Science.gov

Sample records for advanced orbiting systems

  1. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  2. Advanced orbiting systems test-bedding and protocol verification

    NASA Technical Reports Server (NTRS)

    Noles, James; De Gree, Melvin

    1989-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.

  3. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  4. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  5. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  6. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  7. Technology requirements for advanced earth-orbital transportation systems: Summary report. [single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-state-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability beginning in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. The technical and economic feasibility of this class of SSTO concepts were evaluated as well as the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  8. A Conceptual Titan Orbiter Mission Using Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Shirley, James H.; Spilker, Thomas R.

    2006-01-01

    This study details a conceptual follow-on Titan orbiter mission that would provide full global topographic coverage. surface imaging, and meteorological characterization of the atmosphere over a nominal 5-year science mission duration. The baseline power requirement is approx.1 kWe at EOM and is driven by a high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography. While this power level is moderately higher than that of the Cassini spacecraft. higher efficiency advanced RPSs could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini spacecraft. The Titan Orbiter mission is assumed to launch in 2015. It would utilize advanced RPSs to provide all on-board power.

  9. Technology requirements for advanced earth orbital transportation systems. Volume 2: Summary report

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.

  10. Technology requirements for advanced earth orbital transportation system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    Normal technology requirements applicable to Single Stage to Orbit (SSTO) systems were projected to the 1985 time period. These technology projections were then incorporated in a vehicle design analysis of three different operational concepts resulting in four configurations of a Single Stage to Orbit system. The resultant performance, weights and costs of each concept were then compared and a system concept selected. A figure of merit was developed for advanced technology programs based on a cost/performance basis. The selected advanced technology programs were then used to reassess the vehicle to determine the impact on performance, weight and cost. Based on study results, recommendations are provided in technology areas associated with earth orbit transportation systems. The recommendations address advanced space transportation system design considerations, both hardware and software technolgoy program requirements.

  11. AEOSS runtime manual for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced earth orbital spacecraft system (AEOSS) enables users to project the required power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxiliary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius' 4th Dimension with a Macintosh version. Because of the licensing agreements, two versions of the AEOSS documents were prepared. This version, AEOSS Runtime Manual, is permitted to be distributed with a finite number of the restrictive 4D Runtime version. It can perform all contained applications without any programming alterations.

  12. AEOSS design guide for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced Earth Orbital Spacecraft System (AEOSS) enables users to project the requried power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxillary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius; 4th Dimension with a Macintosh version. Because of the licensing agreement, two versions of the AEOSS documents were prepared. This version AEOSS Design Guide, is for users to exploit the full capacity of the 4th Dimension. It is for a user who wants to alter or expand the program structures, the program statements, and the program procedures. The user has to possess a 4th Dimension first.

  13. Technology requirements for advanced earth orbital transportation systems. Volume 3: Summary report - dual mode propulsion

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The impact of dual-mode propulsion on cost-effective technology requirements for advanced earth-orbital transportation systems is considered. Additional objectives were to determine the advantages of the best dual mode concept relative to the LO2/LH2 concept of the basic study. Normal technology requirements applicable to horizontal take-off and landing single-stage-to-orbit systems utilizing dual mode rocket propulsion were projected to the 1985 time period. These technology projections were then incorporated in a vehicle parametric design analysis for two different operational concepts of a dual mode propulsion system. The resultant performance, weights and costs of each concept were compared. The selected propulsion concept was evaluated to confirm the parametric trending/scaling of weights and to optimize the configuration.

  14. CCSDS Advanced Orbiting Systems - International data communications standards for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.

    1990-01-01

    Established in 1982, the Consultative Committee for Space Data Systems (CCSDS) is an international organization that is staffed by data-handling experts from nearly all of the world's major space agencies. Its goal is to develop standard data-communications techniques so that several agencies may cross-support each other's data flow and thus allow complex, international missions to be flown. Under the general umbrella of Advanced Orbiting Systems (AOS), an international CCSDS task force was formed in 1985 to develop standard data-communications concepts for manned missions, such as the Space Station Freedom and the Hermes space plane, and large unmanned vehicles, such as polar orbiting platforms. The history of the CCSDS and the development of the AOS recommendation are reviewed, and the user services and protocols embodied in its systems architecture are introduced.

  15. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  16. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  17. Digital closed orbit feedback system for the Advanced Photon Source storage ring

    NASA Astrophysics Data System (ADS)

    Chung, Y.; Barr, D.; Decker, G.; Galayda, J.; Lenkszus, F.; Lumpkin, A.; Votaw, A. J.

    1996-09-01

    Closed orbit feedback for the Advanced Photon Source (APS) storage ring employs unified global and local feedback systems for stabilization of particle and photon beams based on digital signal processing. Hardware and software aspects of the system will be described. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm, application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware, including the digital signal processor (DSPs), is distributed in 20 VME crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically networked reflective memories.

  18. Technology and Advanced Development for a Non-Toxic Orbital Maneuvering System and Reaction Control System for Orbiter Upgrade

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Ferrante, Fred A.; Engelmann, G. L.; Gibson, V. A.; Phillipsen, P. C.

    1999-01-01

    NASA intends to pursue technology applications to upgrade the Space Shuttle Orbiter OMS and RCS systems with non-toxic propellants. The primary objectives of an upgraded OMS/RCS are improved safety and reliability, reduced operations and maintenance costs while meeting basic OMS/RCS operational and performance requirements. The OMS/RCS has a high degree of direct interaction with the crew and requires subsystem and components that are compatible with integration into the orbiter vehicle with regard to external mold-line, power and thermal control The non-toxic propulsion technology is also applicable to future Human Exploration and Development of Space (HEDS) missions. The HEDS missions have similar requirements for attitude control and lander descent/ascent propulsion and which will emphasize the use of In-Situ Resource for propellants. When used as a regenerative coolant as in the Shuttle Orbiter OMS combustion chamber, non-toxic fuels such as ethanol are limited in their cooling capacity by the bulk temperature rise permitted to prevent film boiling or possible coking. Typical regeneratively cooled chambers are constructed from highly conductive copper, which maximizes heat transfer, or from low conductivity materials like stainless steel that can also exacerbate cooling problems. For an ethanol cooled application the heat transfer into the fluid must be controlled to reduce the fuel coolant bulk temperature rise. An approach to provide this control is the subject of this report. This report is being issued to document work done by Aerojet on NASA contract NAS 8-98042. Specifically, this project investigates of the use of ethanol, a designated non-toxic fuel, as a coolant for the Space Shuttle Orbital Maneuvering System Engine combustion chamber. The project also addresses a cost reducing fabrication technique for construction of such a combustion chamber. The study contained three major sub-tasks: an analytical investigation and trade study which included

  19. Subsonic aerodynamic characteristics of a proposed advanced manned launch system orbiter configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Fox, Charles H., Jr.

    1993-01-01

    The Advanced Manned Launch System is a proposed near-term technology, two-stage, fully reusable launch system that consists of an unmanned glide-back booster and a manned orbiter. An orbiter model that featured a large fuselage and an aft delta wing with tip fins was tested in the Langley 7- by 10-Foot High-Speed Tunnel. A crew cabin, large payload fairing, and crew access tunnel were mounted on the upper body. The results of the investigation indicated that the configuration was longitudinally stable to an angle of attack of about 6 deg about a center-of-gravity position of 0.7 body length. The model had an untrimmed lift-drag ratio of 6.6, but could not be trimmed at positive lift. The orbiter model was also directionally unstable. The payload fairing was responsible for about half the instability. The tip-fin controllers, which are designed as active controls to produce artificial directional stability, were effective in producing yawing moment, but sizable adverse rolling moment occurred at angles of attack above 6 deg. Differential deflection of the elevon surfaces was effective in producing rolling moment with only small values of adverse yawing moment.

  20. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  1. A Follow-On Titan Orbiter Mission Enabled by Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Abelson, R. D.; Durden, S.; Im, E.; Lorenz, R.; Shirley, J. H.; Spilker, T. R.

    2005-12-01

    The NRC Solar System Exploration Decadal Survey (2003) identified Titan as a high-priority target for future missions to the outer solar system. Cassini observations of Titan have only increased that level of interest. Despite these successes, we recognize that large gaps in our knowledge of Titan will inevitably remain at the end of the Cassini Mission. High resolution mapping will have been performed for only a small fraction of the surface of Titan, and we will have an improved but still limited knowledge of global surface topography. Titan, like the Earth, has a substantial atmosphere dominated by molecular nitrogen, and the similarities and differences of atmospheric processes on the Earth and Titan are of considerable interest. Thus it is likely that the next Orbiter Mission to Titan will carry instruments that address questions of atmospheric dynamics, atmospheric precipitation rates, and the density, thickness, and formation processes of clouds. Our study details a conceptual follow-on Titan Orbiter mission that would provide full global topographic coverage, nearly complete surface imaging at selected NIR wavelengths, and comprehensive meteorological characterization of the atmosphere over a nominal 5-year science mission. The baseline orbiter power requirement is approximately 1 kWe at end-of-mission (EOM) which would be provided by radioisotope power systems (RPSs). This power requirement is driven by a notional high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography (note that this strawman radar concept was developed under NASA's High Capability Instrument and Planetary Exploration Program for Prometheus-class missions using NEPP technologies). While this power level is moderately higher than that of the Cassini spacecraft, higher-efficiency advanced radioisotope power systems (RPSs) could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini

  2. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  3. Advances in Orion's On-Orbit Guidance and Targeting System Architecture

    NASA Technical Reports Server (NTRS)

    Scarritt, Sara K.; Fill, Thomas; Robinson, Shane

    2015-01-01

    NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.

  4. Dual nozzle design update. [on liquid rocket engines for advanced earth-to-orbit transportation systems

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1982-01-01

    Dual-nozzle engines, such as the dual-throat and dual-expander engines, are being evaluated for advanced earth-to-orbit transportation systems. Potential derivatives of the Space Shuttle and completely new vehicles might benefit from these advanced engines. In this paper, progress in the design of single-fuel and dual-fuel dual-nozzle engines is summarized. Dual-nozzle engines include those burning propellants such as LOX/RP-1/LH2, LOX/LC3H8/LH2, LOX/LCH4/LH2, LOX/LH2/LH2, LOX/LCH4/LCH4, LOX/LC3H8/C3H8 and N2O4/MMH/LH2. Engine data are applicable for thrust levels from 200,000 through 670,000 lbF. The results indicate that several versions of these engines utilize state-of-the-art technology and that even advanced versions of these engines do not require a major breakthrough in technology.

  5. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  6. Propulsion issues for advanced orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1984-01-01

    Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.

  7. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    NASA Technical Reports Server (NTRS)

    Regetz, J. D., Jr.; Terwilliger, C. H.

    1979-01-01

    The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.

  8. Advanced design for orbital debris removal in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.

  9. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    NASA Astrophysics Data System (ADS)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in

  10. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    NASA Technical Reports Server (NTRS)

    Regetz, J. D., Jr.; Terwilliger, C. H., Jr.

    1979-01-01

    This paper presents the results of a study to determine the directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions of the next three decades in the most cost-effective manner. Discussed are the mission set requirements, state-of-the-art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost-optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system-level electric propulsion parameters. It is found that the efficiency-specific impulse characteristic generally has a more significant impact on overall costs than specific masses or costs of propulsion and power systems.

  11. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.

  12. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  13. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  14. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  15. Marned Orbital Systems Concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.

  16. The advanced solar cell orbital test

    NASA Technical Reports Server (NTRS)

    Marvin, D. C.; Gates, M.

    1991-01-01

    The motivation for advanced solar cell flight experiments is discussed and the Advanced Solar Cell Orbital Test (ASCOT) flight experiment is described. Details of the types of solar cells included in the test and the kinds of data to be collected are given. The orbit will expose the cells to a sufficiently high radiation dose that useful degradation data will be obtained in the first year.

  17. The implementation of a lossless data compression module in an advanced orbiting system: Analysis and development

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Miller, Warner H.; Venbrux, Jack; Liu, Norley; Rice, Robert F.

    1993-01-01

    Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan.

  18. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  19. Orbiter Thermal Protection System Development

    NASA Technical Reports Server (NTRS)

    Greenshields, D. H.

    1977-01-01

    The development of the Space Shuttle Orbiter Thermal Protection System (TPS) is traced from concept definition, through technical development, to final design and qualification for manned flight. A sufficiently detailed description of the TPS design is presented to support an indepth discussion of the key issues encountered in conceptual design, materials development, and structural integration. Emphasis is placed on the unique combination of requirements which resulted in the use not only of revolutionary design concepts and materials, but also of unique design criteria, newly developed analysis, testing and manufacturing methods, and finally of an unconventional approach to system certification for operational flight. The conclusion is drawn that a significant advance in all areas of thermal protection system development has been achieved which results in a highly efficient, flexible, and cost-effective thermal protection system for the Orbiter of the Space Shuttle System.

  20. Orbital Express Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Ricky; Heaton, Andy; Pinson, Robin; Carrington, Connie

    2008-01-01

    In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very

  1. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  2. Methods of orbit correction system optimization

    SciTech Connect

    Chao, Yu-Chiu

    1997-08-01

    Extracting optimal performance out of an orbit correction system is an important component of accelerator design and evaluation. The question of effectiveness vs. economy, however, is not always easily tractable. This is especially true in cases where betatron function magnitude and phase advance do not have smooth or periodic dependencies on the physical distance. In this report a program is presented using linear algebraic techniques to address this problem. A systematic recipe is given, supported with quantitative criteria, for arriving at an orbit correction system design with the optimal balance between performance and economy. The orbit referred to in this context can be generalized to include angle, path length, orbit effects on the optical transfer matrix, and simultaneous effects on multiple pass orbits.

  3. The design and development of a mounting and jettison assembly for the shuttle orbiter advanced gimbal system

    NASA Technical Reports Server (NTRS)

    Korzeniowski, E. S.

    1983-01-01

    This paper describes the requirements, design development, and qualification of the mounting and jettison assembly (MJA) which serves as the base structure for the advanced gimbal system (AGS) developed for NASA, Marshall Space Flight Center, for use during shuttle missions. An engineering model of the MJA has been built and subjected to the following testing: stiffness and modal characterization, sine and random vibration, and a jettison function and energy release. A qualitative summary of the results and the problems encountered during testing, together with the design solutions, is presented.

  4. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  5. Transfer to Orbit System in NBS

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two years prior to being used during a shuttle mission, the Transfer to Orbit System (TOS) is being demonstrated at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS). TOS is an upper stage launch system used to place satellites into higher orbits. TOS was used only once, on September 12, 1993 when the Space Shuttle Discovery (STS51) deployed ACTS (Advanced Communications Technology Satellite). The test pictured was to provide an evaluation of the extravehicular activity (EVA) tools that were to be used by future shuttle crews.

  6. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  7. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  8. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  9. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  10. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  11. Research and Technology Development to Advance Environmental Monitoring, Food Systems, and Habitat Design for Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.; Perchonek, M. H.; Ott, C. M.; Kaiser, M. K.

    2011-01-01

    Exploration missions will carry crews far beyond the relatively safe environs of cis-lunar space. Such trips will have little or no opportunity for resupply or rapid aborts and will be of a duration that far exceeds our experience to date. The challenges this imposes on the requirements of systems that monitor the life support and provide food and shelter for the crew are the focus of much research within the Human Research Program. Making all of these technologies robust and reliable enough for multi-year missions with little or no ability to run for home calls for a thorough understanding of the risks and impacts of failure. The way we currently monitor for microbial contamination of water, air, and surfaces, by sampling and growing cultures on nutrient media, must be reconsidered for exploration missions which have limited capacity for consumables. Likewise, the shelf life of food must be increased so that the nutrients required to keep the crewmembers healthy do not degrade over the life of the mission. Improved formulations, preservation, packaging, and storage technologies are all being investigated for ways slow this process or replace stowed food with key food items grown fresh in situ. Ensuring that the mass and volume of a spacecraft are used to maximum efficiency calls for infusing human factors into the design from its inception to increase efficiency, improve performance, and retain robustness toward operational realities. Integrating the human system with the spacecraft systems is the focus of many lines of investigation.

  12. Advanced technologies for rocket single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, Alan W.; Bush, Lance B.; Cruz, Christopher I.; Lepsch, Roger A.; Morris, W. Douglas; Stanley, Douglas O.; Wurster, Kathryn E.

    1991-01-01

    A single-stage-to-orbit vertical takeoff/horizontal landing rocket vehicle was studied to determine the benefits of advanced technology. Advanced technologies that were included in the study were variable mixture ratio oxygen/hydrogen rocket engines and materials, structures, and subsystem technologies currently being developed in the National Aero-Space Plane Program. The application of advanced technology results in an 85 percent reduction in vehicle dry weight. With advanced materials, an external thermal protection system, like the Space Shuttle tiles, was not required. Compared to an all-airbreathing horizontal takeoff/horizontal landing vehicle using the same advanced technologies and mission requirements, the rocket vehicle is lighter in dry weight and has fewer subsystems. To increase reliability and safety, operational features were included in the rocket vehicle-robust subsystems, 5 percent additional margin, no slush hydrogen, fail-operational with an engine out, and a crew escape module. The resulting vehicle grew in dry weight and was still lower in dry weight than the airbreathing vehicle.

  13. Stochasticity and orbit types in advanced beam-driven FRCs

    NASA Astrophysics Data System (ADS)

    Ceccherini, Francesco; Galeotti, Laura; Barnes, Dan; Dettrick, Sean; Monkhorst, Henk; TAE Team

    2015-11-01

    Advanced beam-driven FRCs (Field Reversed Configurations) represent a plasma configuration which is aimed to reach steady state through external sustainment. In an advanced beam-driven FRC the plasma has a very rich selection of orbit types, namely, drift, betatron, figure-8 and type-I. How much each type contributes to the total quantity of orbits strongly depends on both plasma and external field parameters and it may include regular and stochastic orbits with very different ratios. We study the orbit type distribution as well as the fractions of regular and stochastic orbits for a set of realistic advanced beam-driven FRC equilibria in very different plasma regimes. In particular, we investigate the dependences of the orbit type distribution on the equilibrium parameters and we discuss the relevant role of the FRC parameter s in providing a good estimate of the total quantity of stochastic orbits. A first investigation of the possible role of stochastic orbits in thermalizing processes induced by magnetic pumping techniques is presented.

  14. Viking orbiter system primary mission

    NASA Technical Reports Server (NTRS)

    Goudy, J. R.

    1977-01-01

    An overview of Viking Orbiter (VO) system and subsystem performances during the primary mission (the time period from VO-1 launch on August 20, 1975, through November 15, 1976) is presented. Brief descriptions, key design requirements, pertinent historical information, unique applications or situations, and predicted versus actual performances are included for all VO-1 and VO-2 subsystems, both individually and as an integrated system.

  15. Orbital Express fluid transfer demonstration system

    NASA Astrophysics Data System (ADS)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  16. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  17. Orbital Propagation of Momentum Exchange Tether Systems

    NASA Technical Reports Server (NTRS)

    Westerhoff, John

    2002-01-01

    An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.

  18. Orbit Determination System for Low Earth Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Elisha, Yossi; Shyldkrot, Haim; Hankin, Maxim

    2007-01-01

    The IAI/MBT Precise Orbit Determination system for Low Earth Orbit satellites is presented. The system is based on GPS pesudorange and carrier phase measurements and implements the Reduced Dynamics method. The GPS measurements model, the dynamic model, and the least squares orbit determination are discussed. Results are shown for data from the CHAMP satellite and for simulated data from the ROKAR GPS receiver. In both cases the one sigma 3D position and velocity accuracy is about 0.2 m and 0.5 mm/sec respectively.

  19. Tetherline system for orbiting satellites

    NASA Technical Reports Server (NTRS)

    Rupp, C. C.; Kissel, R. R. (Inventor)

    1978-01-01

    A system for tethering one orbiting space vehicle to another was designed so that a tetherline between the vehicles is controlled by a motorized reel which in turn is controlled to deploy, retrieve, or maintain a constant line length while effecting a stabilizing influence on the line. This is accomplished by applying a tension to the line which takes into account the instantaneous length of the line, rate of change of the length of the line, and certain constants which vary depending upon the mode of operation, deployment, retrieval, or station keeping.

  20. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  1. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  2. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  3. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  4. The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration. The film describes the Lunar Orbiter's mission to photograph landing areas on the Moon. The Orbiter will be launched from Cape Kennedy using an Atlas Agena booster rocket. Once it is boosted in a trajectory toward the Moon, the Orbiter will deploy two-way earth communication antennas and solar panels for electricity. Attitude control jets will position the solar panels toward the sun and a tracker for a fix on its navigational star. The Orbiter will be put in an off-center orbit around the Moon where it will circle from four to six days. Scientists on Earth will study the effects of the Moon's gravitational field on the spacecraft, then the orbit will be lowered to 28 miles above the Moon's surface. Engineers will control the Orbiter manually or by computer to activate two camera lenses. The cameras will capture pictures of 12,000 square miles of lunar surface in 25 and 400 square mile increments. Pictures will be sent back to Earth using solar power to transmit electrical signals. The signals will be received by antennas at Goldstone, CA, and in Australia and Spain. Incoming photographic data will be electronically converted and processed to produce large-scale photographic images. The mission will be directed from the Space Flight Operations Facility in Pasadena, CA by NASA and Boeing engineers. After the photographic mission, the Orbiter will continue to circle the Moon providing information about micrometeoroids and radiation in the vicinity. [Entire movie available on DVD from CASI as Doc ID 20070031014. Contact help@sti.nasa.gov

  5. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  6. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  7. Orbital tumor revealing a systemic sarcoidosis.

    PubMed

    Hannanachi Sassi, Samia; Dhouib, Rim; Kanchal, Fatma; Doghri, Raoudha; Boujelbene, Nadia; Bouguila, Hedi; Mrad, Karima

    2015-01-01

    Ocular involvement is seen in approximately 25% of patients with sarcoidosis. Uveitis is the most common ocular manifestation, but sarcoidosis may involve any part of the eye. Orbital manifestations of sarcoidosis are uncommon with few series in the literature. A 65-year-old woman presented with redness of the right eye and painless, unilateral eyelid swelling. Orbital scanning revealed mass infiltrating the soft tissue of the inferior right orbital quadrant. Biopsy results showed nodular, noncaseating granulomas consistent with sarcoidosis. The complete systemic workup revealed systemic manifestations of sarcoidosis at the time of examination with hilar and mediastinal lymphadenopathies noted on CT scan. The orbital surgical treatment was followed by systemic prednisone therapy with good response. Although rare, orbital sarcoidosis must be considered in the evaluation of orbital tumors in elderly patients. A search for systemic findings should be undertaken and appropriate therapy should be instituted. PMID:25796029

  8. Advanced stellar compass onboard autonomous orbit determination, preliminary performance.

    PubMed

    Betto, Maurizio; Jørgensen, John L; Jørgensen, Peter S; Denver, Troelz

    2004-05-01

    Deep space exploration is in the agenda of the major space agencies worldwide; certainly the European Space Agency (SMART Program) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the cost of deep space missions. From past experience, it appears that navigation is the Achilles heel of deep space missions. Performed on ground, this imposes considerable constraints on the entire system and limits operations. This makes it is very expensive to execute, especially when the mission lasts several years and, furthermore, it is not failure tolerant. Nevertheless, to date, ground navigation has been the only viable solution. The technology breakthrough of advanced star trackers, like the advanced stellar compass (ASC), might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, onboard, and without a priori knowledge of any kind. The solution is robust and fast. This paper presents the preliminary performance obtained during the ground testing in August 2002 at the Mauna Kea Observatories. The main goals were: (1) to assess the robustness of the method in solving autonomously, onboard, the position lost-in-space problem; (2) to assess the preliminary accuracy achievable with a single planet and a single observation; (3) to verify the autonomous navigation (AutoNav) module could be implemented into an ASC without degrading the attitude measurements; and (4) to identify the areas of development and consolidation. The results obtained are very encouraging. PMID:15220158

  9. Perioperative corticosteroid reduces hospital stay after fronto-orbital advancement.

    PubMed

    Clune, James E; Greene, Arin K; Guo, Chao-Yu; Gao, Lin Lin; Kim, Sendia; Meara, John G; Proctor, Mark R; Mulliken, John B; Rogers, Gary F

    2010-03-01

    Facial swelling is common after fronto-orbital advancement. Edema and closure of the palpebral fissures can lead to prolonged hospitalization. The purpose of this study was to determine if perioperative corticosteroid shortens hospital stay after this procedure.We retrospectively studied consecutive children younger than 2 years who underwent primary fronto-orbital advancement between 1990 and 2008. Patients were categorized into 2 groups: group 1 patients were not given corticosteroid; group 2 patients received tapered perioperative dexamethasone. Primary outcome variables included length of hospital stay and infection rate.A total of 161 patients were included in the study. Hospitalization was significantly shorter (P = 0.008) for group 2 (n = 65; median duration, 3.0 d) than group 1 (n = 96; median duration, 5.0 d). Infection rates did not differ between groups (group 1, 2.1%; group 2, 1.5%; P = 0.8).Perioperative corticosteroid shortens hospitalization after fronto-orbital advancement without increasing the incidence of postoperative infection. The cost of postoperative hospital care was reduced by 27.2%. PMID:20186083

  10. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  11. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  12. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  13. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  14. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  15. Evaluation of advanced geopotential models for operational orbit determination

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Davis, B. E.; Samii, M. V.; Engel, C. J.; Doll, C. E.

    1988-01-01

    To meet future orbit determination accuracy requirements for different NASA projects, analyses are performed using Tracking and Data Relay Satellite System (TDRSS) tracking measurements and orbit determination improvements in areas such as the modeling of the Earth's gravitational field. Current operational requirements are satisfied using the Goddard Earth Model-9 (GEM-9) geopotential model with the harmonic expansion truncated at order and degree 21 (21-by-21). This study evaluates the performance of 36-by-36 geopotential models, such as the GEM-10B and Preliminary Goddard Solution-3117 (PGS-3117) models. The Earth Radiation Budget Satellite (ERBS) and LANDSAT-5 are the spacecraft considered in this study.

