Science.gov

Sample records for advanced ordered intermetallic

  1. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  2. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  3. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  4. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  5. Environmental embrittlement in ordered intermetallic alloys

    SciTech Connect

    Liu, C.T.; Stoloff, N.S.

    1992-12-31

    Ordered intermetallics based on aluminides and silicides possess many promising properties for elevated-temperature applications; however, poor fracture resistance and limited fabricability restrict their use as engineering material. Recent studies have shown that environmental embrittlement is a major cause of low ductility and brittle fracture in many ordered intermetallic alloys. There are two types of environmental embrittlement observed in intermetallic alloys. One is hydrogen-induced embrittlement occurring at ambient temperatures in air. The other is oxygen-induced embrittlement in oxidizing atmospheres at elevated temperatures. In most cases, the embrittlements are due to a dynamic effect involving generation and penetration of embrittling agents (i.e., hydrogen or oxygen ) during testing. Diffusion of embrittling agents plays a dominant role in fracture of these intermetallic alloys. This chapter summarizes recent progress in understanding and reducing environmental embrittlement in these alloys.

  6. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  7. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  8. Advanced reinforcement systems for intermetallic applications

    NASA Technical Reports Server (NTRS)

    Merrick, Howard F.; Labib, Mohammed L.

    1993-01-01

    A 2-D axisymmetric model was employed to determine the magnitude of the radial, axial, and hoop stresses caused by the thermal expansion difference between fiber and matrix and which result from the fabrication temperature cycle. Finite element analysis was conducted for single fiber model systems based on SCS-6/Ti3Al+Nb and Al2O3/NiAl. The stress distribution due to the imposition of a graded intermediate layer for each system was determined and included variables of layer thickness and gradation in interlayer chemistry in order to vary the expansion gradient between fiber and matrix. Thermal cycling tests were conducted on sputter coated SCS-6 fibers selectively coated with Ti3Al+Nb, with and without an intermediate layer. Cracking of the Ti3Al+Nb layers was prevented by an interlayer based on Ti-TiN-Ti. The interlayer thickness appeared critical to its efficiency. Similarly, for the case of Al2O3/NiAl, an intermediate layer consisting of a Ni bond coat on the sapphire fiber followed by a graded Al2O3-NiAl layer did not crack when given a thermal excursion to 1100 C and then cooled to room temperature. Acoustic emission tests on single fiber specimens were unsuccessful in detecting load drops associated with the successive fracture of the fiber. For the SCS-6/Ti3Al system this was the result of several factors which included the matrix/fiber ratio and poor bonding of the matrix and fiber. In the case of the Al2O3/NiAl system brittle failure of the NiAl matrix precluded fiber breakdown during tensile loading.

  9. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  10. The role of ALCHEMI in understanding the properties of ordered intermetallic alloys

    SciTech Connect

    Anderson, I.M.

    1998-11-01

    After one and one-half decades of development, ALCHEMI is approaching the status of an established analytical technique. Many of the problems that have plagued ALCHEMI, especially for the analysis of ordered intermetallic alloys, are now well understood, and accurate site-distributions can be extracted from a variety of intermetallic alloys. This paper begins with an overview of the factors that can lead to large systematic errors or gross misinterpretations of ALCHEMI data, with illustrations from a variety of ordered intermetallic alloys. The paper concludes with a discussion of ALCHEMI in the broader context of understanding the properties of ordered intermetallic alloys. The results of systematic studies are used to illustrate the role of ALCHEMI in determining the competing effects of thermodynamic and kinetic factors during alloy processing and the correlation of alloy properties with the atomic site distributions on which the properties ultimately depend.

  11. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W. ); Fernando, G.W. . Dept. of Physics); Bennett, L.H. . Metallurgy Div.)

    1992-01-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund's rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  12. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W.; Fernando, G.W.; Bennett, L.H.

    1992-10-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions & band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund`s rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  13. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  14. High-temperature ordered intermetallic alloys III; Proceedings of the Third Symposium, Boston, MA, Nov. 29-Dec. 1, 1988

    NASA Technical Reports Server (NTRS)

    Liu, C. T. (Editor); Taub, A. I. (Editor); Stoloff, N. S. (Editor); Koch, C. C. (Editor)

    1989-01-01

    The present conference on high-temperature ordered intermetallic alloys discusses alloy theory and phase stability, defects and microstructures, mechanical behavior, alloy design and material processing, multiphase and composite materials, nickel aluminides, titanium aluminides, and other ordered intermetallics. Attention is given to compositional effects on processing and properties of nickel aluminides, dynamic compaction and hot-isostatic-pressing of nickel aluminides, improvement of elevated-temperature material properties in Ni3Al, the effect of microalloying B on the high-temperature mechanical properties of Ti3Al, the effects of structure on creep of Ti-53.4 mol pct Al intermetallics, the deformation microstructure in Ni3Si polycrystals strained over the range of temperature of flow stress anomaly, and the microstructure and mechanical properties of dual phase alloys consisting of the intermetallic phases.

  15. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less

  16. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst.

    PubMed

    Cui, Zhiming; Li, Longjun; Manthiram, Arumugam; Goodenough, John B

    2015-06-17

    We report an ordered Pd3Fe intermetallic catalyst that exhibits significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions. Ordered Pd3Fe enables a hybrid Li-air battery to exhibit the best reported full-cell cycling performance (220 cycles, 880 h). PMID:26020366

  17. Non-classical nucleation theory of ordered intermetallic precipitates -- application to the Al-Li alloy

    SciTech Connect

    Poduri, R.; Chen, L.Q.

    1996-10-01

    The continuum non-classical nucleation theory of Cahn and Hilliard for isostructural decomposition has been extended to the case in which the precipitate and matrix not only have different compositions, but also have different structures. The particular example of precipitation of ordered intermetallics from a disordered matrix is considered. It is found that a critical nucleus consists of fluctuations of both composition and long-range order parameter profiles. It is shown that only when the composition of the initial disordered matrix is near the phase boundary of the disordered phase, are the composition and order parameter values inside the critical nucleus close to those of the equilibrium ordered phase, and that the critical profiles become increasingly diffuse as the composition of the disordered matrix approaches the ordering instability line. Based on the non-classical nucleation theory, the size of critical fluctuations, the critical free energy change and the nucleation rate are estimated for the specific case of the precipitation of metastable {delta}{prime} ordered phase from a disordered matrix in the Al-Li alloy.

  18. Micromechanisms of monotonic and cyclic subcritical crack growth in advanced high-melting-point low-ductility intermetallics. Annual report No. 1, 15 Apr 90-14 Apr 91

    SciTech Connect

    Rao, K.T.; Murugesh, L.; DeJonghe, L.C.

    1991-05-01

    The next generation of high-performance jet engines will require markedly stiffer materials, operating at higher stress levels and capable of withstanding temperatures of up to 1650 C. Prime candidates for such applications include ordered intermetallics, ceramics and composites based on metal, intermetallic and ceramic or carbon matrices, all of which are currently of limited use due to their low ductility and fracture properties. Moreover, there is a lack of fundamental understanding on the micromechanisms influencing crack growth in these materials, particularly intermetallics. Accordingly, the present study is aimed at exploring the potential of intermetallic alloys and their composites as advanced structural materials by identifying the critical factors influencing the crack-propagation resistance under monotonic and cyclic loads. Attention is focused on the Nb{sub 3}Al and TiAl intermetallic systems. In both cases, the principal mechanism of toughening is to impede crack advance from crack bridging by ductile second phase particles. Reactive sintering and vacuum hot pressing techniques are successful is processing Nb{sub 3}Al intermetallics and duplex Nb/Nb{sub 3}Al microstructure with a stringy niobium phase can be achieved through thermal treatments. Characterization of mechanical properties will commence in the second year.

  19. Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials

    SciTech Connect

    Liu, Yi; Lowe, Michael A.; DiSalvo, Francis J.; Abruña, Héctor D.

    2010-08-16

    The influence of fuel molecules on the stability of the ordered intermetallic PtBi and PtPb phases has been extensively studied by synchrotron-based in situ X-ray grazing incidence diffraction under active electrochemical control. Cycling the potential to increasingly positive values resulted in little change to the surface composition and crystalline structure when specific fuel molecules (such as formic acid for PtBi and formic acid or methanol for PtPb) were oxidized at the intermetallic electrode surface. This was demonstrated by the absence of diffraction peaks due to Pt domains that would be generated by the leaching out of the less noble metal. This phenomenon has been rationalized as a competition process between the oxidation of fuel molecules at the electrode surface and corrosion and damage of the surface due to the electrochemical treatment. For example, PtBi electrodes, which exhibit excellent catalytic activity toward the oxidation of formic acid, could be kinetically stabilized to such a corrosion/degradation process in the presence of formic acid even at relatively positive potentials. An analogous effect was observed for PtPb in the presence of methanol as fuel. In the absence of fuel molecules (formic acid for PtBi and formic acid and/or methanol for PtPb), various surface layers were generated by different electrochemical pretreatments in the presence of only a supporting electrolyte. Crystalline oxidized bismuth species (such as Bi2O3) with an ~50 nm domain size were formed on the PtBi electrode surface by holding the potential at +1.00 V or beyond for at least 30 min. On the other hand, platinum nanopaticles with an ~5 nm crystalline domain size were formed when cycling the potential to higher values. In the case of PtPb, the only detected corrosion product was PbSO 4, whose diffraction peaks were utilized to qualitatively analyze the lead leaching-out and dissolution processes. No crystalline lead oxide species

  20. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-11-01

    Ni3V bulk intermetallic compounds with ordered D022 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D022 structure of Ni3V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D022 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation.

  1. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.

    PubMed

    Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo

    2015-08-01

    Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to

  2. Deformation twinning in metals and ordered intermetallics-Ti and Ti-aluminides

    NASA Astrophysics Data System (ADS)

    Yoo, M. H.; Fu, C. L.; Lee, J. K.

    1991-06-01

    The role of deformation twinning in the strength and ductility of metals and ordered intermetallic alloys is examined on the basis of crystallography, energetics and kinetics of deformation twinning. A systematic analysis is made by taking Ti, Ti3AI, TiAl, and A13Ti as four model systems. In comparison with profuse twinning in Ti, the intrinsic difficulty of twinning in Ti3A1 is rationalized in terms of the interchange shuffling mechanism. A fault (SISF) dragging mechanism based on the interaction torque explains the physical source for the low mobility of screw superdislocations in TiAl, which may lead to (111) [ 11bar{2}] twin nucleation. In TiAl and A13Ti alloys, the twin-slip (ordinary) conjugate relationship makes an important contribution to the strain compatibility for high-temperature plasticity. Potentially beneficial alloying additions to promote twinning are discussed. Les conséquences de la déformation par maclage sur la fracture et la ductilité des métaux et alliages intermétalliques ordonnés sont étudiées en fonction de la cristallographie, de l'énergie et de la cinétique des déformations par maclage. Une analyse systématique a été faite en considérant Ti, Ti3AI, TiAl et A13Ti comme quatre systèmes modèles. En comparaison avec le nombre important de maclages observés dans Ti, la difficulté intrinsèque des maclages dans Ti3AI est rationalisée en terme de mécanisme d'“interchange shuffling”. Un mécanisme de “dragging fault” basé sur l'interaction “torque” explique l'origine physique de la faible mobilité des superdislocations vissées dans TiAl qui peuvent conduire à la nucléation des macles (111) 112. Dans les alliages tels TiAl et A13Ti, la relation conjuguée entre la macle et le glissement (ordinaire) contribue de façon importante à la compatibilité des contraintes lors de la déformation plastique à haute température. Des effets bénéfiques potentiels liés à des éléments d'addition sur le processus

  3. Oxidation behavior of plasma sintered beryllium-titanium intermetallic compounds as an advanced neutron multiplier

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2013-07-01

    Beryllium intermetallic compounds (beryllides) such as Be12Ti are very promising candidates for advanced neutron multiplier materials in a demonstration fusion power reactor (DEMO). However, beryllides are too brittle to be fabricated either into pebble-type or rod-type shapes via conventional methods (i.e. arc melting and hot isostatic pressing). We have proposed a plasma sintering technique as a new method for beryllide fabrication, and our studies on the properties of plasma sintered beryllides are ongoing. In the present work, the oxidation properties of plasma sintered beryllides were investigated at 1273 K for 24 h in a dry air atmosphere to evaluate the high temperature properties of this material. Thermal gravimetry measurements indicate that specimens with larger fractions of Be12Ti phase corresponding to samples that have been sintered for longer time periods, exhibit superior oxidation properties. Our evaluation of the oxidation behavior of each phase in our beryllide samples is as follows: Be12Ti and Be17Ti2 both have good oxidation resistance, owing to the formation of dense and protective scales, while the Be and Be2Ti phases are mainly responsible for thermal-gravimetry (TG) weight gains, which is indicative of severe oxidation. We attribute the degradation in oxidation resistance specifically to Be2Ti that transforms into TiO2, and also find this phase to be the cause of deterioration in the mechanical properties of samples, owing to cracks near Be2Ti phase conglomerates.

  4. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    PubMed

    Jana, Subhra

    2015-11-21

    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity. PMID:26477400

  5. Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Alcántara, Ricardo; Nwokeke, Uche G.; Nacimiento, Francisco; Lavela, Pedro; Tirado, José L.

    2011-06-01

    Intermetallic compounds of tin and first-row transition metals have been considered as potential anode materials for Li-ion batteries that could improve the performance of pure tin. Particularly, the solids dispersed at the nano scale provide interesting behavior. Thus CoSn, FeSn2 and CoSn3 nanocrystalline samples have been obtained at low temperatures. As compared with micrometric particles of CoSn, significantly higher reversible capacities are found for nanocrystalline CoSn. For nanocrystalline CoSn3 maximum reversible capacities of 690 mAh g-1 were observed in lithium test cells. Nanocrystalline products in the series CoSn2-FeSn2 could be prepared by chemical reduction in polyol solvents using a "one-pot" method. Superparamagnetic nanocrystalline FeSn2 delivers reversible capacities of ca. 600 mAhg-1 by the formation of LixSn phases and superparamagnetic iron nanoparticles. A comparison between the properties of nano- FeSn2 and micro-FeSn2 shows a significantly better electrochemical behavior and electrode stability for the nanocrystalline material. For Fe1-xCoxSn2 solid solutions with x= 0.25, 0.3, 0.5, 0.6 and 0.8, particle diameters of about 20 nm and different morphologies were obtained. The substitution of iron by cobalt induces a contraction of the unit cell volume and the hyperfine parameters of the 57Fe Mössbauer spectra reveal a superparamagnetic behavior. The intermediate compositions exhibit better electrochemical performance than the limit compositions CoSn2 and FeSn2. To improve the performance of CoSnx intermetallics, composites in which the nanocrystalline intermetallic material is embedded in an amorphous layer based on the polyacrylonitrile (PAN) polymer were used. The PAN shell contributes to stabilize the intermetallic phases upon electrochemical cycling.

  6. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  7. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  8. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  9. Innovative processing to produce advanced intermetallic materials. Phase 1 final report

    SciTech Connect

    Loutfy, R.O.

    1989-09-01

    The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

  10. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  11. Advanced image analysis of the surface pattern emerging in Ni3Al intermetallic alloys on anodization

    NASA Astrophysics Data System (ADS)

    Salerno, Marco; Stępniowski, Wojciech; Cieślak, Grzegorz; Norek, Małgorzata; Michalska-Domańska, Marta; Karczewski, Krzysztof; Chilimoniuk, Paulina; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2016-07-01

    Anodization of Ni3Al alloy is of interest in the field of industrial manufacturing, thanks to the formation of protective oxide layer on the materials working in corrosive environments and high temperatures. However, homogeneous surface treatment is paramount for technological applications of this material. The anodization conditions have to be set outside the ranges of corrosion and “burning”, which is the electric field enhanced anodic dissolution of the metal. In order to check against occurrence of these events, proper quantitative means for assessing the surface quality have to be developed and established. We approached this task by advanced analysis of scanning electron microscope images of anodized Ni3Al plates. The anodization was carried out in 0.3 M citric acid at two temperatures of 0 and 30°C and at voltages in the range of 2 12 V. Different figures can be used to characterize the quality of the surface, in terms of uniformity. Here, the concept of regularity ratio spread is used for the first time on surfaces of technological interest. Additionally, the Minkowski parameters have been calculated and their meaning is discussed.

  12. Intermetallic Layers in Soldered Joints

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  13. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.

    PubMed

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417

  14. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.

    PubMed

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-05-19

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.

  15. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    NASA Astrophysics Data System (ADS)

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-05-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.

  16. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    PubMed Central

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417

  17. Up-and-coming IMCs. [Intermetallic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bowman, Randy; Noebe, Ronald

    1989-01-01

    While the good oxidation and environmental resistance, high melting points, and comparatively low densities of such ordered intermetallics as Ti3Al, NiAl, FeAl, and NbAl3 render them good candidates for advanced aerospace structures, their poor toughness at low temperatures and low strength at elevated temperatures have prompted the development of fiber-reinforced intermetallic-matrix composites (IMCs) with more balanced characteristics. Fabrication methods for continuous-fiber IMCs under development include the P/M 'powder cloth' method, the foil/fiber method, and thermal spraying. The ultimate success of IMCs depends on fibers truly compatible with the matrix materials.

  18. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  19. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-01

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20 000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types.

  20. Advance Directives and Do Not Resuscitate Orders

    MedlinePlus

    ... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...

  1. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  2. Reaction synthesis of intermetallics

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1994-12-31

    Exothermicity associated with the synthesis of aluminides was utilized to obtain nickel, iron, and cobalt aluminides. Combustion synthesis, extrusion, and hot pressing were utilized to obtain intermetallics and their composites. Extrusion conditions, reduction ratios, and hot-pressing conditions of the intermetallics and their composites are discussed.

  3. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  4. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  5. High-temperature structural intermetallics

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Ito, K.

    2000-01-01

    In the last one and a half decades, a great deal of fundamental and developmental research has been made on high-temperature structural intermetallics aiming at the implementation of these intermetallics in aerospace, automotive and land-based applications. These intermetallics include aluminides formed with either titanium, nickel or iron and silicides formed with transition metals. Of these high-temperature intermetallics, TiAl-based alloys with great potential in both aerospace and automotive applications have been attracting particular attention. Recently TiAl turbocharger wheels have finally started being used for turbochargers for commercial passenger cars of a special type. The current status of the research and development of these high-temperature intermetallics is summarized and a perspective on what directions future research and development of high-temperature intermetallics should take is provided.

  6. Recent Advances in Higher-order Multimodal Biomedical Imaging Agents

    PubMed Central

    Rieffel, James; Chitgupi, Upendra

    2015-01-01

    Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, we review recent progress in higher-order multimodal imaging agents, which span a range of material and structural classes, that have demonstrated utility in three (or more) imaging modalities. PMID:26185099

  7. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  8. Micromechanisms of deformation and fracture in ordered intermetallic alloys: 1, Strengthening mechanisms. [Ni/sub 3/Al and CuZn

    SciTech Connect

    Yoo, M.H.; Horton, J.A.; Liu, C.T.

    1988-07-01

    The stability and mobility of active slip and twin modes in superlattice structures, for both cubic and noncubic crystals, are theoretically investigated based on the energetics and kinetics of dislocation dissociations. The main concept of the force couplet model for the positive temperature dependence of yield and flow stresses is introduced. Two sources of the glide resistance in ordered lattices are the fault dragging mechanism and the cross-slip pinning mechanism. The effective fault energy consists of two terms related to the chemical and mechanical instability of a shear fault (antiphase boundary, superlattice intrinsic stacking fault, or microtwin). Dependence of the yield stress on the orientation and the sense of applied stress stems from the signs and magnitudes of the glide and nonglide stresses. As the effective fault energy is altered by solute segregation and/or high nonglide stress, the two glide resistance mechanisms are affected differently. In Ni/sub 3/Al and ..beta..-CuZn, the major aspects of anomalous yield strength, strain rate sensitivity, in situ deformation transmission electron microscopy observations, microtwinning, and nonstoichiometry effect are discussed in view of the present model. In addition, the order twinning-slip conjugate relationship is identified, in all the superlattice structures considered, which will influence the deformation behavior by viscous glide at high temperatures. 106 refs., 17 figs., 5 tabs.

  9. Reactions of intermetallic clusters

    NASA Astrophysics Data System (ADS)

    Farley, R. W.; Castleman, A. W., Jr.

    1990-02-01

    Reaction of bismuth-alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip BixNay and BixKy, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of BixNay clusters with HC1 are estimated to lie between 3×10-13 for Bi4Na, to greater than 4×10-11 for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1-9×10-14 and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  10. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  11. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  12. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... COMMISSION Advanced Optics Electronics, Inc.; Order of Suspension of Trading March 2, 2011. It appears to the... securities of Advanced Optics Electronics, Inc. because it has not filed any periodic reports since the... of investors require a suspension of trading in Advanced Optics Electronics, Inc. Therefore, it...

  13. Third Intermetallic Matrix Composites Symposium, volume 350

    SciTech Connect

    Graves, J.A.; Bowman, R.R.; Lewandowski, J.J.

    1994-04-01

    Partial contents include: issues in potential IMC application for aerospace structures; powder metallurgy processing of intermetallic matrix composites; microstructure and properties of intermetallic matrix composites produced by reaction synthesis; combustion synthesis of niobium aluminide matrix composites; ambient temperature synthesis of bulk intermetallics; wear behavior of SHS intermetallic matrix composites; fracture characteristics of metal-intermetallic laminates produced by SHS reactions; and vapor phase synthesis of Ti aluminides and the interfacial bonding effect on the mechanical property of micro-composites reinforced by pyrolized SiC fibers.

  14. Fundamentals of mechanical behavior in structural intermetallics: A synthesis of atomistic and continuum modeling

    SciTech Connect

    Yoo, M.H.; Fu, C.L.

    1993-08-01

    After a brief account of the recent advances in computational research on mechanical behavior of structural intermetallics, currently unresolved problems and critical issues are addressed and the knowledge base for potential answers to these problems is discussed. As large-scale problems (e.g., dislocation core structures, grain boundaries, and crack tips) are treated by atomistic simulations, future development of relevant interatomic potentials should be made consistent with the results of first-principles calculations. The bulk and defect properties calculated for intermetallic compounds, both known and as yet untested, can furnish insights to alloy designers in search of new high-temperature structural intermetallics.

  15. 78 FR 46575 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for September 2013 The following...

  16. 75 FR 339 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration, Department of Commerce....

  17. 75 FR 30371 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... International Trade Administration Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... amended (``the Act''), the Department of Commerce (``the Department'') and the International...

  18. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  19. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  20. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  1. Suppressors made from intermetallic materials

    SciTech Connect

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  2. Superplastic ceramics and intermetallics and their potential applications

    SciTech Connect

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al{sub 2}O{sub 3} Hydroxyapatite, {beta}-spodumene glass ceramics, Al{sub 2}0{sub 3}-YTZP two-phase composites, SiC-Si{sub 3}N{sub 4} and Fe-Fe{sub 3}C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni{sub 3}Al and Ni{sub 3}Si) and titanium-base intermetallics (TiAl and T1{sub 3}Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application.

  3. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  4. 76 FR 24458 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for June 2011 The following Sunset Reviews...

  5. 76 FR 31587 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for July 2011 The following Sunset Reviews...

  6. 77 FR 45582 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for September 2012 The following...

  7. 76 FR 74773 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for January 2012 The following Sunset...

  8. 78 FR 7397 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for March 2013 The following Sunset...

  9. 78 FR 39255 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for August 2013 The following Sunset...

  10. 75 FR 9156 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998) . The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration, Department of Commerce. ACTION: Notice of upcoming Sunset Reviews. Background Every five years, pursuant...

  11. 77 FR 12561 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for April 2012 The following Sunset...

  12. 75 FR 74681 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for January 2011 The following Sunset...

  13. 76 FR 61087 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998) . The Notice of Initiation of Five-Year (``Sunset...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for November 2011 The following Sunset...

  14. 77 FR 53862 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for October 2012 The following Sunset...

  15. 77 FR 66437 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for December 2012 The following Sunset...

  16. 77 FR 5485 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... writing within 10 days of the publication of the Notice of Initiation. Please note that if the...

  17. 76 FR 18153 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... writing within 10 days of the publication of the Notice of Initiation. Please note that if the...

  18. 77 FR 19623 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... contact the Department in writing within 10 days of the publication of the Notice of Initiation....

  19. 78 FR 287 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... Antidumping and Countervailing Duty ] Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... contact the Department in writing within 10 days of the publication of the Notice of Initiation....

  20. 77 FR 59895 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... 10 days of the publication of the Notice of Initiation. Please note that if the Department receives...

  1. 78 FR 65611 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of...; Advance Notification of Sunset Reviews AGENCY: Enforcement and Compliance, formerly Import Administration... contact the Department in writing within 10 days of the publication of the Notice of Initiation....

  2. 78 FR 50135 - CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order... current and accurate information concerning the securities of South American Minerals, Inc. because it...

  3. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  4. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  5. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  6. Synthesis of early transition metal and non-equilibrium intermetallic nanoparticles using n-butyllithium

    NASA Astrophysics Data System (ADS)

    Bondi, James F.

    Over the past decade, the role of inorganic nanomaterials has become an essential cornerstone for modern research applications. Despite these applications becoming progressively more advanced, the field of nanoscience is dependent on a material's physical and chemical properties which are affected by factors such as size, shape, composition, and crystal structure. One synthetic approach to yield inorganic nanomaterials with great control is solution-based methods, particularly the reduction of metal salt precursors. Non-equilibrium phases and early transition metals represent one class of materials that may result in new and enhanced properties at the nanoscale but are challenging to synthesize. In this dissertation, I present my studies on synthesizing non-equilibrium intermetallics and early transition metal nanoparticles using n-butyllithium and solution-based methods. By utilizing a template-driven approach, I first report an optimized synthesis for the non-equilibrium L12-type Au 3M1-x ( M = Fe, Co, or Ni) intermetallics with morphological, compositional, and structural control. Modifying a previous n-butyllithium procedure, it was possible to identify key variables (solvent, order of reagent addition, stabilizer, and heating rate) which led to the generation of high phase purity and increased sample sizes. Aliquot studies showed that the intermetallic nanoparticles were formed through the initial nucleation of Au nanoparticles, followed by subsequent incorporation of the 3d transition metal. Property studies of the non-equilibrium phases found that Au3Fe1- x and Au3Co1-x nanoparticles are superparamagnetic with TB = 7.9 K and 2.4 K, respectively, while Au3Ni 1-x is weakly paramagnetic down to 1.8 K. Elemental analysis by energy dispersive X-ray spectroscopy and refinement of electron diffraction patterns confirmed Au3Fe1- x with a composition of approximately Au3Fe 0.7. The 3d transition metal deficiency in the non-equilibrium Au3 M1-x phases was studied by

  7. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  8. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  9. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kawasaki, Masaya; Okuhara, Koji

    In this paper, we try to model for ‘Naiji System’ which is a unique corporation between a maker and suppliers in Japan. We propose Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information, which is called ‘Naiji’. This model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to the set of probabilistic constraint and some linear production constraints. We propose the new upper bound SOn (ρmin) to estimate the unfulfilled-order-rate more strictly. The procedure to find a good solution is developed by solving the linear programming problem repeatedly on the basic solution strategy that is ‘relaxation’. A computational load to obtain a solution by the proposed indicator is shown to be very small. Finally, an availability of the procedure is shown.

