orbitals contributed to the unique behavior of americium inmore » chloride matrixes. Herein, we describe the use of ligand K-edge X-ray absorption spectroscopy (XAS) and electronic structure calculations to quantify the extent of covalent bonding in – arguably – one of the most difficult systems to study, the Am–Cl interaction within AmCl 6 3-. We observed both 5fand 6d-orbital mixing with the Cl-3p orbitals; however, contributions from the 6d-orbitals were more substantial. Comparisons with the isoelectronic EuCl 6 3- indicated similar bonding for the Am III 6d- and Eu III 5d-orbitals. Meanwhile, the results confirmed SEABORG’S 1954 hypothesis that Am III 5f-orbital covalency was more substantial than 4forbital mixing for Eu III.« less
NASA Technical Reports Server (NTRS)
Sims. Herb; Varnavas, Kosta; Eberly, Eric
2013-01-01
Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.
A Simulation and Modeling Framework for Space Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S S
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less
X-33/RLV System Health Management/ Vehicle Health Management
NASA Technical Reports Server (NTRS)
Garbos, Raymond J.; Mouyos, William
1998-01-01
To reduce operations cost, the RLV must include the following elements: highly reliable, robust subsystems designed for simple repair access with a simplified servicing infrastructure and incorporating expedited decision making about faults and anomalies. A key component for the Single Stage to Orbit (SSTO) RLV System used to meet these objectives is System Health Management (SHM). SHM deals with the vehicle component- Vehicle Health Management (VHM), the ground processing associated with the fleet (GVHM) and the Ground Infrastructure Health Management (GIHM). The objective is to provide an automated collection and paperless health decision, maintenance and logistics system. Many critical technologies are necessary to make the SHM (and more specifically VHM) practical, reliable and cost effective. Sanders is leading the design, development and integration of the SHM system for RLV and X-33 SHM (a sub-scale, sub-orbit Advanced Technology Demonstrator). This paper will present the X-33 SHM design which forms the baseline for RLV SHM. This paper will also discuss other applications of these technologies.
Autonomous docking system for space structures and satellites
NASA Astrophysics Data System (ADS)
Prasad, Guru; Tajudeen, Eddie; Spenser, James
2005-05-01
Aximetric proposes Distributed Command and Control (C2) architecture for autonomous on-orbit assembly in space with our unique vision and sensor driven docking mechanism. Aximetric is currently working on ip based distributed control strategies, docking/mating plate, alignment and latching mechanism, umbilical structure/cord designs, and hardware/software in a closed loop architecture for smart autonomous demonstration utilizing proven developments in sensor and docking technology. These technologies can be effectively applied to many transferring/conveying and on-orbit servicing applications to include the capturing and coupling of space bound vehicles and components. The autonomous system will be a "smart" system that will incorporate a vision system used for identifying, tracking, locating and mating the transferring device to the receiving device. A robustly designed coupler for the transfer of the fuel will be integrated. Advanced sealing technology will be utilized for isolation and purging of resulting cavities from the mating process and/or from the incorporation of other electrical and data acquisition devices used as part of the overall smart system.
ATTDES: An Expert System for Satellite Attitude Determination and Control. 2
NASA Technical Reports Server (NTRS)
Mackison, Donald L.; Gifford, Kevin
1996-01-01
The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.
NASA Technical Reports Server (NTRS)
Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad
2016-01-01
NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
An algorithm for enhanced formation flying of satellites in low earth orbit
NASA Astrophysics Data System (ADS)
Folta, David C.; Quinn, David A.
1998-01-01
With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.
Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.
2006-01-01
The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.
Advance prototype silver ion water bactericide system
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.
Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques
NASA Technical Reports Server (NTRS)
Miller, Glenn E.
1994-01-01
NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.
Advanced control techniques for teleoperation in earth orbit
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Brooks, T. L.
1980-01-01
Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.
Mathematical modeling and SAR simulation multifunction SAR technology efforts
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.
Lightweight Phase-Change Material For Solar Power
NASA Technical Reports Server (NTRS)
Stark, Philip
1993-01-01
Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.
Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)
NASA Technical Reports Server (NTRS)
Newhouse, M.; Guffin, O. T.
1994-01-01
Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.
Technology Developments Integrating a Space Network Communications Testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.
Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.
2002-01-01
There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.
Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities
NASA Astrophysics Data System (ADS)
Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.