  16. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  17. Orbital debris removal and salvage system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four Texas A&M University projects are discussed. The first project is a design to eliminate a majority of orbital debris. The Orbital Debris and Salvage System will push the smaller particles into lower orbits where their orbits will decay at a higher rate. This will be done by momentum transfer via laser. The salvageable satellites will be delivered to the Space Station by an Orbital Transfer Vehicle. The rest of the debris will be collected by Salvage I. The second project is the design of a space based satellite system to prevent the depletion of atmospheric ozone. The focus is on ozone depletion in the Antarctic. The plan is to use an orbiting solar array system designed to transmit microwaves at a frequency of 22 GHz over the region in order to dissipate polar stratospheric clouds that form during the months beginning in August and ending in October. The third project, Project Poseidon, involves a conceptual design of a space based hurricane control system consisting of a network of 21 low-orbiting laser platforms arranged in three rings designed to heat the upper atmosphere of a developing tropical depression. Fusion power plants are proposed to provide power for the lasers. The fourth project, Project Donatello, involves a proposed Mars exploration initiative for the year 2050. The project is a conceptual design for a futuristic superfreighter that will transport large numbers of people and supplies to Mars for the construction of a full scale scientific and manufacturing complex.

  18. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  19. Heteroclinic, Homoclinic and Closed Orbits in the Chen System

    NASA Astrophysics Data System (ADS)

    Tigan, G.; Llibre, J.

    Bounded orbits such as closed, homoclinic and heteroclinic orbits are discussed in this work for a Lorenz-like 3D nonlinear system. For a large spectrum of the parameters, the system has neither closed nor homoclinic orbits but has exactly two heteroclinic orbits, while under other constraints the system has symmetrical homoclinic orbits.

  20. Advanced launch system

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1991-01-01

    The Advanced Launch System (ALS) is presented. The costs, reliability, capabilities, infrastructure are briefly described. Quality approach, failure modes, structural design, technology benefits, and key facilities are outlined. This presentation is represented by viewgraphs.

  1. Superluminal periodic orbits in the Lorenz system

    NASA Astrophysics Data System (ADS)

    Algaba, A.; Merino, M.; Rodríguez-Luis, A. J.

    2016-10-01

    In this work we present, for the Lorenz system, analytical and numerical results on the existence of periodic orbits with unbounded amplitude and whose period tends to zero. Since a particle moving on these periodic orbits would be faster-than-light, we call them superluminal periodic orbits. To achieve this goal, we first find analytical expressions for the period in three different situations, where Hopf and Takens-Bogdanov bifurcations of infinite codimension occur. Thus, taking limit in the corresponding expressions allows to demonstrate the existence of superluminal periodic orbits for finite values of the parameter ρ (in a region where the other two parameters σ and b are negative). Moreover, we numerically show, in other two different cases of physical interest, that these orbits also exist when the parameter ρ tends to infinity. Finally, the presence of superluminal periodic orbits in the widely studied Chen and Lü systems follows directly from our results, taking into account that they are, generically, particular cases of the Lorenz system, as can be proved with a linear scaling in time and state variables.

  2. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  3. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  4. An orbital service module systems concept

    NASA Technical Reports Server (NTRS)

    Craig, J. W.; Daros, C. J.

    1978-01-01

    An Orbital Service Module (OSM) system represents a concept for an evolutionary program that will provide utilities services such as electrical power, heat rejection, attitude control, and communications to support payload operations in both Shuttle-tended and untended (free-flyer) modes. The initial program step is a Space Transportation System (STS) power extension package (a solar array system carried by the Orbiter and deployed by the remote manipulator system). The power extension package (PEP) develops the major components of the more sophisticated OSM vehicles. Major objectives of such an approach are (1) the continuous matching of a capability to meet real needs while avoiding the pitfalls usually associated with the uncertainties inherent in long-range prediction of future requirements, and (2) the economies attendant with program continuity and hardware commonality. The initial Orbiter-carried PEP and several later OSM system growth options are discussed.

  5. MINOTAUR (Maryland's innovative orbital technologically advanced University rocket)

    NASA Technical Reports Server (NTRS)

    Lewis, Mark J.; Akin, Dave; Lind, Charles; Rice, T. (Editor); Vincent, W. (Editor)

    1992-01-01

    Over the past decade, there has been an increasing interest in designing small commercial launch vehicles. Some of these designs include OSC's Pegasus, and AMROC's Aquila. Even though these vehicles are very different in their overall design characteristics, they all share a common thread of being expensive to design and manufacture. Each of these vehicles has an estimated production and operations cost of over $15000/kg of payload. In response to this high cost factor, the University of Maryland is developing a cost-effective alternative launch vehicle, Maryland's Innovative Orbital Technologically Advanced University Rocket (MINOTAUR). A preliminary cost analysis projects that MINOTAUR will cost under $10000/kg of payload. MINOTAUR will also serve as an enriching project devoted to an entirely student-designed-and-developed launch vehicle. This preliminary design of MINOTAUR was developed entirely by undergraduates in the University of Maryland's Space Vehicle Design class. At the start of the project, certain requirements and priorities were established as a basis from which to begin the design phase: (1) carry a 100 kg payload into a 200 km circular orbit; (2) provide maximum student involvement in the design, manufacturing, and launch phases of the project; and (3) use hybrid propulsion throughout. The following is the list of the project's design priorities (from highest to lowest): (1) safety, (2) cost, (3) minimum development time, (4) maximum use of the off-the-shelf components, (5) performance, and (6) minimum use of pyrotechnics.

  6. Advanced Worker Protection System

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  7. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  8. Affordable Launch Services using the Sport Orbit Transfer System

    NASA Astrophysics Data System (ADS)

    Goldstein, D. J.

    2002-01-01

    Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch

  9. Studies of Shuttle orbiter arrestment system

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.

    1993-01-01

    Scale model studies of the Shuttle Orbiter Arrestment System (AS) were completed with a 1/27.5-scale model at the NASA Langley Research Center. The purpose of these studies was to determine the proper configuration for a net arrestment system to bring the orbiter to a safe stop with minimal damage in the event of a runway overrun. Tests were conducted for runway on-centerline and off-centerline engagements at simulated speeds up to approximately 100 knots (full scale). The results of these tests defined the interaction of the net and the orbiter, the dynamics of off-centerline engagements, and the maximum number of vertical net straps that may become entangled with the nose gear. In addition to these tests, a test program with a 1/8-scale model was conducted by the arrestment system contractor, and the results are presented in the appendix.

  10. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  11. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  12. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  13. Orbital tomography for highly symmetric adsorbate systems

    NASA Astrophysics Data System (ADS)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  14. A mixed fleet transportation system to low Earth orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Based on a provided mission model, this project considered three different classes of launch vehicles for possible use: (1) modifications to the current Space Transportation System, or replacement by a second-generation vehicle using current technology; (2) a heavy-lift cargo vehicle, designed to minimize the cost of bulk cargo to low earth orbit; and (3) an advanced man-rated system incorporating technology anticipated for the year 1995. The mission model provided included commercial, scientific, and military payloads for the years 1990 through 2010. Use of the current Space Transportation System was also permitted in the final fleet sizing analysis. The near-term shuttle group performed trade studies on a number of modifications and variations before selecting a new vehicle design, incorporating a fly-back reusable first stage and reduced-size orbiter. Orbiter payload was limited to 5000 kg (priority items), with up to 25,000 kg of payload carried in a forward payload bay within the nose shroud of the orbiter external tank. This allowed reduction of orbiter size, without significant loss of reusability.

  15. Earth orbital teleoperator systems evaluation

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Slaughter, P. H.; Brye, R. G.; Henderson, D. E.

    1979-01-01

    The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program.

  16. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  17. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  18. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

  19. On-Orbit System Identification

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.

    1987-01-01

    Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.

  20. Advanced communications satellite systems

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1983-01-01

    There is a rapidly growing demand for satellite circuits, particularly for domestic service within the U.S. NASA's current program is aimed at developing the high risk, advanced satellite communications technologies required to significantly increase the capacity of future satellite communications systems. Attention is given to aspects of traffic distribution and service scenario, problems related to effects of rain attenuation, details regarding system configuration, a 30/20 GHz technology development approach, an experimental flight system, the communications payload for the experimental flight system, a typical experiment flight system coverage, and a typical three axis stabilized flight spacecraft.

  1. Composites for Advanced Space Transportation Systems - (CASTS). [graphite fiber/polyimide matrix composites and polyimide adhesives for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1979-01-01

    The CASTS Project initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K operational capability for aerospace vehicles is described. Near term tasks include screening composites and adhesives for 589K service, developing fabrication procedures and specifications, developing design allowables test methods and data, design and test of structural elements, and construction of a full scale aft body flap for the space shuttle orbiter vehicle for ground testing. Far term tasks include research efforts directed at new materials, manufacturing procedures and design/analysis methodology. Specific results discussed include: (1) identification of four GR/PI composites and three PI adhesives with 589K service potential for periods ranging from 125 to 500 hours; (2) development of an adhesive formulation suitable for bonding reusable surface insulation (RSI) titles to 589K (GR/PI) substructure; (3) the capability to fabricate and nondestructively inspect laminates, hat section shaped stiffeners, honeycomb sandwich panels, and chopped fiber moldings; and (4) test methods for measuring design allowables at 117K.

  2. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  3. Wireless Orbiter Hang-Angle Inclinometer System

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  4. Orbital Motions in Binary Protostellar Systems

    NASA Astrophysics Data System (ADS)

    Rodríguez, L. F.

    2004-08-01

    Using high-resolution ( ˜ 0to z @. hss ''1), multi-epoch Very Large Array observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and ρ Ophiuchus molecular complexes. The masses obtained from Kepler's third law are of the order of 0.5 to 2 M⊙, as expected for such low-mass protostars. The relatively large bolometric luminosities of these young systems corroborates the notion that protostars obtain most of their luminosity from accretion and not from nuclear reactions. In addition, in one of the sources studied (a multiple system in Taurus), a low-mass young star has shown a drastic change in its orbit after a close approach with another component of the system, presumed to be a double star. The large proper motion achieved by this low mass protostar (20 km s-1), suggests an ejection from the system.

  5. FAST DIGITAL ORBIT FEEDBACK SYSTEMS AT NSLS.

    SciTech Connect

    PODOBEDOV,B.; KUSHNER,B.; RAMAMOORTHY,S.; TANG,Y.; ZITVOGEL,E.

    2001-06-18

    We are implementing digital orbit feedback systems to replace the analog ones in both the VUV and the X-ray rings. We developed an original VME-based design which is run by a powerful Motorola 2305 CPU and consists entirely of off-the-shelf VME boards. This makes the system inexpensive and easy to configure, and allows for high digitizing rates. The new 5 kHz digital global feedback system is currently operational in the VUV ring, and the X-ray system is in the commissioning phase. Some of the parameters achieved include vertical correction bandwidth of 200 Hz (at DC gain of 100) and typical orbit drift over a fill of <3% of the rms beam size. In this paper we discuss the system architecture, implementation and performance.

  6. Shuttle Orbiter Uplink Text and Graphics System

    NASA Technical Reports Server (NTRS)

    Hoover, A. A.; Land, C. K.; Lipoma, P. C.

    1978-01-01

    This paper presents the definition of requirements for and current design of the Shuttle Orbiter Uplink Text and Graphics System (UT&GS). Beginning in early 1981, the UT&GS will support Shuttle flights by providing the capability of transmitting single-frame imagery from the ground to the orbiting Shuttle vehicle. Such imagery is in the form of maps, text, diagrams, or photographs, and is outputted on the Orbiter as a paper hard copy. Four modes of operation will be provided to minimize the time required to transmit less than full-resolution imagery. This paper discusses the considerations and complications leading to the four modes and associated resolution requirements. The paper also presents the design of the CCD array ground scanner and airborne CRT hardcopier.

  7. Advanced Microturbine Systems

    SciTech Connect

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  8. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  9. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  10. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  11. Hermes Global Orbiter spacecraft system design

    NASA Astrophysics Data System (ADS)

    Cruz, M. I.; Bell, G. J.

    The Hermes Global Orbiter (HGO) mission was one of the eleven DISCOVERY NASA HQ Code SL projects funded for study in FY'93. It proposes to launch a spacecraft to Mercury in the 1999 launch opportunity, with multiple encounters at Venus and Mercury, to reduce the launch and Mercury Orbit Insertion energy requirements. This mission design strategy results in an interplanetary cruise of 3.44 earth years and with a Mercury orbit lifetime of 1 earth year. The project proposes to maintain total run out to launch plus 30 days cost at less than 150 M (1991 FY ) with launch vehicles being excluded from this cap. The spacecraft uses a great deal of heritage from prior TRW spacecraft developments. The key elements are the Lightsat avionics being used for the TRW Advanced Bus, the TRW dual mode Liquid Apogee Engine, TRW graphite fiber wrapped tanks, the JPL/TRW X-band Solid State Power Amplifier, TRW heat pipe technology and the TRW Gallium Arsenide solar array technology.

  12. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1989-01-01

    An interactive, graphical proximity operations planning system was developed which allows on-site design of efficient, complex, multiburn maneuvers in the dynamic multispacecraft environment about the space station. Maneuvering takes place in, as well as out of, the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of relative orbital motion trajectories and complex operational constraints, which are both time varying and highly dependent on the mission scenario. This difficulty is greatly overcome by visualizing the relative trajectories and the relative constraints in an easily interpretable, graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of the space station and co-orbiting spacecraft on the background of the station's orbital plane. The operator has control over two modes of operation: (1) a viewing system mode, which enables him or her to explore the spatial situation about the space station and thus choose and frame in on areas of interest; and (2) a trajectory design mode, which allows the interactive editing of a series of way-points and maneuvering burns to obtain a trajectory which complies with all operational constraints. Through a graphical interactive process, the operator will continue to modify the trajectory design until all operational constraints are met. The effectiveness of this display format in complex trajectory design is presently being evaluated in an ongoing experimental program.

  13. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1988-01-01

    An interactive graphical proximity operations planning system was developed, which allows on-site design of efficient, complex, multiburn maneuvers in a dynamic multispacecraft environment. Maneuvering takes place in and out of the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of orbital dynamics and complex time-varying operational constraints. This difficulty is greatly overcome by visualizing the relative trajectories and the relevant constraints in an easily interpretable graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of a Space Station and co-orbiting spacecraft on the background of the Station's orbital plane. The operator has control over the two modes of operation: a viewing system mode, which enables the exporation of the spatial situation about the Space Station and thus the ability to choose and zoom in on areas of interest; and a trajectory design mode, which allows the interactive editing of a series of way points and maneuvering burns to obtain a trajectory that complies with all operational constraints. A first version of this display was completed. An experimental program is planned in which operators will carry out a series of design missions which vary in complexity and constraints.

  14. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  15. Orbital Architectures of Dynamically Complex Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.

    2015-01-01

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. We develop a differential evolution Markov chain Monte Carlo (RUN DMC) to tackle these difficult aspects of data analysis. We apply RUN DMC to two classic multi-planet systems from radial velocity surveys, 55 Cancri and GJ 876. For 55 Cancri, we find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet's orbit to cross the stellar surface. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50±610 degrees), but they are not orbiting in a mean-motion resonance. For GJ 876, we can meaningfully constrain the three-dimensional orbital architecture of all the planets based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations (Φ) so they must be roughly coplanar (Φcb = 1.41±0.620.57 degrees and Φbe = 3.87±1.991.86 degrees). The three-dimensional Laplace argument librates with an amplitude of 50.5±7.910.0 degrees, indicating significant past disk migration and ensuring long-term stability. These empirically derived models will provide new challenges for planet formation models and motivate the need for more sophisticated algorithms to analyze exoplanet data.

  16. REPORT ON AN ORBITAL MAPPING SYSTEM.

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1984-01-01

    During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.

  17. Advanced information processing system

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  18. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  19. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  20. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  1. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  2. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  3. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  4. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  5. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  6. Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements

    NASA Technical Reports Server (NTRS)

    Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.

    1995-01-01

    The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.

  7. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  8. Proving the Space Transportation System: the Orbital Flight Test Program

    NASA Technical Reports Server (NTRS)

    Reichhardt, T.

    1982-01-01

    The main propulsion system, solid rocket boosters, external tank, orbital maneuvering system, spacecraft orbital operations (thermal tests, attitude control and remote manipulator), and return to Earth are outlined for the first four STS missions.

  9. The Solar Poynting-Robertson Effect On Particles Orbiting Solar System Bodies: Circular Orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2013-01-01

    The Poynting-Robertson effect from sunlight impinging directly on a particle which orbits a Solar System body (planet, asteroid, comet) is considered from the Sun's rest frame. There appear to be no significant first-order terms in V(sub b)/c for circular orbits, where V(sub b) is the body's speed in its orbit about the Sun and c is the speed of light, when the particle's orbital semimajor axis is much smaller than the body's orbital semimajor axis about the Sun as is mainly the case in the Solar System.

  10. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  11. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  12. Support systems of the orbiting quarantine facility

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.

  13. Support systems of the orbiting quarantine facility

    NASA Astrophysics Data System (ADS)

    The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.

  14. Unmanned servicing of Earth observation systems in sunsynchronous orbits

    NASA Astrophysics Data System (ADS)

    Sliney, Jack; Robertson, Bill; Misencik, Tom; Lee, Jeannie

    This paper addresses the feasibility of servicing or reboosting Earth observation spacecraft that are in or near sunsynchronous orbits through the use of an unmanned servicing vehicle. The term sunsynchronous (SS) as used here pertains to any retrograde orbit which exhibits a nodal regression rate of 360° per year, so that the orbit plane maintains a constant angle to the sun. The paper addresses both quantitatively and qualitatively how future Earth observation systems in inclinations between 96 and 100° may be periodically serviced using a transfer vehicle and other components needed to carry out the support mission. Two operational concepts are considered for the employment of the transfer vehicle. In one case, the vehicle is based at a Space Based Support Platform (SBSP) which remains at a lower altitude and higher inclination than the assets to be serviced. Consideration is also given to servicing from a transfer vehicle which is a free flyer (i.e. not based at an SBSP). The design requirements of the servicer are discussed quantitiatively and sample calculations of ΔV and propellant expenditure are given. Consideration is given to the NASA developed Orbital Maneuvering Vehicle (OMV), and other transfer vehicles which use electrical or other advanced propulsion. In addition, a quantitative assessment is made of the subsystem redundancy requirements in the design for an Earth observation satellite that is periodically serviced as compared with design requirements for an unserviceable spacecraft. The benefits of servicing with respect to Pre-planned Product Improvements (P 3I) are discussed.

  15. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  16. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  17. RHIC 10 Hz global orbit feedback system

    SciTech Connect

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-03-28

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  18. Orbital Aggregation and Space Infrastructure Systems (OASIS)

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Mazanek, Daniel D.; Stillwagen, Frederic H.; Antol, Jeffrey; Sarver-Verhey, Timothy R.; Chato, David J.; Saucillo, Rudolf J.; Blue, Douglas R.; Carey, David; Krizan, Shawn A.

    2002-01-01

    This paper summarizes the results of a NASA lead study performed to identify synergistic opportunities and concepts between human exploration initiatives and commercialization of space. The goal of this initiative, called Orbital Aggregation & Space Infrastructure Systems (OASIS), is to develop an in-space architecture and associated concepts that provide common infrastructure for enabling a large class of space missions. The concepts include communications, navigation and power systems, propellant modules, tank farms, habitats, and in-space transportation systems using several propulsion technologies. OASIS features in-space aggregation of systems and resources in support of mission objectives. The concepts feature a high level of reusability and are supported by inexpensive launch of propellant and logistics payloads from the Earth/moon system. Industry, NASA and other users could share infrastructure costs. The anticipated benefits of synergistic utilization of space infrastructure are reduced mission costs and increased mission flexibility for future space exploration and commercialization initiatives.

  19. Orbit of an Astrometric Binary System

    NASA Astrophysics Data System (ADS)

    Descamps, Pascal

    2005-08-01

    We present a new method to solve the problem of initial orbit determination of any binary system. This method is mainly based on the material available for an observer, for example relative positions at a given time of the couple in the “plane of sky”, namely the tangent plane to the celestial sphere at the position of the primary component. The problem of orbit determination is solved by splitting in successive stages in order to decorrelate the parameters of each other as much as possible. On one hand, the geometric problem is solved using the first Kepler’s law from a single observing run and, on the other hand, dynamical parameters are then inferred from the fit of the Kepler’s equation. At last, the final stage consists in determining the main physical parameters involved in the secular evolution of the system, that is the spin axis and the J2 parameter of the primary if we assume that it is a quasi-spherical body. As a matter of fact there is no need to make too restrictive initial assumptions (such as circular orbit or zero eccentricity) and initial guesses of parameters required by a non-linear least-squares Levenberg Marquardt algorithm are finally obtained after each stage. Such a protocol is very useful to study systems like binary asteroids for which all of the parameters should be considered a priori as unknowns. As an example of application, we used our method to estimate the set of the Pluto Charon system parameters from observations collected in the literature since 1980.

  20. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  1. Architecture of the APS real-time orbit feedback system.

    SciTech Connect

    Carwardine, J. A.; Lenkszus, F. R.

    1997-11-21

    The APS Real-Time Orbit Feedback System is designed to stabilize the orbit of the stored positron beam against low-frequency sources such as mechanical vibration and power supply ripple. A distributed array of digital signal processors is used to measure the orbit and compute corrections at a 1kHz rate. The system also provides extensive beam diagnostic tools. This paper describes the architectural aspects of the system and describes how the orbit correction algorithms are implemented.

  2. Canadian Advanced Nanospace Experiment 2: Om-Orbit Experience with an Innovative Three-Kilogram Satellite

    NASA Astrophysics Data System (ADS)

    Sarda, K.; Grant, C.; Eagleson, S.; Kekez, D. D.; Zee, R. E.

    2008-08-01

    The objective of the Canadian Advanced Nanospace eXperiment (CanX) program is to develop highly capable "nanospacecraft," or spacecraft under 10 kilograms, in short timeframes of 2-3 years. CanX missions offer low- cost and rapid access to space for scientists, technology developers, and operationally responsive missions. The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) has developed the Canadian Advanced Nanospace eXperiment 2 (CanX-2) nanosatellite that launched in April 2008. CanX-2, a 3.5-kg, 10 x 10 x 34 cm satellite, features a collection of scientific and engineering payloads that push the envelope of capability for this class of spacecraft. The primary mission of CanX-2 is to test and demonstrate several enabling technologies for precise formation flight. These technologies include a custom cold-gas propulsion system, a 30 mNms nanosatellite reaction wheel as part of a three- axis stabilized momentum-bias attitude control system, and a commercially available GPS receiver. The secondary objective of CanX-2 is to fly a number of university experiments including an atmospheric spectrometer. At the time of writing CanX-2 has been in orbit for three weeks and has performed very well during preliminary commissioning. The mission, the engineering and scientific payloads, and the preliminary on-orbit commissioning experiences of CanX-2 are presented in this paper.

  3. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  4. Future Orbital Power Systems Technology Requirements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA is actively involved in program planning for missions requiring several orders of magnitude, more energy than in the past. Therefore, a two-day symposium was held to review the technology requirements for future orbital power systems. The purpose of the meeting was to give leaders from government and industry a broad view of current government supported technology efforts and future program plans in space power. It provided a forum for discussion, through workshops, to comment on current and planned programs and to identify opportunities for technology investment. Several papers are presented to review the technology status and the planned programs.

  5. Technologies Involved in Configuring an Advanced Earth-to-Orbit Transport for Low Structural Mass

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Klich, Phillip J.

    1980-01-01

    The current space shuttle is expected to adequately meet Government and industry needs for the transport of cargo to and from orbit well into the 1990's. However, continual study of potential follow-on shuttle systems is necessary and desirable in order to complement ongoing research in materials, structures, propulsion, aerodynamics, and other related areas. By studying alternate systems well in advance, it will be possible to explore the various technologies and develop those for which there is the greatest apparent payoff. In this paper a single-stage Earth-to-orbit transport designed for delivery of approximately 29,500 kg (65,000 lb) payload will be described. The vehicle, which takes off vertically and lands horizontally, is 60 m (197 feet) long and weighs approximately 1.8 Gg (4 M lb) at liftoff. In the interest of weight reduction, a simple body of revolution is utilized for the main body shell. In this design the main propulsion tanks serve as a primary load-carrying structure. Further, in order to minimize structural mass, the cargo bay is located between two of the main propellant tanks. The cargo volume, at 396 cu m (14,000 cu feet), exceeds that provided by the shuttle; but the bay itself is nonconforming in shape - being approximately 10 m (32 feet) in diameter by 5 m (17 feet) long. Dual-fuel propulsion is employed, since a number of studies have shown that (though lowering performance) the operation of hydrocarbon (RP) engines in parallel with LOX/LH2 engines results in a net reduction in the vehicle's physical size and structural mass. Other weight-saving features entail the extensive use of honeycomb sandwiches, advanced materials, and advanced fabrication techniques. The vehicle presented is utilized only as a means to study and identify various technologies needed in order to develop a low mass Earth-to-orbit transportation system for the future. The conclusion of this study is that vehicle geometry and structural/materials technology are

  6. NASA's Advanced Space Transportation System launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1990-01-01

    An account is given of NASA's Advanced Space Transportation System plans, with a view to the support systems that must be evolved in order to implement such long-term mission requirements; these encompass space-based infrastructure for orbital transfer operations between LEO and GEO, and for operations from LEO to lunar orbit and to Mars. These mission requirements are addressed by the NASA Civil Needs Data Base in order to promote multiple applications. The requisite near-term lift capacity to LEO could be achieved through the development of the Shuttle-derived, unmanned Shuttle-C cargo launch system. Longer-term transportation studies are concerned with the Next Manned Transportation System and Space Transfer Vehicles.

  7. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  8. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  9. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 2: Technical results

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.

    1980-01-01

    Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.

  10. Survey on advances in orbital dynamics and control for libration point orbits

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Liang, Yuying; Ren, Kewei

    2016-04-01

    Libration point orbits (LPOs) have drawn a lot of interest because of their great significance in deep space exploration. This paper summarizes the past developments and then presents the current state-of-art of LPOs including the dynamical structure of phase space, the transfer trajectories and homoclinic/heterclinic connections of LPOs, the station-keeping strategies, and some constellation deployments employing LPOs. Subsequently addressed are the applications of the LPO theory into the fields of lunar transfers, solar sail equilibria and formation flying. Finally, future research directions on LPOs are described from the aspects of the existence proof of Halo orbits, orbital design for the potential missions motivated by LPOs, and so on.