  10. Advances in high-order interaction region nonlinear optics correction at RHIC

    SciTech Connect

    Zimmer, C.; Binello, S.; Minty, M.; Pilat, F.

    2011-03-28

    A method to indirectly measure and deterministically correct the higher order magnetic errors of the final focusing magnets in the Relativistic Heavy Ion Collider has been in place for several years at BNL. This method yields control over the effects of multi-pole errors through application of closed orbit bumps followed by analysis and correction of the resulting betatron tune shifts using multi-pole correctors. The process has recently been automated in order to provide more efficient and effective corrections. The tune resolution along with the reliability of measurements has also been improved significantly due to advances/upgrades in the betatron tune measurement system employed at RHIC (BBQ). Here we describe the foundation of the IR bump method, followed by recent improvements along with experimental data.

  11. Structure, stability, and mechanical properties of intermetallic phases

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.

    1993-12-31

    The importance of the structural stability of intermetallics with regard to their mechanical properties is illustrated with two case studies. First, the importance of structural and thermal defects for the strength of (weakly ordered) FeAl and (strongly ordered) NiAl is shown. Several inconsistencies and unresolved issues in the present understanding of point defects in FeAl are addressed. Since point defects alone may not explain the mechanical differences between these two materials, the role of dislocations is considered as well. It is shown that the differences in the atomic bonding of FeAl and NiAl, which deter-mine the active slip systems, are likely to influence the compositional dependence of the strength of these two intermetallics. Second, the class of the trialuminides is reviewed with emphasis on Al{sub 3}Ti. In addition to stabilizing a cubic crystal structure, the ratio of K/G, where K is the bulk modulus and G the shear modulus, needs to be increased in order to achieve extensive plastic deformation at room temperature. It is not clear, at the present time, to what extent macroalloying of trialuminides can achieve this goal, although promising results have been reported for Al{sub 3}Ti containing relatively high concentrations (14 at. %) of chromium.

  12. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate II

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Okuhara, Koji

    In the previous paper, we proposed Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information which is called ‘Naiji System’ as an unique corporation between a maker and suppliers in Japan, and 3 indicators to estimate the unfulfilled-order-rate. Applying these indicators to the model, we investigated the behavior of unfulfilled-order-rate at the final period in the planning horizon. In this paper, we propose a new model for purchasing, and investigate the unfulfilled-order-rate at each period and the impact to the total inventory. We find that the total inventories become 5.9%-20.0% decreases by using SOn rather than by using SOn(0). And we enhance a base-stock policy to a new one with multi-period. We prove that the MCPS model for purchasing by using SOn(0) is equivalent to the base-stock policy with multi-period under the specified condition. Under this condition, the proposed model by using SOn decreases inventories more than the base-stock policy with multi-period.

  13. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias

    DOE PAGES

    Liu, Zhiqi; Biegalski, Michael D.; Hsu, Shang-Lin; Shang, Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha S.; Meyer, Tricia L.; Wong, Anthony T.; et al

    2015-11-05

    High-quality epitaxial growth of intermetallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Thus, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  14. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  15. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  16. Valence of neptunium in intermetallic compounds

    SciTech Connect

    Spitsyn, V.I.; Ionova, G.V.

    1987-07-01

    The authors use Moessbauer spectroscopy and quantum chemical calculations to determine the valence and electronic structure of neptunium in its intermetallic forms with a variety of alloys. The isomeric shifts are measured on Np 237 nuclei. Quantum electronic properties and population density estimates are calculated within the framework of the Hartree-Fock-Slater method.

  17. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  18. Quantum criticality in selected uranium intermetallic and organometallic compounds

    NASA Astrophysics Data System (ADS)

    Nasreen, Farzana

    My thesis presents the studies of the bulk properties of materials that exhibit unusual low-temperature properties due to the proximity of a quantum-critical point (QCP), for which long-range magnetic order can be suppressed to 0 K as a consequence of quantum fluctuations. A material can be tuned to the QCP by variation of a non-thermal control parameter such as hydrostatic pressure, magnetic field and chemical pressure/doping. Most of my experimental studies were performed at extreme conditions, such as high magnetic fields, low temperatures and/or high pressures. Two classes of materials were studied, namely uranium intermetallics and organometallics. The investigations on uranium intermetallics were done on compounds close to the edge of magnetism, i.e. the UCu4+xAl 8-x, UCuxAl5-x and UFe1-xNixAl compounds. Several of those compounds exhibit deviations from traditional Fermi-liquid theory and show non-Fermi liquid (NFL) scaling at low temperatures. Field-induced magnetic transitions were studied for some selected uranium compounds (UNiAl, UNiGa, UNiGe and UIrGe) as well. Furthermore, a study of organometallic quantum magnet (DTN: NiCl2-4SC(NH 2)2), which exhibits field-induced quantum criticality, is presented. In DTN, the magnetic-field induced polarization shows magneto-electric couplings between the antiferromagnetic Ni spins and the soft organic lattice.

  19. Surfaces of complex intermetallic compounds: insights from density functional calculations.

    PubMed

    Hafner, Jürgen; Krajčí, Marian

    2014-11-18

    CONSPECTUS: Complex intermetallic compounds are a class of ordered alloys consisting of quasicrystals and other ordered compounds with large unit cells; many of them are approximant phases to quasicrystals. Quasicrystals are the limiting case where the unit cell becomes infinitely large; approximants are series of periodic structures converging to the quasicrystal. While the unique properties of quasicrystals have inspired many investigations of their surfaces, relatively little attention has been devoted to the surface properties of the approximants. In general, complex intermetallic compounds display rather irregular, often strongly corrugated surfaces, making the determination of their atomic structure a very complex and challenging task. During recent years, scanning tunneling microscopy (STM) has been used to study the surfaces of several complex intermetallic compounds. If atomic resolution can be achieved, STM permits visualization of the local atomistic surface structure. However, the interpretation of the STM images is often ambiguous and sometimes even impossible without a realistic model of the structure of the surface and the distribution of the electronic density above the surface. Here we demonstrate that ab initio density functional theory (DFT) can be used to determine the energetics and the geometric and electronic structures of the stable surfaces of complex intermetallic compounds. Calculations for surfaces with different chemical compositions can be performed in the grand canonical ensemble. Simulated cleavage experiments permit us to determine the formation of the cleavage planes requiring the lowest energy. The investigation of the adsorption of molecular species permits a comparison with temperature-programmed thermal desorption experiments. Calculated surface electronic densities of state can be compared with the results of photoelectron spectroscopy. Simulations of detailed STM images can be directly confronted with the experimental results

  20. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction.

    PubMed

    Cui, Zhiming; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2016-04-13

    Extensive efforts to develop highly active and strongly durable electrocatalyst for oxygen reduction are motivated by a need for metal-air batteries and fuel cells. Here, we report a very promising catalyst prototype of structurally ordered Pd-based alloys, Pd3Pb intermetallic compound. Such structurally ordered Pd3Pb/C exhibits a significant increase in mass activity. More importantly, compared to the conventional Pt/C catalysts, ordered Pd3Pb/C is highly durable and exhibits a much longer cycle life and higher cell efficiency in Zn-air batteries. Interestingly, ordered Pd3Pb/C possesses very high methanol tolerance during electrochemical oxygen reduction, which make it an excellent methanol-tolerant cathode catalyst for alkaline polymer electrolyte membrane fuel cells. This study provides a promising route to optimize the synthesis of ordered Pd-based intermetallic catalysts for fuel cells and metal-air batteries.

  1. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction.

    PubMed

    Cui, Zhiming; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2016-04-13

    Extensive efforts to develop highly active and strongly durable electrocatalyst for oxygen reduction are motivated by a need for metal-air batteries and fuel cells. Here, we report a very promising catalyst prototype of structurally ordered Pd-based alloys, Pd3Pb intermetallic compound. Such structurally ordered Pd3Pb/C exhibits a significant increase in mass activity. More importantly, compared to the conventional Pt/C catalysts, ordered Pd3Pb/C is highly durable and exhibits a much longer cycle life and higher cell efficiency in Zn-air batteries. Interestingly, ordered Pd3Pb/C possesses very high methanol tolerance during electrochemical oxygen reduction, which make it an excellent methanol-tolerant cathode catalyst for alkaline polymer electrolyte membrane fuel cells. This study provides a promising route to optimize the synthesis of ordered Pd-based intermetallic catalysts for fuel cells and metal-air batteries. PMID:26848634

  2. Lattice disorder and magnetism in f-electron intermetallics

    SciTech Connect

    Booth, C.H.; Han, S.-W.; Skanthakumar, S.; Sarrao, J.L.

    2004-07-29

    Real materials can have real differences compared to ideal systems. For instance, non-Fermi liquid (NFL) behavior was initially thought to be due to chemical disorder, since the first such materials were all substituted. Although several nominally well-ordered NFL's have been discovered and extensively studied, the effect of disorder on the magnetic properties of f-electron intermetallic systems remains poorly understood. Disorder in NFL systems is reviewed from an experimental, local structure point of view, including a discussion of results on the nominally ordered U{sub 3}Ni{sub 3}Sn{sub 4} and CeCoIn{sub 5} systems, and the chemically disordered UCu{sub 4}Pd and CeRhRuSi{sub 2} systems.

  3. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  4. Brushing up on the history of intermetallics in dentistry

    NASA Astrophysics Data System (ADS)

    Waterstrat, Richard M.

    1990-03-01

    Employing a silver-tin-mercury intermetallic to repair cavities may seem a little unusual, but intermetallics are quite common in dentistry, ranging from gold crowns to braces. Although the human mouth can be unfriendly territory for a brittle intermetallic alloy, dental amalgam has been around since 659 A.D., and its technology has been developed to the point where a filling can be expected to last 30 years or more.

  5. Role of interfaces in deformation and fracture of ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Fu, C.L.

    1996-12-31

    While sub- and grain-boundaries are the primary dislocation sources in Ll{sub 2} alloys, yield and flow stresses are strongly influenced by the multiplication and exhaustion of mobile dislocations from the secondary sources. The concept of enhanced microplasticity at grain boundaries due to chemical disordering is well supported by theoretical modeling, but no conclusive direct evidence exist for Ni{sub 3}Al bicrystals. The strong plastic anisotropy reported in TiAl PST (polysynthetically twinned) crystals is attributed in part to localized slip along lamellar interfaces, thus lowering the yield stress for soft orientations. Calculations of work of adhesion suggest that, intrinsically, interfacial cracking is more likely to initiate on {gamma}/{gamma}-type interfaces than on the {alpha}{sub 2}/{gamma} boundary. 70 refs, 5 tabs, 5 figs.

  6. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  7. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  8. Changing the medical world order with technological advances: the future has only begun.

    PubMed

    Merrell, Ronald C

    2004-01-01

    It is a great honor to contribute in a small way to this book which in a way celebrates the continued evolution of telemedicine in Kosova. I was privileged to visit this brave land on several occasions in the last years. Severe circumstances were repeatedly resolved through great personal and professional sacrifice. Revolutionary solutions have been applied where evolutionary development was simply too slow in the realization of a new land in a complex world. In some ways telemedicine is emblematic of such struggle and success. We aspire to world health when world peace is elusive and hunger haunts us in the midst of plenty. Telecommunications have made it easy to report the failings of medicine, the injustice of health care and the unmet promise of political endeavor. It is the promise of telemedicine to use those same channels of information to empower, unify and advance the cause of health rather than only report the failings. Telemedicine entails the use of telecommunications and information technology to support the delivery of health care at a distance. There are critics who believe telemedicine is a waste of precious resources, which are needed urgently for higher health priorities. Telemedicine is dismissed as an expensive irrelevance, another distraction from the real needs of medicine in a chaotic world. That is patently ridiculous. Telemedicine is a part of the wider phenomenon of information and information is arguably the strongest change agent in play for medicine and other societal elements as well. A well-informed public armed with the tools for self-determination and the evidence for efficient action cannot be corrupted. Telemedicine is a part of the great change information brings to the world order, a drastic change toward a better world of health and justice.

  9. (Oxidation of intermetallics and ceramics)

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.

    1990-05-11

    The travelers presented papers at the Conference on Microscopy of Oxidation and learned about new applications of microscopic techniques to studies of oxides scales. Mr. DeVan visited the Corrosion and Protection Centre at UMIST to discuss oxidation of Fe{sub 3}Al. Dr. Tortorelli visited Cranfield Institute of Technology to discuss the mechanical properties of oxide scales. Both travelers visited the Coal Research Establishment of British Coal to review results from exposure of Fe{sub 3}Al in a gasifier environment and plans for development of advanced coal-fired power generation utilizing a topping cycle. The ORNL staff members independently visited Harwell Laboratory to present results on oxidation of Ni{sub 3}Al composites, discuss indentation testing of oxide scales, and help conduct a secondary ion mass spectrometry (SIMS) investigation of oxidized Ni{sub 3}Al--Al{sub 2}O{sub 3}. Harwell was underground a change from a national laboratory to a profit-based business venture.

  10. New candidates for the Pt8Ti structures in intermetallics

    NASA Astrophysics Data System (ADS)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2008-03-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. Because of its uniqueness, this structure has been studied in Pt, Pd, and Ni rich systems. However, these metals have only been paired with a handful of other elements. Are there more elements that when alloyed with Pt, Pd, or Ni order with the Pt8Ti structure? We explored 40 different Pd- and Pt-based binary systems. We calculated their formation enthalpies for the Pt8Ti structure, compared the value to the tie line between pure Pd/Pt and experimentally-observed ground states. We find that there are other (beyond those experimentally observed) possible alloys with this structure. These new Pt/Pd-rich alloys could fin application in the jewelry and catalysis industries.

  11. Effects of elastic anisotropy on mechanical behavior of intermetallic compounds

    SciTech Connect

    Yoo, M.H.

    1991-01-01

    Fundamental aspects of the deformation and fracture behavior of ordered intermetallic compounds are examined within the framework of linear anisotropic elasticity theory of dislocations and cracks. The orientation dependence and the tension/compression asymmetry of yield stress are explained in terms of the anisotropic coupling effect of non-glide stresses to the glide strain. The anomalous yield behavior is related to the disparity (edge/screw) of dislocation mobility and the critical stress required for the dislocation multiplication mechanism of Frank-Read type. The slip-twin conjugate relationship, extensive faulting, and pseudo-twinning (martensitic transformation) at a crack tip can be enhanced also by the anisotropic coupling effect, which may lead to transformation toughening of shear type.

  12. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  13. 78 FR 72636 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...; Advance Notification of Sunset Reviews AGENCY: Enforcement and Compliance, formerly Import Administration... Department in writing within 10 days of the publication of the Notice of Initiation. Please note that if...

  14. 76 FR 5561 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... duty orders is scheduled for initiation in March 2011. Suspended Investigations Ammonium Nitrate...

  15. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  16. Nonstoichiometry of Al-Zr intermetallic phases

    SciTech Connect

    Radmilovic, V.; Thomas, G.

    1994-06-01

    Nonstoichiometry of metastable cubic {beta}{prime} and equilibrium tetragonal {beta} Al-Zr intermetallic phases of the nominal composition Al{sub 3}Zr in Al-rich alloys has been extensively studied. It is proposed that the ``dark contrast`` of {beta}{prime} core in {beta}{prime}/{sigma}{prime} complex precipitates, in Al-Li-Zr based alloys, is caused by incorporation of Al and Li atoms into the {beta}{prime} phase on Zr sublattice sites, forming nonstoichiometric Al-Zr intermetallic phases, rather than by Li partitioning only. {beta}{prime} particles contain very small amounts of Zr, approximately 5 at.%, much less than the stoichiometric 25 at.% in the Al{sub 3}Zr metastable phase. These particles are, according to simulation of high resolution images, of the Al{sub 3}(Al{sub 0.4}Li{sub 0.4}Zr{sub 0.2}) type. Nonstoichiometric particles of average composition Al{sub 4}Zr and Al{sub 6}Zr are observed also in the binary Al-Zr alloy, even after annealing for several hours at 600{degree}C.

  17. 78 FR 33060 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset'') Reviews...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for July 2013 The following Sunset Reviews...

  18. 78 FR 13857 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ...; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset'') Reviews...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration... may be) and of material injury. Upcoming Sunset Reviews for April 2013 The following Sunset...

  19. Advance Directives and Do-Not-Resuscitate Orders in Patients with Cancer with Metastatic Spinal Cord Compression: Advanced Care Planning Implications

    PubMed Central

    Palmer, J. Lynn; Bianty, Josephine; Konzen, Benedict; Shin, Ki; Bruera, Eduardo

    2010-01-01

    Abstract Objectives Communication about end-of-life decisions is crucial. Although patients with metastatic spinal cord compression (MSCC) have a median survival time of 3 to 6 months, few data are available concerning the presence of advance directives and do-not-resuscitate (DNR) orders in this population. The objective of this study was to determine presence of advance directives and DNR order among patients with MSCC. Methods We retrospectively reviewed data concerning advance directives for 88 consecutive patients with cancer who had MSCC and required rehabilitation consultation at The University of Texas M. D. Anderson Cancer Center from September 20, 2005 to August 29, 2008. We characterized the data using univariate descriptive statistics and used the Fisher exact test to find correlations. Results The mean age of this patient population was 55 years (range, 24–81). Thirty patients (33%) were female. Twenty patients (23%) had a living will, 27 patients (31%) had health care proxies, and 10 patients (11%) had either out-of-hospital DNR order and/or dictated DNR note. The median survival time for these patients was 4.3 months. Conclusion Despite strong evidence showing short survival times for MSCC patients, it seems many of these patients are not aware of the urgency to have an advance directive. This may be an indicator of delayed end-of-life palliative care and suboptimal doctor–patient communication. Using the catastrophic event of a diagnosis of MSCC to trigger communication and initiate palliative care may be beneficial to patients and their families. PMID:20192843

  20. 75 FR 67081 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Regulations, 75 FR 59611 (September 28, 2010). While this import ban remains in effect, 19 U.S.C. 1675(c)(7... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year (``Sunset... antidumping order on raw pistachios from Iran (A-507-502) in December 2010. However, the recently...

  1. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  2. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    SciTech Connect

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-09-15

    Plate impact experiments were conducted on a {gamma}-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics.

  3. 78 FR 25422 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16... Review). 482-5047. Carbon and Certain Alloy Steel Wire Rod from Jennifer Moats (202) Ukraine...

  4. 77 FR 32530 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Goldberger, (202) 482-4136. 803) (2nd Review). Steel Concrete Reinforcing Bars from Ukraine (A-823-...

  5. 75 FR 16738 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...-570- Jennifer Moats, (202) 898). 482-5047. Chlorinated Isocyanurates from Spain (A-469-814)...

  6. 78 FR 60252 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR...-5047. Review). Freshwater Crawfish Tailmeat from China (A-570- David Goldberger, (202) 482-4136....

  7. 76 FR 89 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Five-Year Sunset Reviews. Antidumping Duty Proceedings Department Contact Orange Juice from Brazil (A... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of...

  8. 77 FR 39215 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Investigations Lemon Juice from Argentina (A-357-818) (1st Sally Gannon Review). (202) 482-0162 Lemon Juice...

  9. 76 FR 11198 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Five-year (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR... & Dana Mermelstein Pressure Pipe (Under 4\\1/2\\ Inches) from (202) 482-1391. Romania (A-485-805)...

  10. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  11. Thermal barrier coating system with intermetallic overlay bond coat

    SciTech Connect

    Duderstadt, E.C.; Nagaraj, B A.

    1993-08-24

    A superalloy article is described having a thermal barrier coating system thereon, comprising: a substrate made of a material selected from the group consisting of a nickel-based superalloy and a cobalt-based superalloy; and a thermal barrier coating system on the substrate, the thermal barrier coating system including an intermetallic bond coat overlying the substrate, the bond coat being selected from the group consisting of a nickel aluminide and a platinum aluminide intermetallic compound, a thermally grown aluminum oxide layer overlying the intermetallic bond coat, and a ceramic topcoat overlying the aluminum oxide layer.

  12. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  13. Magnetic phase transitions in layered intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.

    2012-10-01

    Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.

  14. Roles of Titanium-Intermetallic Compound Layer

    NASA Astrophysics Data System (ADS)

    Lee, Chii-Chang

    Four different configurations have been tested: Al-Cu, Ti/Al-Cu, Al-Cu/Ti, and Ti/Al-Cu/Ti to evaluate the possible contributions of Ti-intermetallic compound layer(s) to enhancement of the lifetime to failure. Basically, the proposed mechanisms can be classified into two groups: shunting effect and effects limited to changes in Al-Cu conducting layer(s). A resistance monitoring technique was adopted to supplement lifetime measurement to separate these two effects. By correlating the first resistance jump (spike) to the happening of a complete open across Al-Cu layer, it was found that the shunting effect contributes to enhancement of the lifetime by 4 times in Ti/Al-Cu, 2 times in Al-Cu/Ti, and 2 times in Ti/Al-Cu/Ti. A Ti underlayer was found to contribute mainly the shunting effect. However, from drift velocity measurements and failure mode analysis, it is possible to deduce that a Ti overlayer contributes not only the shunting effect but also another effect that acts to diminish the grain boundary mass transport rate by a factor of about 76. It is believed that the latter effect is a consequence of the high compressive yield stength conferred by the Ti-intermetallic compound overlayer to the Al-Cu layer. Finally, an important non-destructive technique, based on the characteristic x-rays generated by energetic electrons, to characterize the mass divergences in multilayer interconnects, was developed in this research, called SMEISIS, representing Simultaneous Multiple Elements Intensity Scanning of Interconnecting Stripes. This technique was proved to be capable of revealing detail about the shapes, nature, and location of mass divergence that cannot be revealed by thermal wave image technique and that requires time consuming multiple sectioning in TEM and SEM methods.

  15. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  16. 75 FR 60720 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Goldberger, (202) 482-4136. from South Korea (A-580-836) (2rd Review). Granular Polytetrafluoroethylene Resin... South Korea (C-580-837) (2rd Review). Suspended Investigations No Sunset Review of suspended... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...

  17. 75 FR 45095 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Terephthalate (PET) Film from Dana Mermelstein South Korea (A-580-807) (3rd Review). (202) 482-1391. Stainless.... Stainless Steel Butt-Weld Pipe Fittings Dana Mermelstein from South Korea (A-580-813) (3rd Review). (202... Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...

  18. 77 FR 266 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... Five-Year Sunset Reviews. Antidumping duty proceedings Department contact Clad Steel Plate from Japan... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16.... Dated: December 12, 2011. Christian Marsh, Deputy Assistant Secretary for Antidumping and...

  19. 75 FR 5037 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... (``Sunset'') Reviews of Antidumping and Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16... Department contact Magnesium Metal from the People's Republic Jennifer Moats; (202) 482- of China (A-570-896). 5047. Magnesium Metal from Russia (A-821-819)... Dana Mermelstein; (202) 482- 1391. Countervailing...

  20. Advanced properties of extended plasmas for efficient high-order harmonic generation

    SciTech Connect

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2014-05-15

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.

  1. Determination of site-occupancies in aluminide intermetallics by ALCHEMI

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-04-01

    The site-distributions of Fe in four B2-ordered NiAl-based alloys with Fe concentrations of 10%, 2%, and 0.5% have been determined by ALCHEMI (atom-location by channeling-enhanced microanalysis). Site-distributions have been extracted with standard errors between {approximately} 1.5% (10% Fe concentration) and {approximately} 6% (0.5% Fe concentration). The results show that Fe has no strong site-preference in NiAl and tends to reside on the site of the stoichiometrically deficient host element. An improved ALCHEMI analysis procedure is outlined. The analysis explicitly addresses the phenomenon of ionization delocalization, which previously complicated the determination of site-distributions in aluminide intermetallics, leading to inaccurate and oftentimes nonphysical results. The improved ALCHEMI analysis also addresses the presence of anti-site defects. The data acquisition conditions have been optimized to minimize the sources of statistical and systematic error. This optimized procedure should be suitable for all analyses of B2-ordered alloys. Several analyses at different channeling orientations show that the extracted site-occupancies are robust as long as the data are acquired at orientations that are remote from any major pole of the crystal.

  2. Advanced process engineering co-simulation using CFD-based reduced order models

    SciTech Connect

    Lang, Y.-D.; Biegler, L.T.; Munteanu, S.; Madsen, J.I.; Zitney, S.E.

    2007-11-04

    The process and energy industries face the challenge of designing the next generation of plants to operate with unprecedented efficiency and near-zero emissions, while performing profitably amid fluctuations in costs for raw materials, finished products, and energy. To achieve these targets, the designers of future plants are increasingly relying upon modeling and simulation to create virtual plants that allow them to evaluate design concepts without the expense of pilot-scale and demonstration facilities. Two of the more commonly used simulation tools include process simulators for describing the entire plant as a network of simplified equipment models and computational fluid dynamic (CFD) packages for modeling an isolated equipment item in great detail by accounting for complex thermal and fluid flow phenomena. The Advanced Process Engineering Co-Simulator (APECS) sponsored by the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has been developed to combine process simulation software with CFD-based equipment simulation software so that design engineers can analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance (Zitney et al., 2006). The process/CFD software integration was accomplished using the process-industry standard CAPE-OPEN interfaces.

  3. Computational Benefits Using an Advanced Concatenation Scheme Based on Reduced Order Models for RF Structures

    NASA Astrophysics Data System (ADS)

    Heller, Johann; Flisgen, Thomas; van Rienen, Ursula

    The computation of electromagnetic fields and parameters derived thereof for lossless radio frequency (RF) structures filled with isotropic media is an important task for the design and operation of particle accelerators. Unfortunately, these computations are often highly demanding with regard to computational effort. The entire computational demand of the problem can be reduced using decomposition schemes in order to solve the field problems on standard workstations. This paper presents one of the first detailed comparisons between the recently proposed state-space concatenation approach (SSC) and a direct computation for an accelerator cavity with coupler-elements that break the rotational symmetry.

  4. Metallic and intermetallic-bonded ceramic composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  5. An advanced higher-order theory for laminated composite plates with general lamination angles

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Zhu, Hong; Chen, Wan-Ji

    2011-10-01

    This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations. The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces. Moreover, the number of unknown variables is independent of the number of layers. The first derivatives of transverse displacements have been taken out from the inplane displacement fields, so that the C0 shape functions are only required during its finite element implementation. Due to C0 continuity requirements, the proposed model can be conveniently extended for implementation in commercial finite element codes. To verify the proposed theory, the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Numerical results show that following the proposed theory, simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation, which has caused difficulty for the other global higher order theories.