2015-12-01
Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be on the cusp of demonstrating interplanetary laser ranging to bring the future of solar system geodesy and geodyamics into reality.
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
Advanced Solar Cells for Satellite Power Systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Weinberg, Irving
1994-01-01
The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.
Advanced solar cells for satellite power systems
NASA Astrophysics Data System (ADS)
Flood, Dennis J.; Weinberg, Irving
1994-11-01
The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.
Multiple access techniques and spectrum utilization of the GLOBALSTAR mobile satellite system
NASA Astrophysics Data System (ADS)
Louie, Ming; Cohen, Michel; Rouffet, Denis; Gilhousen, Klein S.
The GLOBALSTAR System is a Low Earth Orbit (LEO) satellite-based mobile communications system that is interoperable with the current and future Public Land Mobile Network (PLMN). The GLOBALSTAR System concept is based upon technological advancement in two key areas: (1) the advancement in LEO satellite technology; (2) the advancement in cellular telephone technology, including the commercial applications of Code Division Multiple Access (CDMA) technologies, and of the most recent progress in Time Division Multiple Access technologies. The GLOBALSTAR System uses elements of CDMA, Frequency Division Multiple Access (FDMA), and Time Division Multiple Access (TDMA) technology, combining with satellite Multiple Beam Antenna (MBA) technology, to arrive at one of the most efficient modulation and multiple access system ever proposed for a satellite communications system. The technology used in GLOBALSTAR exploits the following techniques in obtaining high spectral efficiency and affordable cost per channel, with minimum coordination among different systems: power control, in open and closed loops, voice activation, spot beam satellite antenna for frequency reuse, weighted satellite antenna gain, multiple satellite coverage, and handoff between satellites. The GLOBALSTAR system design will use the following frequency bands: 1610-1626.5 MHz for up-link and 2483.5-2500 MHz for down-link.
Study of Thermal Control Systems for orbiting power systems
NASA Technical Reports Server (NTRS)
Howell, H. R.
1981-01-01
Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.
Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal
NASA Astrophysics Data System (ADS)
Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana
2013-09-01
This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.
Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based onmore » LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.« less
Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2016-2017
NASA Technical Reports Server (NTRS)
Knox, Jim; Cmarik, Gregory E.
2017-01-01
Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.
NASA Astrophysics Data System (ADS)
The subjects discussed are related to LSI/VLSI based subscriber transmission and customer access for the Integrated Services Digital Network (ISDN), special applications of fiber optics, ISDN and competitive telecommunication services, technical preparations for the Geostationary-Satellite Orbit Conference, high-capacity statistical switching fabrics, networking and distributed systems software, adaptive arrays and cancelers, synchronization and tracking, speech processing, advances in communication terminals, full-color videotex, and a performance analysis of protocols. Advances in data communications are considered along with transmission network plans and progress, direct broadcast satellite systems, packet radio system aspects, radio-new and developing technologies and applications, the management of software quality, and Open Systems Interconnection (OSI) aspects of telematic services. Attention is given to personal computers and OSI, the role of software reliability measurement in information systems, and an active array antenna for the next-generation direct broadcast satellite.
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.
2000-01-01
The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.
NASA Technical Reports Server (NTRS)
Jones, W. S.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John
2004-01-01
Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.
Feasibility of EB Welded Hastelloy X and Combination of Refractory Metals
NASA Technical Reports Server (NTRS)
Martinez, Diana A.
2004-01-01
As NASA continues to expand its horizon, exploration and discovery creates the need of advancement in technology. The Jupiter Icy Moon Orbiter's (JIMO) mission to explore and document the outer surfaces, rate the possibility of holding potential life forms, etc. within the three moons (Callisto, Ganymede, and Europa) proves to be challenging. The orbiter itself consists of many sections including: the nuclear reactor and the power conversion system, the radiator panels, and the thrusters and antenna. The nuclear reactor serves as a power source, and if successfully developed, can operate for extended periods. During the duration of my tenure at NASA Glenn Research Center's (NASA GRC) Advanced Metallics Branch, I was assigned to assist Frank J. Ritzert on analyzing the feasibility of the Electron Beam Welded Hastelloy X (HX), a nickel-based superalloy, to Niobium- 1 %Zirconium (Nb-1 Zr) and other refractory metals/alloys including Tantalum, Molybdenum, Tungsten, and Rhenium alloys. This welding technique is going to be used for the nuclear reactor within JIMO.