  11. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  12. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  13. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  14. Microgravity acceleration modeling for orbital systems

    NASA Technical Reports Server (NTRS)

    Knabe, Walter; Baugher, Charles R. (Editor)

    1990-01-01

    In view of the decisive importance of a disturbance-free environment on the Space Station, and on other orbital systems, for materials processing experiments, a theoretical and semi-experimental analysis of the acceleration environment to be expected on large orbiting spacecraft was undertaken. A unified model of such spacecraft cannot be established; therefore, a number of sub-models representing major components of typical large spacecraft must be investigated. In order to obtain experimental data of forces, a typical spacecraft - an engineering model of the Spacelab - was suspended on long ropes in a high-bay hangar, and equipped with a number of accelerometers. Active components on the Spacelab (fans, pumps, air conditioners, valves, levers) were operated, and astronautics moved boxes, drawers, sleds, and their own bodies. Generally speaking, the response of the Spacelab structure was very similar to the environment measured on Spacelabs SL-1, SL-2, and D-1. At frequencies in the broad range between 1 and about 100 Hz, acceleration peaks reached values of 10(exp -3) and 10(exp -2) g sub o, and even higher.

  15. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  16. Orbital transfer rocket engine technology: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  17. Robust homoclinic orbits in planar systems with Preisach hysteresis operator

    NASA Astrophysics Data System (ADS)

    Pimenov, Alexander; Rachinskii, Dmitrii

    2016-06-01

    We construct examples of robust homoclinic orbits for systems of ordinary differential equations coupled with the Preisach hysteresis operator. Existence of such orbits is demonstrated for the first time. We discuss a generic mechanism that creates robust homoclinic orbits and a method for finding them. An example of a homoclinic orbit in a population dynamics model with hysteretic response of the prey to variations of the predator is studied numerically.

  18. The shuttle orbiter cabin atmospheric revitalization systems

    NASA Technical Reports Server (NTRS)

    Ward, C. F.; Owens, W. L.

    1975-01-01

    The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.

  19. Mars exploration rovers orbit determination system modeling

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Geoffrey; Baird, Darren; Graat, Eric; McElrath, Tim; Portock, Brian; Watkins, Michael

    2006-06-01

    From June 2003 to January 2004, two spinning spacecraft journeyed from Earth to Mars. A team of navigators at the Jet Propulsion Laboratory (JPL) accurately determined the orbits of both Mars Exploration Rovers, Spirit and Opportunity. For the navigation process to be successful, the team needed to know how nongravitational effects and how measurement system properties affected the trajectory and data modeling. To accomplish this, in addition to the standard gravitational and radiometric modeling of the spacecraft, a calibration was performed on each spacecraft to determine the amount of ΔV that might occur during a turn, a high-fidelity solar-radiation-pressure model was created, the spin signature was removed from the tracking data, the station locations of the Deep Space Network were resurveyed, and a model of interplanetary charged particles was developed. The result of this effort was near-perfect accuracy, surpassing the tight atmospheric-entry requirements for navigation of both spacecraft.

  20. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  1. High-precision orbit determination for high-earth elliptical orbiters using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Estefan, J. A.

    1990-01-01

    Orbit covariance analyses pertaining to the Japanese VLBI Space Observatory Program (VSOP) MUSES-B satellite and to the International VLBI Satellite are presented. It is determined that a combination of Doppler and GPS measurements can provide the orbit accuracy required to support advanced radio interferometric experiments. For the VSOP, the required orbit accuracy of 130 m is easily met with two-way Doppler as the primary type of data; the 0.4 cm/s VSOP velocity requirement is also feasible provided that precise ground calibrations of tropospheric delays and station coordinates are available. It is concluded that combining the data from a VSOP GPS flight instrument with the ground GPS and two-way Doppler data will significantly enhance orbit determination accuracy in position and velocity.

  2. Orbiter Interface Unit and Early Communication System

    NASA Technical Reports Server (NTRS)

    Cobbs, Ronald M.; Cooke, Michael P.; Cox, Gary L.; Ellenberger, Richard; Fink, Patrick W.; Haynes, Dena S.; Hyams, Buddy; Ling, Robert Y.; Neighbors, Helen M.; Phan, Chau T.; Prendergast, Kelly M.; Siekierski, James D.; Wade, Randall S.; Weisskopf, George A.; Yim, Hester J.; Adkins, Antha A.; Carl, James R..; Loh, Y. C.; Roberts, Charles; Steele, Douglas J.; DeSilva, Buveneka Kanishka; Killenb, Harold B.; Williams, Robert M.

    2004-01-01

    This report describes the Orbiter Interface Unit (OIU) and the Early Communication System (ECOMM), which are systems of electronic hardware and software that serve as the primary communication links for the International Space Station (ISS). When a space shuttle is at or near the ISS during assembly and resupply missions, the OIU sends groundor crew-initiated commands from the space shuttle to the ISS and relays telemetry from the ISS to the space shuttle s payload data systems. The shuttle then forwards the telemetry to the ground. In the absence of a space shuttle, the ECOMM handles communications between the ISS and Johnson Space Center via the Tracking and Data Relay Satellite System (TDRSS). Innovative features described in the report include (1) a "smart data-buffering algorithm that helps to preserve synchronization (and thereby minimize loss) of telemetric data between the OIU and the space-shuttle payload data interleaver; (2) an ECOMM antenna-autotracking algorithm that selects whichever of two phased-array antennas gives the best TDRSS signal and electronically steers that antenna to track the TDRSS source; and (3) an ECOMM radiation-latchup controller, which detects an abrupt increase in current indicative of radiation-induced latchup and temporarily turns off power to clear the latchup, restoring power after the charge dissipates.

  3. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  4. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  5. TOPEX/Poseidon precision orbit determination production and expert system

    NASA Technical Reports Server (NTRS)

    Putney, Barbara; Zelensky, Nikita; Klosko, Steven

    1993-01-01

    TOPEX/Poseidon (T/P) is a joint mission between NASA and the Centre National d'Etudes Spatiales (CNES), the French Space Agency. The TOPEX/Poseidon Precision Orbit Determination Production System (PODPS) was developed at Goddard Space Flight Center (NASA/GSFC) to produce the absolute orbital reference required to support the fundamental ocean science goals of this satellite altimeter mission within NASA. The orbital trajectory for T/P is required to have a RMS accuracy of 13 centimeters in its radial component. This requirement is based on the effective use of the satellite altimetry for the isolation of absolute long-wavelength ocean topography important for monitoring global changes in the ocean circulation system. This orbit modeling requirement is at an unprecedented accuracy level for this type of satellite. In order to routinely produce and evaluate these orbits, GSFC has developed a production and supporting expert system. The PODPS is a menu driven system allowing routine importation and processing of tracking data for orbit determination, and an evaluation of the quality of the orbit so produced through a progressive series of tests. Phase 1 of the expert system grades the orbit and displays test results. Later phases undergoing implementation, will prescribe corrective actions when unsatisfactory results are seen. This paper describes the design and implementation of this orbit determination production system and the basis for its orbit accuracy assessment within the expert system.

  6. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  7. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  8. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  9. Classical Spin-Orbit Coupling and Periastron Advance in a Binary Pulsar

    NASA Technical Reports Server (NTRS)

    Kaspi, V. M.; Bailes, M.; Manchester, R. N.; Stappers, B. W.; Bell, J. F.

    1996-01-01

    We report on radio timing observations of PSR J0045-7319, and eccentric pulsar/B star 51-day binary in the Small Magellanic Cloud. Significant deviations from a simple Keplerian orbit, observed as precessions of the periastron longitude and orbital plane, are identified with classical spin-orbit coupling and apsidal advance, for the fist time in a binary pulsar. Both precessions result from the B star's rotationally-induced gravitational quadropole moment, however, the orbital plane precession requires the B star's spin axis to be inclined with respect to the orbital angular momentum. We constrain this inclination angle (theta) to be 25(deg) <(theta)<41(deg). Under the conventional assumption that the pre-supernova angular momenta were aligned, our observations provide the most direct evidence yet for an asymmetric supernova.

  10. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1997-01-01

    Solar electric propulsion technology is currently being used for geostationary satellite station keeping. Analyses show that electric propulsion technologies can be used to obtain additional increases in payload mass by using them to perform part of the orbit transfer. Three electric propulsion technologies are examined at two power levels for geostationary insertion of an Atlas IIAS class spacecraft. The onboard chemical propulsion apogee engine fuel is reduced in this analysis to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns that will minimize the electric propulsion transfer times. For a 1550-kg Atlas IIAS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150-800 kg are enabled by using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  11. Digital Global Orbit Feedback System Developing In SRRC

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Lin, K. K.; Chen, Jenny; Chen, J. S.; Wang, C. J.; Chen, C. S.; Hsu, K. T.

    1997-05-01

    The digital global orbit feedback system for the storage ring of SRRC has been upgraded in terms of its feedback bandwidth extension by increasing its data acquisition sampling rate and compensating eddy current effect of vacuum chamber with filter. This orbit feedback system has been applied incorporate with the insertion devices operation, such as W20 wiggler and APU undulator, in order to eliminate beam orbit disturbance. Applying this system to suppress orbit drift during energy ramping has also shown to be effective. Performance of this upgraded system will be presented in this report.

  12. Orbital decay in aspherical galaxies. II - Triaxial systems

    SciTech Connect

    Statler, T. S. Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1991-07-01

    A previous analysis of orbital decay of small satellite galaxies into moderately oblate, axisymmetrical cannibal galaxies with Staeckel potentials is generalized here to triaxial systems with arbitary anisotropy and internal streaming. The orbital evolution to be expected in systems with differing degrees of anisotropy or rotation is briefly discussed. The evolution of some representative orbits is presented in detail using the orbit-averaged anisotropic Chandrasekhar drag and the distribution functions for perfect ellipsoids. The validity of orbit averaging is assessed by comparing the results with ensembles of single-particle orbits integrated directly in the same potential and the same drag prescription. An attempt is made to gauge the validity of the Chandrasekhar formula by comparison with restricted N-body solutions. It is found that the orbit-averaged evolution is consistent with such simulations. 40 refs.

  13. Orbital decay in aspherical galaxies. II - Triaxial systems

    NASA Technical Reports Server (NTRS)

    Statler, Thomas S.

    1991-01-01

    A previous analysis of orbital decay of small satellite galaxies into moderately oblate, axisymmetrical cannibal galaxies with Staeckel potentials is generalized here to triaxial systems with arbitary anisotropy and internal streaming. The orbital evolution to be expected in systems with differing degrees of anisotropy or rotation is briefly discussed. The evolution of some representative orbits is presented in detail using the orbit-averaged anisotropic Chandrasekhar drag and the distribution functions for perfect ellipsoids. The validity of orbit averaging is assessed by comparing the results with ensembles of single-particle orbits integrated directly in the same potential and the same drag prescription. An attempt is made to gauge the validity of the Chandrasekhar formula by comparison with restricted N-body solutions. It is found that the orbit-averaged evolution is consistent with such simulations.

  14. Advanced border monitoring sensor system

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  15. Orbit of the HDE 245770 system

    SciTech Connect

    Aab, O.E.

    1984-12-01

    Spectroscopic observations of HDE 245770, the optical counterpart of the X-ray source A0535 + 26, obtained at 350-700 nm with dispersion 9, 14, or 28 A/mm using a 600-mm-focal-length camera on the main stellar spectrograph of the 6-m telescope of the Special Astrophysical Observatory at Nizhni Arkhyz during 1979-1981 are reported. The data are used to calculate radial velocities and orbital parameters based on both absorption and emission lines, and the results are compared in tables and graphs. In absorption, the system is found to have best-fit parameters P = about 35 d, K = about 35 km/s, V0 = about -5 km/s, e = 0.2, and f(M) = 0.15 solar mass. For P = 35 d, the emission-line velocities lead to unrealistic mass functions and e values of 0.6 for H-beta and 0.7 for H-alpha, indicating that these velocities are not associated with the (Be) optical component of the system. 15 references.

  16. The Advanced Video Guidance Sensor: Orbital Express and the Next Generation

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.

    2008-01-01

    The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).

  17. Application of advanced filtering methods to the determination of the interplanetary orbit of Mariner '71.

    NASA Technical Reports Server (NTRS)

    Rourke, K. H.; Jordan, J. F.

    1972-01-01

    This paper presents the results of the applications of advanced filtering methods to the determination of the interplanetary orbit of the Mariner '71 spacecraft. The advanced techniques are specific extensions of the Kalman filter. The special problems associated with applying these techniques are discussed and the particular algorithmic implementations are outlined. The advanced methods are compared against the weighted least squares filters of conventional application. The results reveal that relatively simple advanced filter configurations yield solutions superior to those of the conventional methods when applied to the Mariner '71 radio measurements.

  18. HOW ECCENTRIC ORBITAL SOLUTIONS CAN HIDE PLANETARY SYSTEMS IN 2:1 RESONANT ORBITS

    SciTech Connect

    Anglada-Escude, Guillem; Chambers, John E.; Lopez-Morales, Mercedes E-mail: mercedes@dtm.ciw.ed

    2010-01-20

    The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect exoplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a single planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available data sets, finding that (1) around 35% of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, (2) another 40% cannot be statistically distinguished from a circular orbital solution, and (3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets.

  19. Benefits of Application of Advanced Technologies for a Neptune Orbiter, Atmospheric Probes and Triton Lander

    NASA Technical Reports Server (NTRS)

    Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig

    2005-01-01

    Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.

  20. Orbital tube flaring system produces tubing connectors with zero leakage

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1967-01-01

    An orbital tube flaring system produces tubing connectors with a zero-leak potential needed in high pressure hydraulic and pneumatic systems. The flaring system incorporates a rolling cone and rolling die to closely control flare characteristics.

  1. Orbital Express Autonomous Rendezvous and Capture Sensor System (ARCSS) flight test results

    NASA Astrophysics Data System (ADS)

    Leinz, Manny R.; Chen, Chih-Tsai; Beaven, Michael W.; Weismuller, Thomas P.; Caballero, David L.; Gaumer, William B.; Sabasteanski, Peter W.; Scott, Peter A.; Lundgren, Mark A.

    2008-04-01

    The Orbital Express flight demonstration was established by the Defense Advanced Research Projects Agency (DARPA) to develop and validate key technologies required for cost-effective servicing of next-generation satellites. A contractor team led by Boeing Advanced Network and Space Systems built two mated spacecraft launched atop an Atlas V rocket from Cape Canaveral, Florida, on March 8, 2007. The low earth orbit test flight demonstrated on orbit transfer of hydrazine propellant, transfer of a spare battery between spacecraft and the ability to replace a spacecraft computer on orbit. It also demonstrated autonomous rendezvous and capture (AR&C) using advanced sensor, guidance, and relative navigation hardware and software. This paper summarizes the results of the on-orbit performance testing of the ARCSS (Autonomous Rendezvous and Capture Sensor System). ARCSS uses onboard visible, infrared and laser rangefinder sensors to provide real time data and imagery to the onboard sensor computer. The Boeing-developed Vis-STAR software executing on the sensor computer uses the ARCSS data to provide precision real-time client bearing, range and attitude as needed, from long range to soft capture. The paper summarizes the ARCSS and Vis-STAR on orbit performance.

  2. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Lyu, C.; Blackwell, W. J.; Leslie, V.; Baker, N.; Mo, T.; Sun, N.; Bi, L.; Anderson, K.; Landrum, M.; De Amici, G.; Gu, D.; Foo, A.; Ibrahim, W.; Robinson, K.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi-NPOESS Preparatory Project (S-NPP) satellite and has just finished its first year on orbit. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface. Designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems), ATMS has 22 channels spanning 23—183 GHz, closely following the channel set of the MSU, AMSU-A1 and A2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately one quarter the volume, one half the mass, and one half the power of the three AMSUs. A summary description of the ATMS design will be presented. Post-launch calibration/validation activities include geolocation determination, radiometric calibration using the on-board warm targets and cold space views, simultaneous observations by microwave sounders on other satellites, comparison vs. pre-launch thermovacuum test performance; observations vs. atmospheric model predicted radiances, and comparisons of soundings vs. radiosondes. Brief descriptions of these

  3. Orbital polarization in narrow band systems

    SciTech Connect

    Eriksson, O.; Johansson, B.; Brooks, M.S..S. . Inst. of Physics; Commission of the European Communities, Karlsruhe . European Inst. for Transuranium Elements)

    1989-01-01

    A novel technique for treating orbital polarization is presented. The single electron eigenvalue shifts that emanates from the orbital polarization is of the form -E{sup 3}Lm{sub l}, where E{sup 3} is the Racah parameter, L is the orbital moment and m{sub l} the azimuthal quantum number. Thereby the effect of Hund's second rule is included not only in the total energy, but also in the eigenvalue splittings which are required in the solid. The calculations presented also incorporate the exchange and correlation potential in the local spin density approximation as well as the spin-orbit coupling. The self-consistently calculated equation-of-state for the light lanthanide Ce is presented. The observed volume collapse is well described by the parameter free calculations and accordingly the volume collapse in Ce is described as a Mott transition of the 4f electron. 20 refs., 1 fig., 1 tab.

  4. Manned Orbital Systems Concepts Study. Book 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Requirements for and definitions of a cost effective orbital facility concept, capable of supporting extended manned operations in earth orbit beyond those visualized for the 7 to 30 day shuttle/spacelab system, were studied. Data are given on requirements derivation, concepts identification, systems analysis and definition, and programmatics.

  5. Results from Symposium on Future Orbital power systems technology requirements

    NASA Technical Reports Server (NTRS)

    Gorland, S.

    1979-01-01

    The technology requirements for future orbital power systems were reviewed. Workshops were held in 10 technology disciplines to discuss technology deficiencies, adequacy of current programs to resolve those deficiencies and recommendations for tasks that might reduce the testing and risks involved in future orbital energy systems. Those recommendations are summarized.

  6. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  7. System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1983-01-01

    The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.

  8. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 4: Detailed data. Part 2: Program plans and common support needs (a study of the commonality of space vehicle applications to future national needs

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.

  9. Orbit transfer rocket engine technology program: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  10. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  11. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  12. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1995-01-01

    Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  13. Laser Systems for Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-01

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called "LIFE" laser system. Because a single "LIFE" beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  14. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  15. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  16. Advanced space recovery systems

    NASA Technical Reports Server (NTRS)

    Wailes, William K.

    1989-01-01

    The design evolution of a space recovery system designed by a NASA-contracted study is described, with particular attention given to the design of a recovery system for a propulsion/avionics module (P/AM), which weighs 60,000 lb at the recovery initiation and achieves subsonic terminal descent at or above 50,000 ft msl. The components of the recovery system concept are described together with the operational sequences of the recovery. The recovery system concept offers low cost, low weight, good performance, a potential for pinpoint landing, and an operational flexibility.

  17. MSFC Skylab Orbital Workshop, volume 1. [systems analysis and equipment specifications for orbital laboratory

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technical aspects of the Skylab-Orbital Workshop are discussed. Original concepts, goals, design philosophy, hardware, and testing are reported. The final flight configuration, overall test program, and mission performance are analyzed. The systems which are examined are: (1) the structural system, (2) the meteoroid shield systems, and (3) the environmental/thermal control subsystem.

  18. Orbital approach to studying the slow dynamics of stellar systems

    NASA Astrophysics Data System (ADS)

    Polyachenko, V. L.; Polyachenko, E. V.; Shukhman, I. G.

    2008-03-01

    We develop new approaches to the numerical simulations of slowly evolving stellar systems with characteristic times of the order of the precession period for a typical orbit. This period is assumed to be long compared to the characteristic oscillation periods of individual stars in their orbits. For such processes, the standard numerical simulations using various N-body methods become inadequate, since the bulk of the computational time is spent on the repeated calculations of almost invariable orbits. We suggest a new N-orbit approach (called so by analogy and by contrast with N-body methods) that takes into account the specifics of the problems under consideration, in which whole orbits take the place of individual stars in N-body methods. Accordingly, the stellar system is represented by a set of N orbits the changes in the spatial orientation and shape of which lead to a slow evolution of the system. We derive the equations governing the nonlinear dynamics of orbits separately for 2D (disk) and 3D systems. These equations have the form of Hamiltonian equations for canonically conjugate pairs of variables. In the 2D case, one pair of such equations will suffice: for the angular momentum L and for the angle of direction to the apocenter Ψ. In the 3D case, there are two such pairs. The first pair of equations is for the modulus of the angular momentum L and the angle of direction to the apocenter in the orbital plane Ψ, while the second pair is for L z (the component of the angular momentum vector L along the z axis) and the orientation angle of the line of nodes W. Together with the energy E, which is an adiabatic invariant, these two (or four) parameters completely define the orbit (in the 2D and 3D cases, respectively). The evolution of the system is traced by solving these equations within the framework of the suggested N-orbit approach. We have in mind two versions of this approach. In the first version, a separate orbit corresponds to each star along which

  19. Mars Telecommunications Orbiter Ka-band system design and operations

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Komarek, Tomas; Diehl, Roger; Shambayati, Shervin; Breidenthal, Julian; Lopez, Saturnino; Jordan, Frank

    2003-01-01

    NASA's Mars Telecommunications Orbiter (MTO) will relay broadband communications from landers, rovers and spacecraft in the vicinity of Mars to Earth. This paper describes the MTO communications system and how the MTO Ka-band system will be operated.

  20. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  1. Advanced cement solidification system

    SciTech Connect

    Nakashima, T.; Kuribayashi, H.; Todo, F.

    1993-12-31

    In order to easily and economically store and transport radioactive waste generated at nuclear power stations, it is essential to reduce the waste volume to the maximum extent. It is also necessary to transform the waste into a stable form for final disposal which will maintain its chemical and physical stability over a long period of time. For this purpose, the Advanced Cement Solidification Process (AC-process) was developed. The AC-process, which utilizes portland cement, can be applied to several kinds of waste such as boric acid waste, laboratory drain waste, incineration ash and spent ion exchange resin. In this paper, the key point of the AC-process, the pretreatment concept for each waste, is described. The AC-process has been adopted for two Japanese PWR stations: the Genkai Nuclear Power Station (Kyushu Electric Power Co.) and the Ikata Nuclear Power Station (Shikoku Electric Power Co.). Construction work has almost finished and commissioning tests are under way at both power stations.

  2. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  3. Near strongly resonant periodic orbits in a Hamiltonian system

    PubMed Central

    Gelfreich, Vassili

    2002-01-01

    We study an analytic Hamiltonian system near a strongly resonant periodic orbit. We introduce a modulus of local analytic classification. We provide asymptotic formulae for the exponentially small splitting of separatrices for bifurcating hyperbolic periodic orbits. These formulae confirm a conjecture formulated by V. I. Arnold in the early 1970s. PMID:12391324

  4. Improved Orbiter Waste Collection System Study, Appendix D

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Basic requirements for a space shuttle orbiter waste collection system are established. They are intended to be an aid in the development and procurement of a representative flight test article. Orbiter interface requirements, performance requirements, flight crew operational requirements, flight environmental requirements, and ground operational and environmental requirements are considered.

  5. Shuttle orbiter storage locker system: A study

    NASA Technical Reports Server (NTRS)

    Butler, D. R.; Schowalter, D. T.; Weil, D. C.

    1973-01-01

    Study has been made to assure maximum utility of storage space and crew member facilities in planned space shuttle orbiter. Techniques discussed in this study should be of interest to designers of storage facilities in which space is at premium and vibration is severe. Manufacturers of boats, campers, house trailers, and aircraft could benefit from it.

  6. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  7. A European advanced data relay system

    NASA Astrophysics Data System (ADS)

    de Agostini, Agostino; Puccio, Antonio; Zanotti, Glullo

    1990-10-01

    The purpose of the study is to select the most attractive configuration(s) for an advanced data relay system to be employed at the beginning of the next century. A users scenario with such user classes as a manned in-orbit infrastructure and related support, launchers/transit vehicles, earth observation spacecraft, automatic microgravity free flyers, and scientific spacecraft is considered. System architecture is discussed in terms of configuration analysis and resources definition. The analysis of the space segment contains the definition of link requirements and payloads, as well as mass/power budget and accommodations on space platforms, and the ground segment is assessed from the system-facility and user earth-terminal points of view. Cost analysis and trade-offs are presented, and the key parameters such as the zone of exclusion, service availability, service continuity, intersatellite link implementation, feeder link, platform configuration, ground infrastructure, and economic viability are considered.

  8. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  9. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  10. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  11. Orbital transfer vehicle advanced expander cycle engine point design study

    NASA Technical Reports Server (NTRS)

    Martinez, A.

    1979-01-01

    A detailed computer model of the expander cycle engine system steady-state operation was developed. Payload performance data for the expander cycle engine for 100K pounds and 65K pounds Space Shuttle missions were examined to establish peak payload thrusts. It was found that peak payload for the 100K pound gross weight single engine case occurred at nearly 15,000 pounds thrust for both engine mixture ratios of 6:1 and 7:1. Peak payload at engine mixture ratio of 6:1 was 4 percent greater than at 7:1 mixture ratio. The two engine configuration peak paYloads occurred at engine thrust below 7,500 pounds (extrapolated) and were lower than single engine payloads. For the 65K pound gross weight mission, peak payloads for the single engine configuration occurred at nearly 10,000 pounds for both mixture ratios. Mixture ratio of 7:1 payloads were 5 percent lower than 6:1 payloads. Two engine configuration payloads occurred at engine thrusts considerably below 10K pounds.

  12. Space Capsule Recovery Orbit Determination System and Performance

    NASA Astrophysics Data System (ADS)

    Vighnesam, N. V.; Sonney, A.; Soni, P. K.