  6. Optimization of two-stage production/inventory systems under order base stock policy with advance demand information

    NASA Astrophysics Data System (ADS)

    Nakade, Koichi; Yokozawa, Shiori

    2016-08-01

    It is important to share demand information among the members in supply chains. In recent years, production and inventory systems with advance demand information (ADI) have been discussed, where advance demand information means the information of demand which the decision maker obtains before the corresponding actual demand arrives. Appropriate production and inventory control using demand information leads to the decrease of inventory and backlog costs. For a single stage system, the optimal base stock and release lead time have been discussed in the literature. In practical production systems the manufacturing system has multiple processes. The multiple stage production and inventory system with ADI, however, has been analyzed by simulation or assuming exponential processing time. That is, their theoretical analysis and optimization of release lead time and base stock level have little been obtained because of its difficulty. In this paper, theoretical analysis of a two-stage production inventory system with advance demand information is developed, where the processing time is assumed deterministic and identical; demand arrival process is Poisson, and an order base stock policy is adopted. Using the analytical results, optimal release lead time and optimal base stock levels for minimizing the average cost on the holding and backlog costs are explicitly derived.

  7. Molecular assembly and organic film growth on complex intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sharma, Hem Raj; Sadowski, Jerzy T.; Ledieu, Julian; Fournée, Vincent; McGrath, Ronan

    We extensively studied the role of molecular symmetry and symmetry/structures of wide ranges of substrate-surfaces from non-periodic to periodic to quasi-crystalline in nucleation, growth and phase transition in films made of organic molecular materials. Recently, most interest in quasicrystals is due to the generalization of aperiodic ordering to several classes of systems. Compared to periodic materials, these provide a closer approximation to an isotropic first Brillouin zone, which is of great importance to the design of new functional materials. Here, we present results obtained from our ongoing study of interface mediated molecular assembly extended on complex intermetallic surfaces with specific examples of C60 and Zn-phthalocyanine on quasicrystalline and approximant surfaces. We employed in-situ real-time low-energy electron microscopy (LEEM) for investigation of the processes in assembly and film growth and post-growth STM study and DFT calculations to understand structural details and growth mechanism. Research were carried out in part at the Center for Functional Nanomaterials, Brookhaven National Lab, USA; partly at Institut Jean Lamour, Université de Lorraine, France; and partly at the Surface Science Research Centre, University of Liverpool, UK.

  8. Processing and properties of molybdenum silicide intermetallics containing boron

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.; Heatherly, L.; Wright, J.L.; Carmichael, C.A.

    1997-08-01

    Molybdenum-silicon-boron intermetallics with the composition Mo-10.5 Si-1.1 B, wt% (Mo-26.7 Si-7.3 B, at. %) were fabricated by several processing techniques. Powder processing (PM) resulted in macrocrack-free material containing no or only few microcracks. The PM materials contained quasi-equilibrium pores and large concentrations of oxygen. Average room temperature flexure strengths of 270 MPa were obtained. At 1,200 C in air, flexure strengths as high as 600 MPa were observed. These high values are attributed to crack healing and incipient plasticity. Ingot metallurgy (IM) materials contained much less oxygen than their PM counterparts. Depending on the cooling rate during solidification, they developed either mostly macrocracks or mostly microcracks. Due to the high flaw densities, the room temperature flexure strengths were only of the order of 100 MPa. However, the flexure strengths at 1,200 C were up to 3 times higher than those at room temperature. Again, this is attributed to crack healing and incipient plasticity. The IM materials will require secondary processing to develop their full potential. A preliminary examination of secondary processing routes included isothermal forging and hot extrusion.

  9. A magnetization study of RCo 12B 6 intermetallics

    NASA Astrophysics Data System (ADS)

    Mittag, M.; Rosenberg, M.; Buschow, K. H. J.

    1989-11-01

    The magnetic properties of polycrystalline intermetallics RCo 12B 6 with R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm have been studied in the temperature range 3-300 K and in fields up to 2 T. All compounds order magnetically between Tc=134.3 K for CeCo 12B 6 and Tc=162 K for GdCo 12B 6. YCo 12B 6 has an average Co moment of 0.42μ B. Since the Co moment is constant for all samples the R moments can be easily obtained and they are in good agreement with free R 3+ ion values. Ce is quadripositive in CeCo 12B 6 and therefore nonmagnetic. All light rare-earth compounds are ferromagnetic, while all heavy rare-earth compounds are ferrimagnetic with compensation points between Tcomp=11.6 K ( TmCo12B6) and Tcomp=82.8 K ( TbCo12B6). In the paramagnetic state an effective magnetic moment of 1.94μ B per Co atom has been found. The mean-field approximation yields a 3d-3d exchange integral of {J CoCo}/{k B}=110 K . The 3d-4f exchange integral is much smaller and equal to about {J RCo}/{k B}=6 K .

  10. Advanced order management in ERM systems: the tic-tac-toe algorithm

    NASA Astrophysics Data System (ADS)

    Badell, Mariana; Fernandez, Elena; Puigjaner, Luis

    2000-10-01

    The concept behind improved enterprise resource planning systems (ERP) systems is the overall integration of the whole enterprise functionality into the management systems through financial links. Converting current software into real management decision tools requires crucial changes in the current approach to ERP systems. This evolution must be able to incorporate the technological achievements both properly and in time. The exploitation phase of plants needs an open web-based environment for collaborative business-engineering with on-line schedulers. Today's short lifecycles of products and processes require sharp and finely tuned management actions that must be guided by scheduling tools. Additionally, such actions must be able to keep track of money movements related to supply chain events. Thus, the necessary outputs require financial-production integration at the scheduling level as proposed in the new approach of enterprise management systems (ERM). Within this framework, the economical analysis of the due date policy and its optimization become essential to manage dynamically realistic and optimal delivery dates with price-time trade-off during the marketing activities. In this work we propose a scheduling tool with web-based interface conducted by autonomous agents when precise economic information relative to plant and business actions and their effects are provided. It aims to attain a better arrangement of the marketing and production events in order to face the bid/bargain process during e-commerce. Additionally, management systems require real time execution and an efficient transaction-oriented approach capable to dynamically adopt realistic and optimal actions to support marketing management. To this end the TicTacToe algorithm provides sequence optimization with acceptable tolerances in realistic time.

  11. SCB ignition of pyrotechnics, thermites and intermetallics

    SciTech Connect

    Bickes, R.W. Jr.; Grubelich, M.C.

    1996-09-01

    We investigated ignition of pyrotechnics, metal-fuel/metal-oxide compositions (thermites), and exothermic alloy compositions (intermetallics) using a semiconductor bridge (SCB). It was shown that these materials could be ignited at low energy levels with an appropriately designed SCB, proper loading density, and good thermal isolation. Materials tested included Al/CuO, B/BaCrO{sub 4}, TiH{sub 1.65}/KClO{sub 4}, Ti/KClO{sub 4}, Zr/BaCrO{sub 4}, Zr/CuO, Zr/Fe{sub 2}O{sub 3}, Zr/KClO{sub 4}, and 100-mesh Al/Pd. Firing set was a capacitor discharge unit with charge capacitors ranging from 3 to 20,000 {mu}F at charge voltages 5-50 V. Devices functioned a few miliseconds after onset of current pulse at input energies as low as 3 mJ. We also report on a thermite torch design.

  12. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-11-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  13. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  14. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  15. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-08-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  16. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  17. Thermal stress effects in intermetallic matrix composites

    NASA Astrophysics Data System (ADS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-09-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  18. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    NASA Astrophysics Data System (ADS)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-03-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.

  19. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  20. Synthesis and Design of Silicide Intermetallic Materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Vaidya, R.U.; Park, Y.

    1999-05-14

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With the Exotherm Corporation, they are developing advanced silicide powders for the fabrication of silicide materials with tailored and improved properties for industrial applications. In October 1998, the authors initiated a new activity funded by DOE/OIT on ``Molybdenum Disilicide Composites for Glass Processing Sensors''. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts.

  1. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  2. In-situ neutron diffraction analysis of deformation behavior of ductile rare-earth intermetallic yttrium-copper

    NASA Astrophysics Data System (ADS)

    Williams, Scott H.

    Intermetallic compounds exhibit favorable properties for numerous diverse engineering applications. Many intermetallic compounds possess high strength and high stiffness at elevated temperature, excellent corrosion resistance, and low density, making them potentially useful in a wide range of applications. However, several drawbacks, limited ductility in particular, have prevented these compounds from achieving wide-spread application. In order to make full use of potential of intermetallic compounds, these limitations must be better understood and overcome. In the search for improved ductility in intermetallics, recent findings from an Ames Laboratory research group have uncovered an entire family of compounds possessing the B2 structure which exhibit room temperature tensile ductility. These materials do not require third-element additions, off-stoichiometric chemistry, disordering, or elaborate environmental testing conditions to enhance ductility. Previous studies have investigated various structural and physical properties of this family of compounds, yet the mechanisms for ductility remain uncertain. Low temperature phase transformations are known to occur in several of these compounds. Suggestions for possible mechanisms have included stress-induced phase transformation, as well as the deformation accommodated through crystallographic twinning. In-situ neutron diffraction allows for observations of structural changes and the relationship to macroscopic physical properties. Using this investigation technique, experiments have been conducted to examine rare-earth intermetallic YCu for evidence of phase transformation, twinning, or indications of other deformation behavior. Results give insight into the crystal structure of the compound, indicating a high degree of crystal lattice coherency, and resulting dynamical diffraction behavior not commonly observed in engineering materials.

  3. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    SciTech Connect

    LeClair, Patrick R.; Gary, Mankey J.

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include the study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures

  4. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  5. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  6. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  7. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  8. 49 CFR 39.37 - May PVOs require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... provide advance notice in order to obtain particular auxiliary aids and services or to arrange group... aids and services or to arrange group travel? (a) Except as provided in this section, as a PVO you must... particular auxiliary aids and services, you may request reasonable advance notice to guarantee...

  9. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  10. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  11. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  12. ESCA studies of methanation catalysts derived from intermetallic compounds

    SciTech Connect

    Chin, R.L.; Elattar, A.; Wallace, W.E.; Hercules, D.M.

    1980-10-30

    Studies of methanation catalysts derived from intermetallic compounds provided evidence that the high activity previously reported for ThNi/sub 5/ for the methanation reaction was due to a surface enrichment of the catalyst with nickel during reduction in hydrogen at 300/sup 0/C or during the reaction of carbon monoxide with hydrogen. The less active thorium oxide/nickel catalyst prepared by a conventional impregnation method had a much lower surface concentration of metallic nickel. The deactivation of the ThCo/sub 5/ intermetallic compound by deposition of graphitic carbon was also confirmed.

  13. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  14. Unique intermetallic compounds prepared by shock wave synthesis

    NASA Technical Reports Server (NTRS)

    Otto, G.; Reece, O. Y.; Roy, U.

    1971-01-01

    Technique compresses fine ground metallic powder mixture beyond crystal fusion point. Absence of vapor pressure voids and elimination of incongruous effects permit application of technique to large scale fabrication of intermetallic compounds with specific characteristics, e.g., semiconduction, superconduction, or magnetic properties.

  15. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  16. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  17. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    SciTech Connect

    Nie, Anmin; Gan, Li-yong; Cheng, Yingchun; Tao, Xinyong; Yuan, Yifei; Sharifi-Asl, Soroosh; He, Kun; Asayesh-Ardakani, Hasti; Vasiraju, Venkata; Lu, Jun; Mashayek, Farzad; Klie, Robert; Vaddiraju, Sreeram; Schwingenschlögl, Udo; Shahbazian-Yassar, Reza

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s-1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron micro­scopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. Additionally, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries.

  18. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  19. Processing and operating experience of Ni{sub 3}Al-based intermetallic alloy IC-221M

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Orth, J.E.

    1997-05-01

    The cast Ni{sub 3}Al-based intermetallic alloy IC-221M is the most advanced in its commercial applications. This paper presents progress made for this alloy in the areas of: (1) composition optimization; (2) melting process development; (3) casting process; (4) mechanical properties; (5) welding process, weld repairs, and thermal aging response; and (6) applications. This paper also reviews the operating experience with several of the components. The projection for future growth in the applications of nickel aluminide is also discussed.

  20. Current activated tip sintering of Ni-Ti intermetallics

    NASA Astrophysics Data System (ADS)

    Sharma, Nitin

    This thesis investigated the current activated tip-sintering of reactive mixtures of nickel and titanium to form Ni-Ti intermetallics. The effect of elemental powder composition, heating profile and micro-jet inert gas pressures on the developed macro- and microstructure was investigated. The heating profile brought upon by selective electric current application was found to have a significant effect on whether the reaction is a volumetric combustion or a self-propagating high temperature one. The best results in terms of homogeneity and Ni-Ti intermetallics yield, were obtained for an inert gas pressure of 4 psi under for the nickel rich composition. In addition, surprising results at the higher inert gas pressures show the formation of hollow products, which can give rise future exploration of this technique for combustion synthesizing hollow products of different shapes.

  1. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  2. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  3. Surface integrity on grinding of gamma titanium aluminide intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Murtagian, Gregorio Roberto

    Gamma-TiAl is an ordered intermetallic compound characterized by high strength to density ratio, good oxidation resistance, and good creep properties at elevated temperatures. However, it is intrinsically brittle at room temperature. This thesis investigates the potential for the use of grinding to process TiAl into useful shapes. Grinding is far from completely understood, and many aspects of the individual mechanical interactions of the abrasive grit with the material and their effect on surface integrity are unknown. The development of new synthetic diamond superabrasives in which shape and size can be controlled raises the question of the influence of those variables on the surface integrity. The goal of this work is to better understand the fundamentals of the abrasive grit/material interaction in grinding operations. Experimental, analytical, and numerical work was done to characterize and predict the resultant deformation and surface integrity on ground lamellar gamma-TiAl. Grinding tests were carried out, by analyzing the effects of grit size and shape, workpiece speed, wheel depth of cut, and wear on the subsurface plastic deformation depth (PDD). A practical method to assess the PDD is introduced based on the measurement of the lateral material flow by 3D non-contact surface profilometry. This method combines the quantitative capabilities of the microhardness measurement with the sensitivity of Nomarski microscopy. The scope and limitations of this technique are analyzed. Mechanical properties were obtained by quasi-static and split Hopkinson bar compression tests. Residual stress plots were obtained by x-ray, and surface roughness and cracking were evaluated. The abrasive grit/material interaction was accounted by modeling the force per abrasive grit for different grinding conditions, and studying its correlation to the PDD. Numerical models of this interaction were used to analyze boundary conditions, and abrasive size effects on the PDD. An explicit 2D

  4. Point Defects Quenched in Nickel Aluminide and Related Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Fan, Jiawen

    Point defects in the highly ordered B2 compounds NiAl, CoAl and FeAl were studied using the perturbed gammagamma angular correlations (PAC) technique. Quadrupole interactions detected at dilute ^{111}In probes on Al sites in NiAl and CoAl were identified with complexes containing one or two vacancies in the first atomic shell. Measurements on rapidly quenched NiAl and CoAl exhibited increases in site fractions of vacancy-probe complexes caused by formation of thermal defects. Site fractions were analyzed using the law of mass action to obtain absolute vacancy concentrations. PAC is shown to be a powerful new technique for the quantitative study of equilibrium defects in solids. For NiAl, the vacancy concentration quenched-in from a given temperature was found to be independent of composition over the range 50.4 -53.5 at.% Ni, identifying the Schottky defect (vacancy pair) as the dominant equilibrium defect, and ruling out the so-called triple defect. Formation energies and entropies of Schottky pairs were determined to be 2.66(8) and 3.48(12) eV, and 12(1) and 17(2) k_{rm B}, respectively, for NiAl and CoAl. The entropies suggest huge vacancy concentrations, 13%, at the melting temperatures of NiAl and CoAl. Migration energies of Ni and Co vacancies were found to be 1.8(2) and 2.5(2) eV, respectively. FeAl exhibited complex behavior. A low-temperature regime was detected in NiAl and CoAl within which vacancies are mobile but do not anneal out, so that the vacancy concentration remains constant. In NiAl, this "bottleneck" regime extends from 350 to 700 ^circC. Vacancies were found to be bound to the In probes with an energy very close to 0.20 eV in NiAl and CoAl. An explanation of the bottleneck is proposed in terms of saturation of all lattice sinks. This annealing bottleneck should exist in a wide range of intermetallic compounds when there is a sufficiently high vacancy concentration.

  5. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  6. Cluster expansion of fcc Pd-V intermetallics

    SciTech Connect

    de Fontaine, D.; Wolverton, C.; Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-06-01

    A cluster expansion is used to compute fcc ground states from first principles for the Pd-V system. Intermetallic structures are not assumed but derived rigorously by minimizing the configurational energy subject to linear constraints. A large number of concentration-independent interactions are calculated by the method of direct configurational averaging. Agreement with the fcc-based portion of the experimentally-determined Pd-V phase diagram is quite satisfactory. 25 refs., 2 figs.

  7. 14 CFR 382.27 - May a carrier require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... service animal in the cabin; (9) Transportation of a service animal on a flight segment scheduled to take... disability to provide advance notice in order to obtain certain specific services in connection with a flight... Nondiscrimination and Access to Services and Information § 382.27 May a carrier require a passenger with...

  8. 14 CFR 382.27 - May a carrier require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... service animal in the cabin; (9) Transportation of a service animal on a flight segment scheduled to take... disability to provide advance notice in order to obtain certain specific services in connection with a flight... Nondiscrimination and Access to Services and Information § 382.27 May a carrier require a passenger with...

  9. 14 CFR 382.27 - May a carrier require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... service animal in the cabin; (9) Transportation of a service animal on a flight segment scheduled to take... disability to provide advance notice in order to obtain certain specific services in connection with a flight... Nondiscrimination and Access to Services and Information § 382.27 May a carrier require a passenger with...

  10. 14 CFR 382.27 - May a carrier require a passenger with a disability to provide advance notice in order to obtain...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... service animal in the cabin; (9) Transportation of a service animal on a flight segment scheduled to take... disability to provide advance notice in order to obtain certain specific services in connection with a flight... Nondiscrimination and Access to Services and Information § 382.27 May a carrier require a passenger with...

  11. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Barnett, R. L.; Cortie, M. B.

    2014-07-01

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications.

  12. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  13. Site Selection and Pseudo-Clustering Behaviors of Alloying Elements in Aluminum-Lean γ-TiAl Intermetallics

    NASA Astrophysics Data System (ADS)

    Aykol, Muratahan; Mekhrabov, Amdulla O.; Vedat Akdeniz, M.

    2010-02-01

    Site selection and pseudo-clustering behaviors of the various M alloying elements in Al-lean Ti50Al50- X M X ( X = 1, 2, 3, 4, and 5 at. pct) intermetallics have been investigated by means of the ordering energy-dependent and long-range-order forced fast Monte Carlo simulation method. The ordering energies have been calculated via pseudopotential approximation in the electronic theory of alloys up to the third coordination sphere (CS) taking the anisotropic nature of tetragonal L10-type structure of γ-TiAl into account. It was shown that the site occupation characteristics of the M alloying element atoms in γ-TiAl intermetallics are governed by the relative magnitude of partial ordering energies between Ti-M and Al-M atomic pairs. However, the sign of partial ordering energies of these atomic pairs at the first CS becomes important in determining the clustering behavior and controls the dissolution modes of alloying element atoms in the γ-TiAl matrix. The pseudo-clustering behavior of alloying elements reveals three dissolution modes, namely, random dissolution (mode I), planar clustering in two dimensions (mode II), and three-dimensional (3-D) clustering (mode III) of the M occupant atoms.

  14. Micromechanisms of intergranular brittle ftacture in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vitek, V.

    1991-06-01

    Grain boundaries in intermetallic compounds such as Ni3A1 are inherently brittle. The reason is usually sought in grain boundary cohesion but in metals even brittle fracture is accompanied by some local plasticity and thus not only cohesion but also dislocation mobility in the boundary region need to be studied. We first discuss here the role of an irreversible shear deformation at the crack tip during microcrack propagation assuming that these two processes are concomitant. It is shown that a pre-existing crack cannot propagate in a brittle manner once the dislocation emission occurs. However, if a microcrack nucleates during loading it can propagate concurrently with the development of the irreversible shear deformation at the crack tip. The latter is then the major energy dissipating process. In the second part of this paper we present results of atomistic studies of grain boundaries in Ni3A1 and CU3Au which suggest that substantial structural differences exist between strongly and weakly ordered L12 alloys. We discuss then the consequence of these differences for intergranular brittleness in the framework of the above model for microcrack propagation. On this basis we propose an explanation for the intrinsic intergranular brittleness in some L12 alloys and relate it directly to the strength of ordering. Les joints de grains dans les composés intermétalliques de type Ni3AI sont de nature fragile. L'origine de cette fragilité est habituellement dans la cohésion des joints de grains. Dans les métaux, cependant, même la rupture fragile est accompagnée d'une certaine déformation plastique locale, de telle sorte que non seulement la cohésion mais aussi la mobilité des dislocations près des joints doit être étudiée. Nous discutons d'abord le rôle d'une déformation en cisaillement irréversible en tête de fissure pendant la propagation de cette fissure, en supposant que les deux processus sont concomitants. Nous montrons qu'une fissure préexistante ne

  15. Ductile intermetallic toughened carbide matrix composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.; Menchhofer, P.A.

    1996-08-01

    Ductile Ni{sub 3}Al alloys have been used as binder phase for fabrication of TiC and WC matrix composites. Ni{sub 3}Al has good corrosion resistance to aqueous acidic environments, and its yield strength increases with temperature to a max at 700-800 C; this combined with high tensile ductilities (up to 50% strain) make Ni{sub 3}Al attractive for replacing Co in cemented carbides. Materials have been fabricated by both hot pressing and vacuum sintering, with Ni{sub 3}Al contents of 15 to 95 vol%. Vacuum sintering cycles, similar to those used for WC/Co and TiC/Ni (1450-1600 C), resulted in sintered densities >95% theoretical. WC/Ni{sub 3}Al materials showed an order of magnitude improvement in corrosion resistance over WC/Co, in sulfuric/nitric acid. These materials also had improved high temperature strength retention compared to WC/Co cermets, though initial RT strengths were lower. Fracture toughness varied between 8 and 25 MPa.m{sup 1/2} and depended primarily on Ni{sub 3}Al content and composition.

  16. Study of Intermetallic Nanostructures for Light-Water Reactors

    SciTech Connect

    Jensen, Niels Grobech; Asta, Mark D.; Hosemann, Peter; Maloy, Stuart

    2015-09-30

    High temperature mechanical measurements were conducted to study the effect of the dynamic precipitation process of PH 13-8 Mo maraging steel. Yield stress, ultimate tensile strength, total elongation, hardness, strain rate sensitivity and activation volume were evaluated as a function of the temperature. The dynamic changes in the mechanical properties at different temperatures were evaluated and a balance between precipitation hardening and annealed softening is discussed. A comparison between hardness and yield stress and ultimate tensile strength over a temperature range from 300 to 600 °C is made. The behavior of the strain rate sensitivity was correlated with the intermetallic precipitates formed during the experiments.

  17. Exo-Melt{trademark} process for intermetallic powders

    SciTech Connect

    Sikka, V.K.; Deevi, S.C.

    1996-06-01

    The methods of powder production for intermetallics are reviewed. An innovative method known as Exo-Melt{trademark} is described for producing molten aluminides for gas- and water-atomization processes that require a molten metal stream. The Exo-Melt{trademark} process is based on the effective utilization of the heats of formation of aluminides from their constituent elements. The Exo-Melt{trademark} process principles are discussed along with a description of a furnace-loading sequence that uses the principles for practical applications. The benefits of the Exo-Melt{trademark} process are compared with the problems associated with the conventional melting process.

  18. The Shock Hugoniot of the Intermetallic Compound Ni3Al

    SciTech Connect

    Knapp, I.; Millett, J. C. F.; Meziere, Y. J. E.; Gray, G. T. III; Bourne, N. K.

    2006-07-28

    The behaviour of the intermetallic compound, Ni3Al under shock loading conditions has been measured. The Hugoniot Elastic Limit occurs at ca. 530 MPa, which converts to a 1-D yield stress of 273 MPa, in agreement with quasi-static data. In contrast, the ductility at shock-induced strain-rates appears much reduced when compared to lower strain-rates. The Hugoniot in terms of shock velocity and particle velocity suggests that Ni3Al is more compressible than pure nickel. This is in agreement with the greater stiffnesses in nickel, measured using ultrasonic techniques.

  19. Oxygen-stabilized zirconium-vanadium intermetallic compound

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-10-06

    An oxygen stabilized intermetallic compound having the formula Zr/sub x/OV/sub y/ where x = 0.7 to 2.0 and y = 0.18 to 0.33 is described. The compound is capable of reversibly sorbing hydrogen at temperatures from - 196/sup 0/C to 450/sup 0/C at pressures down to 10/sup -6/ Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO/sub 2/.

  20. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnics. Advantages include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. This paper reviews the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. 50 refs, tables.

  1. Training Preschoolers on First-Order False Belief Understanding: Transfer on Advanced ToM Skills and Metamemory

    ERIC Educational Resources Information Center

    Lecce, Serena; Bianco, Federica; Demicheli, Patrizia; Cavallini, Elena

    2014-01-01

    This study investigated the relation between theory of mind (ToM) and metamemory knowledge using a training methodology. Sixty-two 4- to 5-year-old children were recruited and randomly assigned to one of two training conditions: A first-order false belief (ToM) and a control condition. Intervention and control groups were equivalent at pretest for…

  2. Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants

    PubMed Central

    Endress, Peter K.; Davis, Charles C.; Matthews, Merran L.

    2013-01-01

    Background and Aims Malpighiales are one of the largest angiosperm orders and have undergone radical systematic restructuring based on molecular phylogenetic studies. The clade has been recalcitrant to molecular phylogenetic reconstruction, but has become much more resolved at the suprafamilial level. It now contains so many newly identified clades that there is an urgent need for comparative studies to understand their structure, biology and evolution. This is especially true because the order contains a disproportionally large diversity of rain forest species and includes numerous agriculturally important plants. This study is a first broad systematic step in this endeavour. It focuses on a comparative structural overview of the flowers across all recently identified suprafamilial clades of Malpighiales, and points towards areas that desperately need attention. Methods The phylogenetic comparative analysis of floral structure for the order is based on our previously published studies on four suprafamilial clades of Malpighiales, including also four related rosid orders (Celastrales, Crossosomatales, Cucurbitales, Oxalidales). In addition, the results are compiled from a survey of over 3000 publications on macrosystematics, floral structure and embryology across all orders of the core eudicots. Key Results Most new suprafamilial clades within Malpighiales are well supported by floral structural features. Inner morphological structures of the gynoecium (i.e. stigmatic lobes, inner shape of the locules, placentation, presence of obturators) and ovules (i.e. structure of the nucellus, thickness of the integuments, presence of vascular bundles in the integuments, presence of an endothelium in the inner integument) appear to be especially suitable for characterizing suprafamilial clades within Malpighiales. Conclusions Although the current phylogenetic reconstruction of Malpighiales is much improved compared with earlier versions, it is incomplete, and further focused

  3. Resonant ultrasound spectroscopy: Elastic properties of some intermetallic compounds

    SciTech Connect

    Chu, F.; Thoma, D.J.; He, Y.; Maloy, S.A.; Mitchell, T.E.