On-Board Chemical Propulsion Technology
NASA Technical Reports Server (NTRS)
Reed, Brian D.
2004-01-01
On-board propulsion functions include orbit insertion, orbit maintenance, constellation maintenance, precision positioning, in-space maneuvering, de-orbiting, vehicle reaction control, planetary retro, and planetary descent/ascent. This paper discusses on-board chemical propulsion technology, including bipropellants, monopropellants, and micropropulsion. Bipropellant propulsion has focused on maximizing the performance of Earth storable propellants by using high-temperature, oxidation-resistant chamber materials. The performance of bipropellant systems can be increased further, by operating at elevated chamber pressures and/or using higher energy oxidizers. Both options present system level difficulties for spacecraft, however. Monopropellant research has focused on mixtures composed of an aqueous solution of hydroxl ammonium nitrate (HAN) and a fuel component. HAN-based monopropellants, unlike hydrazine, do not present a vapor hazard and do not require extraordinary procedures for storage, handling, and disposal. HAN-based monopropellants generically have higher densities and lower freezing points than the state-of-art hydrazine and can higher performance, depending on the formulation. High-performance HAN-based monopropellants, however, have aggressive, high-temperature combustion environments and require advances in catalyst materials or suitable non-catalytic ignition options. The objective of the micropropulsion technology area is to develop low-cost, high-utility propulsion systems for the range of miniature spacecraft and precision propulsion applications.
NASA Technical Reports Server (NTRS)
1996-01-01
On this first day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Mission Specialists Jeffrey Hoffman, Maurizio Cheli (ESA) and Claude Nicollier (ESA), were shown performing pre-launch and launching activities. This international space mission's primary objective is the deployment of the Tethered Satellite System Reflight (TSS-1R) to a 12 mile length from the shuttle, a variety of experiments, and the satellite retrieval. These experiments include: Research on Orbital Plasma Electrodynamics (ROPE); TSS Deployer Core Equipment and Satellite Core Equipment (DCORE/SCORE); Research on Electrodynamic Tether Effects (RETE); Magnetic Field Experiments for TSS Missions (TEMAG); Shuttle Electrodynamic Tether Systems (SETS); Shuttle Potential and Return Electron Experiment (SPREE); Tether Optical Phenomena Experiment (TOP); and Observations at the Earth's Surface of Electromagnetic Emissions by TSS (OESSE). The mission's secondary objectives were those experiments found in the United States Microgravity Payload-3 (USMP-3), which include: Advanced Automated Directional Solidification Furnace (AADSF); Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO); Space Acceleration Measurement System (SAMS); Orbital Acceleration Research Experiment (OARE); Critical Fluid Scattering Experiment (ZENO); and Isothermal Dendritic Growth Experiment (IDGE).
Earth-to-orbit reusable launch vehicles: A comparative assessment
NASA Technical Reports Server (NTRS)
Chase, R. L.
1978-01-01
A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.
NASA's Orbital Space Plane Risk Reduction Strategy
NASA Technical Reports Server (NTRS)
Dumbacher, Dan
2003-01-01
This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.
Space Logistics: Launch Capabilities
NASA Technical Reports Server (NTRS)
Furnas, Randall B.
1989-01-01
The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.
Applications technology satellites advanced mission study
NASA Technical Reports Server (NTRS)
Gould, L. M.
1972-01-01
Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.
A novel photovoltaic power system which uses a large area concentrator mirror
NASA Technical Reports Server (NTRS)
Arrison, Anne; Fatemi, Navid
1987-01-01
A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.