    2008-08-01

    Space Capsule Recovery (SRE), a small satellite, completely recoverable capsule was launched by the Polar Satellite Launch Vehicle (PSLV-C7) from the Indian spaceport Sriharikota on 10th January 2007 at 04:09UT along with Indian Remore Sensing Satellite CARTOSAT-2 and two micro satellites namely Nano- Peheunsat and Lapantubsat. The satellite was put into an almost nominal orbit of (630 X 638)km with an inclination of 97.94deg. The main objective of the SRE missions was to conduct microgravity experiment, de- orbit and recover it in Indian waters. The spacecraft was de-boosted after the payload operations in the micro- gravity environment. This was achieved in two steps. SRE was first placed from the injected circular orbit to Repetitive Elliptical Orbit (REO) and subsequently de- boosted for reentry and recovery. This paper describes the S-band based orbit determination system for SRE and its performance during different phases of the mission. Comparison of the inertial navigation system (INS) and nominal orbit with the achieved/estimated orbit was made. Orbit determination system was executed successfully through out the mission. Relatively large residues were observed in measurements during OD process due to continuous thruster activity through out the mission.

  13. Global Orbit Feedback System Upgrade At The Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Hu, Song; Payne, Chris; Chabot, Daron; Maxwell, Dylan; Dallin, Les

    2013-03-01

    The Canadian Light Source has been using a Matlab application called CLSORB to perform slow orbit correction in the storage ring. A fast global orbit feedback system is recently deployed to replace the old system. The correction rate is about 45 Hz and all the corrections are calculated and applied by an RTEMS IOC. This upgrade has resulted in increased beam stability and reduced perturbations caused by the ramping of superconducting wigglers. This paper will discuss the implementation and performance of the fast orbit correction system.

  14. A low earth orbit skyhook tether transportation system

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    1988-01-01

    This paper discusses the design concept of a structure, called the Skyhook Tether Transportation System (STTS) which may be used to transport mass to higher or lower orbits or to capture objects from higher or lower orbits. An analysis is presented for the possibility of the STTS to perform the function of transporting masses suborbitally, capturing the objects, and then releasing them to a higher orbit, the GEO, the moon, or for an escape. It is shown that, although the possibility of such a system is limited by the tether strength, even a modest system can yield considerable benefits in propellant savings if it is used in combination with chemical propulsion.

  15. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  16. Navigation and control considerations for space based orbital maneuvering systems

    NASA Technical Reports Server (NTRS)

    Brandon, L.

    1984-01-01

    Various design areas of concern in navigation and control of space-based orbital maneuvering systems such as those on the Orbiter are discussed, with note taken of approach maneuvers. Design problems occur in the areas of storage modes, sensing, activation methods, navigation, target/mission determination, rendezvous and docking schemes, reliability, and commonality between low- and high-energy maneuvering vehicles. Navigation may be in autonomous or nonautonomous modes and may include ground-baed computations and commands via the TDRSS or NORAD systems. Autonomous operations would interface with the GPS. All the concepts discussed are significant for the planned orbital transfer and orbital maneuvering vehicles, which would be used to place satellites in orbit and repair or retrieve them.

  17. Implementation of a low-cost, commercial orbit determination system

    NASA Technical Reports Server (NTRS)

    Corrigan, Jim

    1994-01-01

    Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.

  18. Implementation of a low-cost, commercial orbit determination system

    NASA Astrophysics Data System (ADS)

    Corrigan, Jim

    1994-11-01

    Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.

  19. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  20. Cosmic Background Explorer (COBE) transfer orbit attitude control system

    NASA Technical Reports Server (NTRS)

    Placanica, Samuel J.; Flatley, Thomas W.

    1986-01-01

    The Cosmic Background Explorer (COBE) spacecraft will be launched by the Shuttle from Vandenberg AFB into a 300 km altitude, 99 deg inclination, 6 a.m. or 6 p.m. ascending node orbit. After release from the Remote Manipulator System (RMS) arm, an on-board monopropellant hydrazine propulsion system will raise the orbit altitude to 900 km. The spacecraft continuously spins during transfer orbit operations with the spin axis nominally horizontal and in or near the orbit plane. The blowdown propulsion system consists of twelve 5 lb thrusters (3 'spin', 3 'despin', and 6 'axial') with the latter providing initially 30 lb of force parallel to the spin axis for orbit raising. The spin/despin jets provide a constant roll rate during the transfer orbit phase of the mission and the axials control pitch and yaw. The axial thrusters are pulsed on for attitude control during coast periods and are normally on- and off-modulated for control during orbit raising. Attitude sensors employed in the control loops include an array of two-axis digital sun sensors and three planar earth scanners for position measurements, as well as six gyroscopes for rate information. System redundancy is achieved by means of unique three-axes-in-a-plane geometry. This triaxial concept results in a fail-safe operational system with no performance degradation for many different component failure modes.

  1. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  2. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  3. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  4. Orbital stability constraints on the nature of planetary systems

    NASA Technical Reports Server (NTRS)

    Graziani, F.; Black, D. C.

    1981-01-01

    A fully self-consistent, N-body computer code is used to study conditions under which model planetary systems, each consisting of a star and two 'planetary' companions, become orbitally unstable as a result of gravitational interactions between the companions. A formula describing a necessary condition for orbital stability is given. It is found that giant gaseous protoplanets of the type postulated by Cameron (1978) to be precursors of the present-day solar system planets could have stable orbits for at least 10,000 years, the time required for significant core formation in a typical giant gaseous protoplanet.

  5. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  6. Orbital Granuloma Annulare as Presentation of Systemic Sarcoidosis

    PubMed Central

    Kang, Joann J.; Aakalu, Vinay K.; Lin, Amy; Setabutr, Pete

    2014-01-01

    Purpose: To report a unique case of an orbital mass with atypical histopathologic features that although overlap with other granulomatous disorders, likely represents orbital involvement of systemic sarcoidosis. Methods: Observational case report. Results: A 51-year-old woman presented with an orbital mass and was found to have mild proptosis and restriction of ocular motility. The remainder of her ophthalmic exam was unremarkable. Excisional biopsy revealed ill-defined granulomas with central necrosis, chronic inflammation and sclerotic collagen; several features consistent with granuloma annulare. Further systemic workup including laboratory and radiologic studies were compatible with a diagnosis of systemic sarcoidosis. Conclusion: Our case emphasizes the importance of a complete systemic workup with the detection of an orbital granuloma to ensure accurate diagnosis and appropriate management. PMID:23895369

  7. The National Polar-orbiting Operational Environmental Satellite System

    NASA Astrophysics Data System (ADS)

    Hoffman, C. W.; Mango, S.; Schneider, S.; Duda, J.; Haas, J.; Bloom, H.

    2005-12-01

    accurate measurements of sea surface temperature (SST), ocean surface wind vectors/stress, ocean color and suspended matter, sea ice (edge motion, age, surface temperature, thickness), oceanic heat flux, significant wave height, and sea surface topography. Infrared and microwave measurements of sea surface temperature from VIIRS and CMIS, respectively, will be combined to produce 'all weather' SST products. VIIRS imagery and altimeter measurements will be used to derive ocean circulation parameters to meet monitoring requirements for both operational and research purposes. The advanced technology visible, infrared, and microwave imagers and sounders that will fly on NPOESS will deliver higher spatial and temporal resolution oceanic, atmospheric, terrestrial, climatic, and solar-geophysical data, enabling more accurate short-term weather forecasts and severe storm warnings and improved real-time monitoring of coastal and open ocean phenomena. NPOESS will also provide continuity of critical data for monitoring, understanding, and predicting climate change and assessing the impacts of climate change on seasonal and longer time scales. The NPOESS team is well along the path to creating a high performance, polar-orbiting satellite system that will be more responsive to user requirements, deliver more capability at less cost, and provide sustained, space-based measurements as a cornerstone of an Integrated Global Observing System.

  8. Evaluation of the IMP-16 microprocessor orbit determination system filter

    NASA Technical Reports Server (NTRS)

    Shenitz, C. M.; Tasaki, K. K.

    1979-01-01

    The results of the numerical tests performed in evaluating the interplanetary monitoring platform-16 orbit determination system are presented. The system is capable of performing orbit determination from satellite to satellite tracking data in applications technology satellite range and range rate format. The estimation scheme used is a Kalman filter, sequential (recursive) estimator. Descriptions of the tests performed and tabulations of the numerical results are included.

  9. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  10. Spin–orbit coupling rule in bound fermion systems

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Mutschler, A.; Vretenar, D.

    2016-08-01

    Spin–orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc, and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin–orbit coupling on shell structure is large in nuclei, small in quarkonia and perturbative in atoms. In the standard non-relativistic reduction of the single-particle Dirac equation, we derive a universal rule for the relative magnitude of the spin–orbit effect that applies to very different quantum systems, regardless of whether the spin–orbit coupling originates from the strong or electromagnetic interaction. It is shown that in nuclei the near equality of the mass of the nucleon and the difference between the large repulsive and attractive potentials explain the fact that spin–orbit splittings are comparable to the energy spacing between major shells. For a specific ratio between the particle mass and the effective potential whose gradient determines the spin–orbit force, we predict the occurrence of giant spin–orbit energy splittings that dominate the single-particle excitation spectrum.

  11. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  12. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  13. Space flight experience with the Shuttle Orbiter control system

    NASA Technical Reports Server (NTRS)

    Cox, K. J.; Daly, K. C.; Hattis, P. D.

    1983-01-01

    Experience gained through the Shuttle Orbital Flight Test program has matured the engineering understanding of the Shuttle on-orbit control system. The geneology of the control systems (called digital autopilots, or DAPs, and used by the Shuttle for on-orbit operations) is reviewed, the flight experience gained during the flight test program is examined within the context of preflight analysis and test results, and issues for the operational phase of the Shuttle, including constraints upon both operations and analysis still required to increase confidence in the Shuttle's ability to handle capabilities not experienced during the flight test program are addressed. Two orbital autopilots have resulted from computer memory and time constraints on a flight control system, with many different, flight phase unique requirements. The transition DAP, used for insertion and deorbit, has more active sensors and redundancy but a less complex data processing scheme excluding state estimation with fewer choices of operational mode.

  14. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  15. Los Alamos energetic particle sensor systems at geostationary orbit

    SciTech Connect

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes.

  16. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  17. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  18. Satellite power system LEO vs GEO assembly issues. [construction in Low Earth Orbits vs GEosynchronous Orbits

    NASA Technical Reports Server (NTRS)

    Mockovciak, J., Jr.; Adornato, R. J.

    1977-01-01

    A strawman crystal-silicon 5-GW Satellite Power System (SPS) concept formed the basis of a study of construction concepts for building a complete SPS in low earth orbit (LEO) or geosynchronous orbit (GEO). Construction scenarios were evolved, including factory-in-space concepts and operations. Design implications imposed on the SPS satellite as a consequence of in-orbit assembly operations, and related attitude control requirements during assembly in LEO or GEO environments, were also evaluated. Results are presented indicating that complete assembly of an operational SPS in LEO, followed by transport to GEO, does not appear technically desirable. The best mix, however, of LEO versus GEO construction activity remains to be resolved.

  19. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  20. Orbital acrobatics in the Sun-Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.; Dunham, D. W.; Hsu, S. C.

    1986-01-01

    Unconventional trajectory techniques for space missions in the Sun-Earth-Moon system, including libration-point orbits, gravity-assist maneuvers, and Earth-return trajectories are reviewed. The ISEE-3/ICE flight experience is used to illustrate the utility of libration-point orbits called halo-orbits. Five lunar gravity-assist maneuvers used by the ISEE-3/ICE spacecraft are discussed. The final lunar swingby sent the spacecraft into a heliocentric trajectory that will eventually intercept Comet Giacobini-Zinner. As an example of the Earth-return trajectory concept, a proposed mission that includes flybys of three comets and two asteroids is described.

  1. Convergence Time towards Periodic Orbits in Discrete Dynamical Systems

    PubMed Central

    San Martín, Jesús; Porter, Mason A.

    2014-01-01

    We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice. PMID:24736594

  2. Convergence time towards periodic orbits in discrete dynamical systems.

    PubMed

    San Martín, Jesús; Porter, Mason A

    2014-01-01

    We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice. PMID:24736594

  3. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit

  4. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  5. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  6. Secular Orbital Dynamics of Hierarchical Two-planet Systems

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Ford, Eric B.

    2010-06-01

    The discovery of multi-planet extrasolar systems has kindled interest in using their orbital evolution as a probe of planet formation. Accurate descriptions of planetary orbits identify systems that could hide additional planets or be in a special dynamical state, and inform targeted follow-up observations. We combine published radial velocity data with Markov Chain Monte Carlo analyses in order to obtain an ensemble of masses, semimajor axes, eccentricities, and orbital angles for each of the five dynamically active multi-planet systems: HD 11964, HD 38529, HD 108874, HD 168443, and HD 190360. We dynamically evolve these systems using 52,000 long-term N-body integrations that sample the full range of possible line-of-sight and relative inclinations, and we report on the system stability, secular evolution, and the extent of the resonant interactions. We find that planetary orbits in hierarchical systems exhibit complex dynamics and can become highly eccentric and maybe significantly inclined. Additionally, we incorporate the effects of general relativity in the long-term simulations and demonstrate that it can qualitatively affect the dynamics of some systems with high relative inclinations. The simulations quantify the likelihood of different dynamical regimes for each system and highlight the dangers of restricting simulation phase space to a single set of initial conditions or coplanar orbits.

  7. Spacecraft Attitude and Orbit Control Systems testing

    NASA Astrophysics Data System (ADS)

    Sonnenschein, F. J.; Schoomade, M.; Zwartbol, T.

    1995-03-01

    Contemporary AOCS are equipped with local Attitude Control Computers which provide sophisticated Attitude and Orbit Control functions, automatic Failure Detection and Isolation functions and extensive Telemetry and Telecommand handling functions. Generic models of the design, development and test life cycle approaches for such intelligent AOCS are emerging. Also knowledge of the activities to be performed and the generic design, development and test environments to be used during the different phases is accumulating. Lessons learned can be used to improve AOCS development life cycle approaches and to define new development and test environments which improve the efficiency of the design, development and test life cycle and quality of the product. The SAX (Satellite per Astronomia a raggi X) satellite is equipped with a contemporary AOCS providing the above mentioned functions. In this paper the SAX AOCS software design, development and test life cycle is described as an example of AOCS software development. Lessons learned and suggestions for possible improvements are given.

  8. "Planetary Orbit" Systems Composed of Cycloparaphenylenes.

    PubMed

    Bachrach, Steven M; Zayat, Zeina-Christina

    2016-06-01

    Cycloparaphenylenes (CPP) can serve as both guest and host in a complex. Geometric analysis indicates that optimal binding occurs when the CPP nanohoops differ by five phenyl rings. Employing C-PCM(THF)/ωB97X-D/6-31G(d) computations, we find that the strongest binding does occur when the host and guest differ by five phenyl rings. The guest CPP is modestly inclined relative to the plane of the host CPP except when the host and guest differ by four phenyl rings, when the inclination angle becomes >40°. The distortion/interaction model shows that interaction dominates and is best when the host and guest differ by five phenyl rings. The computed (1)H NMR shifts of the guest CPP are shifted by about 1 ppm upfield relative to their position when unbound. This distinct chemical shift should aid in experimental detection of these CPP planetary orbit complexes. PMID:27163409

  9. Study of Thermal Control Systems for orbiting power systems

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1981-01-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  10. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  11. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  12. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system

    NASA Astrophysics Data System (ADS)

    Goldberg, Mitchell D.; Kilcoyne, Heather; Cikanek, Harry; Mehta, Ajay

    2013-12-01

    next generation polar-orbiting environmental satellite system, designated as the Joint Polar Satellite System (JPSS), was proposed in February 2010, as part of the President's Fiscal Year 2011 budget request, to be the Civilian successor to the restructured National Polar-Orbiting Operational Environmental Satellite System (NPOESS). Beginning 1 October 2013, the JPSS baseline consists of a suite of five instruments: advanced microwave and infrared sounders critical for short- and medium-range weather forecasting; an advanced visible and infrared imager needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; ozone sensor primarily used for global monitoring of ozone and input to weather and climate models; and an Earth radiation budget sensor for monitoring the Earth's energy budget. NASA will fund the Earth radiation budget sensor and the ozone limb sensor for the second JPSS operational satellite--JPSS-2. JPSS is implemented through a partnership between NOAA and the U.S. National Aeronautics and Space Administration (NASA). NOAA is responsible for overall funding; maintaining the high-level requirements; establishing international and interagency partnerships; developing the science and algorithms, and user engagement; NOAA also provides product data distribution and archiving of JPSS data. NASA's role is to serve as acquisition Center of Excellence, providing acquisition of instruments, spacecraft and the multimission ground system, and early mission implementation through turnover to NOAA for operations.

  13. Advances in Energy Management Systems

    SciTech Connect

    Horton, J.S.; Prince, B.; Sasson, A.M.; Wynne, W.T.; Trefny, F.; Cleveland, F.

    1986-08-01

    This paper is one of the series prepared for a special session to be held at PICA 85. The objective is to review the advances that have been made in Energy Management Systems and to obtain a more common agreement as to the usefulness and future of such systems. The paper contains a summary of five discussions of Energy Management Systems. These discussions focus on the major components of an Energy Management System and address important questions as to the usefulness, past developments, the current state-of-the-art, and needs in Energy Management Systems. Each author provides a different perspective of these systems. The discussions are intended to provide insight into Energy Management Systems, to solicit discussions, and to provide a forum for discussions of Energy Management System's developments and future needs.

  14. Orbital docking system centerline color television camera system test

    NASA Technical Reports Server (NTRS)

    Mongan, Philip T.

    1993-01-01

    A series of tests was run to verify that the design of the centerline color television camera (CTVC) system is adequate optically for the STS-71 Space Shuttle Orbiter docking mission with the Mir space station. In each test, a mockup of the Mir consisting of hatch, docking mechanism, and docking target was positioned above the Johnson Space Center's full fuselage trainer, which simulated the Orbiter with a mockup of the external airlock and docking adapter. Test subjects viewed the docking target through the CTVC under 30 different lighting conditions and evaluated target resolution, field of view, light levels, light placement, and methods of target alignment. Test results indicate that the proposed design will provide adequate visibility through the centerline camera for a successful docking, even with a reasonable number of light failures. It is recommended that the flight deck crew have individual switching capability for docking lights to provide maximum shadow management and that centerline lights be retained to deal with light failures and user preferences. Procedures for light management should be developed and target alignment aids should be selected during simulated docking runs.

  15. Canadian Advanced Nanospace Experiment 2 Orbit Operations: Two Years of Pushing the Nanosatellite Performance Envelope

    NASA Astrophysics Data System (ADS)

    Sarda, Karan

    The objective of the Canadian Advanced Nanospace eXperiment (CanX) program is to de-velop highly capable nanospacecraft, i.e. spacecraft under 10 kilograms, in short timeframes of 2-3 years. CanX missions offer low-cost and rapid access to space for scientists, technol-ogy developers and operationally-responsive missions. The Space Flight Laboratory (SFL), at the University of Toronto Institute for Aerospace Studies (UTIAS) has developed the CanX-2 nanosatellite that launched in April 2008. CanX-2, a 3.5-kg, 10 x 10 x 34 cm satellite, features a collection of scientific and engineering payloads that push the envelope of capability for this class of spacecraft. The primary mission of CanX-2 is to perform a number of university exper-iments. These experiments include a miniature atmospheric spectrometer designed to detect greenhouse gas concentrations, a GPS signal occultation experiment designed to map electron and water vapour concentrations in the ionosphere and troposphere respectively, and a materi-als science experiment which evaluates a novel atomic oxygen resistant coating. The secondary mission of CanX-2 is to test and demonstrate several enabling technologies for precise formation flight. These technologies include a custom cold-gas propulsion system, a nanosatellite reac-tion wheel as part of a three-axis stabilized attitude control subsystem, and a GPS receiver. After two successful years in orbit, the nanosatellite has met or exceeded all mission objectives and continues to demonstrate the cost-effective capabilities of this class of spacecraft. Key achievements to date include a characterization of the propulsion system, a full demonstration of the attitude determination and control subsystem including capabilities in accurate pay-load pointing, unprecedented radio performance for an operational nanosatellite, and hundreds of successful science operations. The mission, the engineering and scientific payloads, and a discussion of notable orbit

  16. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  17. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  18. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  19. Results from commissioning the AGS Booster orbit system

    SciTech Connect

    Bleser, E.

    1993-06-01

    This note reports results from the commissioning of three systems in the AGS Booster. The beam position monitor system, which works to a relative accuracy of 0.36 millimeters; the uncorrected Booster orbit, which has quite large excursions; and the passive eddy current correction system, which eliminates all but a few percent of the eddy current dipole effect.

  20. Gas fired Advanced Turbine System

    SciTech Connect

    LeCren, R.T.; White, D.J.

    1993-01-01

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  1. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  2. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  3. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  4. Orbits in the T Tauri triple system observed with SPHERE

    NASA Astrophysics Data System (ADS)

    Köhler, R.; Kasper, M.; Herbst, T. M.; Ratzka, T.; Bertrang, G. H.-M.

    2016-03-01

    Aims: We present new astrometric measurements of the components in the T Tauri system and derive new orbits and masses. Methods: T Tauri was observed during the science verification time of the new extreme adaptive optics facility SPHERE at the VLT. We combine the new positions with recalibrated NACO-measurements and data from the literature. Model fits for the orbits of T Tau Sa and Sb around each other and around T Tau N yield orbital elements and individual masses of the stars Sa and Sb. Results: Our new orbit for T Tau Sa/Sb is in good agreement with other recent results, which indicates that enough of the orbit has been observed for a reliable fit. The total mass of T Tau S is 2.65 ± 0.11 M⊙. The mass ratio MSb:MSa is 0.25 ± 0.03, which yields individual masses of MSa = 2.12 ± 0.10 M⊙ and MSb = 0.53 ± 0.06 M⊙. If our current knowledge of the orbital motions is used to compute the position of the southern radio source in the T Tauri system, then we find no evidence of the proposed dramatic change in its path. Based on observations collected at the European Southern Observatory, Chile, proposals number 070.C-0162, 072.C-0593, 074.C-0699, 074.C-0396, 078.C-0386, 380.C-0179, 382.C-0324, 60.A-9363 and 60.A-9364.

  5. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  6. Aging effects of US space nuclear systems in orbit

    SciTech Connect

    Bartram, B.W.; Huang, R.; Tammara, S.R.; Thielke, N.R.

    1982-05-14

    This report presents information and data in support of a cost-benefit analysis being performed by Fair child Industries (FI) on the feasibility of retrieving existing US space nuclear systems in earth orbit by the Space Shuttle. This report evaluates, for US space nuclear systems presently in orbit, the radioisotopic inventory and external radiation field as a function of time, the effect of aging on fuel containment materials over the projected lifetime of the system, and the possible radioactive source terms should reentry eventually occur. Although the radioisotopic inventories and radiation fields have been evaluated for all systems, Transit 4A and Transit Triad have been emphasized in the evaluation of the aging effects and reentry consequences because these spacecraft have the shortest projected orbital lifetimes (570 and 150 years, respectively). In addition to existing systems in orbit, the radioisotopic inventory, radiation field, and reentry source terms have been evaluated for a General Purpose Heat Source (GPHS) in a parking orbit due to an aborted Galileo Mission or International Solar Polar Mission (ISPM).

  7. Plasma motor generator tether system for orbit reboost

    NASA Technical Reports Server (NTRS)

    Hulkower, Neal D.; Rusch, Roger J.

    1988-01-01

    This paper describes a comprehensive study of an electrodynamic tether used as a Plasma Motor Generator (PMG). The paper summarizes the work performed in the study and includes: (1) a detailed design of a 2 kW PMG tether system to be used for orbit reboost, (2) the selection of the Orbiting Maneuvering Vehicle (OMV) and the European Retrievable Carrier (EURECA) as the primary candidate spacecraft to host the experimental system, (3) analysis of the integration of the PMG tether system with these two spacecraft, (4) the simulation of the deployment of the tether, and (5) an engineering design and development plan leading to a flight demonstration of this PMG tether.

  8. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Frederick, P. N.; Shields, N. L., Jr.; Kirkpatrick, M., III

    1977-01-01

    Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined.

  9. Independent Orbiter Assessment (IOA): Assessment of the orbital maneuvering system FMEA/CIL, volume 1

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Haufler, W. A.; Marino, A. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbital Maneuvering System (OMS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter OMS hardware. The IOA analysis defined the OMS as being comprised of the following subsystems: helium pressurization, propellant storage and distribution, Orbital Maneuvering Engine, and EPD and C. The IOA product for the OMS analysis consisted of 284 hardware and 667 EPD and C failure mode worksheets that resulted in 160 hardware and 216 EPD and C potential critical items (PCIs) being identified. A comparison was made of the IOA product to the NASA FMEA/CIL baseline which consisted of 101 hardware and 142 EPD and C CIL items.

  10. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    NASA Astrophysics Data System (ADS)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  11. Orbital Stability of Spacecraft Exploring Multiple Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Burns, Keaton; Marchis, F.; Bellerose, J.

    2011-05-01

    Space missions to study the composition and formation histories of multiple asteroid systems require the identification of safe orbits for the observing spacecraft. To identify regions of orbital stability, we developed an n-body simulation and Monte Carlo scheme to test a large selection of orbits around the components of multiple asteroid systems. Our n-body program integrates the equations of motion of the spacecraft, asteroid system components, and the sun for 20 days, taking into account solar radiation pressure on the spacecraft and modeling asteroids as systems of rigid points when their shape model is known. We utilized a Monte Carlo scheme to test the stability of polar and retrograde orbits from uniformly distributed starting positions with normally distributed tangential velocities around each component. We present preliminary results of simulations testing hundreds of thousands of polar and retrograde orbits around the components of the 2001 SN263 near-earth triple asteroid system, and the (90) Antiope doublet and (45) Eugenia triple systems in the main-belt. These systems are potential targets for several space mission concepts, including: the Amor mission to visit and land on the components of 2001 SN263, Jones et al. (LPSC 42, #2695, 2011), the Diversity mission to explore several asteroid systems including (45) Eugenia and (90) Antiope, Marchis et al. (LPSC 42, #2062, 2011), and the ASTER mission to visit a NEA multiple asteroid, Sukhanov et al. (Cosmic Research 48-5, p. 443-450, 2010). Analysis of stable regions in position and velocity may assist in planning scientific orbits and instrumental specifications for such missions.