    1996-09-01

    A novel nondestructive evaluation method, resonant ultrasound spectroscopy (RUS), is reviewed with an emphasis upon defining the elastic properties of intermetallic phases. The applications and advantages of RUS as compared to other conventional elastic constant measurement methods are explained. RUS has been employed to measure the elastic properties of single crystal and/or polycrystalline intermetallics, such as Laves phases (C15 HfV{sub 2} and NbCr{sub 2}), Nb-modified titanium aluminides, and transition metal disilicides (C11{sub b} MoSi{sub 2}, C40 NbSi{sub 2} and TaSi{sub 2}). For Laves phases, the elastic properties of HfV{sub 2}-based C15 phases show various anomalies and those of C15 NbCr{sub 2} do not. For Nb-modified titanium aluminides, the elastic properties of O-phase alloys are investigated as a function of alloying content. For transition metal disilicides, single crystal elastic constants of MoSi{sub 2}, NbSi{sub 2}, and TaSi{sub 2} are obtained and compared. Based on the experimentally determined elastic properties, the characteristics of interatomic bonding in these materials are examined and the possible impact of the elastic properties on mechanical behavior is discussed.

  4. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  5. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  6. Intermetallic superconductors---The state of development in 1991

    SciTech Connect

    Forsyth, E.B.

    1991-01-01

    The commercial fabrication of intermetallic superconductors has reached a high degree of maturity in the past thirty years. The only significant, commercial requirement for superconducting wire is the construction of magnetic resonance imaging (MRI) devices for medical diagnosis. In addition to this demand there are one-time projects such as high energy particle accelerators which often need considerable quantities of superconducting material over the few years of construction. R D projects also provide a fluctuating market for superconducting materials, in the past the projects have included power apparatus such as generators, motors, energy storage and transmission cables, and magnets for experimental fusion reactors. Superconducting magnetically levitated trains have undergone full scale trials in Japan and Germany. This is by no means a comprehensive list of all the possible applications. Virtually all the devices requiring a magnetic field to be produced by superconducting windings have used NbTi wire, but a few experimental Nb{sub 3}Sn high field magnets have been constructed. This report briefly discusses development of intermetallic superconductors.

  7. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  8. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  9. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  10. Understanding what the public know and value about geoheritage sites in order to advance Earth science literacy

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.

    2013-12-01

    With its impressive geology and rich cultural history, Michigan's Keweenaw Peninsula is ideally suited for Earth science education and geotourism initiatives, such as a Geopark. Geologic events that have shaped this region can be interpreted in such a way as to engage learners, not only through an intellectual connection to Earth science subject matter, but also through an emotional connection via culture, history, and sense of place. The notion that landscape is special because it is the sum total of all the interacting earth systems, including people as part of the biosphere, can be used to drive these initiatives as they affect one personally. It is speculated that most people in the Keweenaw have a basic understanding of the local cultural history and some understanding of geology. Advanced awareness and understanding of the geological significance of the Keweenaw stands to greatly enrich our community's sense of place and desire to advance further education and geotourism initiatives. It is anticipated that these initiatives will ultimately lead to increased Earth science literacy and understanding and recognition of one's own environs. This will aid in the further development of publications, teaching media, trails info, on-site museums, etc. Although the community has embraced geo-outreach thus far, it is germane to know what people value, what they know of the geology and how they connect to place. Results from semi-structured interviews administered with the aim and focus of determining what places are special to people, why they are special and how they formed will be presented in this paper. The results from this research will be used to direct the creation and continued development of geologic interpretation of our region. It is hoped that this understanding will reveal common misconceptions that can be used to improve interpretive material that not only addresses misconceptions but also connects the immediate past with the deep geologic past of the

  11. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  12. Advanced Applications of Adifor 3.0 for Efficient Calculation of First-and Second-Order CFD Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III

    2004-01-01

    This final report will document the accomplishments of the work of this project. 1) The incremental-iterative (II) form of the reverse-mode (adjoint) method for computing first-order (FO) aerodynamic sensitivity derivatives (SDs) has been successfully implemented and tested in a 2D CFD code (called ANSERS) using the reverse-mode capability of ADIFOR 3.0. These preceding results compared very well with similar SDS computed via a black-box (BB) application of the reverse-mode capability of ADIFOR 3.0, and also with similar SDs calculated via the method of finite differences. 2) Second-order (SO) SDs have been implemented in the 2D ASNWERS code using the very efficient strategy that was originally proposed (but not previously tested) of Reference 3, Appendix A. Furthermore, these SO SOs have been validated for accuracy and computational efficiency. 3) Studies were conducted in Quasi-1D and 2D concerning the smoothness (or lack of smoothness) of the FO and SO SD's for flows with shock waves. The phenomenon is documented in the publications of this study (listed subsequently), however, the specific numerical mechanism which is responsible for this unsmoothness phenomenon was not discovered. 4) The FO and SO derivatives for Quasi-1D and 2D flows were applied to predict aerodynamic design uncertainties, and were also applied in robust design optimization studies.

  13. Crack growth in a ductile-phase-toughened Nb/Nb[sub 3]Al in situ intermetallic composite under monotonic and cyclic loading

    SciTech Connect

    Murugesh, L.; Venkateswara Rao, K.T.; Ritchie, R.O. . Dept. of Materials Science and Mineral Engineering)

    1993-10-15

    One approach to improving the ductility and toughness of brittle solids is to incorporate a ductile phase into the brittle matrix in order to impede the extension of incipient cracks. In this regard, recent word has shown that niobium can provide significant ductile-phase toughening in several intermetallic composites via crack bridging, plastic stretching and interfacial debonding mechanisms; however, under cyclic loading the role of the ductile phase appears to be less effective. Accordingly, the purpose of the current study is to examine the effect of the addition of ductile Nb phase on fracture and fatigue behavior in an equiaxed Nb/Nb[sub 3]Al in situ composite; results are compared with behavior in unreinforced Nb[sub 3]Al and Nb to determine possible mechanisms of crack propagation in Nb-toughened Nb[sub 3]Al intermetallic composites.

  14. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  15. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cieślak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100−x}Re{sub x} (x = 43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ∼65 K for x = 43 and ∼23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  16. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    SciTech Connect

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  17. CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-02-01

    Titanium aluminide intermetallic compound is studied to find out good welding conditions using CO2 laser irradiation. In the experiment, we used the casting titanium aluminide containing iron, vanadium and boron with a thickness of 2 mm. We carried out bead-on-plate laser welding at various initial temperatures of specimens varied from room temperature to 873 [K] in inert gas environment filled with argon. We measured fused depth, bead width and Vickers hardness. As a result of experiments, welding speeds that allow full bead-on- plate welding to be possible were strongly by dependent on the initial temperature, 3000 [mm/min], initial temperature 873 [K], 2600 [mm/mm], initial temperature 673 [K], and 2000 [mm/min] with 300 [K]. Transverse crack-free welding was achieved, when initial temperature was at 873 [K].

  18. Compton Profile Study of Intermetallic Ti{sub 3}Al

    SciTech Connect

    Vyas, V.; Sharma, G.; Mishra, M. C.; Sharma, B. K.; Joshi, K. B.

    2011-10-20

    The Compton scattering measurement on intermetallic alloy Ti{sub 3}Al is reported in this work. The measurement is made using 59.54 keV gamma-rays from Am{sup 241} source. Theoretical calculation of Compton profile is also performed employing CRYSTAL code within the framework of density functional theory to compare with the measurement. The theoretical profile of the alloy is also synthesized following the superposition model taking the published Compton profiles of elemental solids from the APW method. The experimental study of charge transfer in the alloys has also been done by performing the experimental Compton profile measurements on Ti and Al following the superposition model and charge transfer from Al to Ti is clearly seen on the alloy formation.

  19. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  20. Modeling of Intermetallic Compounds Growth Between Dissimilar Metals

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Yin; Prangnell, Philip; Robson, Joseph

    2015-09-01

    A model has been developed to predict growth kinetics of the intermetallic phases (IMCs) formed in a reactive diffusion couple between two metals for the case where multiple IMC phases are observed. The model explicitly accounts for the effect of grain boundary diffusion through the IMC layer, and can thus be used to explore the effect of IMC grain size on the thickening of the reaction layer. The model has been applied to the industrially important case of aluminum to magnesium alloy diffusion couples in which several different IMC phases are possible. It is demonstrated that there is a transition from grain boundary-dominated diffusion to lattice-dominated diffusion at a critical grain size, which is different for each IMC phase. The varying contribution of grain boundary diffusion to the overall thickening kinetics with changing grain size helps explain the large scatter in thickening kinetics reported for diffusion couples produced under different conditions.

  1. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    SciTech Connect

    K.A. Gschneidner; A.O. Pecharsky; V.K. Pecharsky

    2004-09-30

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from {approx}3 to {approx}350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature (<15 K) prototype cryocooler regenerator materials HoCu{sub 2}, Er{sub 3}Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K.

  2. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect

    Han, Mi-Kyung

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  3. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect

    Han, M. K.

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  4. Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics

    SciTech Connect

    Coffey, D.; DeMarco, M.; Ho, P. C.; Maple, M. B.; Sayles, T.; Lynn, J. W.; Huang, Q.; Toorongian, S.; Haka, M.

    2010-05-01

    The Moessbauer effect (ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, B{sub hyperfine}, at the ME active site. This is the case in the ruthenates, where the temperature dependence of B{sub hyperfine} at {sup 99}Ru sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu{sub 2} and HoRu{sub 2}. Specific heat, magnetization, magnetic susceptibility, Moessbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 83.1 and 15.3 K, respectively. Despite the ferromagnetic order of the rare-earth moments in both systems, there is no evidence of a correspondingly large B{sub hyperfine} in the Moessbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out ab initio calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, B{sub hyperfine} is very small at those sites. This occurs because the 4d Ru electrons form broad conduction bands rather than localized moments. These 4d conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare-earth moments.

  5. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  6. Radiation-induced crystalline-to-amorphous transition in intermetallic compounds of the Cu-Ti alloy system

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Devanathan, R. ); Sabochick, M.J. . Computer Applications Div.)

    1992-02-01

    Recent progress in molecular-dynamics studies of radiation-induced crystalline-to-amorphous transition in the ordered intermetallic compounds of the Cu-Ti system is discussed. The effect of irradiation was simulated by the generation of Frenkel pairs,which resulted in both the formation of stable point defects and chemical disorder upon defect recombination. The thermodynamic, structural and mechanical responses of the compounds during irradiation were determined by monitoring changes in the system potential energy, volume expansion, pair correlation function, diffraction patterns, and elastic constants. It was found that the intermetallics Cu{sub 4}Ti{sub 3}, CuTi, and CuTi{sub 2} could be rendered amorphous by the creation of Frenkel pairs, but Cu{sub 4}Ti could not, consistent with experimental observations during electron irradiation. However, the simulations showed that Cu{sub 4}Ti did become amorphous when clusters of Frenkel pairs were introduced, indicating that this compound may be susceptible to amorphization by heavy-ion bombardment. A generalization of the Lindemann criterion was used to develop a thermodynamic description of solid-state amorphization as a disorder- induced melting process.

  7. X (X: Al, Mo, Ti, Pt, Si, Nb, V, and Zr) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Huang, Zhiwei; Zhao, Zude; Hu, Chuankai

    2014-09-01

    In the present study, the ground-state properties of Ni3X intermetallic compounds were analyzed by means of the first-principles pseudo-potential method using the Cambridge serial total energy package code. The calculated lattice parameters of Ni3X intermetallic compounds are in good agreement with the experimental and other theoretical data. The single-crystal elastic constants were calculated; the hardness, ductile, and plasticity of materials were analyzed. The calculated enthalpies of formation showed that all of intermetallic compounds were thermodynamically stable; Debye temperature and heat capacity are calculated and discussed. Moreover, the chemical bonding in these intermetallic compounds was interpreted by calculating the density of states, electron density difference distribution, and Mulliken analysis; magnetism properties were briefly analyzed.

  8. Formation of intermetallic compound coating on magnesium AZ91 cast alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Tianping; Gao, Wei

    2009-08-01

    This study describes an intermetallic compound coating formed on AZ91 Mg cast alloy. The Al sputtered on AZ91 cast alloy reacted with substrate during a short period of heat treatment at 435°C, resulting in the formation of a continuous intermetallic compound layer. The short period treatment has the advantage of minimizing the negative effect on the microstructure of substrate and the mechanical properties, comparing with the reported diffusion coatings. DSC measurement and examination on the cross-section of Al sputtered samples show that local melting occurred along the Al/substrate interface at the temperature range between 430~435°C. The formation mechanism of intermetallic compound coating is proposed in terms of the local melting at Al/substrate interface. The salt water immersion test showed significant improvement in corrosion resistance of the intermetallic compound coated AZ91 cast alloy compared with the as-cast alloys.

  9. Preparation of a Ti-Ni intermetallic compound by using a drop shaft

    SciTech Connect

    Suzuki, Y.; Shimokawa, K.; Ueda, Y.; Nagao, J.

    1996-10-01

    A Ti-Ni intermetallic compound could be formed rapidly from Ti and Ni powder compact with SHS process. Microgravity experiments using a drop shaft are carried out. This report shows the effect of microgravity or high gravity on formability of an intermetallic compound. It is concluded that the specimen forms a porous and nearly amorphous alloy by rapid cooling under microgravity, but with rapid cooling under high gravity after microgravity, the specimen forms a uniform and dense structure with better crystallinity.

  10. Synthesis and design of intermetallic materials - molybdenum disilicide

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1995-05-01

    The objective of this program is to develop structural silicide-based composite materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature composite materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with the advanced materials company Advanced Refractory Technologies Inc. and interactions targeted at developing industrial gas burner and metal and glass melting/processing applications. Current experimental emphasis is on the development and characterization of SiC reinforced-MoSi{sub 2} matrix composites, plasma sprayed MoSi{sub 2}-based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}}based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}} based materials, such as plasma spraying/spray forming and electrophoretic deposition. We are also pursuing the fabrication of prototype industrial gas burner and injection tube components of these materials, as well as prototype components for glass processing.

  11. Gravity segregation of complex intermetallic compounds in liquid aluminum-silicon alloys

    SciTech Connect

    Shabestari, S.G.; Gruzleski, J.E.

    1995-04-01

    Primary crystals of intermetallics that are rich in iron, manganese, and chromium form at temperatures above the liquidus, and because their density is higher than that of liquid aluminum, they cause gravity segregation in the melt. Segregation may occur either in the mold at slow cooling rates or in the bulk liquid in furnaces or ladles. The kinetics of settling of these intermetallic compounds in a melt of Al-12.5 pct Si having 1.2 pct Fe, 0.3 pct Mn, and 0.1 pct Cr has been studied. Sedimentation was investigated at 630 C for settling times of 30, 90, and 180 minutes in an electric resistance furnace. The effect of settling time and height of melt on the volume percent, number, and size of intermetallic compounds was studied by image analysis. The volume percent of intermetallics increases with distance from the melt surface. Both the number of particles and the average size increase during sedimentation. The rate of settling varies with position in the melt due to depletion of intermetallics near the surface and an increase near the bottom. The settling velocities obtained experimentally were compared with terminal velocities calculated by Stokes` law. Good agreement was generally found. The settling speed of intermetallics reaches the terminal velocity at very short times and very close to the liquid surface. Stokes` law is therefore applicable to virtually all locations within the melt.

  12. BFS Method for Alloys Optimized and Verified for the Study of Ordered Intermetallic Material

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The aerospace industry has a need for new metallic alloys that are lightweight and have high strength at elevated temperatures. The BFS (Bozzolo, Ferrante, and Smith) method is a new, computationally efficient and physically sound quantum semi-perturbative approach for describing metals and their defects. Based on a simple interpretation of the alloy formation process that identifies strain and chemical contributions to the energy of the alloy, the method provides an atom-by-atom description of an alloy. Its implementation requires little more than algebra and the solution of transcendental equations. At the NASA Lewis Research Center, we have demonstrated that BFS can investigate the properties of a large number of alloys with a minimum computational effort on low-level computers. This screening allows the selection of the best alloy candidates for a particular application and, therefore, promises large cost savings over current approaches.

  13. Zintl and intermetallic phases grown from calcium/lithium flux

    NASA Astrophysics Data System (ADS)

    Blankenship, Trevor

    Metal flux synthes is a useful alternative method to high temperature solid state synthesis; it allows easy diffusion of reactants at lower temperatures, and presents favorable conditions for crystal growth. A mixed flux of calcium and lithium in a 1:1 ratio was explored in this work; this mixture melts at 300°C and is an excellent solvent for main group elements and CaH 2. Reactions of p-block elements in a 1:1 Ca/Li flux have produced several new intermetallic and Zintl phases. Electronegative elements from groups 14 and 15 are reduced to anions in this flux, yielding charge-balanced products. More electropositive metals from group 13 are not fully reduced; the resulting products are complex intermetallics. The reactions of tin or lead and carbon in Ca/Li flux produced the analogous phases Ca11Tt3C8 (Tt = Sn, Pb) in the monoclinic C21/c space group (a = 13.2117(8) A, b =10.7029(7) A, c = 14.2493(9) A, beta = 105.650(1)° for the Sn analog). These compounds are carbide Zintl phases that includes the rare combination of C3 4- and C22- units as well as Sn4- or Pb4- anions. Ca/Li flux reactions of CaH2 and arsenic have produced the Zintl phases LiCa3As 2H in orthorhombic Pnma (a = 11.4064(7), b = 4.2702(3), c = 11.8762(8) A), and Ca 13As6C0.46N1.155H6.045in tetragonal P4/mbm (a = 15.7493(15), c = 9.1062(9) A). The complex stoichiometry of the latter phase was caused by incorporation of light element contaminants and was studied by neutron diffraction, showing mixing of anionic sites to achieve charge balance. Ca/Li flux reactions with group 13 metals have resulted in several new intermetallic phases. Reactions of indium and CaH2 in the Ca/Li flux (with or without boron) formed Ca53In13B4-x H23+x(2.4 < x < 4.0) in cubic space group Im-3 (a = 16.3608(6) A) which features metallic indium atoms and ionic hydride sites. The electronic properties of this "subhydride" were confirmed by 1H and 115In NMR spectroscopy. Attempts to replace boron with carbon yielded Ca12InC13-x

  14. Deformation-Induced Amorphization of Copper-Titanium Intermetallics

    NASA Astrophysics Data System (ADS)

    Askenazy, Philip Douglas

    Two methods of inducing amorphization in Cu-Ti intermetallic compounds by mechanical means have been investigated. Ingots of compositions Cu_{35}Ti _{65} and Cu_ {33.3}Ti_{66.7} were rapidly quenched into ribbons. The microstructure consisted largely of microcrystals in an amorphous matrix, which were either quenched in or grown by annealing. The ribbons were cold-rolled, which reduced their effective thickness by a factor of about 8. The status of the intermetallic compound CuTi_2 was monitored by x-ray diffraction and transmission electron microscopy (TEM). The crystals were found to amorphize as rolling progressed. This behavior was not reproduced in polycrystalline samples that had no amorphous matrix present initially. The presence of the amorphous phase is thus necessary for amorphization of the crystal: it eliminates the need to nucleate the new glass, and it prevents the ribbon from disintegrating at high deformation stages. It may also change the deformation mechanism that occurs in the crystals, retarding the onset of amorphization. Diffuse scattering in close-packed directions is similar to that seen in electron irradiation experiments. It is postulated that the chemical disorder present in antiphase boundaries caused by deformation raises the free energy of the crystal higher than that of the amorphous phase. Ingots of the same compound were worn against each other in a custom-built wear apparatus. The design eliminates iron contamination of the wear sample and requires relatively small quantities of material. Alteration of the surface structure was monitored by plane-view and cross -sectional TEM. Larger subsurface crystals exhibit diffuse scattering, similar to that found in the rolled samples. A wide range of grain sizes was observed, due to the inhomogeneous nature of the wear process. An unusual phase was observed at the surface, consisting of a nanometer-scale mixture of aligned nanocrystalline regions and disordered areas. Some amorphous phase is

  15. Magnetism in Fe4Al13 and related FeAl intermetallics

    NASA Astrophysics Data System (ADS)

    Chi, Ji; Li, Yang; Gou, Weiping; Goruganti, V.; Rathnayaka, K. D. D.; Ross, Joseph H., Jr.

    2006-03-01

    We report the results of an experimental study of FeAl alloys, including Fe4Al13, FeAl2 and Fe2Al5. By using NMR, dc magnetic susceptibility, and specific heat, we found that Fe4Al13 and Fe2Al5 are non-magnetic with some dilute magnetic moments, while FeAl2 can be characterized as a concentrated local moment system. Fe4Al13 is a decagonal quasicrystal approximant with 102 atoms in its unit cell. The ^27Al NMR spin-lattice relaxation indicates a very narrow pseudogap in the electronic density of states [g(E)] in the vicinity of the Fermi energy. The observations could be fit assuming a parabolic variation of g(E), consistent with observations in other quasicrystals and approximants. NMR lineshape measurements also agree with this analysis, and show that the system is dilute-magnetic, in strong contrast to the FeAl2 ordered intermetallic. We use specific heat to analyze the dilute moment density. This work was supported by the Robert A. Welch Foundation, Grant No. A-1526, by the National Science Foundation (DMR-0103455), and by Texas A&M University through the Telecommunications and Informatics Task Force.

  16. Atomic disorder induced by mechanical milling in the intermetallic compound CoAl

    NASA Astrophysics Data System (ADS)

    Di, L. M.; Bakker, H.; de Boer, F. R.

    1992-10-01

    The stoichiometric intermetallic compound CoAl with the CsCl-structure was subjected to ball milling. Structural changes during ball milling were studied by measurements of the magnetization and the lattice parameter. The behaviour of Coal upon milling turns out to be quite similar to that of CoGa. The increase of the magnetization and the decrease of the lattice parameter with the milling time show that, similar to CoGa, triple-defect disorder is generated by ball milling. By comparing the measured magnetization to the magnetization of Co xAl 100- x compounds with excess Co, the concentration of defects is derived for milled samples. In order to interpret our results, the existing experimental data of lattice parameters, X-ray densities calculated from the lattice parameters and macroscopic densities for Co xAl 100- x compounds were analyzed according to Edelin's equations. The defect volumes for vacancies and anti-site atoms obtained by fitting these experimental data have reasonable values. By means of the defect concentrations obtained from our magnetization measurements and the defect volumes by fitting the experimental data, the change of the lattice parameter was calculated by means of Edelin's equation. The agreement between the calculated lattice parameter and the measured lattice parameter is quite satisfactory.

  17. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50mm bore ball-bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (3.1GPa) between that of 440C (2.4GPa) and REX20 (3.8GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5kg mass reaction wheel, was modeled with respect to launch load capability when supported on 440C, 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings.

  18. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    PubMed Central

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-01-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ −59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256

  19. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  20. Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment.

    PubMed

    Petit, L; Paudyal, D; Mudryk, Y; Gschneidner, K A; Pecharsky, V K; Lüders, M; Szotek, Z; Banerjee, R; Staunton, J B

    2015-11-13

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar(-1) for GdCd confirmed by our experimental measurements of +1.6  K kbar(-1). Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.

  1. Effect of Mg2Sn Intermetallic on the Grain Refinement in As-cast AM Series Alloy

    NASA Astrophysics Data System (ADS)

    She, J.; Pan, F. S.; Hu, H. H.; Tang, A. T.; Yu, Z. W.; Song, K.

    2015-08-01

    In the present work, in order to investigate the grain refinement mechanism of AM containing Sn alloys, the as-cast AM60, AM90 alloys, and the alloys with addition of 1 wt.% Sn were fabricated by traditional casting, respectively. During the solidification of AM + Sn alloys, the morphology of divorced eutectic Mg17Al12 was refined by Mg2Sn intermetallic that served as the heterogeneous nucleation cores. The modified Mg17Al12 effectively restricted the grain growth and resulted in a grain refinement. As a result, the yield strength of as-cast AM alloys was significantly enhanced by addition of Sn, while the ductility also improved. Moreover, the edge-to-edge model was employed to predict the orientation relationship between Mg17Al12 and Mg2Sn.

  2. Phase transitions as a function of material constants and temperature in intermetallic compounds of the terfenol-D type

    NASA Astrophysics Data System (ADS)

    Fridman, Yu. A.; Klevets, F. N.; Voĭtenko, A. P.

    2010-07-01

    A model of magnetic and magnetoelastic properties of intermetallic compounds has been considered with the inclusion of the influence of the “giant” magnetoelastic coupling and the biquadratic exchange interaction. The phase transitions as a function of material constants and temperature have been investigated in the framework of the proposed model. It has been demonstrated that the ferromagnetic and quadrupole phases can be formed in the system under consideration. In this case, the phase transition between these phases is a first-order transition and occurs through the intermediate, i.e., quadrupole-ferromagnetic, state. The dependences of the phase transition temperature on the Heisenberg and biquadratic exchange interaction constants have been obtained for compounds of the terfenol-D type.

  3. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    NASA Astrophysics Data System (ADS)

    Jain, Ekta; Pagare, Gitanjali; Sanyal, S. P.

    2016-05-01

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B2-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a0), bulk modulus (B) and first-order pressure derivative of bulk modulus (B') are presented. The density of states are derived which show the metallic character of present compound. Our results for C11, C12 and C44 agree well with previous theoretical data. Using Pugh's criteria (B/GH < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (GH), Young's modulus (E), sound wave velocities and Debye temperature (θD) have also been estimated.

  4. Magnetic and crystallographic structures in UTX intermetallic compounds

    SciTech Connect

    Robinson, R.A.; Lawson, A.C.; Sechovsky, V.; Havela, L.; Kergadallan, Y.; Nakotte, H.; de Boer, F.R.

    1993-08-01

    Uranium, along with other actinides and lanthanides, forms a large group of ternary intermetallic compounds of stoichiometry UTX (T = transition metal, X = p-electron metal). These compounds are formed in several structure types and the occurrence and stability of particular structures with respect to the transition metal content suggests reasonable systematics. The authors have also investigated the magnetic structures of selected UTX compounds and it is revealing to relate the crystallographic and magnetic structures, because of the relationship between the magnetic symmetry and that of the U-atom environment produced by the 5f-ligand hybridization, and the consequent anisotropic exchange. Those of ZrNiAl structure type are collinear, with moments along the hexagonal c-axis. In the orthorhombic NiSiTi structure type, the moments are confined to the b- c plane (perpendicular to the uranium chains) and the structures are often incommensurate. In the hexagonal CaIn{sub 2} (or GaGeLi) structure type, the magnetic structures form in an orthorhombic cell, and at least in the disordered centric group, again the moments lie perpendicular to the nearest-neighbor uranium spacing. This work presents a phenomenology of trends in UTX ternary compounds. It is shown that there is an apparent strong hybridization parallel to nearest neighbor U-U directions, with ferromagnetic coupling in the same directions. There may be a systematic relationship between the hybridization anisotropy and the magnetic anisotropy, in which the quantization axes are the same and the moments point along directions of relatively weak hybridization.