Fuel-efficient feedback control of orbital motion around irregular-shaped asteroids
NASA Astrophysics Data System (ADS)
Winkler, Timothy Michael
Unmanned probes are the primary technologies used when exploring celestial bodies in our solar system. As these deep space exploration missions are becoming more and more complex, there is a need for advanced autonomous operation capabilities in order to meet mission objectives. These autonomous capabilities are required as ground-based guidance and navigation commands will not be able to be issued in real time due to the large distance from the Earth. For long-duration asteroid exploration missions, this also entails how to keep the spacecraft around or on the body in order for the mission to be successfully completed. Unlike with larger bodies such as planets, though, the dynamical environment around these smaller bodies can be difficult to characterize. The weak gravitational fields are not uniform due to irregular shapes and non-homogeneous mass distribution, especially when orbiting in close-proximity to the body. On top of that, small perturbation forces such as solar radiation pressure can be strong enough to destabilize an orbit around an asteroid. The best solution for keeping a spacecraft in orbit about a small body is to implement some form of control technique. With conventional propulsion thrusters, active control algorithms tend to have a higher than acceptable propellant requirements for long-duration asteroid exploration missions, which has led to much research being devoted to finding open-loop solutions to long-term stable orbits about small bodies. These solutions can prove to be highly sensitive to the orbit's initial conditions, making them potentially unreliable in the presence of orbit injection errors. This research investigates a fuel-efficient, active control scheme to safely control a spacecraft's orbit in close-proximity to an asteroid. First, three different gravitational models capable of simulating the non-homogeneous gravity fields of asteroids are presented: the polyhedron gravity shape model, a spherical harmonics expansion, and an inertia dyadic gravity model. Then a simple feedback controller augmented by a disturbance-accommodating filter is employed to ensure orbital stability. Using these models and controller, several orbiting cases as well as body-frame hovering are investigated to test the viability and fuel-efficiency of the proposed control system. The ultimate goal is to design an active orbit control system with minimum DeltaV expenditure.
NASA Technical Reports Server (NTRS)
Delikaraoglou, Demitris
1989-01-01
Although Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) are becoming increasingly important tools for geodynamic studies, their future role may well be fulfilled by using alternative techniques such as those utilizing the signals from the Global Positioning System (GPS). GPS, without the full implementation of the system, already offers a favorable combination of cost and accuracy and has consistently demonstrated the capability to provide high precision densification control in the regional and local areas of the VLBI and SLR networks. This report reviews VLBI and SLR vis-a-vis GPS and outlines the capabilities and limitations of each technique and how their complementary application can be of benefit to geodetic and geodynamic operations. It demonstrates, albeit with a limited data set, that dual-frequency GPS observations and interferometric type analysis techniques make possible the modelling of the GPS orbits for several days with an accuracy of a few meters. The use of VLBI or SLR sites as fiducial stations together with refinements in the orbit determination procedures can greatly reduce the systematic errors in the GPS satellite orbits used to compute the positions of non-fiducial locations. In general, repeatability and comparison with VLBI of the GPS determined locations are of the order of between 2 parts in 10 to the 7th power and 5 parts in 10 to the 8th power for baseline lengths less than 2000 km. This report is mainly a synthesis of problems, assumptions, methods and recent advances in the studies towards the establishment of a GPS-based system for geodesy and geodynamics and is one phase in the continuing effort for the development of such a system. To some, including the author, it seems reasonable to expect within the next few years that more evidence will show GPS to be as a powerful and reliable a tool as mobile VLBI and SLR are today, but largely more economical.
Inertial energy storage for advanced space station applications
NASA Technical Reports Server (NTRS)
Van Tassel, K. E.; Simon, W. E.
1985-01-01
Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.
SSTO rockets. A practical possibility
NASA Technical Reports Server (NTRS)
Bekey, Ivan
1994-01-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
SSTO rockets. A practical possibility
NASA Astrophysics Data System (ADS)
Bekey, Ivan
1994-07-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
Advanced Chemical Propulsion for Science Missions
NASA Technical Reports Server (NTRS)
Liou, Larry
2008-01-01
The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.
NASA Astrophysics Data System (ADS)
Tran, Debby; Konopacky, Quinn; GPIES Team
2018-01-01
The Gemini Planet Imager (GPI), housed on the 8-meter Gemini South telescope in Chile, is an instrument designed to detect Jupiter-like extrasolar planets by direct imaging. It relies on adaptive optics to correct the effects of atmospheric turbulence, along with an advanced coronagraph and calibration system. One of the scientific goals of GPI is to measure the orbital properties of the planets it discovers. Because these orbits have long periods, precise measurements of the relative position between the star and the planet (relative astrometry) are required. In this poster, I will present the astrometric calibration of GPI. We constrain the plate scale and orientation of the camera by observing different binary star systems with both GPI and another well-calibrated instrument, NIRC2, at the Keck telescope in Hawaii. We measure their separations with both instruments and use that information to calibrate the plate scale. By taking these calibration measurements over the course of three years, we have measured the plate scale to 0.05% and shown that it is stable across multiple epochs. One of the calibrators for GPI is Theta1 Orionis B, one of the star systems in the Trapezium Cluster in Orion. Using GPI and Keck measurements taken over the past several years combined with astrometry from the literature spanning two decades, we can place new constraints on the orbital properties of this massive multiple system. We will present the best fit orbital properties for these objects, including updated mass estimates for the components.