  12. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  13. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  14. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  15. On-Orbit Asset Management System, September 1995. Final report

    SciTech Connect

    1995-10-10

    Declining budgets have prompted the need to decrease launch cost, increase satellite lifetime, and accomplish more with each satellite. This study evaluates an OOAMS system for its ability to lengthen lifetime of on-orbit assets, decrease the number of satellites required to perform a mission, increase responsiveness, and provide increased mission capability/tactical advantage. Lifetime analysis suggest that the larger satellite systems (NASA and military communication systems, surveillance satellites and earth observing satellites) would benefit most from a nuclear bimodal OOAMS. Evaluation of satellite constellations indicate that a modest reduction in the number of satellites could be realized using OOAMS if the thermal restart capability was at least ten. An OOAMS could improve the responsiveness (launching of new assets) using on-orbit reconstitution of assets. A top level utility assessment was done to address system cost issues relating to funding profiles, first unit cost, and break-even analysis. From mission capture and orbital lifetime criteria, the recommended minimum orbital altitude is 900 km. The on-orbit thermal restart capability should be increased from five to ten. Analysis of total impulse vs propellant consumed for selected missions suggests that total impulse be increased from 40 million to 48 million Newton-seconds.

  16. Orbital dynamics of multi-planet systems with eccentricity diversity

    SciTech Connect

    Kane, Stephen R.; Raymond, Sean N.

    2014-04-01

    Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals. We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.

  17. ROGER a potential orbital space debris removal system

    NASA Astrophysics Data System (ADS)

    Starke, Juergen; Bischof, Bernd; Foth, W.-O.; -J., J.; Günther

    The previous activities in the field of On Orbit Servicing studied in the 1990's included in partic-ular the capability of vehicles in GEO to capture and support satellites (mainly communication satellites) to enable repair and continuation of operations, and finally the controlled transfer the target into a permanent graveyard orbit. The specific capture tools for these applications were mostly based on robotic systems to capture and fix the target under specific dynamic constraints (e.g. slowly tumbling target) without damage, and to allow the stabilization, re-orientation and potential repair of the target and subsequent release or transport to the final disposal orbit. Due to the drastically increasing number of debris particularly in the Low Earth Orbits (SSO) the active debris removal is now necessary to counteract to the predicted debris production cascade (Kessler Syndrome), which means the pollution of the total sphere in low earth orbit and not only the SSO area. In most of the debris congresses it was recommended to start removal with the still integrated systems as soon as possible. In the case of large debris objects, the soft capture system can be replaced by a simpler and robust system able to operate from a safe distance to the target and flexible enough to capture and hold different types of targets such as deactivated and/or defective satellites, upper stages and big fragments. These nominally non -cooperative targets might be partially destroyed by the capture process, but the production of additional debris shall be avoided. A major argument for the commercial applications is a multi-target mission potential, which is possible at GEO because the transfer propellant requirement to the disposal orbit and the return to the orbit of the next potential target is relative low (orbits with similar inclination and altitude). The proposed ROGER system is designed as a spacecraft with rendezvous capabilities including inspection in the vicinity of the

  18. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  19. Be discs in binary systems - I. Coplanar orbits

    NASA Astrophysics Data System (ADS)

    Panoglou, Despina; Carciofi, Alex C.; Vieira, Rodrigo G.; Cyr, Isabelle H.; Jones, Carol E.; Okazaki, Atsuo T.; Rivinius, Thomas

    2016-09-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar binaries. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two limiting cases with respect to the effects of eccentricity: in circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc structure appears smaller in size, more elongated and more massive for small viscosity parameter, small orbital separation and/or high mass ratio. In highly eccentric orbits, the effects are more complex, with the disc structure strongly dependent on the orbital phase. We also studied the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.

  20. Orbital Stability of High Mass Planetary Systems

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah J.; Kratter, Kaitlin M.

    2016-05-01

    In light of the observation of systems like HR 8799 that contain several planets with planet-star mass ratios larger than Jupiter's, we explore the relationships between planet separation, mass, and stability timescale for high mass multi-planet systems detectable via direct imaging. We discuss the role of overlap between 1st and sometimes 2nd order mean motion resonances, and show how trends in stability time vary from previous studies of lower mass multi-planet systems. We show that extrapolating empirically derived relationships between planet mass, separation, and stability timescale derived from lower mass planetary systems misestimate the stability timescales for higher mass planetary systems by more than an order of magnitude at separations near the Hill stability limit. We also address what metrics of planet separation are most useful for estimating a system's dynamical stability. We apply these results to young, gapped, debris disk systems of the ScoCen association in order to place limits on the maximum mass and number of planets that could persist for the lifetimes of the disks. These efforts will provide useful constraints for on-going direct imaging surveys. By setting upper limits on the most easily detectable systems, we can better interpret both new discoveries and non-dectections.

  1. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder

    NASA Astrophysics Data System (ADS)

    Weng, Fuzhong; Zou, Xiaolei; Sun, Ninghai; Yang, Hu; Tian, Miao; Blackwell, William J.; Wang, Xiang; Lin, Lin; Anderson, Kent

    2013-10-01

    The Suomi National Polar-Orbiting Partnership (NPP) satellite was launched on 28 October 2011 and carries the Advanced Technology Microwave Sounder (ATMS) on board. ATMS is a cross-track scanning instrument observing in 22 channels at frequencies ranging from 23 to 183 GHz, permitting the measurements of the atmospheric temperature and moisture under most weather conditions. In this study, the ATMS radiometric calibration algorithm used in the operational system is first evaluated through independent analyses of prelaunch thermal vacuum data. It is found that the ATMS peak nonlinearity for all the channels is less than 0.5 K, which is well within the specification. For the characterization of the ATMS instrument sensitivity or noise equivalent differential temperatures (NEDT), both standard deviation and Allan variance of warm counts are computed and compared. It is shown that NEDT derived from the standard deviation is about three to five times larger than that from the Allan variance. The difference results from a nonstationary component in the standard deviation of warm counts. The Allan variance is better suited than the standard deviation for describing NEDT. In the ATMS sensor brightness temperature data record (SDR) processing algorithm, the antenna gain efficiencies of main beam, cross-polarization beam, and side lobes must be derived accurately from the antenna gain distribution function. However, uncertainties remain in computing the efficiencies at ATMS high frequencies. Thus, ATMS antenna brightness temperature data records (TDR) at channels 1 to 15 are converted to SDR with the actual beam efficiencies whereas those for channels 16 to 22 are only corrected for the near-field sidelobe contributions. The biases of ATMS SDR measurements to the simulations are consistent between GPS RO and NWP data and are generally less than 0.5 K for those temperature-sounding channels where both the forward model and input atmospheric profiles are reliable.

  2. The joint DOD/NASA Advanced Launch System (ALS) programme

    NASA Astrophysics Data System (ADS)

    Wolfe, M. G.

    1989-08-01

    The joint Department of Defense (DOD)/NASA Advanced Launch Systems (ALS) program is described. The ALS is cost rather than performance optimized. It will use advanced technology and innovative management and design approaches to achieve a congressionally mandated cost goal of $300 per pound to low-earth orbit by the year 2005. The space system acquisition approach is described. The influence of acquisition and technological innovations on other U.S. space transportation, programs such as commercial programs and the National Aero-Space Plane, is discussed. Diagrams of possible launch configurations are presented.

  3. Orbital dynamics in the planar Saturn-Titan system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2015-07-01

    We use the planar circular restricted three-body problem in order to numerically investigate the orbital dynamics of orbits of a spacecraft, or a comet, or an asteroid in the Saturn-Titan system in a scattering region around the Titan. The orbits can escape through the necks around the Lagrangian points L 1 and L 2 or collide with the surface of the Titan. We explore all the four possible Hill's regions depending on the value of the Jacobi constant. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits and distinguishing between three types of motion: (i) bounded, (ii) escaping and (iii) collisional. In particular, we locate the different basins and we relate them with the corresponding spatial distributions of the escape and crash times. Our results reveal the high complexity of this planetary system. Furthermore, the numerical analysis shows a strong dependence of the properties of the considered basins with the total orbital energy, with a remarkable presence of fractal basin boundaries along all the regimes. We hope our contribution to be useful in both space mission design and study of planetary systems.

  4. Orbit classification in the planar circular Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2015-11-01

    We numerically investigate the orbital dynamics of a spacecraft, or a comet, or an asteroid in the Pluto-Charon system in a scattering region around Charon using the planar circular restricted three-body problem. The test particle can move in bounded orbits around Charon or escape through the necks around the Lagrangian points L1 and L2 or even collide with the surface of Charon. We explore four of the five possible Hill's regions configurations depending on the value of the Jacobi constant which is of course related with the total orbital energy. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits and distinguishing between three types of motion: (i) bounded, (ii) escaping and (iii) collisional. In particular, we locate the different basins and we relate them with the corresponding spatial distributions of the escape and collision times. Our results reveal the high complexity of this planetary system. Furthermore, the numerical analysis shows a strong dependence of the properties of the considered basins with the total orbital energy, with a remarkable presence of fractal basin boundaries along all the regimes. Our results are compared with earlier ones regarding the Saturn-Titan planetary system.

  5. Estimates Of The Orbiter RSI Thermal Protection System Thermal Reliability

    NASA Technical Reports Server (NTRS)

    Kolodziej, P.; Rasky, D. J.

    2002-01-01

    In support of the Space Shuttle Orbiter post-flight inspection, structure temperatures are recorded at selected positions on the windward, leeward, starboard and port surfaces. Statistical analysis of this flight data and a non-dimensional load interference (NDLI) method are used to estimate the thermal reliability at positions were reusable surface insulation (RSI) is installed. In this analysis, structure temperatures that exceed the design limit define the critical failure mode. At thirty-three positions the RSI thermal reliability is greater than 0.999999 for the missions studied. This is not the overall system level reliability of the thermal protection system installed on an Orbiter. The results from two Orbiters, OV-102 and OV-105, are in good agreement. The original RSI designs on the OV-102 Orbital Maneuvering System pods, which had low reliability, were significantly improved on OV-105. The NDLI method was also used to estimate thermal reliability from an assessment of TPS uncertainties that was completed shortly before the first Orbiter flight. Results fiom the flight data analysis and the pre-flight assessment agree at several positions near each other. The NDLI method is also effective for optimizing RSI designs to provide uniform thermal reliability on the acreage surface of reusable launch vehicles.

  6. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  7. Semiclassical Landau quantization of spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Li, Tommy; Horovitz, Baruch; Sushkov, Oleg P.

    2016-06-01

    A semiclassical quantization condition is derived for Landau levels in general spin-orbit coupled systems. This generalizes the Onsager quantization condition via a matrix-valued phase which describes spin dynamics along the classical cyclotron trajectory. We discuss measurement of the matrix phase via magnetic oscillations and electron spin resonance, which may be used to probe the spin structure of the precessing wave function. We compare the resulting semiclassical spectrum with exact results which are obtained for a variety of spin-orbit interactions in two-dimensional systems.

  8. Chaotic Orbits for Systems of Nonlocal Equations

    NASA Astrophysics Data System (ADS)

    Dipierro, Serena; Patrizi, Stefania; Valdinoci, Enrico

    2016-07-01

    We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.

  9. Parametric analysis of performance and design characteristics for advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.; Strack, W. C.; Padrutt, J. A.

    1972-01-01

    Performance, trajectory, and design characteristics are presented for (1) a single-stage shuttle with a single advanced rocket engine, (2) a single-stage shuttle with an initial parallel chemical engine and advanced engine burn followed by an advanced engine sustainer burn, (3) a single-stage shuttle with an initial chemical engine burn followed by an advanced engine burn, and (4) a two-stage shuttle with a chemical propulsion booster stage and an advanced propulsion upper stage. The ascent trajectory profile includes a brief initial vertical rise; zero-lift flight through the sensible atmosphere; variational steering into an 83-kilometer by 185-kilometer intermediate orbit; and a fixed, 460-meter per second allowance for subsequent maneuvers. Results are given in terms of burnout mass fractions (including structure and payload), trajectory profiles, propellant loadings, and burn times. These results are generated with a trajectory analysis that includes a parametric variation of the specific impulse from 800 to 3000 seconds and the specific engine weight from 0 to 1.0.

  10. Orbital evolution of eccentric interacting binary star systems

    NASA Astrophysics Data System (ADS)

    Sepinsky, Jeremy Francis

    2009-06-01

    We provide a comprehensive description of the long-term (secular) orbital evolution of eccentric interacting binary systems. The evolution of circular interacting binary systems is a well studied phenomenon, but observations have shown the existence of a small but significant number of eccentric interacting binary systems. We begin by extending the commonly accepted Roche formalism for binary interacting to include eccentric orbits and asynchronously rotating stars. Using this, we calculate orbital trajectories for particles ejected from a Roche lobe-filling donor star at the periastron of the eccentric orbit. These particles admit of three possible trajectories: direct impact onto the secondary star, self accretion back onto the donor star, and the formation of a disk about the accretor. We provide a proscription for determining a priorithe trajectory of the particle given the initial system parameters, as well as describe the secular evolution of the system for each of the three cases described above. We find that these orbital evolution timescales are comparable to the mass transfer timescale which can be significantly longer than expected from the literature. Furthermore, while it is commonly assumed that any mass transfer interactions will act to circularize the orbit, we find that there are regimes of parameter space where mass transfer can cause an increase in eccentricity, and can do so at a timescale comparable to the circularization timescale created by tidal interactions. The formalism presented here can be incorporated into binary evolution and population synthesis models to create a self-consistent treatment of mass transfer in eccentric binaries.

  11. Independent Orbiter Assessment (IOA): Analysis of the orbiter main propulsion system

    NASA Technical Reports Server (NTRS)

    Mcnicoll, W. J.; Mcneely, M.; Holden, K. A.; Emmons, T. E.; Lowery, H. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Main Propulsion System (MPS) hardware are documented. The Orbiter MPS consists of two subsystems: the Propellant Management Subsystem (PMS) and the Helium Subsystem. The PMS is a system of manifolds, distribution lines and valves by which the liquid propellants pass from the External Tank (ET) to the Space Shuttle Main Engines (SSMEs) and gaseous propellants pass from the SSMEs to the ET. The Helium Subsystem consists of a series of helium supply tanks and their associated regulators, check valves, distribution lines, and control valves. The Helium Subsystem supplies helium that is used within the SSMEs for inflight purges and provides pressure for actuation of SSME valves during emergency pneumatic shutdowns. The balance of the helium is used to provide pressure to operate the pneumatically actuated valves within the PMS. Each component was evaluated and analyzed for possible failure modes and effects. Criticalities were assigned based on the worst possible effect of each failure mode. Of the 690 failure modes analyzed, 349 were determined to be PCIs.

  12. Challenges in the development of the orbiter radiator system

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Oren, J. A.; Modest, M. F.; Howell, H. R.

    1985-01-01

    Major technical challenges which were met in the design and development of the Space Shuttle Orbiter Radiator System are discussed. This system rejects up to 30 kW of waste heat from eight individual radiators having a combined surface area of 175 sq m. The radiators, which are deployable, are mounted on the inside of the payload bay doors for protection from aerodynamic heating during ascent and re-entry. While in orbit the payload bay doors are opened to expose the radiators for operation. An R21 coolant loop accumulates waste heat from various components in the Orbiter and delivers the heat to the radiators for rejection to space. Specific challenges included high acoustically induced loads during lift-off, severe radiating area constraints, demanding heat load control requirements, and long life goals. Details of major design and analysis efforts are discussed. The success of the developed hardware in satisfying mission objectives showed how well the design challenge was met.

  13. Hierarchical spin-orbital polarization of a giant Rashba system

    PubMed Central

    Bawden, Lewis; Riley, Jonathan M.; Kim, Choong H.; Sankar, Raman; Monkman, Eric J.; Shai, Daniel E.; Wei, Haofei I.; Lochocki, Edward B.; Wells, Justin W.; Meevasana, Worawat; Kim, Timur K.; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J.; Shen, Kyle M.; Chou, Fangcheng; King, Phil D. C.

    2015-01-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector. PMID:26601268

  14. Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This high angle overall view shows the top side components of the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.

  15. Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This overall front view shows the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.

  16. Advanced Extravehicular Protective System (AEPS) study

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Webbon, B. W.; Copeland, R. J.

    1972-01-01

    A summary is presented of Advanced Extravehicular Protective Systems (AEPS) for the future missions beyond Skylab in earth orbit, on the lunar surface, and on the Martian surface. The study concentrated on the origination of regenerable life support concepts for use in portable extravehicular protective systems, and included evaluation and comparison with expendable systems, and selection of life support subsystems. The study was conducted in two phases. In the first phase, subsystem concepts for performing life support functions in AEPS which are regenerable or partially regenerable were originated, and in addition, expendable subsystems were considered. Parametric data for each subsystem concept were evolved including subsystem weight and volume, power requirement, thermal control requirement; base regeneration equipment weight and volume, requirement. The second phase involved an evaluation of the impact of safety considerations involving redundant and/or backup systems on the selection of the regenerable life support subsystems. In addition, the impact of the space shuttle program on regenerable life support subsystem development was investigated.

  17. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Brye, R. G.; Frederick, P. N.; Kirkpatrick, M., III; Shields, N. L., Jr.

    1977-01-01

    The operator's ability to perform five manipulator tip movements while using monoptic and stereoptic video systems was assessed. Test data obtained were compared with previous results to determine the impact of camera placement and stereoptic viewing on manipulator system performance. The tests were performed using the NASA MSFC extendible stiff arm Manipulator and an analog joystick controller. Two basic manipulator tasks were utilized. The minimum position change test required the operator to move the manipulator arm to touch a target contract. The dexterity test required removal and replacement of pegs.

  18. Space shuttle orbiter mechanical refrigeration system

    NASA Technical Reports Server (NTRS)

    Williams, J. L.

    1974-01-01

    A radiator/condenser was designed which is efficient in both condensation (refrigeration) and liquid phase (radiator) operating modes, including switchover from the refrigeration mode to the radiator mode and vice versa. A method for predicting the pressure drop of a condensing two-phase flow in zero-gravity was developed along with a method for predicting the flow regime which would prevail along the condensation path. The hybrid refrigeration system was assembled with the two radiator/condenser panels installed in a space environment simulator. The system was tested under both atmospheric and vacuum conditions. Results of the tests are presented.

  19. Efficient computational approaches to obtain periodic orbits in Hamiltonian systems: application to the motion of a lunar orbiter

    NASA Astrophysics Data System (ADS)

    Dena, Ángeles; Abad, Alberto; Barrio, Roberto

    2016-01-01

    In this paper, we study the problem of computing periodic orbits of Hamiltonian systems providing large families of such orbits. Periodic orbits constitute one of the most important invariants of a system, and this paper provides a comprehensive analysis of two efficient computational approaches for Hamiltonian systems. First, a new version of the grid search method, applied to problems with three degrees of freedom, has been considered to find, systematically, symmetric periodic orbits. To obtain non-symmetric periodic orbits, we use a modification of an optimization method based on an evolutionary strategy. Both methods require a great computational effort to find a big number of periodic orbits, and we apply parallelization tools to reduce the CPU time. Finally, we present a strategy to provide initial conditions of the periodic orbits with arbitrary precision. We apply all these algorithms to the problem of the motion of the lunar orbiter referred to the rotating reference frame of the Moon. The periodic orbits of this problem are very useful from the space engineering point of view because they provide low-cost orbits.

  20. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  1. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  2. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  3. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  4. A consistent orbital stability analysis for the GJ 581 system

    SciTech Connect

    Joiner, David A.; Sul, Cesar; Kress, Monika E.; Dragomir, Diana; Kane, Stephen R.

    2014-06-20

    We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced χ{sup 2} values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.

  5. A role for AVIRIS in the Landsat and Advanced Land Remote Sensing Systems program

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Simmonds, John J.

    1993-01-01

    As a calibrated imaging spectrometer flying at a 20 km altitude, AVIRIS may contribute to the Landsat and the Advanced Land Remote Sensing System efforts. These contributions come in the areas of: (1) on-orbit calibration, (2) specification of new spectral bands, (3) validation of algorithms, and (4) investigation of an imaging spectrometer of the Advanced Land Remote Sensing System.

  6. System-level requirements for an operational solar electric orbital transfer vehicle

    SciTech Connect

    Miller, T.M.; Seaworth, G.B.; Cady, E.C.; Bell, R.S.

    1994-06-01

    The concept of using a solar electric orbital transfer vehicle (SEOTV) propulsion systems as a replacement for chemical propulsion systems has been examined on the merits of performance enhancement, economic benefit, and operability. This paper summarizes the system-level requirements for an operational SEOTV that were generated over the course of the study. The requirements provided are the result of detailed system-level trades covering complete vehicle performance, costs, and operational characteristics. Top-level requirements are defined for the SEOTV system and each of the major subsystems. Major operational requirements are also given. Results indicate that advanced, low-cost solar arrays will be required to provide the necessary economic pay-offs as will highly efficient hydrogen arcjet thruster systems. An advanced technology cryogenic propellant storage system will also be required for maximum payload capability. 20 refs.

  7. ANODE: An analytic orbit determination system, volume 1

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Seniw, W. P.

    1980-06-01

    The computer system at the Millstone Hill radar was upgraded in August, 1977, with the acquisition of a Harris 7/220 system. The new computer is a virtual memory multitasking system capable of supporting up to 768 K bytes of user program simultaneously. A software system design was made for the radar system with the new computer. One of the components of the system is an on-line real time analytic orbit determination program. The purpose of the program is threefold: (1) it is intended to act as a real-time monitor on the tracking performance of the radar; (2) it is designed to function as a rapid orbit estimator available interactively to analyst.

  8. Propulsion system requirements for reusable single-stage-to-orbit rocket vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1992-01-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  9. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  10. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  11. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    SciTech Connect

    Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  12. Upgrading the free flying rendezvous and docking simulator and the orbital servicer system

    NASA Technical Reports Server (NTRS)

    Eastman, R. M.

    1980-01-01

    Recommendations are made for upgrading two teleoperator/robotics test and simulation systems based upon a review of latest technology advances in the involved disciplines. A second generation Free Flying Mobility Unit is recommended which adds a sixth degree of freedom and incorporates other improvements which greatly expand the center's capability to perform evaluation tests and demonstrations of advanced systems concepts for rendezvous and docking in support of the Teleoperator Maneuvering System (TMS) Program. The Orbital Servicer System provides the capability for testing and demonstrating concepts for on orbit servicing of compatibly designed satellites/payloads. The TMS is to be the transporting vehicle for the servicer. The manipulator arm of the Orbital service System is presently computer controlled in the trajectory portion of the module transfer operation. The ultimate objective is to fully automte its operation requiring additional capabilities in sensors, artificial intelligence, image analysis, communications, computer programming, pattern recognition, kinematics, and manipulator design. It is recommended that the Electronics and Control Laboratory move to acquire the basic competencies in robotics necessary to achieve full automation.

  13. Commercial free flyer satellites and orbital re-entry/recovery systems for low cost microgravity research

    NASA Astrophysics Data System (ADS)

    Cassanto, John M.; Hobbs, Robert B.; Bem, Michael B.

    2001-02-01

    Part of the next generation network of Space Transportation Systems will include unmanned, autonomous ``Free Flyer'' satellites with ground-controlled re-entry and recovery systems for low-cost biomedical and microgravity research. A commercial space requirement for the launch, LEO deployment and orbital recovery of low-cost research satellites will be an important function of spaceport operations and technology development in the next decade. Free flyer satellites will effectively complement the capabilities of intermittent manned Shuttle/SpaceHab missions and more sophisticated, long-duration, manned Mir and International Space Station missions. The USCORP initiative has been developed by ITA, Inc. to provide a commercially owned and operated orbital free flyer satellite and re-entry/recovery system to support microgravity, biomedical and life sciences research. The next generation low-cost, commercially viable orbital platform for microgravity research will depend on the application of existing technologies with flight-proven systems. This approach will ensure the operational reliability and low costs that will be required for commercial unmanned research missions. These commercial flight systems will be launched, remotely operated on orbit, and recovered from commercial spaceports utilizing next-generation advanced spaceport technologies and capabilities. .

  14. Space shuttle. [a transportation system for low orbit space missions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle is discussed as a reusable space vehicle operated as a transportation system for space missions in low earth orbit. Space shuttle studies and operational capabilities are reported for potential missions indicating that about 38 percent are likely to be spacelab missions with the remainder being the replacement, revisit, or retrieval of automated spacecraft.

  15. Space Shuttle Orbiter thermal protection system design and flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1993-01-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  16. Jupiter: Giant of the solar system. [its solar orbits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Jupiter, its relationship to the other planets in the solar system, its twelve natural satellites, solar orbit and the appearance of Jupiter in the sky, and the sightings and motions of Jupiter in 1973 are discussed. Educational study projects for students are also included.

  17. Implementation of a low-cost, commercial orbit determination system

    NASA Technical Reports Server (NTRS)

    Corrigan, Jim

    1994-01-01

    This paper describes the implementation and potential applications of a workstation-based orbit determination system developed by Storm Integration, Inc. called the Precision Orbit Determination System (PODS). PODS is offered as a layered product to the commercially-available Satellite Tool Kit (STK) produced by Analytical Graphics, Inc. PODS also incorporates the Workstation/Precision Orbit Determination (WS/POD) product offered by Van Martin System, Inc. The STK graphical user interface is used to access and invoke the PODS capabilities and to display the results. WS/POD is used to compute a best-fit solution to user-supplied tracking data. PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a wide variety of observation types including angles, range, range rate, and Global Positioning System (GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients, solar pressure and atmospheric drag parameters, and observation data biases. All determined data is automatically incorporated into the STK data base, which allows storage, manipulation and export of the data to other applications. PODS is offered in three levels: Standard, Basic GPS and Extended GPS. Standard allows processing of non-GPS observation types for any number of vehicles and facilities. Basic GPS adds processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to process GPS carrier phase data.