  5. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    DOE PAGES

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less

  6. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    NASA Astrophysics Data System (ADS)

    Kalashnikova, I.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2014-11-01

    This paper describes a new parallel, scalable and robust finite-element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and Template-Based Generic Programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using: (1) new test cases derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution is then studied on problems involving a realistic Greenland ice sheet geometry discretized using structured and unstructured meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  7. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    NASA Astrophysics Data System (ADS)

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-01

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  8. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    SciTech Connect

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  9. Magnetoelastic properties of substituted Er1-xGdxMn6Sn6 intermetallic system

    NASA Astrophysics Data System (ADS)

    Tabatabai Yazdi, Sh.; Tajabor, N.; Roknabadi, M. Rezaee; Behdani, M.; Pourarian, F.

    2014-06-01

    The forced magnetostriction of polycrystalline samples of Er1-xGdxMn6Sn6 (0≤x≤1) intermetallics with hexagonal HfFe6Ge6-type structure is investigated in the temperature range of 77-480 K. Gd substitution has a significant effect on interatomic distances and especially on inter-sublattice R-Mn couplings. The replacement of Er by Gd results in increasing the ordering temperature followed by reinforcement of the R-Mn coupling, as well as decreasing the magnetostriction values owing to the S-state character of Gd3+ ions. The results show that the contribution of Er sublattice to anisotropic magnetoelastic effects is positive, while that of Gd and Mn is negative. All the examined samples exhibit considerable magnetovolume anomalies at the ordering temperature (TC=338, 381, 412 and 434 K for the samples with x=0, 0.2, 0.6 and 1.0, respectively). While the unsubstituted sample exhibits metamagnetic transitions, Gd-contained compounds do not show this behavior, owing to the strong Gd-Mn coupling. The experimental results obtained are discussed in the framework of the two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in these layered compounds. From the temperature dependence of magnetostriction values and considering the magnetostriction equation for a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for these compounds and the influence of Gd substitution on them.

  10. Pesting of the high-temperature intermetallic MoSi2

    NASA Astrophysics Data System (ADS)

    Chou, T. C.; Nieh, T. G.

    1993-12-01

    Degradation resulting from environmental effects on the properties of high-temperature intermetallics has recently stimulated much interest in the materials science community. Most notably, iron, nickel, and titanium aluminides were found to be more ductile at room temperature when tested in vacuum or dry oxygen as compared to laboratory air. Environmental oxidation can also degrade materials to a measurable, sometimes catastrophic, extent. For example, an important oxidation-induced degradation phenomenon observed in intermetallics is pest disintegration. It was first observed in molybdenum disilicide in 1955. Since then, pest disintegration has been reported in many intermetallics, including silicides, aluminides, and beryllides. This article examines the pesting of MoSi2 and presents kinetic processes responsible for pesting.

  11. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  12. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  13. Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element

    SciTech Connect

    Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.

    2007-04-15

    Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.

  14. Formation of Intermetallic Ni-Al Coatings by Mechanical Alloying with Different Intensities

    NASA Astrophysics Data System (ADS)

    Zadorozhnyy, V. Yu.; Kaloshkin, S. D.; Churyukanova, M. N.; Borisova, Yu. V.

    2013-04-01

    Intermetallic Ni-Al coatings on the Ni substrate were prepared by the mechanical alloying (MA) method in mechanical activators of vibratory and planetary type. It was found that coatings that were fabricated in a high-energy (planetary) activator in comparison with those fabricated in a low-energy (vibratory) activator are more homogeneous, have higher density, and experience better adhesion to the substrate. It was shown that different intermetallic phases (NiAl, NiAl3, and Ni2Al3) can form directly during the MA treatment in the planetary activator.

  15. Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation.

    PubMed

    Xiao, Chaoxian; Wang, Lin-Lin; Maligal-Ganesh, Raghu V; Smetana, Volodymyr; Walen, Holly; Thiel, Patricia A; Miller, Gordon J; Johnson, Duane D; Huang, Wenyu

    2013-07-01

    The enhanced stability and modified electronic structure of intermetallic compounds provide discovery of superior catalysts for chemical conversions with high activity, selectivity, and stability. We find that the intermetallic NaAu2 is an active catalyst for CO oxidation at low temperatures. From density functional theory calculations, a reaction mechanism is suggested to explain the observed low reaction barrier of CO oxidation by NaAu2, in which a CO molecule reacts directly with an adsorbed O2 to form an OOCO* intermediate. The presence of surface Na increases the binding energy of O2 and decreases the energy barrier of the transition states.

  16. Investigations of Zr-Ni intermetallic compounds by perturbed angular correlations

    NASA Astrophysics Data System (ADS)

    Dey, C. C.

    2013-09-01

    The hyperfine interactions experienced by 181Ta in ZrNi5 and Zr2Ni7 intermetallic compounds have been investigated by the perturbed angular correlation (PAC) technique. In ZrNi5, a strong electric quadrupole interaction (∼40%) with ωQ=72.0(1) Mrad/s, η=0.25(1), δ=0 at room temperature has been found due to the presence of Zr2Ni7 contaminating phase produced during sample preparation in the arc furnace. A weak quadrupole interaction of Zr2Ni7 (∼5%) with ωQ=65(1) Mrad/s, η=0.24(6), δ=0 has also been observed. The cubic component of ZrNi5 also has been observed (∼40% at room temperature) in this sample along with associated defect (15%). It is found that at 873 K, the cubic fraction increases to ∼54% at the cost of its defect fraction. No magnetic interaction in ZrNi5 has been observed which supports the earlier PAC results but rules out the result of strong magnetic ordering found from magnetization measurement. In Zr2Ni7, two regular fractions corresponding to two different crystallographic sites of Zr have been clearly identified with the parameters ωQ(1)=70.9(1) Mrad/s, η(1)=0.28(1), δ=1.3(3)% and ωQ(2)=64(1) Mrad/s, η(2)=0.34(8), δ=0 while contradictory results were reported from previous measurements.

  17. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50-mm-bore ball bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (approximately 3.1 GPa) between that of 440C (2.4 GPa) and REX20 (3.8 GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5-kg mass reaction wheel, was modeled with respect to launch load capability when supported on standard (catalogue geometry) design 440C; 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings

  18. Formation of Intermetallic Compounds Between Liquid Sn and Various CuNi x Metallizations

    NASA Astrophysics Data System (ADS)

    Vuorinen, V.; Yu, H.; Laurila, T.; Kivilahti, J. K.

    2008-06-01

    Interfacial reactions between liquid Sn and various Cu-Ni alloy metallizations as well as the subsequent phase transformations during the cooling were investigated with an emphasis on the microstructures of the reaction zones. It was found that the extent of the microstructurally complex reaction layer (during reflow at 240°C) does not depend linearly on the Ni content of the alloy metallization. On the contrary, when Cu is alloyed with Ni, the rate of thickness change of the total reaction layer first increases and reaches a maximum at a composition of about 10 at.% Ni. The reaction layer is composed of a relatively uniform continuous (Cu,Ni)6Sn5 reaction layer (a uniphase layer) next to the NiCu metallizations and is followed by the two-phase solidification structures between the single-phase layer and Sn matrix. The thickness of the two-phase layer, where the intermetallic tubes and fibers have grown from the continuous interfacial (Cu,Ni)6Sn5 layer, varies with the Ni-to-Cu ratio of the alloy metallization. In order to explain the formation mechanism of the reaction layers and their observed kinetics, the phase equilibria in the Sn-rich side of the SnCuNi system at 240°C were evaluated thermodynamically utilizing the available data, and the results of the Sn/Cu x Ni1- x diffusion couple experiments. With the help of the assessed data, one can also evaluate the minimum Cu content of Sn-(Ag)-Cu solder, at which (Ni,Cu)3Sn4 transforms into (Cu,Ni)6Sn5, as a function of temperature and the composition of the liquid solders.

  19. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    SciTech Connect

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.; Wylie, J.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  20. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    SciTech Connect

    Soboyejo, W.O. ); Venkateswara Rao, K.T.; Ritchie, R.O. ); Sastry, S.M.L. )

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48Al + 20 vol pct TiNb and hot-isostatically pressed ('hipped') MoSi[sub 2] + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48Al and MoSi[sub 2] on the micromechanisms of fracture under monotonic and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonic loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  1. Modification of Surface Layers by Surfacing Intermetallic Coatings with Variable Properties

    NASA Astrophysics Data System (ADS)

    Makeev, D. N.; Zakharov, O. V.; Vinogradov, A. N.; Kochetkov, A. V.

    2016-02-01

    The paper considers the possibility of forming coating layers for parts within wide limits of microhardness. The technology uses surfacing of intermetallic coatings provided by a unique experimental setup. Theoretical and experimental dependence of the coating layer microhardness on the filler concentration using the changes in the speed of the filler wire feed and current intensity were determined.

  2. Synthesis and Modeling of Hollow Intermetallic Ni-Zn Nanoparticles Formed by the Kirkendall Effect

    SciTech Connect

    Jana, Subhra; Chang, Ji Woong; Rioux, Robert M.

    2013-10-09

    Intermetallic Ni–Zn nanoparticles (NPs) were synthesized via the chemical conversion of nickel NPs using a zerovalent organometallic zinc precursor. After the injection of a diethylzinc solution, Ni NPs progressively transformed from a solid to a hollow Ni–Zn intermetallic structure with time. During the transformation of Ni NPs to intermetallic structures, they retained their overall spherical morphology. The growth mechanism for the solid-to-hollow nanoparticle transformation is ascribed to the nanoscale Kirkendall effect due to unequal diffusion rates of Ni and Zn. We develop a diffusion model for nonreactive, homogeneous, diffusion-controlled intermetallic hollow NP formation including moving boundaries at the interfaces of void–solid and solid–bulk solutions. Apparent diffusion coefficients for both metals and vacancy were evaluated from modeling the time-dependent growth of the void. The apparent diffusion coefficients obtained in this system compared favorably with results from measurement at grain boundaries in bulk Ni–Zn. This study represents the first combined experimental modeling of the formation of hollow nanostructures by the nanoscale Kirkendall effect.

  3. Hydrides of intermetallic compounds and alloys: their properties and application in atomic technology

    SciTech Connect

    Perevezentsev, A. N.; Andreev, B. M.; Kapyshev, V. K.; Rivkis, L. A.; Malek, M. P.; Bystritskii, V. M.; Stolupin, V. A.

    1988-11-01

    The Soviet and foreign literature is reviewed and an attempt is made to systematize the large amount of information on the fundamental properties of most of the well-known hydride-forming intermetallic compounds and their practical use for the extraction, cleaning, and storage of hydrogen and the separation of its isotopes.

  4. Investigation of Laser Generation and Detection of Ultrasound in Ceramic Matrix Composites and Intermetallics

    NASA Technical Reports Server (NTRS)

    Ehrlich, Michael J.

    1998-01-01

    The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.

  5. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    SciTech Connect

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys.

  6. Evaluation of Gibbs free energies of formation of Ce-Cd intermetallic compounds using electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Hayashi, Hirokazu; Akabori, Mitsuo; Arai, Yasuo; Kurata, Masaki

    2014-08-01

    Gibbs free energies of formation of six Ce-Cd intermetallic compounds, CeCd, CeCd2, CeCd3, CeCd58/13, CeCd6 and CeCd11, were evaluated systematically using electrochemical techniques in the temperature range of 673-923 K in the LiCl-KCl-CeCl3-CdCl2 molten salt bath. The linear dependence of the Gibbs free energies of formation on temperature yields to the enthalpies and entropies of formation of these intermetallic compounds. By extrapolating the Gibbs free energy of Ce-Cd intermetallic compounds to the Cd distillation temperature, it was clear that the Gibbs free energy of Ce-Cd intermetallic compounds decreases gradually from CeCd6 to CeCd2 and attains minimum value at CeCd2. This suggests on the Cd distillation from the U-Pu-Ce-Cd alloy that the dissolution of U or Pu into CeCd2 should be mostly taken into consideration.

  7. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  8. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  9. Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment

    SciTech Connect

    Anantha Narayanan, L. |; Samuel, F.H.; Gruzleski, J.E.

    1995-08-01

    Conventional heat treatment techniques in Al-Si alloys to achieve optimum mechanical properties are limited to precipitation strengthening processes due to the presence of second-phase particles and spheroidization of silicon particles. The iron intermetallic compounds present in the microstructure of these alloys are reported to be stable, and they do not dissolve during conventional (equilibrium) heat treatments. The dissolution behavior of iron intermetallics on nonequilibrium heat treatment has been investigated by means of microstructure and mechanical property studies. The dissolution of iron intermetallics improves with increasing solution temperature. The addition of manganese to the alloy hinders the dissolution of iron intermetallics. Nonequilibrium heat treatment increases the strength properties of high iron alloys until a critical solution temperature is exceeded. Above this temperature, a large amount of liquid phase is formed as a result of interdendritic and grain boundary melting. The optimum solution treatment temperature for Al-6Si-3.5Cu-0.3Mg-1Fe alloys is found to be between 515 C and 520 C.

  10. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  11. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-01

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  12. Whisker formation in Sn and Pb-Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation processes

    SciTech Connect

    Chason, E.; Jadhav, N.; Kumar, K. S.; Chan, W. L.; Reinbold, L.

    2008-04-28

    We have simultaneously measured the evolution of intermetallic volume, stress, and whisker density in Sn and Pb-Sn alloy layers on Cu to study the fundamental mechanisms controlling whisker formation. For pure Sn, the stress becomes increasingly compressive and then saturates, corresponding to a plastically deformed region spreading away from the growing intermetallic particles. Whisker nucleation begins after the stress saturates. Pb-Sn layers have similar intermetallic growth kinetics but the resulting stress and whisker density are much less. Measurements after sputtering demonstrate the important role of the surface oxide in inhibiting stress relaxation.

  13. The magnetic behavior of the intermetallic compound NdMn2Ge2 studied by magnetization and hyperfine interactions measurements

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-01

    The magnetic behavior of the intermetallic compound NdMn2Ge2 was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ-γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around TN ˜ 425 K and a well defined ferromagnetic transition at TC ˜ 320 K. Moreover, at ˜210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ˜25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using 140La(140Ce) and 111In(111Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (Bhf) at Nd and Mn sites, respectively. PAC results with 111Cd probe nuclei at Mn sites show that the dependence of Bhf with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with 140Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to Bhf.

  14. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C. de; Fournée, V.

    2014-08-28

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (√(3)×√(3)) R30{sup ∘} superstructure and an estimated composition close to In{sub 2}Pd{sub 3}. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (√(3)×√(3)) R30{sup ∘} superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In{sub 7}Pd{sub 3} compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600 K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In

  15. Surface structures of In-Pd intermetallic compounds. I. Experimental study of In thin films on Pd(111) and alloy formation

    NASA Astrophysics Data System (ADS)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; de Weerd, M.-C.; Fournée, V.

    2014-08-01

    A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer equivalents (MLEs), the LEED patterns show the formation of three rotational domains of InPd(110) of poor structural quality on top of the Pd(111) substrate. Both core-levels and valence band XPS spectra show that the surface alloy does not yet exhibit the electronic structure characteristic of the 1:1 intermetallic compound under these conditions. Annealing the 1 MLE thin film up to 690 K yields to a transition from a multilayer InPd near-surface intermetallic phase to a monolayer-like surface alloy exhibiting a well ordered (√{3}× &sqrt{3}); {R30}° superstructure and an estimated composition close to In2Pd3. Annealing above 690 K leads to further In depletion and a (1 × 1) pattern is recovered. The (√{3}× √{3}) {R30}° superstructure is not observed for thicker films. Successive annealing of the 2 MLE thin film leads the progressive disappearance of the InPd diffraction spots till a sharp (1 × 1) pattern is recovered above 690 K. In the high coverage regime (from 4 to 35 MLE), the formation of three rotational domains of a bcc-In7Pd3 compound with (110) orientation is observed. This In-rich phase probably grows on top of interfacial InPd(110) domains and is metastable. It transforms into a pure InPd(110) near-surface intermetallic phase in a temperature range between 500 and 600 K depending on the initial coverage. At this stage, the surface alloy exhibits core-level chemical shifts and valence band (VB) spectra identical to those of the 1:1 InPd intermetallic compound and resembling Cu-like density of states. Annealing at higher temperatures yields to a decrease of the In concentration in the near

  16. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    PubMed Central

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769

  17. Structure and mechanical properties of cement and intermetallic compounds via ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, Chamila Chathuranga

    Calcium silicate hydrates comprise a class of minerals formed synthetically during Portland cement hydration or naturally through various geological processes. The importance of these minerals is immense since they are the primary binding phases for Portland cement derived construction materials. Efforts spanning centuries have been devoted to understand the structural aspects of cohesion in these minerals. In recent years, the focus has progressively turned to atomic level comprehension. Structurally these minerals can range from crystalline to highly disordered amorphous phases. This thesis focuses upon unraveling the nature of chemical bonding in a large subset of calcium silicate hydrate (CSH) crystals. Thus their electronic structure was calculated and bonding mechanisms were investigated quantitatively. Results highlight a wide range of contributions from each type of bonding (Si-O, Ca-O, O-H and hydrogen bond) with respect to silicate polymerization, crystal symmetry, water and OH content. Consequently, total bond order density (TBOD) was designated as the overall single criterion for characterizing crystal cohesion. The TBOD categorization indicates that a rarely known orthorhombic phase Suolunite is closest to the ideal composition and structure of cement. Present work finds the relationship of partial bond order density (PBOD) of each bond species, especially HBs to the mechanical properties of CSH crystals. This can be used as a basis to validate existing C-S-H models and to build improved ones. This work goes further and validates the recently proposed models (2014) for C-S-H (I) phase on the same basis of proposed electronic structure parameters. Then the respective Calcium aluminosilicate hydrates C-A-S-H (I) phase models are proposed. Finally, these results lead to improved interpretations and construction of realistic atomistic models of cement hydrates. Ab initio molecular dynamics (AIMD) could be vital to solve critical problems in complex

  18. Electrodeposited nickel(3) aluminide base intermetallic coatings and their resistance to high temperature degradation in hydrocarbon cracking environments

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng

    This research was aimed at developing novel Ni-A1 base intermetallic coatings to protect commercial Fe-Ni-Cr tube alloys from severe corrosive degradation at high temperatures. These alloys are widely used in petrochemical, chemical, and energy conversion industries. The coating process and coating evaluation were the two main aspects of this investigation. A two-step coating processing has been successfully developed to in situ apply pure and CeO2-modified Ni3Al intermetallic coatings onto Fe-Ni-Cr substrates. The process consists of the electrodeposition of Ni-Al and Ni-Al-CeO2 composite coatings from a Watt's nickel bath containing Al and CeO2 particles via a cost-effective electroplating technique and an annealing treatment of the as-plated coatings. It was found that the deposition of Al particles obeyed a Guglielmi model, and that REO particles interfered significantly with the deposition of Al particles. The long-term resistance of pure and CeO2-modified Ni 3A1 coatings to cyclic oxidation, carburization, coke formation, and metal dusting was evaluated in flowing dry air, 2 % CH4-H 2, and CO-H2-H2O respectively. Due to the high porosity, pure and CeO2-dispersed Ni3Al coatings exhibited poor resistance to cyclic oxidation at 850°C. CeO2 improved the spallation resistance of the Ni3Al base coatings during cyclic oxidation at 1050°C. CeO2-dispersed Ni3Al coatings showed better carburization resistance, particularly at 1050°C. Ni 3A1-based coatings. Those CeO2-dispersed were susceptible to coke formation and metal dusting at 650°C. Pre-oxidation improved the resistance of Ni3Al-based coatings to coke formation and metal dusting at 650°C, but the effectiveness depended on the integrity of the induced alumina scale. Special attention was paid to several aspects of coating degradation. These aspects included microstructure changes, degradation mechanisms, coating/substrate interdiffusion, effect of corrosive atmosphere, and effect of CeO2 on coating

  19. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    ERIC Educational Resources Information Center

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers…

  20. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  1. Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Zhan, Yongzhong; Wu, Junyan; Wei, Xuanchen

    2015-11-01

    The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr-Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt-Reuss-Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0-300 K and pressure of 0-50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.

  2. Chemical bonding in equiatomic cerium intermetallics - The case of CeMgSn, CePdSn, and CeMgPb

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2015-10-01

    The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce-Sn in CeMgSn, Ce-Pb in CeMgPb, and Ce-Pd in CePdSn.

  3. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase.

  4. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  5. Structure maps in the search for new intermetallics

    SciTech Connect

    Pettifor, D.G. . Dept. of Mathematics)

    1989-01-01

    The data base on the crystal structures of binary compounds may be ordered within two-dimensional structure maps using the recently proposed Mendeleev number which places all the elements in sequential order. This paper reviews the progress made and problems encountered in using the maps as a guide in the search for new pseudobinaries with a required crystal structure. 37 refs., 6 figs.

  6. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  7. Wear Behavior and Mechanism of Fe-Al Intermetallic Coating Prepared by Hot-Dip Aluminizing and Diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Y.; Zhou, Y.; Liu, J. Q.; Chen, K. M.; Mo, J. G.; Cui, X. H.; Wang, S. Q.

    2016-05-01

    A Fe-Al intermetallic compound coating was prepared on AISI H13 steel by hot-dip aluminizing and subsequent high-temperature diffusion. Dry sliding wear tests of the Fe-Al intermetallic coating were performed at 298 K to 873 K (25 °C to 600 °C). The wear behavior of the Fe-Al intermetallic coating was noticed to vary markedly with the temperature and load. At 298 K (25 °C), the wear rate rapidly increased with an increase of the load. As the temperature was elevated, the wear rate dramatically decreased except for the cases under 300 N at 473 K and 673 K (200 °C and 400 °C). The Fe-Al intermetallic coating possessed an excellent elevated-temperature wear performance, especially at 673 K to 873 K (400 °C to 600 °C), but worse room-temperature one, which were noticed to be attributed to the existence and inexistence of thin tribo-oxide layers, respectively. Such a thin tribo-oxide layer was considered to provide a protection for the intermetallic compound. When the tribo-oxide layer did not form at room temperature or the formed one was massively delaminated above the critical load at elevated temperatures, Fe-Al intermetallic coating possessed poor wear resistance.

  8. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    PubMed Central

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  9. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  10. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  11. Synthesis gas reactions over catalysts formed by oxidation of thorium-containing intermetallic compounds

    SciTech Connect

    Imamura, H.; Wallace, W.E.

    1980-09-01

    Intermetallic compounds containing 1:1, 1:2, 1:5, and 7:3 thorium-nickel ratios were prepared, powdered, and treated with oxygen at room temperature or 350/sup 0/C. The resulting catalysts contained mainly thorium dioxide and metallic nickel, and the nickel dispersions, as measured by CO adsorption, were 1.1-6.0%. The catalysts were active for the reaction of 3:1 hydrogen/carbon monoxide in proportion to the amount of oxygen uptake during pretreatment, and were highly selective for methane formation. Turnover numbers of up to 10.6 were obtained at 205/sup 0/C. The methanation reaction over 3.9 and 25Vertical Bar3< nickel on thoria support prepared by the conventional impregnation method gave similar conversions at 490/sup 0/-510/sup 0/C as the oxidized intermetallic compounds did at approx. 200/sup 0/C.

  12. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound.

    PubMed

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  13. Long-Term Behavior of the Tritides Formed by Nickel-Based Intermetallic Compounds

    SciTech Connect

    Bowman, Jr., R. C.; Steinmeyer, R. H.; Matson, L. K.; Attalla, A.; Craft, B. D.

    1985-04-01

    Some properties of the tritide phases formed by the intermetallic compounds Mg2Ni, ZrNi, and LaNi5 have been studied. Whereas ZrNiT3 will retain its stoichiometry indefinitely when sufficient gaseous tritium is available, the stoichiometries of Mg2NiT4 and LaNi5T6.9 decrease with time. Although all three intermetallic tritides can retain large quantities of the helium-3 tritium decay daughter product in the solid phase, irreversible release of helium begins after several hundred days for ZrNiTx and Mg2NiTx. However, LaNi5Tx retains all of the helium generated in the solid for at least 2400 days. NMR measurements for ZrNiTx and Mg2NiTx imply that helium is retained in microscopic bubbles as previously observed in several binary metal tritides.

  14. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  15. A reliability study on tin based lead free micro joint including intermetallic and void evolution

    NASA Astrophysics Data System (ADS)

    Feyissa, Frezer Assefa

    In microelectronics soldering to Cu pad lead to formation of two intermetallic structures in the solder -pad interface. The growth of these layers is accompanied by microscopic voids that usually cause reliability concern in the industry. Therefore it is important to understand factors that contribute for the growth of IMC using various combination of reflow time, Sn thickness and aging temperature. Systematic study was conducted on Cu-Sn system to investigate the formation and growth of intermetallic compound (IMC) as well as voiding evolution for different solder thicknesses. The growth of the Cu6Sn5 IMC layer was found to be increasing as the Sn thicknesses increase after reflow while the Cu3Sn layer were decreasing under same conditions. Also after reflow and aging more voiding were shown to occur in the thin solder than thicker one.

  16. An Analysis of Intermetallic Bonding between a Ring Carrier and an Aluminum Piston Alloy

    NASA Astrophysics Data System (ADS)

    Manasijević, Srećko; Dolić, Natalija; Zovko Brodarac, Zdenka; Djurdjević, Mile; Radiša, Radomir

    2014-09-01

    This paper presents the results of an analysis of the formation of an intermetallic bond between a ring carrier and an aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist) to increase the wear resistance of the first ring groove and is applied in highly loaded diesel engines. The most important thing is that the Ni-Resist (ferrous) must be bonded with a non-ferrous piston material during the casting of the piston. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that if the proper conditions are met, then the preparation of the ring carrier can be made successfully, as can the formation of the metal connection between the two materials of different qualities.

  17. Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface

    NASA Astrophysics Data System (ADS)

    Maurice, Vincent; Despert, Guillaume; Zanna, Sandrine; Bacos, Marie-Pierre; Marcus, Philippe

    2004-10-01

    Oxide layers grown on the surface provide an effective way of protecting metallic materials against corrosion for sustainable use in a broad range of applications. However, the growth of cavities at the metal/oxide interface weakens the adherence of the protective layer and can promote its spallation under service conditions, as observed for alumina layers formed by selective oxidation of aluminide intermetallic alloys used in high-temperature applications. Here we show that direct atomic-scale observations of the interface between an ultrathin protective oxide layer (alumina) grown on an intermetallic titanium aluminide substrate (TiAl) can be performed with techniques sensitive to the topmost atomic layers at the surface. Nanocavities resulting from the self-assembling of atomic vacancies injected at the interface by the growth mechanism of the protective oxide are observed for the first time, bringing new insight into the understanding of the fate of injected cavities in oxidation processes.