Preparing NASA's Next Solar Satellite for Launch
2017-12-08
Orbital Sciences team members move the second half of the payload fairing before it is placed over NASA's IRIS (Interface Region Imaging Spectrograph) spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit. The work is taking place in a hangar at Vandenberg Air Force Base, where IRIS is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg on June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun's corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. High res file available here: 1.usa.gov/11yal3w Photo Credit: NASA/Tony Vauclin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Advanced Re-Entry Vehicle (ARV) A Development Step From ATV Toward Manned Transportation Systems
NASA Astrophysics Data System (ADS)
Bottacini, Massimiliano; Berthe, Philippe; Vo, Xavier; Pietsch, Klaus
2011-05-01
The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of unpressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU’s); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and de-orbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat-shield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a dedicated adapter. Its thermo-mechanical design, GNC, descent & landing systems take into account its future evolution for crew transportation. The ARV Crew version is also composed of three main modules: - an Integrated Resource Module (IRM) providing the main propulsion and power functions during the on-orbit phases of the mission; - a Re-entry Module (RM) providing the re-entry function and a pressurized environment for four crew members and about 250 kg of passive / active cargo; - a Crew Escape System (CES) providing the function of emergency separation of the RM from the launcher (in case of failure of this latter). The paper presents an overview of the ARV Cargo and Crew versions requirements derived from the above objectives, their mission scenarios, system architectures and performances. The commonality aspects between the ARV Cargo version and future transportation systems (including also the ARV Crew version and logistic carriers) are also highlighted.
Small, Low Cost, Launch Capability Development
NASA Technical Reports Server (NTRS)
Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.
Development and verification of ground-based tele-robotics operations concept for Dextre
NASA Astrophysics Data System (ADS)
Aziz, Sarmad
2013-05-01
The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.
Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2003-01-01
This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.
NASA Technical Reports Server (NTRS)
Symons, Pat
1991-01-01
The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.
Supercomputing in the Age of Discovering Superearths, Earths and Exoplanet Systems
NASA Technical Reports Server (NTRS)
Jenkins, Jon M.
2015-01-01
NASA's Kepler Mission was launched in March 2009 as NASA's first mission capable of finding Earth-size planets orbiting in the habitable zone of Sun-like stars, that range of distances for which liquid water would pool on the surface of a rocky planet. Kepler has discovered over 1000 planets and over 4600 candidates, many of them as small as the Earth. Today, Kepler's amazing success seems to be a fait accompli to those unfamiliar with her history. But twenty years ago, there were no planets known outside our solar system, and few people believed it was possible to detect tiny Earth-size planets orbiting other stars. Motivating NASA to select Kepler for launch required a confluence of the right detector technology, advances in signal processing and algorithms, and the power of supercomputing.
UV Signatures of Ices: Moons in the Solar System
NASA Astrophysics Data System (ADS)
Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.
2017-12-01
Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.
Flight elements: Advanced avionics systems architectures
NASA Technical Reports Server (NTRS)
1990-01-01
Space transportation objectives are associated with transporting material from Earth to orbit, interplanetary travel, and planetary landing. The objectives considered herein are associated with Earth to orbit transportation. Many good avionics architectural features will support all phases of space transportation, but interplanetary transportation poses significantly different problems such as long mission time with high reliability, unattended operation, and many different opportunities such as long nonoperational flight segments that can be used for equipment fault diagnosis and repair. Fault tolerance can be used to permit continued operation with faulty units, not only during launch but also, and perhaps with more impact, during prelaunch activities. Avionics systems are entering a phase of development where the traditional approaches to satisfactory systems based on engineering judgement and thorough testing will alone no longer be adequate to assure that the required system performance can be obtained. A deeper understanding will be required to make the effects of obscure design decisions clear at a level where their impact can be properly judged.
A Personnel Launch System for safe and efficient manned operations
NASA Astrophysics Data System (ADS)
Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.
1990-10-01
Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.