  18. Orbital implants: State-of-the-art review with emphasis on biomaterials and recent advances.

    PubMed

    Baino, Francesco; Potestio, Isabel

    2016-12-01

    In the treatment of severe oculo-orbital traumas, intraocular malignancies or other life-threatening conditions it is sometimes necessary to surgically remove the patient's diseased eye. Following the removal of the eye, an orbital implant is inserted into the anophthalmic socket in order to provide satisfactory volume replacement and restore the aesthetic appearance of a normal eye. Over the last decades, the implant design and the criteria of materials selection evolved from simple non-porous polymeric sphere to devices with more complex shape and functionalities for ensuring better clinical outcomes in the long-term. Polymeric and ceramic porous implants have gained prominence since their highly interconnected porous architecture allows them to act as a passive framework for fibrovascular in-growth offering reduced complication rates and the possibility of pegging to enhance the motility of the artificial eye. However, there are still drawbacks to these materials. Some critical aspects of today's orbital implants include the risk of migration and extrusion, postoperative infections and low motility transmitted to the aesthetic ocular prosthesis. Hence, the development of novel biomaterials with enhanced functionalities (e.g. angiogenesis, antibacterial effect, in situ mouldability) which enable an improved outcome of eye replacement is more than ever desirable and represents one of the most challenging topics of research in the field of ocular implants. This review summarizes the evolution of orbital implants and provides an overview of the most recent advances in the field as well as some critical remarks for materials design, selection, characterization and translation to clinical applications. PMID:27612842

  19. Orbital Architectures of Planet-Hosting Binary Systems

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Kratter, Kaitlin M.

    2016-01-01

    We present the first results from our Keck AO astrometric monitoring of Kepler Prime Mission planet-hosting binary systems. Observational biases in exoplanet discovery have long left the frequency, properties, and provenance of planets in most binary systems largely unconstrained. Recent results from our ongoing survey of a volume-limited sample of Kepler planet hosts indicate that binary companions at solar-system scales of 20-100 AU suppress the occurrence of planetary systems at a rate of 30-100%. However, some planetary systems do survive in binaries, and determining these systems' orbital architectures is key to understanding why. As a demonstration of this new approach to testing ideas of planet formation, we present a detailed analysis of the triple star system Kepler-444 (HIP 94931) that hosts five Ganymede- to Mars-sized planets. By combining our high-precision astrometry with radial velocities from HIRES we discover a highly eccentric stellar orbit that would have made this a seemingly hostile site for planet formation. This either points to an extremely robust and efficient planet formation mechanism or a rare case of favorable initial conditions. Such broader implications will be addressed by determining orbital architectures for our larger statistical sample of Kepler planet-hosting systems that have stellar companions on solar system scales.

  20. Orbital Architectures of Planet-Hosting Binary Systems

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent; Kratter, Kaitlin M.; Kraus, Adam; Isaacson, Howard T.; Mann, Andrew; Ireland, Michael; Howard, Andrew; Huber, Daniel

    2015-12-01

    We present the first results from our Keck AO astrometric monitoring of Kepler planet-hosting binary systems. Observational biases in exoplanet discovery have long left the frequency, properties, and provenance of planets in most binary systems largely unconstrained. Recent results from our ongoing survey of a volume-limited sample of Kepler planet hosts indicate that binary companions at solar-system scales of 20-100 AU suppress the occurrence of planetary systems at a rate of 30-100%. However, some planetary systems do survive in binaries, and determining these systems' orbital architectures is key to understanding why. As a demonstration of this new approach to testing ideas of planet formation, we present a detailed analysis of the triple star system Kepler-444 (HIP 94931) that hosts five Ganymede- to Mars-sized planets. By combining our high-precision astrometry with radial velocities from HIRES and computational dynamical modeling, we discover an unexpected orbital architecture for this multi-planet, triple-star system. Finally, we preview results from our full statistical sample, such as tests of coplanarity between binary and planet orbits in single versus multi-planet systems.

  1. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  2. Conceptual design of an Orbital Debris Defense System

    NASA Astrophysics Data System (ADS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-08-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  3. Orbiter S-band direct link system verification test report

    NASA Technical Reports Server (NTRS)

    Vermillion, B. K.

    1980-01-01

    Space-to-ground S-band communications system compatibility and performance tests were performed for the various radio frequency links. These tests consisted of the various uplink and downlink signal combinations (data rates) for the phase modulation system and both realtime and playback data rates for the frequency modulated downlink systems. In addition, tests involving encryption/decryption, Doppler, and acquisition were performed. Results show that the S-band transponder for the space shuttle orbiter is compatible with the S-band equipment of the AFSCF/RTS (Air Force Satellite Control Facility/Remote Tracking Station). It is also concluded that the performance of the orbiter-AFSCF/RTS direct link exceeds the required performance and that this communications link will meet the system requirements of the Space Transportation System.

  4. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    NASA Technical Reports Server (NTRS)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  5. Lightning tests of the orbiter pyrotechnic escape system

    NASA Technical Reports Server (NTRS)

    Cohen, R.; Schulte, E. H.

    1977-01-01

    An experimental test program was undertaken to demonstrate that the Space Shuttle Orbiter Vehicle pyrotechnics actuated Crew Escape System was not subject to failure resulting from a lightning strike in the vicinity of the cockpit. A test sample representing a full-scale portion of the Orbiter Outer Panel was preheated to 325 F and struck with three different current waveforms to simulate the various effects of lightning: (1) 2 micro sec risetime, to 180 kA pulse to evaluate fast current rise shock effects; (2) a 205 kA, 100 micro sec wide pulse to evaluate full energy shock effects; and (3) a 490 ampere, 370 msec continuing current to evaluate the thermal effects of a lightning strike. These tests show that the Orbiter outer panel pyrotechnics are adequately protected against damage resulting from a lightning strike.

  6. The Ames-Lockheed orbiter processing scheduling system

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Gargan, Robert

    1991-01-01

    A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.

  7. Advanced Docking Berthing System Update

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2006-01-01

    In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project. In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the Constellation Program) has chosen to continue the project as a GFE Flight Hardware development effort. New requirement for CEV to travel and dock with the ISS in 2011/12 in support of retiring the Shuttle and reducing the gap of time where US does not have any US based crew launch capability. As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

  8. Multi-SunSynchronous Orbits in the Solar System

    NASA Astrophysics Data System (ADS)

    Ortore, Emiliano; Circi, Christian; Ulivieri, Carlo; Cinelli, Marco

    2014-05-01

    Performances of a planetary observation system are strongly related to the choice of the orbit used. Trajectories with characteristics of periodicity are very useful for the assessment of time-varying phenomena and thus Periodic SunSynchronous and Periodic Multi-SunSynchronous Orbits are particularly suitable to this end. In this paper, the research into these kinds of orbits, previously proposed for the Earth and Mars, has been extended to planets of the Solar System and to their principal moons. In general, these trajectories are typically obtained under the hypothesis that the J2 harmonic is predominant with respect to the other orbital perturbations, since this allows an analytical solution. However, the hypothesis of J2 predominant is not always verified in the Solar System and so analytical techniques must be replaced by numerical simulations. Interesting results have been obtained for the planets Mars and Jupiter and for the moons Europa, Callisto and Titan, where periodic trajectories with reduced revisit times and low altitudes have been found. These solutions allow the observation of time-varying phenomena with high spatial and temporal resolution.

  9. Orbits design for LEO space based solar power satellite system

    NASA Astrophysics Data System (ADS)

    Addanki, Neelima Krishna Murthy

    2011-12-01

    Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. 7For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft's orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any

  10. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  11. Geometric method for forming periodic orbits in the Lorenz system

    NASA Astrophysics Data System (ADS)

    Nicholson, S. B.; Kim, Eun-jin

    2016-04-01

    Many systems in nature are out of equilibrium and irreversible. The non-detailed balance observable representation (NOR) provides a useful methodology for understanding the evolution of such non-equilibrium complex systems, by mapping out the correlation between two states to a metric space where a small distance represents a strong correlation [1]. In this paper, we present the first application of the NOR to a continuous system and demonstrate its utility in controlling chaos. Specifically, we consider the evolution of a continuous system governed by the Lorenz equation and calculate the NOR by following a sufficient number of trajectories. We then show how to control chaos by converting chaotic orbits to periodic orbits by utilizing the NOR. We further discuss the implications of our method for potential applications given the key advantage that this method makes no assumptions of the underlying equations of motion and is thus extremely general.

  12. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  13. Orbit Optimization and Scattering Coefficient Analysis for the Proposed GLORIA System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan

    2004-01-01

    This paper investigates the optimization of an orbit for a Low-Earth Orbiting (LEO) satellite for coastal coverage over Antarctic and United States shorelines as part of the Geostationary/Low-Earth Orbiting Radar Image Acquisition (GLORIA) System. Simulations over a range of orbital parameters are performed to determine the optimal orbit. Scattering coefficients are computed for the optimal orbit throughout the day and characterized to compare various scenarios for which link budget comparisons could then be made.

  14. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  15. Automated Orbit Determination System (AODS) requirements definition and analysis

    NASA Technical Reports Server (NTRS)

    Waligora, S. R.; Goorevich, C. E.; Teles, J.; Pajerski, R. S.

    1980-01-01

    The requirements definition for the prototype version of the automated orbit determination system (AODS) is presented including the AODS requirements at all levels, the functional model as determined through the structured analysis performed during requirements definition, and the results of the requirements analysis. Also specified are the implementation strategy for AODS and the AODS-required external support software system (ADEPT), input and output message formats, and procedures for modifying the requirements.

  16. Earth Observing System (EOS) real-time onboard orbit determination

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Muller, Ron

    1993-01-01

    The paper describes the TDRSS Onboard Navigation System (TONS) selected by NASA/GSFC for the EOS-AM1 spacecraft as the baseline navigation system for real-time onboard orbit determination. Particular attention is given to the TONS algorithms and environmental models, the general design considerations, the algorithm implementation, and the required hardware. Results are presented of the covariance analysis for the nominal onboard and instrument requirements.

  17. Orbital stability analysis and chaotic dynamics of exoplanets in multi-stellar systems

    NASA Astrophysics Data System (ADS)

    Satyal, Suman

    The advancement in detection technology has substantially increased the discovery rate of exoplanets in the last two decades. The confirmation of thousands of exoplanets orbiting the solar type stars has raised new astrophysical challenges, including the studies of orbital dynamics and long-term stability of such planets. Continuous orbital stability of the planet in stellar habitable zone is considered vital for life to develop. Hence, these studies furthers one self-evident aim of mankind to find an answer to the century old question: Are we alone?. This dissertation investigates the planetary orbits in single and binary star systems. Within binaries, a planet could orbit either one or both stars as S-type or P-type, respectively. I have considered S-type planets in two binaries, gamma Cephei and HD 196885, and compute their orbits by using various numerical techniques to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS) function, which measures the orbital perturbation induced by the nearby companion, is calculated for each system and then its efficacy as a new chaos indicator is tested against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with an emphasis on the planet's higher orbital inclination relative to the binary plane. I have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space, which indicates a likely regime of the planet's inclination. In, addition, the resonant angle is inspected to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a large inclination. The studies of planetary system in GJ 832 shows potential of hosting multiple planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass test planet(s) are analyzed for periodic

  18. Finding and Scaling Unstable Periodic Orbits in Biological Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank

    1998-03-01

    Unstable periodic orbits (UPOs) of low order can be detected in noisy physical(D. Pierson and F. Moss, Phys. Rev. Lett.) 75, 2124 (1995)and biological(X. Pei and F. Moss, Nature) 379, 618 (1996) systems. The statistically based detection method extracts the number of encounters with UPOs of period p, and compares that with findings from surrogate files. UPOs can be distinguished from stable orbits. The results are expressed as a time evolving statistical measure, useful for analyzing short files from non-stationary systems. We show bifurcations between stable and unstable behavior in peripheral cold receptors, neurosecretory hypothalamic cells (both in rat) and electroreceptors in catfish(H.A. Braun, et al., J. Comp. Neurosci.), in press. Since only orbits of the lowest orders (p < 4) can be detected, a scaling is necessary to connect the experimentally observable orbits to the infinite set of UPOs which characterize dissipative chaos. A scaling due to C.-Y. Lai is calculated for the Henon map. Data from crayfish photoreceptor cells for p = 1 to 3 are consistent with this scaling.

  19. Orbits of Four Young Triple-lined Multiple Systems

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2016-07-01

    Each of the nearby triple systems HIP 7601, 13498, 23824, and 113597 (HD 10800, 18198, 35877, 217379) consist of solar-type dwarfs with comparable masses, where all three components are resolved spectrally, while the outer pairs are resolved both visually and spectrally. These stars are relatively young (between 100 and 600 Myr) and chromospherically active (X-ray sources), although they rotate slowly. I determine the spectroscopic orbits of the inner subsystems (periods 19.4, 14.1, 5.6, 20.3 days) and the orbits of the outer systems (periods 1.75, 51, 27, 500 years, respectively). For HIP 7601 and 13498, the combined spectro-interferometric outer orbits produce direct measurement of the masses of all of the components, allowing for a comparison with stellar models. The 6708 Å lithium line is present and its strength is measured in each component individually by subtracting the contributions of the other components. The inner and outer orbits of HIP 7601 are nearly circular, likely co-planar, and have a modest period ratio of 1:33. This study contributes to the characterization of hierarchical multiplicity in the solar neighborhood and provides data for testing stellar evolutionary models and chronology.

  20. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  1. Periodic orbits near heteroclinic cycles in a cyclic replicator system.

    PubMed

    Wang, Yuanshi; Wu, Hong; Ruan, Shigui

    2012-04-01

    A species is semelparous if every individual reproduces only once in its life and dies immediately after the reproduction. While the reproduction opportunity is unique per year and the individual's period from birth to reproduction is just n years, the individuals that reproduce in the ith year (modulo n) are called the ith year class, i = 1, 2, . . . , n. The dynamics of the n year-class system can be described by a differential equation system of Lotka-Volterra type. For the case n = 4, there is a heteroclinic cycle on the boundary as shown in previous works. In this paper, we focus on the case n = 4 and show the existence, growth and disappearance of periodic orbits near the heteroclinic cycle, which is a part of the conjecture by Diekmann and van Gils (SIAM J Appl Dyn Syst 8:1160-1189, 2009). By analyzing the Poincaré map near the heteroclinic cycle and introducing a metric to measure the size of the periodic orbit, we show that (i) when the average competitive degree among subpopulations (year classes) in the system is weak, there exists an asymptotically stable periodic orbit near the heteroclinic cycle which is repelling; (ii) the periodic orbit grows in size when some competitive degree increases, and converges to the heteroclinic cycle when the average competitive degree tends to be strong; (iii) when the average competitive degree is strong, there is no periodic orbit near the heteroclinic cycle which becomes asymptotically stable. Our results provide explanations why periodic solutions expand and disappear and why all but one subpopulation go extinct. PMID:21656008

  2. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  3. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  4. A possible space VLBI constellation utilizing the stable orbits around the TLPs in the Earth-Moon system.

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Tang, Jingshi; Hou, Xiyun

    2016-07-01

    Current studies indicate that there are stable orbits around but far away from the triangular libration points .Two special quasi-periodic orbits around each triangular libration points L4 , L5 in the Earth-Moon sys-tem perturbed by Sun are gain , and the stable orbits discussed in this work are ideal places for space colonies because no orbit control is needed. These stable orbits can also be used as nominal orbits for space VLBI (Very Long Baseline Interferometry) stations. The two stations can also form baselines with stations on the Earth and the Moon, or with stations located around another TLP. Due to the long distance between the stations, the observation precision can be greatly enhanced compared with the VLBI stations on the Earth. Such a VLBI constellation not only can advance the radio astronomy, but also can be used as a navigation system for human activities in the Earth-Moon system and even in the solar system. This paper will focus on the navigation constellation coverage issues, and the orbit determination accuracy problems within the Earth-Moon sys-tem and interplanetary space.

  5. Independent Orbiter Assessment (IOA): Assessment of the orbiter main propulsion system FMEA/CIL, volume 1

    NASA Technical Reports Server (NTRS)

    Slaughter, B. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. The Orbiter MPS is composed of the Propellant Management Subsystem (PMS) consisting of the liquid oxygen (LO2) and liquid hydrogen (LH2) subsystems and the helium subsystem. The PMS is a system of manifolds, distribution lines, and valves by which the liquid propellants pass from the External Tank to the Space Shuttle Main Engine (SSME). The helium subsystem consists of a series of helium supply tanks and their associated regulators, control valves, and distribution lines. Volume 1 contains the MPS description, assessment results, ground rules and assumptions, and some of the IOA worksheets.

  6. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  7. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  8. The Orbital Maneuvering Vehicle Training Facility visual system concept

    NASA Technical Reports Server (NTRS)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  9. Advanced technology for future space propulsion systems

    NASA Technical Reports Server (NTRS)

    Diehl, Larry A.

    1989-01-01

    The NASA Project Pathfinder contains programs to provide technologies for future transfer vehicles including those powered by both advanced chemical and electric propulsion rockets. This paper discusses the Chemical Transfer Propulsion and Cargo Vehicle Propulsion elements of Pathfinder. The program requirements and goals for both elements are discussed, and technical activities which are planned or underway are summarized. Recent progress in programs which support or proceed the Pathfinder activities is detailed. In particular, the NASA Program for Advanced Orbital Transfer Vehicle Propulsion, which acted as the precursor for the Chemical Transfer Propulsion element of Pathfinder is summarized.

  10. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  11. International Space Station United States Orbital Segment Oxygen Generation System On-Orbit Operational Experience

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.

    2008-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  12. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  13. TOPAZ II System Thermal Management During Prelaunch and Orbital Insertion

    NASA Astrophysics Data System (ADS)

    Ogloblin, Boris; Nikitin, Vladimir; Luppov, Alexi; Kirillov, E. Ya.; Bocharov, Anatoly; Polansky, Gary; Reynolds, Edward

    1994-07-01

    For space nuclear power systems that use liquid metal coolants, it is important to prevent the coolant from freezing prior to the start-up of the reactor in space. For the original mission of the Topaz II, this would be achieved with a combination of (1) prelaunch electric heating of the liquid metal combined with coolant circulation, (2) a thermal cover to reduce the heat loss during the orbital insertion mission phase and (3) periodic circulation of the coolant during the orbital insertion mission phase to transfer heat from the warmer structures of the reactor to those most prone to freezing. Because the currently proposed Topaz II mission differs significantly from the original mission this scheme was re-evaluated. For the new mission the prelaunch heating could be simplified by merely circulating 300 K air over the reactor system and eliminating power to the electric heaters and the electromagnetic pump through the onboard detachable connector.

  14. Superconducting quantum spin Hall systems with giant orbital g factors

    NASA Astrophysics Data System (ADS)

    Reinthaler, R. W.; Tkachov, G.; Hankiewicz, E. M.

    2015-10-01

    Topological aspects of superconductivity in quantum spin Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (TIs) or two-dimensional TIs are the focus of current research. Here, we describe a superconducting quantum spin Hall effect (quantum spin Hall system in proximity to an s -wave superconductor and in orbital in-plane magnetic fields), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g factor, allowing the generation of spin currents. The phenomenon provides a solution to the outstanding challenge of detecting the spin polarization of the edge states. Here we propose the detection of the edge polarization in a three-terminal junction using unusual transport properties of the superconducting quantum Hall effect: a nonmonotonic excess current and a zero-bias conductance peak splitting.

  15. Large minimal period orbits of periodic autonomous systems

    NASA Astrophysics Data System (ADS)

    Campos, Juan; Tarallo, Massimo

    2004-01-01

    We prove the existence of periodic orbits with minimal period greater than any prescribed number for a natural Lagrangian autonomous system in several variables that is analytic and periodic in each variable and whose potential is nonconstant. Work supported by Acción Integrada Italia-España HI2000-0112, Azione Integrata Italia-Spagna IT-117, MCYT BFM2002-01308, Spain.

  16. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  17. Orbits and Pointing Strategies for Space-Based Telescopes into a European Space Surveillance System

    NASA Astrophysics Data System (ADS)

    Olmedo, Estrella; Sanchez-Ortiz, Noelia; Ramos-Lerate, Mercedes

    2009-03-01

    This paper describes the inclusion of optical images acquired from orbiting telescopes into an autonomous European space surveillance system via the Advance Space Surveillance System Simulator (AS4). Special interest on space-based observation of GEO objects exists since it avoids the weather dependence and longitudinal restrictions of ground-based observations of those objects. Furthermore, space-based observations allow the detection of small objects that are not detected from ground-based sensors.In order to analyze the impact of space-based telescopes images, several aspects have to be studied. The first consideration is the selection of the appropriate orbits to locate the telescopes. A description of the most suitable orbits and strategies for the observation of space debris population will be provided.Once an appropriated orbit has been selected, the next important consideration is the analysis of an optimized pointing strategy and its associated requirements for feasibility. Several pointing strategies will be exposed by analyzing, among other factors, the impact of luminosity conditions in the most populated regions to be observed. Numerical results are presented in the form of statistics, which reflect the compromise between the density of detected objects, and other important parameters for orbit determination and cataloguing purposes as re-acquisition times or measurement track duration.Finally, overall analyses of possible space-based constellations are presented. Such constellations are aimed to solve the main drawbacks in considering only one satellite at the selected orbit. This is for example the case of revisit times when considering a sub GEO orbiting telescope which can be solve by re-distributing several sensors in the orbit. It will also allow carrying on more complex pointing strategies by the definition of several sensors located at same orbit pointed at two different regions.The AS4 was developed by DEIMOS Space ([1], [2] and also [5]). The

  18. Interactive orbital proximity operations planning system instruction and training guide

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1994-01-01

    This guide instructs users in the operation of a Proximity Operations Planning System. This system uses an interactive graphical method for planning fuel-efficient rendezvous trajectories in the multi-spacecraft environment of the space station and allows the operator to compose a multi-burn transfer trajectory between orbit initial chaser and target trajectories. The available task time (window) of the mission is predetermined and the maneuver is subject to various operational constraints, such as departure, arrival, spatial, plume impingement, and en route passage constraints. The maneuvers are described in terms of the relative motion experienced in a space station centered coordinate system. Both in-orbital plane as well as out-of-orbital plane maneuvering is considered. A number of visual optimization aids are used for assisting the operator in reaching fuel-efficient solutions. These optimization aids are based on the Primer Vector theory. The visual feedback of trajectory shapes, operational constraints, and optimization functions, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool is an example of operator-assisted optimization of nonlinear cost functions.

  19. RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions

  20. Orbital design strategy for domestic communication satellite systems.

    NASA Technical Reports Server (NTRS)

    Ramji, S.; Sawitz, P.

    1973-01-01

    Review of some of the considerations pertinent to efficient orbit utilization in the design of domestic communications satellite systems. A strategy is developed to efficiently locate a heterogeneous system of satellites within the available arc and provide room for future growth. A practical design is illustrated, using a computer simulation model, for the placement of 25 satellites within 73% of the available arc employing frequency and polarization coordination techniques. A number of widely variable factors that influence satellite spacing are examined. These factors include such critical system elements as telephony and television interference noise limits, frequency plan coordination, polarization plan coordination, ground antenna diameter, signal protection ratio, and satellite station keeping.

  1. Parametric studies of electric propulsion systems for orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1988-01-01

    The present parametric tradeoff study for OTV electric propulsion systems encompasses ammonia and hydrogen arcjets as well as Xe-ion propulsion systems with performance characteristics currently being projected for 1993 operation. In all cases, the power source is a nuclear-electric system with 30 kg/kW(e) specific mass, and the mission involves the movement of payloads from lower orbits to GEO. Attention is given to payload capabilities and associated propellant requirements. Mission trip time is identified as the key parameter for selection; while arcjets are preferable for shorter trip times, ion propulsion is more advantageous for longer trip times due to reduced propellant mass fraction.

  2. Shell structure and classical orbits in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Kaori

    The theme of this thesis is to understand global shell structure of a finite many-fermion system in connection with short periodic orbits of the corresponding classical system. It is the overall shell structure, or partly resolved quantum fluctuations in the density of states, that is often enough for describing various properties of a system of interacting particles. Through semiclassical periodic orbit theory, one can visualize quantum- mechanical phenomena in terms of simple classical orbits. It is particularly interesting to study this quantum- classical connection in the mesoscopic systems of simple metal clusters and quantum dots, as their size as well as the number of particles can be much larger than in such systems as atoms and nuclei. We first illustrate a direct connection between quantum shells and classical periodic orbits by means of a mathematical model of a cranked two-dimensional harmonic oscillator. The quantum spectrum exhibits intriguing features, forming the Farey fan pattern. Furthermore, there is an analogy between this cranked model and the system of charged particles in a uniform magnetic field. We then go on to examine the electronic shell structure of simple metal clusters and quantum dots under a homogeneous magnetic field, taking simple mean-field models for these systems. The so-called supershell structure, a long-range, beating modulation of the electronic shell structure of simple metal clusters, is a fascinating example which can be explained semiclassically in terms of short periodic orbits of high degeneracy. We study the effect of an external magnetic field on this supershell structure, assuming a spherical infinite well as a simple yet realistic mean-field potential for the valence electrons. It is found that there is little perceptible change in the supershells for experimentally feasible field strengths, and if yet stronger fields are assumed, the supershells get destroyed and new beat patterns appear. For semiclassical

  3. Use of low orbital satellite communications systems for humanitarian programs

    NASA Technical Reports Server (NTRS)

    Vlasov, Vladimir N.; Gorkovoy, Vladimir

    1991-01-01

    Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios.

  4. Shell structure and orbit bifurcations in finite fermion systems

    SciTech Connect

    Magner, A. G. Yatsyshyn, I. S.; Arita, K.; Brack, M.

    2011-10-15

    We first give an overview of the shell-correction method which was developed by V.M. Strutinsky as a practicable and efficient approximation to the general self-consistent theory of finite fermion systems suggested by A.B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M.C. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the 'periodic orbit theory'. We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called 'superdeformed' energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).