  18. Processing, compositional range, and mechanical behavior of the Mo(5)Si(3)C intermetallic compound

    NASA Astrophysics Data System (ADS)

    Ross, Eli Nickerson

    The intermetallic compound Mo5Si3C was studied in order to examine optimal processing methods, elevated temperature mechanical behavior, and the influence of crystal symmetry on the potential for improved room temperature ductility/toughness in ternary silicides. During the course of the investigation, samples were produced using nonconsumable arc melting and vacuum hot pressing of either blended or mechanically alloyed powders. The most significant challenge to the production of single-phase Mo5 Si3C was the significantly narrower range of homogeneity for the ternary compound than originally reported. The primary reason for this discrepancy is thought to be the use of x-ray diffraction (XRD) as the sole means of phase identification in the original study, whereas the current work augmented XRD with other microstructural analysis techniques. Further complicating the processing of Mo5Si3C was the occurrence of composition shifts during powder processing. These shifts in stoichiometry were correlated to observed microstructural features and likely the result of thermodynamically favored reactions between silica present in the starting powders and carbon. Because of these complications, materials for mechanical testing typically contained between one and 6 volume percent of phases other than Mo5Si3C, with samples having the nominal composition Mo4.8Si3C0.87 closest to single phase. An average microhardness value of 13.2 GPa was recorded for the ternary phase at room temperature, and an indentation fracture toughness of approximately 2.5 MPa·m1/2 was determined. In the temperature range 1000 to 1300°C, materials tested in compression displayed properties that were highly strain rate and grain size dependent, indicating the influence of boundary-controlled deformation mechanisms. The behavior of samples tested in four-point bending at 1200°C showed similar behavior, with larger grain size materials failing after limited deformation while finer grain size materials

  19. Magnetic properties of the intermetallic compounds PrNiSn and NdNiSn

    NASA Astrophysics Data System (ADS)

    Beirne, Eamonn Daniel

    Inelastic neutron scattering has been used to determine the crystalline electric field (CEF) excitations in the intermetallic compound PrNiSn. Polycrystalline samples of PiNiSn are found to have 7 excitations up to 30 meV, with strong low-lying modes at 2.0, 3.5, and 5.1 meV. The site symmetry of Pr3+ in this system is such that the degeneracy of the 9 levels in the J = 4 ground state multiplet is removed completely by the crystal field. From fitting this data, it is clear that the ground state is a singlet that couples to each of the other 8 excited states. The wavefunctions of the levels are determined and a level scheme proposed for this material. Inelastic scattering results are also presented for a single crystal of PrNiSn. The dispersion of the low-lying E = 3.5 meV CEF excitation is documented, showing 4 distinct modes corresponding to the 4 Pr ions in the unit cell. Susceptibility and magnetisation results for PrNiSn and NdNiSn are presented. From these measurements it is clear that the PrNiSn does not order magnetically down to 2K, whereas NdNiSn has an antifenomagnetic transition at TN = 3.1K. Resistivity measurements on PrNiSn also show no evidence of a magnetic transition, but there are gradient changes at around 4.5K and 12K. This corresponds to a local maximum at 12K and local minimum at 4.5K along the b-axis in this compound. Measurements on single crystals of these compounds show strong anisotropy in both cases, attributed to CEF effects. From the proposed CEF level scheme, the bulk properties such as the susceptibility can be modelled. Neutron powder diffraction measurements on both PrNiSn and NdNiSn confirm that there is no magnetic transition down to 1.6K in PrNiSn, and TN is confirmed for NdNiSn. Structural Rietveld fitting confirms the room temperature orthorhombic structure in both systems down to low temperature, but the magnetic structure of NdNiSn can not be determined. This is due to the magnetic peaks below TN doubling up, indicating a

  20. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  1. The role of zinc on the chemistry of complex intermetallic compounds

    SciTech Connect

    Xie, Weiwei

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  2. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  3. Do-not-resuscitate order

    MedlinePlus

    ... order; DNR; DNR order; Advance care directive - DNR; Health care agent - DNR; Health care proxy - DNR; End-of-life - DNR; Living ... medical order written by a doctor. It instructs health care providers not to do cardiopulmonary resuscitation (CPR) ...

  4. TiNiSn: A gateway to the (1,1,1) intermetallic compounds

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A.

    1996-06-01

    Recent awareness of the transport properties of Skutterudite pnictides has stimulated an interest in numerous other intermetallic compounds having a gap in the density of states at the Fermi level including the MNiSn compounds where M = (Ti, Zr, Hf). These intermetallic half-Heusler compounds are characterized by high Seebeck coefficients ({minus}150 to {minus}300 {micro}V/deg.) and reasonable carrier mobilities (30 to 50 cm{sup 2}/V-s) at room temperature which make them attractive candidates for intermediate temperature thermoelectric applications. Samples of TiNiSn were prepared by arc melting and homogenized by heat treatment. The temperature dependence of the electrical resistivity, Seebeck coefficient, and thermal diffusivity of these samples was characterized between 22 C and 900 C. The electrical resistivity and thermopower both decrease with temperature although the resistivity decreases at a faster rate. Electrical power factors in excess of 25 {micro}W/cm-C{sup 2} were observed in nearly single phase alloys within a 300 to 600 C temperature range. A brief survey of other selected ternary intermetallic compounds is also presented.

  5. Synthesis and densification of Ni{sub 3}(Si, Ti) intermetallics by hot isostatic pressing

    SciTech Connect

    Van Dyck, S.; Delaey, L.; Froyen, L.; Buekenhout, L.

    1996-12-31

    The production of complex parts from Ni{sub 3}(Si, Ti) intermetallic materials by reactive powder metallurgy offers significant advantages over more conventional processing techniques. The main problem associated with reactive powder metallurgy is controlling the exothermic reaction accompanying the synthesis of the intermetallic compound. The uncontrolled release of heat during the conversion of the reactants into nickel silicide leads to unacceptable deformation and melting of the part. The thermal evolution of a part during reactive synthesis of the intermetallic phase is described based on kinetic and heat transfer equations, giving the temperature and phase change as a function of the applied temperature cycle and the mass and size of the part under consideration. From this model, methods for controlling the exothermic reaction during synthesis are derived. When preparing nickel silicides by reactive powder metallurgy, the application of external pressure is required to eliminate porosity and to obtain good mechanical properties. The properties of materials produced by hot isostatic pressing, with different methods of reaction control, are compared to materials prepared from prealloyed powders. It is shown that by reactive HIP, materials can be obtained with a fracture strength exceeding 2,000 MPa.

  6. Use of Brazilian disk test to determine properties of metallic-intermetallic laminate composites

    NASA Astrophysics Data System (ADS)

    Jiang, Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2010-01-01

    Metallic-intermetallic laminate (MIL) composites based on Ti-Al3Ti offer a unique combination of structural and ballistic/blast performance capabilities for many defense related platforms. In this study, the Brazilian splitting test was employed, under quasi-static and dynamic loading conditions, using disk specimens cut from the laminate plates in orientations perpendicular (in-plane) and parallel (through-thickness) to the layers. Tests were conducted to evaluate the overall tensile mechanical properties of the Ti-Al3Ti MIL composite, both to determine in-plane tensile properties, as well as the more challenging through-thickness tensile properties. Experimental results indicate that when loaded parallel to the layers, the tensile strength in the through-thickness orientation, determined by Brazilian splitting test, is low, which is not surprising since it is only evaluating the tensile behavior of the brittle intermetallic phase. When loaded perpendicular to the layers, the in-plane tensile strength of the Ti-Al3Ti MIL composites is high due to the contribution of the reinforcement Ti plus the intermetallic component.

  7. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  8. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  9. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  10. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  11. Prediction of Host-Guest Na-Fe Intermetallics at High Pressures.

    PubMed

    Zhou, Yuanyuan; Wang, Hui; Zhu, Chunye; Liu, Hanyu; Tse, John S; Ma, Yanming

    2016-07-18

    High pressure can fundamentally alter the electronic structure of elemental metals, leading to the unexpected formation of intermetallics with unusual structural features. In the present study, the phase stabilities and structural changes of Na-Fe intermetallics under pressure were studied using unbiased structure searching methods, combined with density functional theory calculations. Two intermetallics with stoichiometries Na3Fe and Na4Fe are found to be thermodynamically stable at pressures above 120 and 155 GPa, respectively. An interesting structural feature is that both have form a host-guest-like structure with Na sublattices constructed from small and large polygons similar to the host framework of the self-hosting incommensurate phases observed in Group I and II elements. Apart from the one-dimensional (1D) Fe chains running through the large channels, more interestingly, electrides are found to localize in the small channels between the layers. Electron topological analysis shows secondary bonding interactions between the Fe atoms and the interstitial electrides help to stabilize these structures. PMID:27341197

  12. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  13. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  14. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments. PMID:24898034

  15. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb3 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Pagare, Gitanjali; Abraham, Jisha Annie; Jain, Ekta; Sanyal, Sankar P.

    2015-08-01

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb3 intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C11, C12 and C44), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh's criteria and Cauchy's pressure (C11-C12). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt-Reuss-Hill (VRH) averaging scheme. The average sound velocities (vm), density (ρ) and Debye temperature (θD) of this compound are also estimated from the elastic constants.

  16. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    SciTech Connect

    Pagare, Gitanjali Jain, Ekta; Abraham, Jisha Annie; Sanyal, Sankar P.

    2015-08-28

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has not been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.

  17. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.

  18. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  19. Study of Intermetallic Growth and Kinetics in Fine-Pitch Lead-Free Solder Bumps for Next-Generation Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Chow, Justin; Liu, Xi; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-02-01

    With continued advances in microelectronics, it is anticipated that next-generation microelectronic assemblies will require a reduction of the flip-chip solder bump pitch to 100 μm or less from the current industrial practice of 130 μm to 150 μm. With this reduction in pitch size, and thus in bump height and diameter, the interaction between die pad metallurgy and substrate pad metallurgy becomes more critical due to the shorter diffusion path and greater stress. Existing literature has not addressed such metallurgical interaction in actual fine-pitch flip-chip assemblies. This work studies intermetallic growth and kinetics in fine-pitch lead-free solder bumps through thermal aging of flip-chip assemblies. Based on this study, it is seen that Ni from the die pad diffuses to the substrate pad region and Cu from the substrate pad diffuses to the die pad region, thus the resulting intermetallic compounds at the die and substrate pad regions are influenced by the other pad as well. Such cross-pad interaction is much stronger in fine-pitch solder bumps with smaller standoff height. It is seen that the die pad region contains Ni3P and (Cu,Ni)6Sn5 after thermal aging, while the substrate pad region contains Cu3Sn and (Cu,Ni)6Sn5. By digitally measuring the thickness of the interfacial phases, the kinetics parameters and the activation energy were calculated for the growth of (Cu,Ni)6Sn5 on the substrate side. The Cu diffusion coefficient through the intermetallic compound (IMC) layer was found to be 0.03370 μm2/h, 0.1423 μm2/h, and 0.4463 μm2/h at 100°C, 125°C, and 150°C, respectively, and the apparent activation energy for the growth of compound layers was 67.89 kJ/mol.

  20. Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ding, Zhengping; Liu, Jiatu; Ji, Ran; Zeng, Xiaohui; Yang, Shuanglei; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-10-01

    Li2MSiO4 (M = Mn, Fe, Co, Ni, et al.) has received great attention because of the theoretical possibility to reversibly deintercalate two Li+ ions from the structure. However, the silicates still suffer from low electronic conductivity, sluggish lithium ion diffusion and structural instability upon deep cycling. In order to solve these problems, a "hard-soft" templating method has been developed to synthesize three-dimensionally ordered macroporous (3DOM) Li2FeSiO4/C composites. The 3DOM Li2FeSiO4/C composites show a high reversible capacity (239 mAh g-1) with ∼1.50 lithium ion insertion/extraction, a capacity retention of nearly 100% after 420 cycles and excellent rate capability. The enhanced electrochemical performance is ascribed to the interconnected carbon framework that improves the electronic conductivity and the 3DOM structure that offers short Li ion diffusion pathways and restrains volumetric changes.

  1. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  2. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher-order functional fits

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.; Keranen, K.

    2009-01-01

    Ongoing developments in earthquake source inversions incorporate nonplanar fault geometries as inputs to the inversion process, improving previous approaches that relied solely on planar fault surfaces. This evolution motivates advancing the existing framework for constraining fault geometry, particularly in subduction zones where plate boundary surfaces that host highly hazardous earthquakes are clearly nonplanar. Here, we improve upon the existing framework for the constraint of the seismic rupture plane of subduction interfaces by incorporating active seismic and seafloor sediment thickness data with existing independent data sets and inverting for the most probable nonplanar subduction geometry. Constraining the rupture interface a priori with independent geological and seismological information reduces the uncertainty in the derived earthquake source inversion parameters over models that rely on simpler assumptions, such as the moment tensor inferred fault plane. Examples are shown for a number of wellconstrained global locations. We expand the coverage of previous analyses to a more uniform global data set and show that even in areas of sparse data this approach is able to accurately constrain the approximate subduction geometry, particularly when aided with the addition of data from local active seismic surveys. In addition, we show an example of the integration of many two-dimensional profiles into a threedimensional surface for the Sunda subduction zone and introduce the development of a new global threedimensional subduction interface model: Slab1.0. ?? 2009 by the American Geophysical Union.

  3. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  4. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  5. Higher-order modes of storage ring rf cavities and their interaction with the beam at the Advanced Photon Source (APS)

    SciTech Connect

    Song, J.J.; Harkay, K.C.; Kang, Y.W.

    1997-09-01

    The higher-order modes (HOMs) of APS storage ring (SR) rf cavities and waveguides were measured under various operating conditions. The HOMs of the 352-MHz rf cavity can be one of the major contributors to the coupled bunch (CB) instability. The distribution of HOMs under various conditions of beam current, cavity temperature, cavity tuning, single-bunch and multi-bunch operation, and fill patterns, are presented. The HOMs` shunt impedance of the loaded cavities were also measured. The effect of stagger tuning of the 16 cavities and their waveguide system is compared, and the HOM dampers are examined.

  6. Random-anisotropy ferromagnetic state in the C u5G d0.54C a0.42 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Krnel, M.; Vrtnik, S.; Koželj, P.; Kocjan, A.; Jagličić, Z.; Boulet, P.; de Weerd, M. C.; Dubois, J. M.; Dolinšek, J.

    2016-03-01

    By applying the alloy design concept that stable intermetallic phases between two immiscible elements can be formed by adding a third element that forms stable compounds with both elements, we have synthesized the first known stable intermetallic compound of Cu, Gd, and Ca, where copper acts as the mediating element between the immiscible Gd and Ca. A compound with the composition C u84G d9C a7 (equivalent to C u5G d0.54C a0.42 ) was synthesized by the Czochralski technique in the form of a large single crystal of high structural perfection, and the structural model was determined by x-ray diffraction (XRD). The compound crystallizes in the hexagonal system, space group P 6 /mmm, and the crystal structure is isotypic to the C u5.44T b0.78 . The unit cell contains inherent disorder due to partial occupation of the Cu3 site and the substitutional disorder at the Gd/Ca mixed site located at the vertices of the hexagonal unit cell, where Gd and Ca randomly substitute each other. The random substitution of magnetic Gd by nonmagnetic Ca atoms makes the magnetic Gd lattice disordered, which leads to interesting magnetic ordering at low temperatures that occurs below TC=24 K in zero and low external magnetic fields. By performing a large set of complementary experiments along two perpendicular crystallographic directions (the [001] hexagonal-axis direction and the [100] hexagonal-plane direction), we show that the zero-field collective magnetic state can be described as a random-anisotropy ferromagnetic state, where random magnetic anisotropies originate from the magnetic dipole interactions between the Gd moments in the magnetically disordered lattice. The random-anisotropy ferromagnetic state in the C u84G d9C a7 is characterized by randomness and frustration of magnetic interactions, which are the two ingredients that allow classifying this state into the generic class of spin glasses. Our paper opens the possibility to search for new ternary intermetallic phases in the

  7. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  8. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  9. Determining factor of median diameter in intermetallic compound nanoparticles prepared by pulsed wire discharge

    NASA Astrophysics Data System (ADS)

    Nagasawa, Shinobu; Koishi, Tetsuya; Tokoi, Yoshinori; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi

    2014-02-01

    The preparation of NiAl intermetallic compound nanoparticles was carried out by pulsed wire discharge (PWD) using twisted pure Ni and Al wires in N2 ambient gas with varying number of turns of the wire (Nt), energy ratio (K), and ambient gas pressure (P). From the voltage and current waveforms during the wire heating, the energy deposition ratio up to the voltage peak (Kp) was calculated. It increased with an increase in Nt to 0.4 turns/mm and with increases in K and P. Under all the conditions, with an increase in Kp, the Ni composition ratio of the prepared particles (CNi) became closer to that of the wire (= 51.2 mol %). Furthermore, the collection rate (Rc) increased and the median particle diameter (d50) decreased. In particular, the change in d50 due to the change in Nt was not predicted by the relationship of d50 and Dth in our previous report. Single-phase NiAl intermetallic compound nanoparticles were successfully prepared under the condition in which Nt is 0.4 turns/mm, K is 3.4, and P is 100 kPa, where relatively high value of Kp was obtained. From these results, Kp was determined to be an important factor that determines the composition, collection rate, and median diameter of intermetallic compound nanoparticles synthesized by PWD using different kinds of twisted wires under various experimental conditions. This may be because of the selective wire heating in high-resistance parts that are associated with the introduction of lattice defects and/or necks by overwinding.

  10. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  11. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  12. Magnetostriction and magnetism of rare earth intermetallic compounds: First principle study

    NASA Astrophysics Data System (ADS)

    Gavrilenko, V. I.; Wu, R. Q.

    2001-06-01

    Magnetism and magnetostriction of rare earth intermetallic compounds, GdCo2, GdFe2, NdCo2, SmCo2, and ErCo2, have been studied by using the first principles full-potential linearized augmented plane-wave method with the generalized gradient approximation. The calculated magnetostriction coefficients agree well with experiment. The itinerant electrons of transition metal elements are found to play a significant role in magnetoelastic coupling. The strong anisotropy of magnetostriction in GdCo2 is explained. Contributions due to spatial anisotropic charge distribution of the incomplete 4f shells are calculated and discussed.

  13. Confinement Effects on Evolution of Intermetallic Compounds During Metallurgical Joint Formation

    NASA Astrophysics Data System (ADS)

    Park, M. S.; Gibbons, S. L.; Arróyave, R.

    2014-07-01

    In this work, we compare the microstructural evolution of Sn/Cu/Sn and Cu/Sn/Cu `sandwich' configurations under metallurgical bonding conditions. These simulations are relevant in explaining experimental observations that suggest that the resulting dominant intermetallic compound in Cu-Sn systems depends on the relative supply of Cu and Sn. Through the analysis of morphological evolution and growth rate, it is shown that the Cu6Sn5 layer becomes dominant in the Sn/Cu/Sn structure, while the Cu/Sn/Cu structure is dominated by Cu3Sn after extended reaction periods.

  14. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  15. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  16. Influences of Hydrogen Micropores and Intermetallic Particles on Fracture Behaviors of Al-Zn-Mg-Cu Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Su, Hang; Yoshimura, Takuro; Toda, Hiroyuki; Bhuiyan, Md. Shahnewaz; Uesugi, Kentaro; Takeuchi, Akihisa; Sakaguchi, Nobuhito; Watanabe, Yoshio

    2016-09-01

    The combined effects of hydrogen micropores and intermetallic particles on the voids initiation and growth behavior of Al-Zn-Mg-Cu aluminum alloys during deformation and fracture are investigated with the help of the high-resolution X-ray tomography. It is interesting to note that the high-hydrogen concentration induced by an EDM cutting process results in the initiation of quasi-cleavage fracture near surface. With the increase of strain, the quasi-cleavage fracture is gradually replaced by dimple fracture. Voids initiation related to the dimple fracture is caused by both intermetallic particles fracture and interfacial debonding between particles and matrix. The nucleation of hydrogen micropores on intermetallic particles accelerates the voids initiation. The existence of triaxial stress ahead of the tip of a quasi-cleavage crack enhances growth rate for both hydrogen micropores and voids.

  17. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  18. Hydrogen occupancy in the RNi{sub 4}Mg (R=Y, La, Ce, and Nd) intermetallic compounds and hydrides

    SciTech Connect

    Hahn-Herrera, Otto; Orgaz, Emilio; Aburto, Andrea

    2009-10-15

    We have investigated the effect of hydrogen on the electronic strtucture of the RNi{sub 4}Mg (R=Y, La, Ce, Pr, and Nd) intermetallics. By means of a two-step approach, the projected plane-wave and linearized plane-waves methods, we studied the hydrogen-insertion energetics on the intermetallic matrix and the H-vacancy formation in the hydride compound. We found that particular interstitial sites in the intermetallics are suitable to allocate hydrogen and form a solid solution. The effect of these interstitials on the electronic structure is discussed. In the other hand, the hydrogen-occupied sites in the hydride are found to be energetically equivalent.

  19. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  20. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  1. Comparison of advanced DSP techniques for spectrally efficient Nyquist-WDM signal generation using digital FIR filters at transmitters based on higher-order modulation formats

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Junyi; Pan, Zhongqi

    2016-02-01

    To support the ever-increasing demand for high-speed optical communications, Nyquist spectral shaping serves as a promising technique to improve spectral efficiency (SE) by generating near-rectangular spectra with negligible crosstalk and inter-symbol interference in wavelength-division-multiplexed (WDM) systems. Compared with specially-designed optical methods, DSP-based electrical filters are more flexible as they can generate different filter shapes and modulation formats. However, such transmitter-side pre-filtering approach is sensitive to the limited taps of finite-impulse-response (FIR) filter, for the complexity of the required DSP and digital-to-analog converter (DAC) is limited by the cost and power consumption of optical transponder. In this paper, we investigate the performance and complexity of transmitter-side FIR-based DSP with polarization-division-multiplexing (PDM) high-order quadrature-amplitude-modulation (QAM) formats. Our results show that Nyquist 64-QAM, 16-QAM and QPSK WDM signals can be sufficiently generated by digital FIR filters with 57, 37, and 17 taps respectively. Then we explore the effects of the required spectral pre-emphasis, bandwidth and resolution on the performance of Nyquist-WDM systems. To obtain negligible OSNR penalty with a roll-off factor of 0.1, two-channel-interleaved DAC requires a Gaussian electrical filter with the bandwidth of 0.4-0.6 times of the symbol rate for PDM-64QAM, 0.35-0.65 times for PDM-16QAM, and 0.3-0.8 times for PDM-QPSK, with required DAC resolutions as 8, 7, 6 bits correspondingly. As a tradeoff, PDM-64QAM can be a promising candidate for SE improvement in next-generation optical metro networks.

  2. Investigation of Strain Aging in the Ordered Intermetallic Compound beta-NiAl. Ph.D. Thesis Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Weaver, Mark Lovell

    1995-01-01

    The phenomenon of strain aging has been investigated in polycrystalline and single crystal NiAl alloys at temperatures between 300 and 1200 K. Static strain aging studies revealed that after annealing at 1100 K for 7200 s (i.e., 2h) followed by furnace cooling, high purity, nitrogen-doped and titanium-doped polycrystalline alloys exhibited continuous yielding, while conventional-purity and carbon-doped alloys exhibited distinct yield points and Luders strains. Prestraining by hydrostatic pressurization removed the yield points, but they could be reintroduced by further annealing treatments. Yield points could be reintroduced more rapidly if the specimens were prestrained uniaxially rather than hydrostatically, owing to the arrangement of dislocations into cell structures during uniaxial deformation. The time dependence of the strain aging events followed at t(exp 2/3) relationship suggesting that the yield points observed in polycrystalline NiAl were the result of the pinning of mobile dislocations by interstitials, specifically carbon. Between 700 and 800 K, yield stress plateaus, yield stress transients upon a ten-fold increase in strain rate, work hardening peaks, and dips in the strain rate sensitivity (SRS) have been observed in conventional-purity and carbon-doped polycrystals. In single crystals, similar behavior was observed; in conventional-purity single crystals, however, the strain rate sensitivity became negative resulting in serrated yielding, whereas, the strain rate sensitivity stayed positive in high purity and in molybdenum-doped NiAl. These observations are indicative of dynamic strain aging (DSA) and are discussed in terms of conventional strain aging theories. The impact of these phenomena on the composition-structure-property relations are discerned. Finally, a good correlation has been demonstrated between the properties of NiAl alloys and a recently developed model for strain aging in metals and alloys developed by Reed-Hill et al.

  3. Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt2M‧M″ (M = Fe, Co, Ni) nanoparticles and their activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh T.; Wakabayashi, Ryo H.; Yang, Minghui; Abruña, Héctor D.; DiSalvo, Francis J.

    2015-04-01

    Alloying Pt with 3d transition metals has attracted much attention due to their reduced Pt content and reports of enhanced electrocatalytic activity for proton exchange membrane fuel cell applications. However, synthesizing ordered nanocrystalline intermetallics in the sub-10 nm range can be challenging. Here, we report on the co-reduction synthesis of ordered ternary Pt-base transition metal intermetallics with particle sizes in the regime of 3-5 nm. Since differences in the activity of PtM (M = Fe, Co, Ni) for oxygen reduction reaction (ORR) have been reported, we explored their combinations: Pt2FeCo, Pt2FeNi, and Pt2CoNi. These ternary intermetallic nanoparticles crystallized in P4/mmm space group upon annealing in a protective KCl matrix. The electrocatalysts were prepared by dispersing these intermetallics onto a carbon support using ethylene glycol and various sonication techniques. A combination of analytical techniques including powder X-ray diffraction, thermogravimetric analysis, electron microscopy and electrochemical methods have been used in this study. The oxygen reduction reaction activity and stability of the catalysts were tested in 0.1 M HClO4 and 0.1 M H2SO4 using cyclic voltammetry and rotating disk electrode voltammetry. The correlations between the composition, structure, morphology and activity of the intermetallics have been established and are discussed.

  4. Development and commercialization status of Fe{sub 3}Al-based intermetallic alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; McKamey, C.G.

    1993-06-01

    The Fe{sub 3}Al-based intermetallic alloys offer unique benefits of excellent oxidation and sulfidation resistance, limited by poor room-temperature (RT) ductility and low high-temperature strength. Recent understanding of environmental effects on RT ductility of these alloys has led to progress toward taking commercial advantage of Fe{sub 3}Al-based materials. Cause of low ductility appears to be related to hydrogen formed from reaction with moisture. The environmental effect has been reduced in these intermetallic alloys by two methods. The first deals with producing a more hydrogen-resistant microstructure through thermomechanical processing, and the second dealed with compositional modification. The alloys showing reduced environmental effect have been melted and processed by many different methods. Laboratory and commercial heats have been characterized. Tests have been conducted in both air and controlled environments to quantify environmental effects on these properties. These materials were also tested for aqueous corrosion and resistance to stress corrosion cracking. Oxidation and sulfidation data were generated and effects of minor alloying elements on were also investigated. Several applications have been identified for the newly developed iron aluminides. Commercialization status of these alloys is described.

  5. Mining for elastic constants of intermetallics from the charge density landscape

    NASA Astrophysics Data System (ADS)

    Kong, Chang Sun; Broderick, Scott R.; Jones, Travis E.; Loyola, Claudia; Eberhart, Mark E.; Rajan, Krishna

    2015-02-01

    There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure-property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C11 and C44 are determined solely from the magnitude of the charge density at its critical points, while C12 is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.