  5. Strong orbital interaction in a weak CH-π hydrogen bonding system.

    PubMed

    Li, Jianfu; Zhang, Rui-Qin

    2016-01-01

    For the first time, the intermolecular orbital interaction between benzene and methane in the benzene-methane complex, a representative of weak interaction system, has been studied by us using ab initio calculations based on different methods and basis sets. Our results demonstrate obvious intermolecular orbital interaction between benzene and methane involving orbital overlaps including both occupied and unoccupied orbitals. Similar to interatomic orbital interaction, the intermolecular interaction of orbitals forms "bonding" and "antibonding" orbitals. In the interaction between occupied orbitals, the total energy of the complex increases because of the occupation of the antibonding orbital. The existence of the CH-π hydrogen bond between benzene and methane causes a decrease in rest energy level, leading to at least -1.51 kcal/mol intermolecular interaction energy. Our finding extends the concept of orbital interaction from the intramolecular to the intermolecular regime and gives a reliable explanation of the deep orbital reformation in the benzene-methane complex. PMID:26927609

  6. Advanced Exploration Systems Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  7. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  8. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  9. Advances in Gene Delivery Systems

    PubMed Central

    Kamimura, Kenya; Suda, Takeshi; Zhang, Guisheng; Liu, Dexi

    2011-01-01

    The transfer of genes into cells, both in vitro and in vivo, is critical for studying gene function and conducting gene therapy. Methods that utilize viral and nonviral vectors, as well as physical approaches, have been explored. Viral vector-mediated gene transfer employs replication-deficient viruses such as retro-virus, adenovirus, adeno-associated virus and herpes simplex virus. A major advantage of viral vectors is their high gene delivery efficiency. The nonviral vectors developed so far include cationic liposomes, cationic polymers, synthetic peptides and naturally occurring compounds. These nonviral vectors appear to be highly effective in gene delivery to cultured cells in vitro but are significantly less effective in vivo. Physical methods utilize mechanical pressure, electric shock or hydrodynamic force to transiently permeate the cell membrane to transfer DNA into target cells. They are simpler than viral- and nonviral-based systems and highly effective for localized gene delivery. The past decade has seen significant efforts to establish the most desirable method for safe, effective and target-specific gene delivery, and good progress has been made. The objectives of this review are to (i) explain the rationale for the design of viral, nonviral and physical methods for gene delivery; (ii) provide a summary on recent advances in gene transfer technology; (iii) discuss advantages and disadvantages of each of the most commonly used gene delivery methods; and (iv) provide future perspectives. PMID:22200988

  10. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  11. Exoplanet orbital eccentricity: multiplicity relation and the Solar System.

    PubMed

    Limbach, Mary Anne; Turner, Edwin L

    2015-01-01

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets. PMID:25512527

  12. Exoplanet orbital eccentricity: Multiplicity relation and the Solar System

    PubMed Central

    Limbach, Mary Anne; Turner, Edwin L.

    2015-01-01

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity−multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index –1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets. PMID:25512527

  13. Systems engineering studies of on-orbit assembly operation

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1991-01-01

    While the practice of construction has a long history, the underlying theory of construction is relatively young. Very little has been documented as to techniques of logistic support, construction planning, construction scheduling, construction testing, and inspection. The lack of 'systems approaches' to construction processes is certainly one of the most serious roadblocks to the construction of space structures. System engineering research efforts at CSC are aimed at developing concepts and tools which contribute to a systems theory of space construction. The research is also aimed at providing means for trade-offs of design parameters for other research areas in CSC. Systems engineering activity at CSC has divided space construction into the areas of orbital assembly, lunar base construction, interplanetary transport vehicle construction, and Mars base construction. A brief summary of recent results is given. Several models for 'launch-on-time' were developed. Launch-on-time is a critical concept to the assembly of such Earth-orbiting structures as the Space Station Freedom, and to planetary orbiters such as the Mars transfer vehicle. CSC has developed a launch vehicle selection model which uses linear programming to find optimal combinations of launch vehicles of various sizes (Atlas, Titan, Shuttles, HLLV's) to support SEI missions. Recently, the Center developed a cost trade-off model for studying on orbit assembly logistics. With this model it was determined that the most effective size of the HLLV would be in the range of 120 to 200 metric tons to LEO, which is consistent with the choices of General Stafford's Synthesis Group Report. A second-generation Dynamic Construction Activities Model ('DYCAM') process model has been under development, based on our past results in interruptability and our initial DYCAM model. This second-generation model is built on the paradigm of knowledge-based expert systems. It is aimed at providing answers to two questions: (1

  14. TOPEX orbit determination and gravity recovery using Global Positioning System data from repeat orbits

    NASA Technical Reports Server (NTRS)

    Wu, Jiun-Tsong; Yunck, Thomas P.

    1992-01-01

    A covariance analysis is presented for satellite tracking and gravity recovery with a differential Global Positioning System-based technique to be demonstrated on TOPEX in the early 1990s. The technique employs data from an ensemble of repeat ground tracks to recover a unique satellite epoch state for each track and a set of invariant positional parameters common to all tracks. The positional parameters represent the effect of mismodeled gravitational field on the satellite orbit. At an altitude of 1336 km, where gravity modeling is the dominant systematic error, averaging of random error over many arcs and adjustment of the gravity model reduce the final satellite position error. The positional parameters can then be used to produce a refined global gravity model. The analysis indicates that errors ranging from 5 to 8 cm in TOPEX altitude and 0.05 to 0.2 mGal for the gravity field can be achieved, depending on the number of repeat arcs used.

  15. Orbit determination with the tracking data relay satellite system

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Loveless, F.

    1977-01-01

    The possibility of employing the tracking data relay satellite system to satisfy the orbit determination demands of future applications missions is investigated. It is shown that when the relay satellites are continuously and independently tracked from ground stations it is possible, using six hour data arcs, to recover user satellite state with an average error of about 25 m radially, 260 m along track, and 20 m cross track. For this arc length, range sum data and range sum rate data are equally useful in determining orbits. For shorter arc lengths (20 min), range sum rate data is more useful than range sum data. When relay satellites are not continuously tracked, user satellite state can be recovered with an average error of about 140 m radially, 515 m along track, and 110 m cross track. These results indicate that the TDRS system can be employed to satisfy the orbit determination demands of applications missions, such as the MAGSAT and potential gradiometer missions, provided the relay satellites are continuously and independently tracked.

  16. Development of the orbit feedback system for the VSX ring

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Harada, K.; Takaki, H.; Koseki, T.; Nakamura, N.; Kamiya, Y.; Hanawa, K.

    2001-07-01

    An orbit feedback system will be installed in the VSX ring to stabilize the photon beam. The new COD correction method, the eigenvector method with constraints, is adopted for calculation of the steering-magnet currents. A computer simulation shows that the new method can tightly fix the beam positions at insertion devices, correcting the whole closed orbit globally with almost the same performance as the ordinary eigenvector method. A test VME unit including DSP and shared memory boards is being developed for the fast feedback control and its performance test shows that the total feedback time is less than 1 ms (875 μs) except for the network and VME-bus transfer times related to the shared memory board.

  17. Experimental evaluation of the Skylab orbital workshop ventilation system concept

    NASA Technical Reports Server (NTRS)

    Allums, S. L.; Hastings, L. J.; Ralston, J. T.

    1972-01-01

    Extensive testing was conducted to evaluate the Orbital Workshop ventilation concept. Component tests were utilized to determine the relationship between operating characteristics at 1 and 0.34 atm. System tests were conducted at 1 atm within the Orbital Workshop full-scale mockup to assess delivered volumetric flow rate and compartment air velocities. Component tests with the Anemostat circular diffusers (plenum- and duct-mounted) demonstrated that the diffuser produced essentially equivalent airflow patterns and velocities in 1- and 0.34-atm environments. The tests also showed that the pressure drop across the diffuser could be scaled from 1 to 0.34 atm using the atmosphere pressure ratio. Fan tests indicated that the performance of a multiple, parallel-mounted fan cluster could be predicted by summing the single-fan flow rates at a given delta P.

  18. Health management and controls for earth to orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1992-08-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  19. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  20. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Task 7: Engine data summary

    NASA Technical Reports Server (NTRS)

    Christensen, K. L.

    1980-01-01

    A performance optimized engine system design for a man-rated advanced LOX/hydrogen expander cycle engine was investigated. The data are presented in tables, figures, and drawings. The following categories of data for the advanced expander cycle engine are presented: engine operating specification and pressure schedule; engine system layout drawing; major component layout drawings, including thrust chamber and nozzle, extendible nozzle actuating mechanism and seal, LOX turbopump, LOX boost pump, hydrogen turbopump, hydrogen boost pump, and propellant control valves; engine performance and service life prediction; engine weight; and engine envelope. The data represent updates based upon current results from the design and analyses tasks performed under contract. Futher iterations in the designs and data can be expected as the advanced expander cycle engine design matures.

  1. Space LOX vent system. [for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Erickson, R. C.

    1975-01-01

    This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.

  2. Advance prototype silver ion water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.

  3. Experimental results on the design for the APS PID global orbit control system.

    SciTech Connect

    Chung, Y.; Kirchman, J. A.

    1997-12-05

    The Advanced Photon Source third generation synchrotrons light source needs a stabilized particle beam position to produce high brightness and low emittance radiation. Global orbit correction control is introduced and is utilized to satisfy the demanding needs of the accelerator. This paper presents the experimental results for determining an effective and optimal controller to meet the global orbit correction requirements. These requirements include frequency/time domain demands consisting of vibrational noise attenuation, limiting of controller gains for stability and improving the system time response. Experiments were conducted with a digital signal processor implementing various PID sets to make comparisons between simulations and experiments. Measurements at these PID sets supported the results of software simulation.

  4. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  5. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.

  6. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 2: PEP

    NASA Technical Reports Server (NTRS)

    1979-01-01

    User power, duration, and orbit requirements, which were the prime factors influencing power extension package (PEP) design, are discussed. A representative configuration of the PEP concept is presented and the major elements of the system are described as well as the PEP-to-Orbiter and remote manipulator interface provisions.

  7. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  8. Cryogenic thermal system analysis for orbital propellant depot

    NASA Astrophysics Data System (ADS)

    Chai, Patrick R.; Wilhite, Alan W.

    2014-09-01

    In any manned mission architecture, upwards of seventy percent of all payload delivered to orbit is propellant, and propellant mass fraction dominates almost all transportation segments of any mission requiring a heavy lift launch system like the Saturn V. To mitigate this, the use of an orbital propellant depot has been extensively studied. In this paper, a thermal model of an orbital propellant depot is used to examine the effects of passive and active thermal management strategies. Results show that an all passive thermal management strategy results in significant boil-off for both hydrogen and oxygen. At current launch vehicle prices, these boil-offs equate to millions of dollars lost per month. Zero boil-off of propellant is achievable with the use of active cryocoolers; however, the cooling power required to produce zero-boil-off is an order of magnitude higher than current state-of-the-art cryocoolers. This study shows a zero-boil-off cryocooler minimum power requirement of 80-100 W at 80 K for liquid oxygen, and 100-120 W at 20 K for liquid hydrogen for a representative Near-Earth Object mission. Research and development effort is required to improve the state-of-the-arts in-space cryogenic thermal management.

  9. Space Shuttle Orbiter audio subsystem. [to communication and tracking system

    NASA Technical Reports Server (NTRS)

    Stewart, C. H.

    1978-01-01

    The selection of the audio multiplex control configuration for the Space Shuttle Orbiter audio subsystem is discussed and special attention is given to the evaluation criteria of cost, weight and complexity. The specifications and design of the subsystem are described and detail is given to configurations of the audio terminal and audio central control unit (ATU, ACCU). The audio input from the ACCU, at a signal level of -12.2 to 14.8 dBV, nominal range, at 1 kHz, was found to have balanced source impedance and a balanced local impedance of 6000 + or - 600 ohms at 1 kHz, dc isolated. The Lyndon B. Johnson Space Center (JSC) electroacoustic test laboratory, an audio engineering facility consisting of a collection of acoustic test chambers, analyzed problems of speaker and headset performance, multiplexed control data coupled with audio channels, and the Orbiter cabin acoustic effects on the operational performance of voice communications. This system allows technical management and project engineering to address key constraining issues, such as identifying design deficiencies of the headset interface unit and the assessment of the Orbiter cabin performance of voice communications, which affect the subsystem development.

  10. Orbital transfer vehicle concept definition and systems analysis study. Volume 11: Study extension 2 results

    NASA Technical Reports Server (NTRS)

    Willcockson, W. H.

    1988-01-01

    Work conducted in the second extension of the Phase A Orbit Transfer Vehicle Concept Definition and Systems Analysis Study is summarized. Four major tasks were identified: (1) define an initial OTV program consistent with near term Civil Space Leadership Initiative missions; (2) develop program evolution to long term advanced missions; (3) investigate the implications of current STS safety policy on an Aft Cargo Carrier based OTV; and (4) expand the analysis of high entry velocity aeroassist. An increased emphasis on the breath of OTV applications was undertaken to show the need for the program on the basis of the expansion of the nation's capabilities in space.

  11. Assessment of alternate thermal protection systems for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Webb, G. L.

    1982-01-01

    Candidate concepts are identified. The impact on the Shuttle Orbiter performance life cycle cost, and risk was assessed and technology advances required to bring the selected TPS to operational readiness are defined. The best system is shown to be a hybrid blend of metallic and carbon-carbon TPS concepts. These alternate concepts offer significant improvements in reusability and are mass competitive with the current ceramic tile reusable surface insulation. Programmatic analysis indicates approximately five years are required to bring the concepts to operational readiness.

  12. A Large Motion Suspension System for Simulation of Orbital Deployment

    NASA Technical Reports Server (NTRS)

    Straube, T. M.; Peterson, L. D.

    1994-01-01

    This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.

  13. Time division multiplexed orbital angular momentum access system

    NASA Astrophysics Data System (ADS)

    Shi, Jianyang; Fang, Yuan; Chi, Nan

    2016-03-01

    We propose and experimentally demonstrate time division multiplexed orbital angular momentum (OAM) access system to increase transmission capacity and spectral efficiency. In this system, data carried on different time tributaries share the same OAM mode. Multiple time division multiplexed OAM modes are multiplexed to realize two-dimensional (time dimension and OAM dimension) multiplexing. Therefore, the capacity and spectral efficiency of the access system will increase. The orthogonality between optical time division multiplexing (OTDM) and OAM techniques is also verified in our experiment. In a proof-of-concept experiment, 2×5-Gbps return-to-zero signal over OAM mode +4 is transmitted and investigated. The bit error ratio performance after transmission in this system can be smaller than 1×10-9. Results show that the proposed time division multiplexed OAM access system is suitable for future broadband access network.

  14. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  15. Advanced Caution and Warning System

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Robinson, Peter I.; Liolios, Sotirios; Lee, Charles; Ossenfort, John P.

    2013-01-01

    The current focus of ACAWS is on the needs of the flight controllers. The onboard crew in low-Earth orbit has some of those same needs. Moreover, for future deep-space missions, the crew will need to accomplish many tasks autonomously due to communication time delays. Although we are focusing on flight controller needs, ACAWS technologies can be reused for on-board application, perhaps with a different level of detail and different display formats or interaction methods. We expect that providing similar tools to the flight controllers and the crew could enable more effective and efficient collaboration as well as heightened situational awareness.

  16. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 3: Detailed data. Part 1: Catalog of initiatives, functional options, and future environments and goals. [for the U.S. space program

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The following areas were discussed in relation to a study of the commonality of space vehicle applications to future national needs: (1) index of initiatives (civilian observation, communication, support), brief illustrated description of each initiative, time periods (from 1980 to 2000+) for implementation of these initiatives; (2) data bank of functional system options, presented in the form of data sheets, one for each of the major functions, with the system option for near-term, midterm, and far-term space projects applicable to each subcategory of functions to be fulfilled; (3) table relating initiatives and desired goals (public service and humanistic, materialistic, scientific and intellectual); and (4) data on size, weight and cost estimations.

  17. MSFC Skylab Orbital Workshop, volume 2. [design and development of electrical systems and attitude control system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.

  18. Effects of flexibility on AGS performance. [Annular suspension pointing system Gimbal System aboard Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Shelton, H. L.; Cunningham, D. C.; Worley, H. E.; Seltzer, S. M.

    1982-01-01

    The Marshall Space Flight Center has had under development the Annular Suspension Pointing System Gimbal System (AGS) since early 1979. The AGS is an Orbiter cargo bay mounted subarcsecond 3 axis inertial pointer that can accommodate a wide range of payloads which require more stringent pointing than the Orbiter can provide. This paper will describe the AGS, state performance requirements and the control law configuration. Then an approach to investigating the flexible body effects on control system design will be discussed.

  19. The National Polar-orbiting Operational Environmental Satellite System

    NASA Astrophysics Data System (ADS)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  20. Chandra X-Ray Observatory Pointing Control System Performance During Transfer Orbit and Initial On-Orbit Operations

    NASA Technical Reports Server (NTRS)

    Quast, Peter; Tung, Frank; West, Mark; Wider, John

    2000-01-01

    The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.

  1. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.

  2. A digital audio/video interleaving system. [for Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Richards, R. W.

    1978-01-01

    A method of interleaving an audio signal with its associated video signal for simultaneous transmission or recording, and the subsequent separation of the two signals, is described. Comparisons are made between the new audio signal interleaving system and the Skylab Pam audio/video interleaving system, pointing out improvements gained by using the digital audio/video interleaving system. It was found that the digital technique is the simplest, most effective and most reliable method for interleaving audio and/or other types of data into the video signal for the Shuttle Orbiter application. Details of the design of a multiplexer capable of accommodating two basic data channels, each consisting of a single 31.5-kb/s digital bit stream are given. An adaptive slope delta modulation system is introduced to digitize audio signals, producing a high immunity of work intelligibility to channel errors, primarily due to the robust nature of the delta-modulation algorithm.

  3. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  4. Weyl group orbits on Kac-Moody root systems

    NASA Astrophysics Data System (ADS)

    Carbone, Lisa; Conway, Alexander; Freyn, Walter; Penta, Diego

    2014-11-01

    Let D be a Dynkin diagram and let \\Pi =\\{{{α }1},...,{{α }\\ell }\\} be the simple roots of the corresponding Kac-Moody root system. Let h denote the Cartan subalgebra, let W denote the Weyl group and let Δ denote the set of all roots. The action of W on h, and hence on Δ, is the discretization of the action of the Kac-Moody algebra. Understanding the orbit structure of W on Δ is crucial for many physical applications. We show that for i\

  5. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  6. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits.

    PubMed

    Fujii, Mikiya; Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller's trace formula to a nonadiabatic form. The quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics. PMID:25701999

  7. flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Barnoy, Assaf; Beech, Theresa

    2013-01-01

    flexplan is a mission planning and scheduling (MPS) tool that uses soft algorithms to define mission scheduling rules and constraints. This allows the operator to configure the tool for any mission without the need to modify or recompile code. In addition, flexplan uses an ID system to track every output on the schedule to the input from which it was generated. This allows flexplan to receive feedback as the schedules are executed, and update the status of all activities in a Web-based client. flexplan outputs include various planning reports, stored command loads for the Lunar Reconnaissance Orbiter (LRO), ephemeris loads, and pass scripts for automation.

  8. Packet message communication system using polar orbiting small satellites

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryutaro; Suzuki, Yoshiaki; Arimoto, Yoshinori; Ohmori, Shingo; Kondo, Kimio

    A packet message communication system using small satellites is studied for the worldwide electronic mail type communications. A store and forward type packet communication equipment is installed in a small satellite which rotates in the polar orbit. By using the inter satellite link among the small satellites and/or the data exchange earth station in the polar region, the delay time of the packet message delivery can be shortened. The multibeam phased array technique is applied for the satellite antenna in order to increase the link quality. Four satellites configuration gives a 4.8 kbps data rate message with less than two hours of delay.

  9. A satellite system synthesis model for orbital arc allotment optimization

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.

    1987-01-01

    A mixed integer programming formulation of a satellite system synthesis problem if presented, which is referred to as the arc allotment problem (AAP). Each satellite administration is to be allotted a weighted-length segment of the geostationary orbital arc within which its satellites may be positioned at any longitudes. The objective function maximizes the length of the unweighted arc segment allotted to every administration, subject to single-entry co-channel interference restrictions and constraints imposed by the visible arc for each administration. Useful relationships between special cases of AAP and another satellite synthesis problem are established. Solutions to two example problems are presented.

  10. Shuttle Orbiter medical system equipment/supplies evaluation

    NASA Technical Reports Server (NTRS)

    Maidlow, Kristin; Schulz, John M.; Lloyd, Charles W.; Breeding, Tiffany

    1991-01-01

    The effectivity was evaluated in zero gravity of several medical equipment and supply items flown in the Shuttle Orbiter Medical System (SOMS). Several procedures listed in Medical Operations Medical Checklist, JSC 1732 were also evaluated. Several items were drawn out of the kits and tested on the KC-135. In two different flights, the following elements were examined: (1) measuring IV flow (drip chamber, one way flow valve, and air/fluid separator); (2) chemstrip protocol for urine analysis in zero-gravity; and (3) tamper resistant seals for injectable medications.

  11. Rationale for windshield glass system specification requirements for shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Hayashida, K.; King, G. L.; Tesinsiky, J.; Wittenburg, D. R.

    1972-01-01

    A preliminary procurement specification for the space shuttle orbiter windshield pane, and some of the design considerations and rationale leading to its development are presented. The windshield designer is given the necessary methods and procedures for assuring glass pane structural integrity by proof test. These methods and procedures are fully developed for annealed and thermally tempered aluminosilicate, borosilicate, and soda lime glass and for annealed fused silica. Application of the method to chemically tempered glass is considered. Other considerations are vision requirements, protection against bird impact, hail, frost, rain, and meteoroids. The functional requirements of the windshield system during landing, ferrying, boost, space flight, and entry are included.

  12. Position determination systems. [using orbital antenna scan of celestial bodies

    NASA Technical Reports Server (NTRS)

    Shores, P. W. (Inventor)

    1976-01-01

    A system for an orbital antenna, operated at a synchronous altitude, to scan an area of a celestial body is disclosed. The antenna means comprises modules which are operated by a steering signal in a repetitive function for providing a scanning beam over the area. The scanning covers the entire area in a pattern and the azimuth of the scanning beam is transmitted to a control station on the celestial body simultaneous with signals from an activated ground beacon on the celestial body. The azimuth of the control station relative to the antenna is known and the location of the ground beacon is readily determined from the azimuth determinations.

  13. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    SciTech Connect

    Fujii, Mikiya Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  14. Periodic orbits of hybrid systems and parameter estimation via AD.

    SciTech Connect

    Guckenheimer, John.; Phipps, Eric Todd; Casey, Richard

    2004-07-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  15. Space shuttle orbiter windshield system design and test

    NASA Technical Reports Server (NTRS)

    Hayashida, K.; Suppanz, M. J.

    1972-01-01

    The development and testing of primary structural elements that are necessary to design a windshield system for the space shuttle orbiter are summarized. The elements include the outer (heat shield) panes, the inner pressure panes, the seals for both panes, and components of both window frames. One test article representing a pressure pane, including frames and seals, was tested under two sets of conditions. One set represented 100 mission cycles with temperature and pressure typical of those exerted on the innermost pane of the three-pane window system, and the second set represented 100 mission cycles with temperature and pressure typical of those exerted on a middle pane. A second test article representing an outer (heat sheild) pane was tested to conditions of 120 entry cycles, which equates to 100 entry cycles plus sufficient fatigue on the pane to account for 100 boost cycles. All elements of the design survived the test conditions in good condition. Window system for the shuttle orbiter vehicle.

  16. On-Orbit Propulsion System Performance of ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor

    2013-01-01

    The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.

  17. Preliminary on-orbit results of trigger system for DAMPE

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Chang, Jin; Guo, Jian hua; Dong, TieKuang; Liu, Yang

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE), Chinese first high energy cosmic ray explorer in space, has been successfully launched at Jiuquan Satellite Launch Center, with the mission of searching dark matter particle. Large energy range for electron/gamma, good energy resolution, and excellent PID ability, make DAMPE to be the most promising detector so far to find the signal of dark matter. DAMPE consists of four sub-detectors: Plastic Scintillation detector, Silicon-Tungsten tracker, BGO calorimeter and Neutron detector. The hit signals generated by the BGO calorimeter and the trigger board (in DAQ) constitute the trigger system of DAMPE, which will generate trigger signals for the four sub-detectors to start data acquisition. The trigger system reduces the trigger rates on orbit from about 1kHz to 70~100Hz, that releases the stress of DAQ transmitting data to ground. In this paper, we will introduce the trigger system of DAMPE, and present some preliminary on-orbit results e.g. trigger efficiency, together with the beam test results at CERN and the simulation results as comparison.

  18. Eastern Stream Advance Notification System.

    ERIC Educational Resources Information Center

    State Univ. of New York, Oneonta. Coll. at Oneonta. Eastern Stream Center on Resources and Training.

    This directory contains instructions for using the advanced notification form designed to help identify migrant interstate children as they move between states. The form contains spaces for entering information about the children in the migrant family including each child's date of birth, last school name, grade level, and Migrant Education Record…

  19. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  20. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  1. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  2. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  3. Advanced thermal-sensor-system development via shuttle sortie missions

    SciTech Connect

    Angelo, J.A. Jr.; Ginsberg, I.W.

    1981-01-01

    The use of the Space Shuttle in various sortie mission modes to evaluate advanced thermal sensor system concepts, prior to a design commitment for automated spacecraft application, is described. Selected terrestrial energy sources of civilian and/or military interest are examined with respect to: (1) thermal source location and characterization and (2) temperature and emissivity measurements. Of particular interest is the application of on-orbit sensor testing to demonstrate the location and characterization of potential geothermal energy resources. The role of the payload specialist in thermal source location, sensor operation and real time evaluation of mission performance is discussed.

  4. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette

    2016-01-01

    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.

  5. Advanced aerospace remote sensing systems for global resource applications

    NASA Technical Reports Server (NTRS)

    Taranik, J. V.

    1981-01-01

    The Landsat program, which was concerned with testing the use of satellite data for global resource observations, has been an unqualified success, and users of Landsat data demand now that repetitive global multispectral data be provided on a routine basis for a wide variety of applications. A review is provided of the current status of NASA's land observation program, new developments in advanced aerospace remote sensing techniques, and issues related to the development and testing of new prototype systems by the U.S. The current Landsat program is considered along with developments in solid-state imaging technology, short wave infrared research using the Space Shuttle, the Shuttle Orbiter camera payload system large format camera, and advanced research in thermal remote sensing. Attention is also given to the potential of imaging radar for global resource observations, and research related to geopotential field mapping.

  6. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  7. Design of a Hybrid Propulsion System for Orbit Raising Applications

    NASA Astrophysics Data System (ADS)

    Boman, N.; Ford, M.

    2004-10-01

    A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.

  8. The AGS New Fast Extracted Beam System orbit bump pulser

    SciTech Connect

    Chang, J.S.; Soukas, A.V.

    1993-01-01

    The AGS New Fast Extracted Beam System (New FEB) is designed for RHIC injection and the g-2 experiment, performing single bunch multiple extraction at the prf of 20 to 100 Hz up to 12 times per AGS cycle. Capacitor-discharge pulsers are required to produce local orbit bumps at the fast kicker and ejector magnet locations. These pulsers have to deliver half-sine current pulses at 1 KA peak with a base width of 5 msec. The discharge voltage will require approximately 800V with a [plus minus]0.1% accuracy. Direct charging will require a charger too costly and difficult to build because of the high prf. An alternative charging system is being developed to take advantage of the 1.5 sec idle time between each group of pulses. The charger power supply ratings and regulation requirements are thus greatly reduced. The system analysis and results from a prototype will be presented.

  9. The AGS New Fast Extracted Beam System orbit bump pulser

    SciTech Connect

    Chang, J.S.; Soukas, A.V.

    1993-06-01

    The AGS New Fast Extracted Beam System (New FEB) is designed for RHIC injection and the g-2 experiment, performing single bunch multiple extraction at the prf of 20 to 100 Hz up to 12 times per AGS cycle. Capacitor-discharge pulsers are required to produce local orbit bumps at the fast kicker and ejector magnet locations. These pulsers have to deliver half-sine current pulses at 1 KA peak with a base width of 5 msec. The discharge voltage will require approximately 800V with a {plus_minus}0.1% accuracy. Direct charging will require a charger too costly and difficult to build because of the high prf. An alternative charging system is being developed to take advantage of the 1.5 sec idle time between each group of pulses. The charger power supply ratings and regulation requirements are thus greatly reduced. The system analysis and results from a prototype will be presented.

  10. Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Noise and Dark Current Stability During the First Year on Orbit

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Gibbs, M. D.

    2002-01-01

    The noise and dark current stability of the Advanced Land Imager during the first year on orbit (November 21, 2000 - November 21, 2001) are presented. Data have been separated into short-term and long-term periods. The analysis of short-term data indicate some SWIR detectors may drift up to ten digital numbers between the pre and post dark observations of a given data collection event. Analysis of long-term data suggest the SWIR dark current has deviated by less than ten digital numbers and some SCA SWIR dark Current have increased by up to 200 digital numbers during the first year on orbit.

  11. Effects of construction and alignment errors on the orbit functions of the advanced photon source storage ring

    SciTech Connect

    Bizek, H.; Crosbie, E.; Lessner, E.; Teng, L.; Wirsbinski, J.

    1991-01-01

    The orbit functions for the Advanced Photon Source Storage Ring have been studied using the simulation code RACETRACK. Non-linear elements are substituted into the storage ring lattice to simulate the effects of construction and alignment errors in the quadrupole, dipole, and sextupole magnets. The effects of these errors on the orbit distortion, dispersion, and beta functions are then graphically analyzed to show the rms spread of the functions across several machines. The studies show that the most significant error is displacement of the quadrupole magnets. Further studies using a 3 bump correction routine show that these errors can be corrected to acceptable levels. 1 ref., 10 figs., 1 tab.

  12. Canadian Advanced Nanospace eXperiment 2 Orbit Operations: Over a Year of Pushing the Nanosatellite Performance Envelope

    NASA Astrophysics Data System (ADS)

    Zee, R. E.; Sarda, K.; Skone, S. H.; Quine, B.

    2009-12-01

    The Canadian Advanced Nanospace eXperiment 2 (CanX-2) was launched in April 2008 and has demonstrated the utility of nanosatellites for scientific missions for well over a year. The objective of the CanX program is to develop highly capable nanospacecraft, i.e. spacecraft under 10 kilograms, in short timeframes of 2-3 years. CanX missions offer low-cost and rapid access to space for scientists, technology developers and operationally-responsive missions. The Space Flight Laboratory (SFL), at the University of Toronto Institute for Aerospace Studies (UTIAS) developed the CanX-2 nanosatellite, a 3.5-kg, 10 x 10 x 34 cm satellite, or triple CubeSat. The satellite features a collection of scientific and engineering payloads that push the envelope of capability for this class of spacecraft. An objective of CanX-2 is to test and demonstrate several enabling technologies for precise formation flight. These technologies include a custom cold-gas propulsion system, a 30 mNms nanosatellite reaction wheel as part of a three-axis stabilized Y-Thomson attitude control subsystem, and a commercially available GPS receiver. CanX-2 also performs science experiments including the measurement of greenhouse gas concentrations and profiling of atmospheric water vapor content and total electron count. These scientific experiments are accomplished by virtue of an atmospheric spectrometer provided by York University, and GPS radio occultation measurements for the University of Calgary. After more than a year of success in orbit, the nanosatellite has met or exceeded all mission objectives and continues to demonstrate the cost-effective capabilities of this class of spacecraft. Key achievements to date include successful GPS radio occultations and spectrometer measurements, in addition to proving technologies, including the characterization of the propulsion system, a full demonstration of the attitude determination and control subsystem including capabilities in accurate payload pointing

  13. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  14. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  15. Application of single crystal superalloys for earth-to-orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Parr, R. A.

    1987-01-01

    Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960s. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The Space Shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.

  16. Application of single crystal superalloys for Earth-to-orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Parr, R. A.

    1987-01-01

    Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960's. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The space shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.

  17. Advanced microelectronics technologies for future small satellite systems

    NASA Astrophysics Data System (ADS)

    Alkalai, Leon

    2000-03-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjoint markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  18. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  19. Alternative module configurations for advanced solar arrays on low orbit and extended lifetime missions (AMOC 2)

    NASA Astrophysics Data System (ADS)

    Gringel, D.; Hoffmann, U.; Koch, J.; Reissmann, F.; Schmitz, W.

    1987-12-01

    The applicability of the bifacial solar cell for generators operating in the low earth orbit and having extended life time mission was studied. Two candidate module concepts for flexible roll out and/or fold out solar generator systems were defined. One module concept is characterized by a continuous light transparent substrate and uses a transparent adhesive to glue the solar cells onto the substrate. The other module concept uses a nontransparent substrate with cutouts (windows) in the solar cell area of the substrate so that only small rearside areas of the individual solar cells are covered. The design and the bifacial solar cell technology were improved with regard to their applicability for larger assemblies. A thermal vacuum cycling test on a foldable ATOX resistant window type solar panel assembly confirms design feasibility.

  20. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  1. Study of advanced atmospheric entry systems for Mars

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.

  2. Man's role in a remote orbital servicing system

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.; Hankins, W. W., III

    1983-01-01

    The Remote Orbital Servicing System (ROSS), a focal point for NASA research in automation and robotics, is discussed in terms of the role of man in such a system. In the supervisory control mode, the ROSS operator inputs high-level goals to a strategic (nonreal-time) planner which then passes the plan or series of actions to a tactical (real-time) planner which executes the plan. Using directed control, man makes more specific commands to perform strategic planning with or without the use of the automated strategic planner. Shared computer/manual control will require a multifunction interactive display. At the teleoperator control level, a hand controller is used to command the ROSS manipulator and end effectors.

  3. THE REVISED ORBIT OF THE {delta} Sco SYSTEM

    SciTech Connect

    Tycner, C.; Ames, A.; Zavala, R. T.; Benson, J. A.; Hutter, D. J.; Hummel, C. A.

    2011-03-01

    In anticipation of the possible collision between a circumstellar disk and the secondary star in the highly eccentric binary system {delta} Scorpii, high angular resolution interferometric observations have been acquired, aimed at revising the binary parameters. The Navy Prototype Optical Interferometer was used to spatially resolve the binary components in 2000 and over a period between 2005 and 2010. The interferometric observations are used to obtain the angular separations and orientations of the two stellar components at all epochs for which data have been obtained, including 2005 and 2006, for which, based on previous studies, there was some uncertainty as to if the signature of binarity can be clearly detected. The results of this study represent the most complete and accurate coverage of the binary orbit of this system to date and allow for the revised timing of the upcoming periastron passage that will occur in 2011 to be obtained.

  4. An Orbiting Standards Platform for communication satellite system RF measurements

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  5. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  6. A Third Exoplanetary System with Misaligned Orbital and Stellar Spin Axes

    NASA Technical Reports Server (NTRS)

    Johnosn, John A.; Winn, Joshua N.; Albrecht, Simon; Howard, Andrew W.; Marcy, Geoffrey W.; Gazak, J. Zachary

    2009-01-01

    We presented evidence that the WASP-14 exoplanetary system has misaligned orbital and stellar-rotational axes, with an angle of 33.1 plus or minus 7.4 degrees between their sky projections. At the time of this publication, WASP-14 was the third system known to have a significant spin-orbit misalignment, and all three systems had super- Jupiter planets and eccentric orbits. Therefore we hypothesized that the migration and subsequent orbital evolution of massive, eccentric exoplanets is somehow different from that of less massive close-in Jupiters, the majority of which have well-aligned orbits.

  7. Use of elliptical orbits for a Ka-band personal access satellite system

    NASA Technical Reports Server (NTRS)

    Motamedi, Masoud; Estabrook, Polly

    1990-01-01

    The use of satellites in elliptical orbits for a Ka-band personal communications system application designed to provide voice and data service within the continental U.S. is examined. The impact of these orbits on system parameters such as signal carrier-to-noise ratio, roundtrip delay, Doppler shift, and satellite antenna size is quantized for satellites in two elliptical orbits, the Molniya and the ACE orbits. The number of satellites necessary for continuous CONUS coverage has been determined for the satellites in these orbits. The increased system complexity brought about by the use of satellites at such altitudes is discussed.

  8. Characterization of the RPW Electric Antenna System aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Rucker, H. O.; Oswald, T.; Sampl, M.; Fischer, G.; Macher, W.; Maksimovic, M.

    2009-12-01

    Radio and Plasma Waves Experiment The Radio and Plasma Waves experiment (RPW) is unique amongst the Solar Orbiter instruments in that it makes both important in situ and remote-sensing measurements. It is of prime importance for the Solar Orbiter mission. RPW will perform measurements to determine the properties, dynamics and interactions of plasma, fields and particles in the near-Sun heliosphere. It will participate in the investigation of the links between the solar surface, corona and inner heliosphere. RPW will explore, at all latitudes, the energetics, dynamics and fine-scale structure of the Sun’s magnetized atmosphere. More specifically, RPW will measure magnetic and electric fields in high time resolution using a number of sensors, to determine the characteristics of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz. Electric Antenna System A novel electric antenna design is proposed for the RPW experiment. It consists of a set of three identical monopoles, each of a total length of more than 6 meters, deployed from the corners of the spacecraft and perpendicular to the spacecraft-Sun axis. Each of the three antennas rods has a length of 5m and is mounted on a boom. The antennas are equally spaced, so the angles between the antennas are 120°. Simulation of the Antenna System Performance The electromagnetic wave reception properties of the spacecraft antenna system are influenced by the currents flowing on the conductive surface of the spacecraft body and the impedances at the foot points of the antenna rods. In the specific case of Solar Orbiter the spacecraft body and the antenna system structure is not yet finally defined, however the preliminary known schematics enable a first estimate of the effective length vectors. The foot point voltages for all antenna elements are calculated for linear polarized waves, incident from different directions. Applying the reciprocity theorem a full polarimetric characterization of

  9. Independent Orbiter Assessment (IOA): Analysis of the backup flight system

    NASA Technical Reports Server (NTRS)

    Prust, E. E.; Mielke, R. W.; Hinsdale, L. W.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the analysis results corresponding to the Orbiter Backup Flight System (BFS) hardware. The BFS hardware consists of one General Purpose Computer (GPC) loaded with backup flight software and the components used to engage/disengage that unique GPC. Specifically, the BFS hardware includes the following: DDU (Display Driver Unit), BFC (Backup Flight Controller), GPC (General Purpose Computer), switches (engage, disengage, GPC, CRT), and circuit protectors (fuses, circuit breakers). The IOA analysis process utilized available BFS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the failure modes analyzed, 19 could potentially result in a loss of life and/or loss of vehicle.

  10. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    NASA Astrophysics Data System (ADS)

    Baruteau, Clément; Bai, Xuening; Mordasini, Christoph; Mollière, Paul

    2016-05-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets internal evolution, like cooling and contraction, the mass-luminosity relation, and the bulk composition expressed in the mass-radius and mass-mean density relations.

  11. Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system

    NASA Technical Reports Server (NTRS)

    Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs.

  12. Space shuttle orbiter reaction control system jet interaction study

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1975-01-01

    The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  13. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  14. Orbital evolution of the large outer solar system object 5145 Pholus

    NASA Astrophysics Data System (ADS)

    Asher, D. J.; Steel, D. I.

    1993-07-01

    The large asteroid/comet 5145 Pholus in the outer solar system has an orbit which currently crosses Saturn, Uranus, and Neptune. We numerically integrate 27 test particles with initial orbits similar to but distinct from the present orbit of Pholus forward over 800,000 yr. Many particles remain in the outer solar system with slow orbital evolution, and another group is accelerated into long-period orbits with perihelia still in the outer planetary region, exceedingly slow evolution then following. However, a significant fraction (5 out of 27) attain orbits crossing Jupiter's path, or at least approaching that planet, and much swifter evolution then occurs. Time-scales for substantial alterations are of the order of 10 exp 6 yr if long-period orbits are reached, 10 exp 5 yr if the objects remain in intermediate-period orbits in the outer solar system, and less than 10 exp 4 yr once Jupiter-approaching orbits are entered. Four of the particles are eventually ejected from the solar system: two by Jupiter, and two by Saturn before they ever become Jupiter-approaching. Two of the particles enter Mars- and even earth-crossing orbits for a few tens of thousands of years, and our results imply a 5-10 percent chance that an object with an orbit like Pholus may attain an earth-approaching orbit within 1 Myr.

  15. Thermodynamic Vent System Test in a Low Earth Orbit Simulation

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    2004-01-01

    A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.

  16. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  17. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  18. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  19. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  20. Advances in uncooled systems applications

    NASA Astrophysics Data System (ADS)

    Anderson, John S.; Bradley, Daryl; Chen, Chungte W.; Chin, Richard; Gonzalez, H.; Hegg, Ronald G.; Kostrzewa, K.; Le Pere, C.; Ton, S.; Kennedy, Adam; Murphy, Daniel F.; Ray, Michael; Wyles, Richard; Miller, James E.; Newsome, Gwendolyn W.

    2003-09-01

    The Low Cost Microsensors (LCMS) Program recently demonstrated state-of-the-art imagery in a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 x 480 format focal plane array (FPA) engine. The 640 x 480 sensor is applicable to long-range surveillance and targeting missions. The intent of this DUS&T effort was to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging. In addition, the Advanced Uncooled Thermal Imaging Sensors (AUTIS) Program extended this development to light-weight, compact unmanned aerial vehicle (UAV) applications.

  1. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  2. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  3. Effects of orbital drift on advanced very high resolution radiometer products: Normalized difference vegetation index and sea surface temperature

    SciTech Connect

    Privette, J.L.; Fowler, C.; Wick, G.A.; Baldwin, D.; Emery, W.J.

    1995-09-01

    Although orbits of the NOAA TIROS-N satellites are designed to be sun-synchronous, epheremis data shows that the afternoon, ascending node satellites currently cross the equator hours later than they did upon launch. This delay results in different illumination conditions for measurements made by the Advanced Very High Resolution Radiometer (AVHRR). The effects of illumination on two standard AVHRR products--normalized difference vegetation index (NDVI) and sea surface temperature (SST)--are modeled here. Combining orbital data with model results, the effects of the NOAA-11 orbital drift on NDVI are quantitatively assessed for three earth targets: an equatorial Africa site (0{degree} N), the First ISLSCP field Experiment (FIFE) site (39{degree} N), and the Boreal Ecosystem-Atmosphere Study (BOREAS) site (55{degree} N). Top-of-atmosphere NDVI corrections for solar zenith angle are developed for a dense, deciduous forest. Orbital drift effects on SST are given for an equatorial site. Although results vary with season, latitude, atmosphere and time since launch, NDVI differences of up to 0.23 and SST differences of up to 0.5 K may occur due strictly to orbital drift.

  4. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  5. Dynamical analysis of an orbiting three-rigid-body system

    SciTech Connect

    Pagnozzi, Daniele E-mail: james.biggs@strath.ac.uk; Biggs, James D. E-mail: james.biggs@strath.ac.uk

    2014-12-10

    The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.

  6. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  7. Beam position feedback system for the Advanced Photon Source

    SciTech Connect

    Chung, Y.

    1993-12-31

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the vacuum chamber eddy current induced by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will be presented.

  8. Precision positioning of earth orbiting remote sensing systems

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Yunck, T. P.; Wu, S. C.

    1987-01-01

    Decimeter tracking accuracy is sought for a number of precise earth sensing satellites to be flown in the 1990's. This accuracy can be achieved with techniques which use the Global Positioning System (GPS) in a differential mode. A precisely located global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite states. Three basic navigation approaches include classical dynamic, wholly nondynamic, and reduced dynamic or hybrid formulations. The first two are simply special cases of the third, which promises to deliver subdecimeter accuracy for dynamically unpredictable vehicles down to the lowest orbit altitudes. The potential of these techniques for tracking and gravity field recovery will be demonstrated on NASA's Topex satellite beginning in 1991. Applications to the Shuttle, Space Station, and dedicated remote sensing platforms are being pursued.

  9. Numerical Simulations of the Solar Orbiter Antenna System RPW ANT

    NASA Astrophysics Data System (ADS)

    Sampl, M.; Rucker, H. O.; Oswald, T. H.; Plettemeier, D.; Maksimovic, M.; Macher, W.

    The high-frequency electric sensors onboard Solar Orbiter are part of the radio and plasma wave experiment (RPW). The sensors consist of cylindrical antennas (ANT) mounted on three booms extruded from the central body of the spacecraft. Due to the parasitic effects of the conducting spacecraft body and solar panels the true antenna properties (effective axes and length, capacitances) do not coincide with their physical representations. The numerical analysis of the reception properties of these antennas is presented. In order to analyze the antenna system we applied a numerical method. The current distribution on the spacecraft body and the effective length vector was calculated, by solving the underlying field equations using electromagnetic code. In the applied method the spacecraft is modeled as a mesh-grid.

  10. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  11. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  12. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  13. Non-Toxic Orbiter Maneuvering System (OMS) and Reaction Control System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000

  14. Hardware design and implementation of the closed-orbit feedback system at APS

    SciTech Connect

    Barr, D.; Chung, Youngjoo

    1996-10-01

    The Advanced Photon Source (APS) storage ring will utilize a closed-orbit feedback system in order to produce a more stable beam. The specified orbit measurement resolution is 25 microns for global feedback and 1 micron for local feedback. The system will sample at 4 kHz and provide a correction bandwidth of 100 Hz. At this bandwidth, standard rf BPMs will provide a resolution of 0.7 micron, while specialized miniature BPMs positioned on either side of the insertion devices for local feedback will provide a resolution of 0.2 micron (1). The measured BPM noise floor for standard BPMs is 0.06 micron per root hertz mA. Such a system has been designed, simulated, and tested on a small scale (2). This paper covers the actual hardware design and layout of the entire closed-loop system. This includes commercial hardware components, in addition to many components designed and built in-house. The paper will investigate the large-scale workings of all these devices, as well as an overall view of each piece of hardware used.

  15. Accurate characterization of the stellar and orbital parameters of the exoplanetary system WASP-33 b from orbital dynamics

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2016-01-01

    By using the most recently published Doppler tomography measurements and accurate theoretical modelling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination ip to the plane of the sky and of the sky-projected spin-orbit misalignment λ at two epochs about six years apart allowed for the determination of the longitude of the ascending node Ω and of the orbital inclination I to the apparent equatorial plane at the same epochs. As a consequence, average rates of change dot{Ω }_exp, dot{I}_exp of this two orbital elements, accurate to a ≈10-2 deg yr-1 level, were calculated as well. By comparing them to general theoretical expressions dot{Ω }_{J_2}, dot{I}_{J_2} for their precessions induced by an oblate star whose symmetry axis is arbitrarily oriented, we were able to determine the angle i⋆ between the line of sight the star's spin {S}^{star } and its first even zonal harmonic J_2^{star } obtaining i^{star } = {142}^{+10}_{-11} deg, J_2^{star } = 2.1^{+0.8}_{-0.5}times; 10^{-4}. As a by-product, the angle between {S}^{star } and the orbital angular momentum L is as large as about ψ ≈ 100 ° psi; ^{2008} = 99^{+5}_{-4} deg, ψ ^{{2014}} = 103^{+5}_{-4} deg and changes at a rate dot{ψ }= 0.{7}^{+1.5}_{-1.6} deg {yr}^{-1}. The predicted general relativistic Lense-Thirring precessions, of the order of ≈10-3deg yr-1, are, at present, about one order of magnitude below the measurability threshold.

  16. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  17. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  18. Advanced Power System Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.

  19. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jennette

    2016-01-01

    Enable future missions Any mission to a DRO or halo orbit could benefit from the capability to transfer between these orbits Chemical propulsion could be used for these transfers, but at high propellant cost Fill gaps in knowledge A variety of transfers using SEP or solar sails have been studied for the Earth-Moon system Most results in literature study a single transfer This is a step toward understanding the wide array of types of transfers available in an N-body force model.

  20. Strategies for high-precision Global Positioning System orbit determination

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  1. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  2. Payload/orbiter signal-processing and data-handling system evaluation

    NASA Technical Reports Server (NTRS)

    Teasdale, W. E.; Polydoros, A.

    1980-01-01

    Incompatibilities between orbiter subsystems and payload communication systems to assure that acceptable and to end system performamce will be achieved are identified. The potential incompatabilities are associated with either payloads in the cargo bay or detached payloads communicating with the orbiter via an RF link. The payload signal processing and data handling systems are assessed by investigating interface problems experienced between the inertial upper stage and the orbiter since similar problems are expected for other payloads.

  3. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  4. The Lunar Reconnaissance Orbiter Mini RF System (Invited)

    NASA Astrophysics Data System (ADS)

    Nozette, S.

    2009-12-01

    The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in space-borne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S and X band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1-1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results (ref. 1-5). The LRO Mini-RF utilizes new wide band hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from ”false” returns due to angular surface regolith (ref. 6) . Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S band wavelength and 150-m resolution). On orbit calibration procedures for LRO Mini RF have been validated using Chandrayaan 1 and ground based facilities (Arecibo and Greenbank Radio Observatories). References: 1) Nozette S. et al. (1996) Science 274, 1495. 2) Simpson R. and Tyler L. (1999) JGR 104, 3845. 3) Nozette S. et al. (2001) JGR 106, 23253. 4) Campbell D. et al., (2006) Nature 443, 835. 5) Feldman W. et al., (2001) JGR 106, 23231. 6) Raney R.K. (2007) IEEE Trans Geosci. Remote Sens. 45, 3397

  5. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for improved regional weather prediction and monitoring of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-12-01

    Hyperspectral infrared atmospheric sounders (e.g. the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast1. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  6. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  7. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  8. Advanced action manipulator system (ADAMS)

    NASA Technical Reports Server (NTRS)

    Kugath, D. A.; Dane, D. H.; Blaise, H. T.

    1973-01-01

    Manipulator offers improved performance over other models in its category. It features larger force and reach capabilities and is readily convertible for underwater use. Unique kinematic arrangement provides extremely large working envelope. System has six degrees of motion: azimuth joint, shoulder joint, upper arm rotating joint, elbow joint, wrist pitch, and wrist twist.

  9. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  10. Influence of orbital-maneuvering-system fairings and rudder flare on the transonic aerodynamic characteristics of a space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ellison, J. C.

    1975-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel to determine the influence of orbital-maneuvering-system fairings and a flared rudder on the aerodynamic characteristics of a space shuttle-orbiter configuration. Tests were made at Mach numbers from 0.4 to 1.2, at angles of attack from -1 deg to 24 deg, at angles of sideslip of 0 deg and 5 deg, and at a Reynolds number, based on model length, of 4 million. The model with the orbital-maneuvering-system fairings had a minimum untrimmed lift-drag ratio from 7.4 to 3.4 at Mach numbers from 0.4 to 1.2 and a maximum trimmed lift-drag ratio of about 3.55 at Mach 0.8 with the rudder flared 30 deg. The directional stability was increased at Mach 0.8 and 1.2 by addition of the orbital-maneuvering-system fairings and at Mach 1.2 by flaring the rudder.

  11. Landsat 8 on-orbit characterization and calibration system

    USGS Publications Warehouse

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  12. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  13. Development of Advanced Alarm System for SMART

    SciTech Connect

    Jang, Gwi-sook; Seoung, Duk-hyun; Suh, Sang-moon; Lee, Jong-bok; Park, Geun-ok; Koo, In-soo

    2004-07-01

    A SMART-Alarm System (SMART-AS) is a new system being developed as part of the SMART (System-integrated Modular Advanced Reactor) project. The SMART-AS employs modern digital technology to implement the alarm functions of the SMART. The use of modern digital technology can provide advanced alarm processing in which new algorithms such as a signal validation, advanced alarm processing logic and other features are applied to improve the control room man-machine interfaces. This paper will describe the design process of the SMART-AS, improving the system reliability and availability using the reliability prediction tool, design strategies regarding the human performance topics associated with a computer-based SMART-AS and the results of the performance analysis using a prototype of the SMART-AS. (authors)

  14. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  15. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1994-10-01

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

  16. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  17. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  18. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  19. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  20. The ELLIPSO (tm) system: Elliptical low orbits for mobile communications and other optimum system elements

    NASA Astrophysics Data System (ADS)

    Castiel, David

    1991-09-01

    On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.