  6. Strengthening by intermetallic nanoprecipitation in Fe–Cr–Al–Ti alloy

    DOE PAGES

    Capdevila, C.; Aranda, M. M.; Rementeria, R.; Chao, J.; Urones-Garrote, E.; Aldazabal, J.; Miller, Michael K.

    2016-02-05

    In this paper, the strengthening mechanism observed during ageing at temperatures of 435 and 475 °C in the oxide dispersion strengthened (ODS) Fe–Cr–Al–Ti system has been investigated. Atom probe tomography (APT) and high-resolution transmission electron microscopy (HRTEM) analyses determined that the alloy undergoes simultaneous precipitation of Cr-rich (α' phase) and nanoscale precipitation of TiAl-rich intermetallic particles (β' phase). APT indicated that the composition of the intermetallic β' phase is Fe2AlTi0.6Cr0.4, and the evolving composition of α' phase with ageing time was also determined. The results obtained from HRTEM analyses allow us to confirm that the β' precipitates exhibit a cubicmore » structure and hence their crystallography is related to the Heusler-type Fe2AlTi (L21) structure. Finally, the strengthening could be explained on the basis of two hardening effects that occur simultaneously: the first is due to the α-α' phase separation through the modulus effect, and the second mechanism is due to the interaction of nanoscale β' particles with dislocations.« less

  7. Properties Evaluation and Studying Production Mechanism of Nanocrystalline NiAl Intermetallic Compound by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khajesarvi, Ali; Akbari, Golamhossein

    2016-04-01

    Ni50Al50 intermetallic compound was synthesized by mechanical alloying (MA) of elemental mixtures of Ni and Al powders in a planetary ball mill. After 16 hours of milling and obtaining crystallites with a critical size, the initial NiAl compound was formed along with the combustive reaction after opening the vial lid. In the time interval of 16 to 128 hours, the reaction from combustive state reached the explosive state. Finally, after 128 hours of milling, the initial powders were wholly transformed into NiAl before completion of the milling time. Structural changes of powder particles during MA were studied by X-ray diffractometry and scanning electron microscopy. The crystallite size measurements revealed that the grain size of the NiAl phase decreased from 155 to 26 nm with increasing MA time from 8 to 128 hours. Microhardness for nanocrystalline Ni50Al50 intermetallic compound produced after 128 hours of milling was measured as about 350 Hv.

  8. New types of multishell nanoclusters with a Frank-Kasper polyhedral core in intermetallics.

    PubMed

    Blatov, Vladislav A; Ilyushin, Gregory D; Proserpio, Davide M

    2011-06-20

    A comprehensive study of the occurrence of two-shell clusters with the first shell as a Frank-Kasper polyhedron Z12, Z14, Z15, or Z16 (Frank-Kasper nanoclusters) is performed for 22,951 crystal structures of intermetallics containing only metal atoms. It is shown that besides the familiar Bergman and Mackay clusters, two more types of high-symmetrical icosahedron-based nanoclusters are rather frequent; they both have a 50-atom second shell. Moreover, two types of high-symmetrical Frank-Kasper nanoclusters with a Friauf-polyhedron (Z16) core are revealed; these nanoclusters have 44 and 58 atoms in the second shell. On the contrary, Z14 and Z15 Frank-Kasper polyhedra have been found to be rare and improper to form distinct nanoclusters in crystals. The second shells of Frank-Kasper nanoclusters have been revealed possessing their own stability: they can be realized in nanoclusters with different internal polyhedra and can shift around the core shell. The role of Frank-Kasper nanoclusters in assembling intermetallic crystal structures is illustrated by several examples.

  9. Surface structures of In-Pd intermetallic compounds. II. A theoretical study

    SciTech Connect

    Gaudry, É.; McGuirk, G. M.; Ledieu, J.; Fournée, V.

    2014-08-28

    The (110) surface of the InPd intermetallic compound and the In–Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate to the surface in off-stoichiometric InPd(110) systems. Concerning surface alloys obtained by burying In-doped Pd layers in Pd(111), we demonstrated that the most stable ones are those presenting atomic indium concentrations below 50 at. % (11 at. %, 25 at. %, 33 at. %). According to our calculations, the In-doped Pd layers with concentration above or equal to 50% lead to In-doped Pd multilayers, each presenting an atomic indium concentration below 50 at. %. Alloying and segregation effects in InPd intermetallic compound and In–Pd surface alloys clearly agree with the larger bonding strength of In–Pd (−0.44 eV) compared to In–In (−0.29 eV) and Pd–Pd (−0.31 eV)

  10. Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation.

    PubMed

    Gallagher, James R; Childers, David J; Zhao, Haiyan; Winans, Randall E; Meyer, Randall J; Miller, Jeffrey T

    2015-11-14

    We report the structural evolution of Pd-Zn alloys in a 3.6% Pd-12% Zn/Al2O3 catalyst which is selective for propane dehydrogenation. High signal-to-noise, in situ synchrotron X-ray diffraction (XRD) was used quantitatively, in addition to in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) and extended X-ray absorption fine structure (EXAFS) to follow the structural changes in the catalyst as a function of reduction temperature. XRD in conjunction with DRIFTS of adsorbed CO indicated that the β1-PdZn intermetallic alloy structure formed at reduction temperatures as low as 230 °C, likely first at the surface, but did not form extensively throughout the bulk until 500 °C which was supported by in situ EXAFS. DRIFTS results suggested there was little change in the surfaces of the nanoparticles above 325 °C. The intermetallic alloy which formed was Pd-rich at all temperatures but became less Pd-rich with increasing reduction temperature as more Zn incorporated into the structure. In addition to the β1-PdZn alloy, a solid solution phase with face-center cubic structure (α-PdZn) was present in the catalyst, also becoming more Zn-rich with increasing reduction temperature.

  11. Mechanical Properties of In-Situ FeAl-TiB2 Intermetallic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Park, Bonggyu; Park, Yongho; Park, Ikmin; Lee, Heesoo

    Intermetallic matrix composites reinforced with ceramic particles have received a great deal of attention. Iron aluminide is known to be a good material for the matrix in such composites. Two processes were used to fabricate FeAl-TiB2 intermetallic matrix composites. One was liquid melt in-situ mixing, and the other was arc melting and suction casting processes. FeAl-TiB2 IMCs obtained by two different methods were investigated to elucidate the influence of TiB2 content. In both methods, the grain size in the FeAl alloy decreased with the presence of titanium diboride. The grain size of in-situ FeAl-TiB2 IMCs became smaller than that of arc FeAl-TiB2 IMCs. Significant increase in fracture stress and hardness was achieved in the composites. The in-situ process gives clean, contamination-free matrix/reinforcement interface which maintained good bonding causing high load bearing capability. This contributed to the increase in the mechanical properties of composites.

  12. Degradation behavior of Ca-Mg-Zn intermetallic compounds for use as biodegradable implant materials.

    PubMed

    Hagihara, Koji; Shakudo, Shuhei; Fujii, Kenta; Nakano, Takayoshi

    2014-11-01

    With the goal of developing new biodegradable implant materials, we have investigated the degradation behavior of (Ca, Mg)-based intermetallic compounds. The degradation behavior of the compounds within the Ca-Mg-Zn system was roughly classified into four groups, and their behaviors were strongly influenced by the compositions of the compounds. For example, the Ca3MgxZn(15-x) compound exhibited a large solubility region with varying the Mg/Zn ratio, and the Ca3Mg12Zn3 phase alloy with the lowest Zn content was rapidly broken apart within 6h of immersion. Alternatively, the Ca3Mg4.6Zn10.4 phase alloy with the highest Zn content retained the bulk shape even after 250 h of immersion. These varying degradation behaviors were ascribed to the difference in the formability of Zn oxide as a protective layer against corrosion on the specimen surfaces, depending on the Zn content. The gained results suggest that there is a feasibility on developing new biodegradable materials based on intermetallic compounds in which the degradation rate can be controlled by their compositions.

  13. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  14. Numerical Investigation of the Ballistic Performance of Metal-Intermetallic Laminate Composites

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhu, Shifan; Guo, Chunhuan; Vecchio, Kenneth S.; Jiang, Fengchun

    2015-08-01

    Metal-intermetallic laminate composites (MIL) based on the Ti-aluminide system are a new class of lightweight structural materials that can be used as either appliqué or structural armor. The explicit 2D finite element code LS-DYNA was employed to investigate the ballistic performance and failure mechanism of MIL composite plate subjected to impact loading. For comparison's sake, the penetration simulation was also conducted for a monolithic intermetallic Al3Ti sample under the same conditions. Damage tolerant abilities of the two targets were evaluated based on the analysis of the projectile tail velocity, crack density and absorbed material energy. The simulation results indicated that when cracks initiated in the Al3Ti matrix propagated to the interface between the matrix and reinforcement, their directions changed due to the bridging effect of the reinforcement Ti, which enabled the MIL composite to consume more energy as a result of the increase of the crack path lengths created by the crack deflection and bifurcation. Additionally, some other energy-absorbing mechanisms, such as deflection of cracks, plastic deformation of the ductile Ti also play important roles in enhancing the energy-absorbing capacity of the MIL composites.

  15. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    SciTech Connect

    Booth, C. H.; Jiang Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.

    2013-03-07

    The effect of self-irradiation damage on the local structure of {delta}-Pu, PuAl{sub 2}, PuGa{sub 3}, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa{sub 5}. In contrast, {delta}-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a {delta}-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of {delta}-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in {delta}-Pu as a network former.

  16. Shock-loading response of advanced materials

    SciTech Connect

    Gray, G.T. III

    1993-08-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevant to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.

  17. Application of random walk concept to the cyclic diffusion mechanisms for self-diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Tiwari, G. P.; Mehrotra, R. S.; Iijima, Y.

    2014-02-01

    Huntington-Elcock-McCombie (HEM) mechanism involving six consecutive and correlated jumps, a triple-defect mechanism (TDM) involving three correlated jumps and an anti-structure bridge (ASB) mechanism invoking the migration of an anti-structure atom are the three mechanisms currently in vogue to explain the self- and solute diffusion in intermetallic compounds. Among them, HEM and TDM are cyclic in nature. The HEM and TDM constitute the theme of the present article. The concept of random walk is applied to them and appropriate expressions for the diffusion coefficient are derived. These equations are then employed to estimate activation energies for self-diffusion via HEM and TDM processes and compared with the available experimental data on activation energy for self-diffusion in intermetallic compounds. The resulting activation energies do not favour HEM and TDM for the self-diffusion in intermetallic compounds. A comparison of the sum of experimentally determined activation energies for vacancy formation and migration with the activation energies for self-diffusion determined from radioactive tracer method favours the conventional monovacancy-mediated process for self-diffusion in intermetallic compounds.

  18. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGES

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; et al

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  19. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  20. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  1. Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging

    SciTech Connect

    Minor, Andrew M.; Morris, J.W., Jr.

    1999-12-16

    Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. The outermost Au layer serves to protect the pad from corrosion and oxidation and the Ni layer provides a diffusion barrier to inhibit detrimental growth of Cu-Sn intermetallics. As a result of reflowing eutectic Pb-Sn on top of Au/Ni metallization, the as-solidified joints have AuSn{sub 4} precipitates distributed throughout the bulk of the solder joint, and Ni{sub 3}Sn{sub 4} intermetallics at the interface. Recent work has shown that the Au-Sn redeposits onto the interface during aging, compromising the strength of the joint. The present work shows that the redeposited intermetallic layer is a ternary compound with stoichiometry Au{sub 0.5}Ni{sub 0.5}Sn{sub 4}. The growth of this intermetallic layer was investigated, and results show that the ternary compound is observed to grow after as little as 3 hours at 150 C and after 3 weeks at 150 C has grown to a thickness of 10 {micro}m. Additionally, methods for inhibiting the growth of the ternary layer were investigated and it was determined that multiple reflows, both with and without additional aging can substantially limit the thickness of the ternary layer.

  2. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-09-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  3. Order Up

    ERIC Educational Resources Information Center

    Gibeault, Michael

    2005-01-01

    Change orders. The words can turn the stomachs of administrators. Horror stories about change orders create fear and distrust among school officials, designers and builders. Can change orders be avoided? If car manufacturers can produce millions of intricately designed vehicles, why can't the same quality control be achieved on a construction…

  4. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  5. Higher-order Multiples.

    PubMed

    Stone, Joanne; Kohari, Katherine S

    2015-09-01

    Higher-order multiple gestations have increased since the advent of advanced reproductive technologies. These pregnancies present unique risks to both mothers and fetuses. It is imperative that early diagnosis of chronicity be determined and that proper counseling is performed, so patients understand the risks, evaluation, and management needed.

  6. Slow plastic strain rate compressive flow in binary CoAl intermetallics

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1985-01-01

    Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

  7. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed. PMID:21466753

  8. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2015-03-01

    Thermal expansion measurements were conducted on hot-pressed CrSi2, TiSi2, WSi2 and a two-phase Cr-Mo-Si intermetallic alloy between 303 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (Δ L/ L 0)thermal, varied with the absolute temperature, T, as where, A, B, C, and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from first heat-up cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  9. Technetium Incorporation into C14 and C15 Laves Intermetallic Phases

    SciTech Connect

    Buck, Edgar C.; Schemer-Kohrn, Alan L.; Wierschke, Jonathan B.

    2013-01-23

    Laves-type intermetallics have been observed to be the dominant phases in a series of alloy compositions being designed for the immobilization technetium in a metallic waste form. The dominant metals in the alloy compositions were Fe-Mo and Fe-Mo-Zr. Alloy composition, Fe-Mo-Zr, also contained Pd, Zr, Cr, and Ni. Both non-radioactive rhenium-containing and radioactive technetium-bearing alloy compositions were investigated. In the Fe-Mo series, phases were observed Fe2Mo (C14 Laves phase) and ferrite in agreement with predictions. Both Tc and Re resided predominantly in the Laves phase. In the Fe-Mo-Zr system, the phases included hexagonal C14 with the composition (Fe,Cr)2Mo, cubic C15 phase with a (Fe,Ni)2Zr composition, and the hcp phase Pd2Zr.

  10. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  11. Oxidation of high-temperature intermetallics; Proceedings of the Workshop, Cleveland, OH, Sept. 22, 23, 1988

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni (Editor); Doychak, Joseph (Editor)

    1989-01-01

    The present conference on the high-temperature oxidation behavior of aerospace structures-applicable intermetallic compounds discusses the influence of reactive-element additions on the oxidation of Ni3Al base alloys, the effect of Ni3Al oxidation below 850 C on fracture behavior, the oxidation of FeAl + Hf, Zr, and B, the synergistic effect of Al and Si on the oxidation resistance of Fe alloys, and pack cementation coatings of Cr-Al on Fe, Ni, and Co alloys. Also discussed are the formation of alumina on Nb- and Ti-base alloys, the oxidation behavior of titanium aluminide alloys, silicide coatings for refractory metals, the oxidation of chromium disilicide, and the oxidation behavior of nickel beryllides.

  12. Microstructural Evolution of Intermetallic Compounds in TCNCP Cu Pillar Solder Joints

    NASA Astrophysics Data System (ADS)

    Liang, Chien-Lung; Lin, Kwang-Lung; Peng-Wei, Jr.

    2016-01-01

    This study investigated the microstructure, especially intermetallic compounds (IMCs), formed between a Cu pillar and Cu trace joined by thermal compression bonding with nonconductive paste (NCP). Continuous, uniform layers of Cu3Sn formed on the surface of both the Cu pillar and Cu trace. However, the growth of Cu6Sn5 was suppressed, forming nonuniformly on the Cu trace due to NCP filler entrapment at the Cu-solder interface that hindered Sn diffusion flux. Multireflow induced rapid growth of IMCs within the Cu pillar solder joint. The combination of multireflow and thermal cycle testing gave rise to asymmetric growth of IMCs between the chip side and substrate side as a result of stress migration induced by thermal cycling.

  13. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, Iver E.; Lograsso, Barbara K.; Ellis, Timothy W.

    1994-01-01

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.

  14. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  15. Fabrication of intermetallic coatings for electrical and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.H.; Cho, W.D.

    1994-10-01

    Several intermetallic films were fabricated to high-temperature alloys (V-alloys and 304 and 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain-growth behavior at 1000{degrees}C for the V-5Cr-5Ti was investigated to determine the stability of alloy substrate during coating formation by chemical vapor deposition (CVD) or metallic vapor processes at 800-850{degrees}C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and X-ray diffraction analysis and tested for electrical resistivity and corrosion resistance. The results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  16. Nonisothermal kinetics study of phase evolution of Zn-Fe intermetallics

    SciTech Connect

    Uwakweh, O.N.C.; Liu, Z.T.; Boisson, M.

    1996-12-31

    Through mechanical alloying of pure elemental powders of Fe and Zn, true homogeneous alloys of {Gamma} (Fe{sub 3}Zn{sub 10}), {Gamma}{sub 1} (Fe{sub 5}Zn{sub 21}), {delta} (FeZn{sub 7}) and {zeta} (FeZn{sub 13}) intermetallic phases are formed. Based on nonisothermal kinetics analyses, the highest activation energies associated with the metastable to stable transformations of these phases are determined as follows: 170 {+-} 1 kJ/mol, 251 {+-} 2 kJ/mol, 176 {+-} 1 kJ/mol and 737 {+-} 4 kJ/mol for the {Gamma}, {Gamma}{sub 1}, {delta} and {zeta}-phases, respectively. These values reflect different diffusion/thermally induced processes associated with the transition of each of these phases.

  17. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  18. Role of defect coordination environment on point defects formation energies in Ni-Al intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Tennessen, Emrys; Rondinelli, James

    We present a relationship among the point defect formation energies and the bond strengths, lengths, and local coordination environment for Ni-Al intermetallic alloys based on density functional calculations, including Ni3Al, Ni5Al3, NiAl,Ni3Al4, Ni2Al3 and NiAl3. We find the energetic stability of vacancy and anti-site defects for the entire family can be attributed primarily to changes in interactions among first nearest neighbors, owing to spatially localized charge density reconstructions in the vicinity of the defect site. We also compare our interpretation of the local coordination environment with a DFT-based cluster expansion and discuss the performance of each approach in predicting defect stability in the Ni-Al system.

  19. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the 'Universal Slopes' method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio (Vf), number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  20. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  1. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed.

  2. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  3. Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S.

    1992-07-01

    Some aspects of the precipitation of the metastable intermetallic phases —γ″ and γ″—in the commercial nickel base superalloy, INCONEL 718, have been investigated over a wide range of aging temperatures. It has been confirmed that the spherical γ″ particles and the ellipsoidal γ″ particles evolve predominantly through homogeneous nucleation. Precipitation of the former does not appear to precede that of the latter in this alloy. The tetragonal distortion associated with the γ″ particles has been found to increase with increasing precipitate size. It has been observed that at certain temperatures, physical association between precipitates of the two types occurs frequently, leading to the development of different composite precipitate morphologies. During coarsening, the precipitate size has been found to depend linearly on the cube root of the aging time for γ' as well as γ″ particles.

  4. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  5. High-yield growth of carbon nanofilaments on nickel foam using nickel-tin intermetallic catalysts.

    PubMed

    Jeong, Namjo; Hwang, Kyo Sik; Yang, Seung Cheol

    2014-10-01

    The integration of nanomaterials into macroscopic structures is of importance to their practical use. We report the direct synthesis of carbon nanofilaments on Ni foam using Ni-Sn intermetallic nanoparticles. The use of SnO2 nanoparticles was highly effective for the high-yield growth of carbon nanofilaments without the occurrence of surface breakup, resulting from excessive carbon accumulation in the Ni foam. Carbon nanofilaments with a diameter of 50 nm were synthesized and contained Ni3Sn nanoparticles at the tip, indicating a tip-growth mechanism. Higher vacuum conditions led to the growth of highly crystalline carbon nanofilaments. The results obtained using different sources of hydrocarbon revealed that in contrast to C2H2, CH4 or C3H8 did not induce carbon nanofilament formation on Ni foam.

  6. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2014-01-01

    Thermal expansion measurements were conducted on hot-pressed CrSi(sub 2), TiSi(sub 2), W Si(sub 2) and a two-phase Cr-Mo-Si intermetallic alloy between 293 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (L/L(sub 0)(sub thermal), varied with the absolute temperature, T, as (deltaL/L(sub 0)(sub thermal) = A(T-293)(sup 3) + B(T-293)(sup 2) + C(T-293) + D, where A, B, C and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from the first heatup cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  7. Fundamental study about CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Tetsuka, Masato; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-11-01

    Titanium aluminide intermetallic compound is attracting attentions as heat-resistant and high-specific strength material in the next generation, especially, it is promising material in the field of aerospace components. Conventional machining process including welding, however, can be hardly applied due to its very low ductility. The objective of this study, as a first stage, is to find out paying attention to crack and hardness the fundamental good conditions of the bead-on-plate welding of TiAl intermetallic compound using CO2 laser irradiation. In the experiment, we used the casting gamma titanium aluminide contained iron, vanadium and boron with a thickness of 2mm. We carried out bead-on-plate laser welding in the titanium aluminide material in inert gas environment filled with argon. We measured fused depth, Vickers hardness, transverse crack numbers and so on as major parameters of welding speed from 1000 to 4600 mm/min and initial temperature of specimen from R.T. to 873 K with a beam spot size of 0.5 mm and an output power of 1.5 kW. In addition, the specimens were analyzed by Electron Probe X-ray Micro Analyzer, Energy Dispersive X-ray Spectroscopy and X-ray Diffractometry. As a result of experiments, transverse crack-free welding was achieved, when initial temperature was at 873 K. In every condition, the value of Vickers hardness of fused zone increased compared with base. We think the reason of it is an increase of (alpha) 2(Ti3Al) phase, which is caused by rapid cooling, taking in Oxygen, fine structure and so on.

  8. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Jongik Park

    2004-12-19

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  9. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions

    NASA Astrophysics Data System (ADS)

    Hassani, Amir; Ranjbar, Khalil; Sami, Sattar

    2012-08-01

    An alloy of Al-8wt% Si-0.8wt% Fe was cast in a metallic die, and its microstructural changes due to Ti-B refiner and Sr modifier additions were studied. Apart from usual refinement and modification of the microstructure, some mutual influences of the additives took place, and no mutual poisoning effects by these additives, in combined form, were observed. It was noticed that the dimensions of the iron-rich intermetallics were influenced by the additives causing them to become larger. The needle-shaped intermetallics that were obtained from refiner addition became thicker and longer when adding the modifier. It was also found that α-Al and eutectic silicon phases preferentially nucleate on different types of intermetallic compounds. The more iron content of the intermetallic compounds and the more changes in their dimensions occurred. Formation of the shrinkage porosities was also observed.

  10. Effect of microstructure and texture on the magnetic and magnetocaloric properties of the melt-spun rare earth intermetallic compound DyNi

    NASA Astrophysics Data System (ADS)

    Rajivgandhi, R.; Chelvane, J. Arout; Nigam, A. K.; Park, Je-Geun; Malik, S. K.; Nirmala, R.

    2016-11-01

    Magnetization measurements have been carried out on the melt-spun ribbon sample of the rare earth intermetallic compound DyNi (Orthorhombic, FeB-type, Space group Pnma) and its magnetic and magnetocaloric properties are compared with those of the arc-melted analog. The arc-melted DyNi orders ferromagnetically at around 61 K (TC) whereas the melt-spun DyNi orders ferromagnetically at about 47 K. The maximum isothermal magnetic entropy change, ∆Smmax , near TC of the arc-melted and the melt-spun DyNi is found to be -32.7 J/kg K and -22.4 J/kg K, respectively, for a field change of 140 kOe. For low magnetic field changes of ~20 kOe, the relative cooling power (RCP) is ~660 J/kg for the arc melted DyNi and ~460 J/kg for the melt-spun ribbon. The reduction in TC and magnetocaloric effect may be attributed to the microstructure-induced anisotropy developed during the melt-spinning process.

  11. Phase diagram of the Co-Al-W system. structure and phase transformations near the Co3(Al, W) intermetallic composition range

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Demakov, S. L.; Yurovskikh, A. S.; Stepanova, N. N.; Vinogradova, N. I.; Davydov, D. I.; Lepikhin, S. V.

    2016-07-01

    Low-temperature portion of the polythermal section for the Co-Al-W system in the vicinity of the Co3(Al, W) intermetallic composition has been studied experimentally using electron microscopy and hightemperature X-ray diffraction analysis. Low-temperature structural phase transformations and temperature ranges of the existence of phases have been determined. The morphology of Co3(Al, W) intermetallic particles was studied as a function of the tungsten content in alloys.

  12. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances

    NASA Astrophysics Data System (ADS)

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-05-01

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C.Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C. Electronic supplementary information (ESI) available: Additional characterization data. See DOI: 10.1039/c4nr00313f

  13. The role of fluid flow and intermetallic phases in the formation of the primary Al-phase in AlSi alloys

    NASA Astrophysics Data System (ADS)

    Mikołajczak, P.; Ratke, L.

    2012-01-01

    In secondary AlSi alloys, the presence of small amounts of Fe causes the formation of intermetallic phases, which have a negative effect on mechanical and physical properties of castings. To understand the effect of fluid flow on the microstructure and intermetallic phases, Al-5/7/9 wt pet Si 0.2/0.5/1.0 wt pet Fe alloys have been directionally solidified under defined thermal (gradient 3 K/mm, solidification velocity 0.04 mm/s) and fluid flow (rotating magnetic field 6 mT) conditions. The primary α-Al phase and intermetallic phases were studied using light microscopy and SEM with EDX. The influence of fluid flow and intermetallic phases (β-Al5FeSi) on microstructure was characterized by changes of primary and secondary dendrite arm spacing and specific surface area of the dendrites. We observe a pronounced effect of flow on the length of the intermetallic precipitates, a macro-segregation Fe and Si and even small amounts of iron and thus intermetallics reduce possible effects of flow on microstructural parameters.

  14. Effects of Inert Nanoparticles of High-Melting-Point Compositions on Grain Structure and Strength of Ni3Al Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Boyangin, E. N.; Chudinov, V. A.

    2016-08-01

    The paper represents experimental findings both in the area of effects of nanoparticles of inert high-melting-point TiN compounds on a Ni3Al intermetallic grain structure creation in the conditions of high temperature synthesis under pressure, and in the area of impact of grain structure modification on intermetallic compounds' strength factor temperature dependence. It was demonstrated that appending a stoichiometric composition of nanosized particles of high-melting-point inert chemical compounds (TiN) initiates a manyfold loss of average size of grain of Ni3Al intermetallic compounds, synthesized under pressure, as well as a sufficient intermetallic compounds' strength rise within a wide range of temperatures (up to 1 000 degree C). Electron-microscopic evaluations of a synthesized intermetallic structure with TiN nanoparticles, showed that, during the process of intermetallic polycrystalline structure creation from high temperature synthesis products melts, TiN nanoparticles are mainly spread throughout the boundaries and joints of grain structure, acting as stoppers of grain boundaries migration.

  15. Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Shabashov, V. A.; Kataeva, N. V.; Zavalishin, V. A.; Kozlov, K. A.; Kuznetsov, A. R.; Litvinov, A. V.; Pilyugin, V. P.

    2016-06-01

    An anomalous deformation-induced dissolution of the intermetallics Ni3Al and Ni3Ti in the matrix of austenitic Fe-Ni-Al(Ti) alloys has been revealed in experiment at cryogenic temperatures (down to 77 K) under rolling and high pressure torsion. The observed phenomenon is explained as the result of migration of deformation-stipulated interstitial atoms from a particle into the matrix in the stress field of moving dislocations. With increasing the temperature of deformation, the dissolution is replaced by the deformation-induced precipitation of the intermetallics, which is accelerated due to a sufficient amount of point defects in the matrix, gained as well in the course of deformation at lower temperatures.

  16. Nanobranched porous palladium-tin intermetallics: One-step synthesis and their superior electrocatalysis towards formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Si, Ling; Fu, Gengtao; Liu, Chang; Sun, Dongmei; Chen, Yu; Tang, Yawen; Lu, Tianhong

    2015-04-01

    Nanocrystalline intermetallics in bulk with high surface area hold enormous promise as an efficient catalyst for real fuel cell applications due to their unique electrocatalytic properties. In this work, a novel three-dimensional (3D) porous Pd-Sn intermetallics in network nanostructures (Pd-Sn-INNs) has been fabricated at relatively low temperature for the first time by one-step ethylene glycol-assisted hydrothermal reduction method. The structure characteristics of the Pd-Sn-INNs are confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The as-prepared 3D Pd-Sn-INNs exhibit remarkably improved electrocatalytic activity and stability towards formic acid oxidation reaction (FAOR) over commercially available Pd black.

  17. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  18. Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.

    PubMed

    Rajasekharan, T; Seshubai, V

    2012-01-01

    It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented. PMID:22186292

  19. Catalyst and semiconductor studies involving oxidized rare earth intermetallic compounds. [Visible radiation

    SciTech Connect

    Shamsi, A.

    1981-01-01

    The intermetallic compounds (LaNi/sub 5/, CeNi/sub 5/, Ce/sub 2/Ni/sub 17/, TbNi/sub 5/, ZrNi/sub 5/, LaCo/sub 5/ ThCo/sub 5/ and CeCo/sub 5/) were oxidized with nitric oxide (NO), synthesis gas (SG) and oxygen (O/sub 2/). Most of these intermetallic compounds react readily with the oxidizers and were transformed into a mixture of transition metal and rare earth oxide for ThO/sub 2/) during the oxidation processes. Samples were also prepared by a freeze-drying method. The catalytic activity of these materials for synthesis gas conversion was measured with a single pass microreactor operating at 1 atm total pressure, and the major products were CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/ and H/sub 2/O. The product distribution indicated that the formation of methane is favored for most of the catalysts. CeCo/sub 5/ and LaCo/sub 5/ oxidized with O/sub 2/ were found to have higher olefin to paraffin ratio than the other catalysts. Carbon deposition occurs on the oxidized Co compound and ZrNi/sub 5/ during the catalytic reaction. The preparation of polycrystalline rare earth iron oxide electrodes by heating the rare earth (R) iron compounds (RFe/sub 2/, RFe/sub 3/, R/sub 2/Fe/sub 17/ and R/sub 6/Fe/sub 23/) in air in the flame of a Fisher burner is reported. Iron oxide and titanium oxide are also prepared by heating Fe and Ti metal in air for comparison. The current-voltage (I-V) properties of these materials are measured in aqueous solution of 1 M NaOH. The flatband potentials (V/sub fb/) are determined with respect to a fixed potential (SCE) extrapolating to zero current in I-V curves. Photoelectrolysis of water occurs at these electrodes, resulting in the evolution of oxygen (O/sub 2/) from the RFeO/sub x/ electrodes and hydrogen from the Pt electrode. Most of these electrodes are found to be stable under experimental conditions and anodic photocurrents are generated by light energy greater than the band gap energy (E/sub g/).

  20. Hyperfine field at Mn in the intermetallic compound LaMnSi2 measured by PAC using 111Cd nuclear probe

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2015-04-01

    Magnetic hyperfine field at Mn site has been measured in the orthorhombic intermetallic compound LaMnSi2 with PAC spectroscopy using radioactive 111In- 111Cd nuclear probe. Samples of LaMnSi2 were prepared by melting pure metallic components in stoichiometric proportion in an arc furnace under argon atmosphere. The samples were sealed in a quartz tube under helium atmosphere, annealed at 1000 °C for 60 h and quenched in water. Samples were analyzed with X-ray diffraction method. 111In was introduced in the samples by thermal diffusion at 1000 °C for 60 h. PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 50 K and 410 K. Results show well defined quadrupole and magnetic interactions at all temperatures. The magnetic hyperfine field (Bhf) measured at 50 K is 7.1(1) T. The temperature dependence of Bhf follows the normal Brillouin-like behavior expected for a simple ferromagnetic ordering. The ferromagnetic transition temperature (Tc) was determined to be 401(1) K.

  1. Evolution of Microstructure and Mechanical Properties of the Ni-25Al-27.5Fe-1.0Nb Intermetallic Alloy after Thermal Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Chiang; Jang, Jason Shian-Ching; Tsai, Han-Chang; Li, Tsung-Hsiung

    The evolution of microstructure and mechanical properties of the Ni-25Al-27.5Fe-1.0Nb intermetallic alloy after thermal mechanical treatment (TMT) was systematically investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) with electron dispersive spectrum (EDS) capability, and atmosphere-controlled tensile test at room temperature with different strain rate. The results of XRD reveals that a matrix of β' phase [(Ni, Fe) Al type ordered bcc structure] and a precipitated γ phase (Ni3Fe fcc solid solution) co-exist in this alloy after TMT. The dendritic microstructure of the as-cast alloy was eliminated after TMT process. In parallel, a refined and homogeneous distributed lath precipitates can be obtained after annealing at 820 for 4 hr. Additionally, this alloy presents a relative high strength as well as ductile mechanical behavior (UTS~1320 MPa and ɛ~8%, respectively) at room temperature in air. A 30% improvement in yield strength is suggested to be contributed by the refined microstructure from the TMT. Moreover, the tensile strength and ductility of this alloy exhibit insensitive response with respect to the loading strain rate at room temperature.

  2. Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing

    2015-12-01

    The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y = 0.11√ t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as h_{{IMC}} = 0.27√ t + 4.6, where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.

  3. Magnetic structure of R2CoGa8 (R = Gd, Tb, and Dy): Structural tuning of magnetic properties in layered Ga-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mardegan, J. R. L.; Adriano, C.; Vescovi, R. F. C.; Faria, G. A.; Pagliuso, P. G.; Giles, C.

    2014-03-01

    In this work we have determined the magnetic structure of R2CoGa8 (R = Gd, Tb, and Dy) intermetallic compounds using x-ray resonant magnetic scattering in order to study the evolution of the anisotropic magnetic properties along the series for R = Gd-Tm. The three compounds have a commensurate antiferromagnetic spin structure with a magnetic propagation vector τ⃗= (1/2,1/2,1/2) and a Néel temperature of approximately 20, 28.5, and 15.2 K for R = Gd, Tb, and Dy, respectively. The critical exponent β obtained from the temperature dependence of the magnetic peaks suggest a three-dimensional universality class for the three compounds. Comparing the simulated and integrated intensities we conclude that the magnetic moment direction is in the ab plane for the Gd2CoGa8 compound and parallel to the c axis for the Tb2CoGa8 and Dy2CoGa8 compounds. The evolution of the magnetic properties of the R2CoGa8 series for R = Gd-Tm is discussed taking into account the indirect Ruderman-Kittel-Kasuya-Yoshida interaction and crystalline-electric field effects. The comparison between the reported magnetic properties of the Ga-based compounds with those for the In-based isostructural family reveals differences in their exchange couplings that contribute to the understanding of the role of the f-electron magnetism in these classes of materials.

  4. Observation of superconductivity in the intermetallic compound β-IrSn4.

    PubMed

    Tran, Vinh Hung; Bukowski, Zbigniew; Wiśniewski, Piotr; Tran, Lan Maria; Zaleski, Andrzej J

    2013-04-17

    Low-temperature dc-magnetization, ac electrical resistivity and specific heat measurements were performed on single crystals of the intermetallic compound β-IrSn4. The compound crystallizes in the tetragonal MoSn4-type structure (space group I41/acd) and exhibits superconductivity below Tc = 0.9 ± 0.05 K. Further, the magnitude of the ratios ΔCp/(γnkBTc) = 1.29, 2Δ/(kBTc) = 3.55 and of the electron-phonon coupling λ[overline](e-ph) = 0.5 imply that superconductivity in β-IrSn4 can be ascribed to a s-wave weak coupling regime. We determined crucial thermodynamic characteristics of the superconducting state. It turned out that depending on the assumption of either a spherical or non-spherical Fermi surface, the superconductivity can be ascribed to either a type-I and type-II/1 or type-II in clean limit, respectively. However, the behavior of the upper critical field and the anisotropic crystalline structure of the studied compound provide strong support to the type-II superconductivity. In the normal state the resistivity exhibits a prominent quadratic temperature dependence, which together with a large Kadowaki-Woods ratio and with the enhanced effective mass indicate that the electrons in β-IrSn4 are strongly correlated.

  5. Compositions and morphologies of TiAlSi intermetallics in different diffusion couples

    SciTech Connect

    Gao, Tong; Liu, Guiliang; Liu, Xiangfa

    2014-09-15

    Two kinds of diffusion couples were designed to investigate the formation of ternary TiAlSi phases in Al–Si–Ti alloys. It was found that different diffusion processes result in various compositions and morphologies of TiAlSi intermetallics. The melted Al, Si and Ti atoms in the diffusion couple leads to the formation of flake-like TiAlSi phase through liquid–liquid reaction. Besides, unidirectional diffusion of Al and Si atoms into blocky TiAl{sub 3} particles or Ti powders via a liquid–solid diffusion process also results in the formation of TiAlSi, while keeping the block-like morphology. This kind of diffusion is a gradual process, driven by the concentration gradient. The reactions in the diffusion couples are helpful to understand the compositional and morphological evolutions of TiAlSi as reported in previous work. - Highlights: • Two diffusion couples were designed to investigate the formation of TiAlSi phases. • Compositions and morphologies of TiAlSi are influenced by the diffusion process. • Liquid–liquid and liquid–solid diffusions were detected. • The corresponding mechanisms were discussed.

  6. Preparation and hydrogen storage properties of Mg2Ni intermetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Shao, Huaiyu; Xu, Hairuo; Wang, Yuntao; Li, Xingguo

    2004-03-01

    In this work we investigated the hydrogen storage properties of stoichiometric Mg2Ni intermetallic nanoparticles produced from Mg and Ni nanoparticles. The mean size of the Mg2Ni particles is about 30-50 nm and the lattice constants of the Mg2Ni compound are a = 5.22 Å, c = 13.29 Å. The Mg2Ni compound showed excellent hydrogen storage properties without activation. It can absorb 2.77, 2.93 and 3.03 wt% hydrogen at 523, 573 and 623 K respectively. After one simple activation process, the obtained Mg2Ni absorbed 1.74, 2.07, 2.31 and 2.82 wt% hydrogen at 293, 348, 426 and 493 K respectively. The absorption and desorption plateau hydrogen pressures are about 2.5 and 0.8 bar at 523 K, 5.9 and 3.4 bar at 573 K and 12.7 and 9.7 bar at 623 K. The resulting van't Hoff equation is log(P/bar) = -3464/T+6.541 and the formation enthalpy (DgrH) and entropy (DgrS) for the Mg2NiH4 are -66.32 kJ/mol H2 and -125.3 J K-1/mol H2.

  7. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  8. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs. PMID:26726557

  9. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  10. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  11. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-01

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility. PMID:25803406

  12. Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable implant materials.

    PubMed

    Hagihara, Koji; Fujii, Kenta; Matsugaki, Aira; Nakano, Takayoshi

    2013-10-01

    Mg- or Ca-based intermetallic compounds of Mg2Ca, Mg2Si, Ca2Si and CaMgSi are investigated as possible new candidates for biodegradable implant materials, attempting to improve the degradation behavior compared to Mg and Ca alloys. The reactivity of Ca can be indeed reduced by the formation of compounds with Mg and Si, but its reactivity is still high for applications as an implant material. In contrast, Mg2Si shows a higher corrosion resistance than conventional Mg alloys while retaining biodegradability. In cytotoxicity tests under the severe condition conducted in this study, both pure Mg and Mg2Si showed relatively high cytotoxicity on preosteoblast MC3T3-E1. However, the cell viability cultured in the Mg2Si extract medium was confirmed to be better than that in a pure Mg extract medium in all the conditions investigated with the exception of the 10% extract medium, because of the lower corrosion rate of Mg2Si. The cytotoxicity derived from the Si ion was not significantly detected in the Mg2Si extract medium in the concentration level of ~70 mg/l measured in the present study. For aiming the practical application of Mg2Si as an implant material, however, its brittle nature must be improved.

  13. Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements

    SciTech Connect

    Kumar, P; Kashyap, A; Balamurugan, B; Shield, JE; Sellmyer, DJ; Skomski, R

    2014-01-27

    First-principle calculations are used to investigate the intrinsic magnetic properties of intermetallic alloys of the type XMn, where X is a 4d or 5d element and M is Fe or Co. Emphasis is on the hexagonal C14 Laves-phase 1:2 and 1:5 alloys, the latter crystallizing in the CaCu5 structure. These series are of interest in permanent magnetism from fundamental and practical viewpoints, respectively. In the former, the unit cells form a prototypical motif where a heavy atom with high spin-orbit coupling and magnetocrystalline anisotropy is surrounded by many somewhat smaller M atoms with high magnetization, and the latter are Laves-phase derivatives of renewed interest in permanent magnetism. Our DFT calculations predict magnetic moments, magnetizations and anisotropies, as well as formation energies. The results are analyzed across the 4d and 5d series, especially with respect to hybridization effects between 3d and 4d/5d bands.

  14. Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements.

    PubMed

    Kumar, P; Kashyap, A; Balamurugan, B; Shield, J E; Sellmyer, D J; Skomski, R

    2014-02-12

    First-principle calculations are used to investigate the intrinsic magnetic properties of intermetallic alloys of the type XMn, where X is a 4d or 5d element and M is Fe or Co. Emphasis is on the hexagonal C14 Laves-phase 1:2 and 1:5 alloys, the latter crystallizing in the CaCu5 structure. These series are of interest in permanent magnetism from fundamental and practical viewpoints, respectively. In the former, the unit cells form a prototypical motif where a heavy atom with high spin-orbit coupling and magnetocrystalline anisotropy is surrounded by many somewhat smaller M atoms with high magnetization, and the latter are Laves-phase derivatives of renewed interest in permanent magnetism. Our DFT calculations predict magnetic moments, magnetizations and anisotropies, as well as formation energies. The results are analyzed across the 4d and 5d series, especially with respect to hybridization effects between 3d and 4d/5d bands.

  15. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    SciTech Connect

    Pike, L.M.; Chen, S.L.; Chang, Y.A.

    1995-12-31

    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms, Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  16. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  17. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-01

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.

  18. FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying

    SciTech Connect

    Totemeier, T.C.; Wright, R.N.; Swank, W.D.

    2003-04-22

    FeAl and Mo-Si-B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe-24Al (wt.%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 m/s to 700 m/s. Mo-13.4Si-2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo-Si-B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity, again due to an increased peening effect. For Mo-Si-B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and {alpha}-Mo. The T1 phase was retained after spraying at 350 m/s.

  19. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  20. Surface structure of the Ag-In-(rare earth) complex intermetallics

    NASA Astrophysics Data System (ADS)

    Hars, S. S.; Sharma, H. R.; Smerdon, J. A.; Yadav, T. P.; Al-Mahboob, A.; Ledieu, J.; Fournée, V.; Tamura, R.; McGrath, R.

    2016-05-01

    We present a study of the surface structure of the Ag-In-RE (RE: rare-earth elements Gd, Tb, and Yb) complex intermetallics using scanning tunneling microscopy and low-energy electron diffraction. The surface of the Ag-In-Yb approximant prepared by sputter-annealing methods under ultrahigh-vacuum conditions produces a flat (100) surface with no facets. However, the Ag-In-Gd and Ag-In-Tb 1/1 approximants, which have a surface miscut of about 12∘ relative to the (100) plane, develop surface facets along various crystallographic directions. The structure of each facet can be explained as a truncation of the rhombic triacontahedral clusters, i.e., the main building blocks of these systems. Despite their differences in atomic structure, symmetry, and density, the facets show common features. The facet planes are In rich. The analysis of the nearest-neighbor atom distances suggests that In atoms form bonds with the RE atoms, which we suggest is a key factor that stabilizes even low-density facet planes.

  1. Physical properties and electronic structure of La3Co and La3Ni intermetallic superconductors

    NASA Astrophysics Data System (ADS)

    Strychalska, J.; Roman, M.; Sobczak, Z.; Wiendlocha, B.; Winiarski, M. J.; Ronning, F.; Klimczuk, T.

    2016-09-01

    La3Co and La3Ni are reported superconductors with transition temperatures of 4.5 and 6 K, respectively. Here, we reinvestigate the physical properties of these two intermetallic compounds with magnetic susceptibility χ, specific heat Cp and electrical resistivity ρ measurements down to 1.9 K. Although bulk superconductivity is confirmed in La3Co, as observed previously, only a trace of it is found in La3Ni, indicating that the superconductivity in La3Ni originates from an impurity phase. Superconducting state parameters for La3Co, including lower and upper critical fields and the superconducting gap, are estimated. Results of the theoretical calculations of the electronic structure for both materials are also presented, and comparison of the Fermi level location in La3Co versus La3Ni explains its larger superconducting Tc. A major discrepancy between band structure calculations and the experimentally measured Sommerfeld coefficient is found. The measured electronic density of states is about 2.5 times larger than the theoretical value for La3Co. This effect cannot be explained by the electron-phonon interaction alone. Renormalization of γ, as well as an ∼T2 behavior of the resistivity, suggests the presence of spin fluctuations in both systems.

  2. JTEC panel report on advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.; Grisaffe, S. J.; Hillig, W. B.; Perepezko, J. H.; Pipes, R. B.; Sheehan, J. E.

    1991-01-01

    The JTEC Panel on Advanced Composites visited Japan and surveyed the status and future directions of Japanese high performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic and carbon matrices. The panel's interests included not only what composite systems were chosen, but also how these systems were developed. A strong carbon and fiber industry makes Japan the leader in carbon fiber technology. Japan has initiated an oxidation resistant carbon/carbon composite program. The goals for this program are ambitious, and it is just starting, but its progress should be closely monitored in the United States.

  3. The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} studied by magnetization and hyperfine interactions measurements

    SciTech Connect

    Bosch-Santos, B. Carbonari, A. W.; Cabrera-Pasca, G. A.; Saxena, R. N.; Freitas, R. S.

    2015-05-07

    The magnetic behavior of the intermetallic compound NdMn{sub 2}Ge{sub 2} was investigated by bulk magnetization measurements and measurements of hyperfine interactions using perturbed γ–γ angular correlation (PAC) spectroscopy. Magnetization measurements indicate the presence of four magnetic transitions associated with the Mn and Nd magnetic sublattices. At high temperatures, magnetic measurements show a change in the slope of the magnetization due to an antiferromagnetic transition around T{sub N} ∼ 425 K and a well defined ferromagnetic transition at T{sub C} ∼ 320 K. Moreover, at ∼210 K a peak is observed in the magnetization curve, which is assigned to the reorientation of the Mn spin, and at ∼25 K an increase in the magnetic moment is also observed, which is ascribed to the ordering of Nd ions. PAC measurements using {sup 140}La({sup 140}Ce) and {sup 111}In({sup 111}Cd) probe nuclei allowed the determination of the temperature dependence of the magnetic hyperfine field (B{sub hf}) at Nd and Mn sites, respectively. PAC results with {sup 111}Cd probe nuclei at Mn sites show that the dependence of B{sub hf} with temperature follows the expected behavior for the host magnetization associated with the magnetic ordering of Mn ions. From these results, the antiferromagnetic transition followed by a ferromagnetic ordering is clearly observed. PAC results with {sup 140}Ce probe nuclei at Nd sites, however, showed a strong deviation from the Brillouin function, which is attributed to the Ce 4f-electron contribution to B{sub hf}.

  4. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  5. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    SciTech Connect

    Haseeb, A.S.M.A. Arafat, M.M. Johan, Mohd Rafie

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  6. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  7. The atomic structure of low-index surfaces of the intermetallic compound InPd.

    PubMed

    McGuirk, G M; Ledieu, J; Gaudry, É; de Weerd, M-C; Hahne, M; Gille, P; Ivarsson, D C A; Armbrüster, M; Ardini, J; Held, G; Maccherozzi, F; Bayer, A; Lowe, M; Pussi, K; Diehl, R D; Fournée, V

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature. PMID:26298146

  8. The atomic structure of low-index surfaces of the intermetallic compound InPd

    NASA Astrophysics Data System (ADS)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; de Weerd, M.-C.; Hahne, M.; Gille, P.; Ivarsson, D. C. A.; Armbrüster, M.; Ardini, J.; Held, G.; Maccherozzi, F.; Bayer, A.; Lowe, M.; Pussi, K.; Diehl, R. D.; Fournée, V.

    2015-08-01

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ˜580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ˜660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  9. Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.

    2006-12-01

    Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.

  10. The atomic structure of low-index surfaces of the intermetallic compound InPd

    SciTech Connect

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de; Hahne, M.; Gille, P.; Ivarsson, D. C. A.; Armbrüster, M.; Ardini, J.; Held, G.; Maccherozzi, F.; Bayer, A.; Lowe, M.; Pussi, K.; Diehl, R. D.

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  11. Hydride Properties and IRON-57 Mossbauer Effect Studies in TITANIUM(COPPER(1-Y)IRON(Y)) Intermetallic Compounds.

    NASA Astrophysics Data System (ADS)

    Zakaria, Ahmad

    1987-12-01

    The hydrogen absorption properties of the Ti(Cu _{rm 1-y}Fe _{rm y}) (0 <=q y <=q 1) intermetallic compound were systematically investigated. X-ray diffraction data indicated that the intermetallic compound adopted the gammaTiCu structure for 0 <=q y <=q.1 and crystallized in the TiFe structure for.5 <=q y <=q 1. A mixture of these two phases was observed for 0.1 < y <.5. The lattice parameters for the pure intermetallic compounds and hydrided samples were measured. The heat of hydride formation, DeltaH, as a function of Fe content was determined from pressure-composition isotherms and the Van't Hoff relation. In the composition range 0 <=q y <=q.1 the value of DeltaH varied from -74.3 kJ (mole H_{2 })^{-1} to -59.1 kJ (mole H_{2})^{ -1}. For.5 <=q y <=q 1 it went from -49.5 kJ (mole H_{2})^{-1} to -27.3 kJ (mole H_ {2})^{-1}. We have found that DeltaH values derived from a model proposed by Shilov et al. for calculating DeltaH of the multicomponent hydrides were in good agreement with the experimental data by about 3%. Other properties of the hydride such as hydrogen storage capacity and hysteresis effect were also found to be y dependent. Systematic ^{57}Fe Mossbauer effect studies were also carried out in the intermetallic compound and hydride systems with the emphasis on the isomer shift measurements. The total s-electron densities at the Fe nucleus (|psi_{ rm s}({rm o})|^ {2}) increases when the Fe content y decreases in the pure intermetallic compounds. | psi_{rm s}({rm o })|^{2} decreases with the introduction of the hydrogen. In the hydride system |psi_{rm s}({rm o})|^{2 } was found to be y independent. Interpretation of the data was based on the changes in | psi_{rm s}({rm o })|^{2} due to expansion and contraction of the host lattice and the electronic structure differences. The decrease in | psi_{rm s}({rm o })|^{2} due to the hydrogenation in the TiCu-like hydride (0 <=q y <=q.1) could be accounted for by the volume effect only. For TiFe-like hydride

  12. Exploring phase stability, electronic and mechanical properties of Ce-Pb intermetallic compounds using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Tao, Xiaoma; Wang, Ziru; Lan, Chunxiang; Xu, Guanglong; Ouyang, Yifang; Du, Yong

    2016-05-01

    The phase stability, electronic and mechanical properties of Ce-Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce-Pb intermetallics were verified. Among them, CePb2 has been confirmed as HfGa2-type structure. For Ce5Pb3, the high pressure phase transformation from D8m to D88 with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8m to D88 with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce3Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce-Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce3Pb has the largest Debye temperature of 192.6 K, which means the Ce3Pb has a highest melting point and high thermal conductivity than other compounds.

  13. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  14. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    SciTech Connect

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth; Cai, Zhonghou

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  15. Behavior of alloys of the PtPd intermetallic compound with Hf and Zr in the electrosynthesis of peroxo salts

    SciTech Connect

    Toroptseva, N.T.; Vaseva, A.Yu.

    1988-08-10

    The objective of this study was to investigate the behavior of anodes made of alloys of the PtPd intermetallic compound with Hf and Zr in the synthesis of potassium peroxodicarbonates and peroxoborates. The investigations were based on polarization measurements in different regimes on stationary and rotating electrodes, the determination of the current yield of active oxygen in galvano- and potentiostatic syntheses, and the study of the kinetics of catalytic decomposition of peroxide solutions in the presence of the electrode in the range 289-308 K.

  16. Ab initio investigation of the electronic, lattice dynamic and thermodynamic properties of ScCd intermetallic alloy

    NASA Astrophysics Data System (ADS)

    Adetunji, B. I.; Olayinka, A. S.; Fashae, J. B.; Ozebo, V. C.

    2016-08-01

    The electronic structures, lattice dynamics and thermodynamic properties of rare-earth intermetallic ScCd alloy are studied by the first-principles plane-wave pseudopotential method within the generalized gradient approximation in the framework of density functional pertubation theory. The band structure, density of states, phonon dispersion frequencies, vibrational free energy Fvib, specific heat capacity CV and entropy are studied between 0 K and 1500 K. Finally, using the calculated phonon density of states, the thermodynamic properties are determined within the quasi-harmonic approximation and a value of 47.9 (J/molṡK) at 300 K for specific heat capacity of ScCd is predicted.

  17. Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy.

    PubMed

    Michalcová, Alena; Vojtěch, Dalibor; Novák, Pavel

    2013-02-01

    Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied. PMID:23177792

  18. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process.

  19. Evidence of ferromagnetism in vanadium substituted layered intermetallic compounds RE (Co1-xVx) 2 Si2 (RE=Pr and Nd; 0 ≤ x ≤ 0.35)

    NASA Astrophysics Data System (ADS)

    Chowdhury, R. Roy; Dhara, S.; Bandyopadhyay, B.

    2016-03-01

    In intermetallic compounds RECo2Si2 (RE=Pr and Nd), cobalt has been partially substituted by vanadium to obtain RE(Co1-xVx)2Si2 (0 ≤ x ≤ 0.35). The parent compounds are antiferromagnetic below about 30 K due to the ordering of localized magnetic moments that are present only on rare-earth ions, cobalt being non-magnetic in the parent compounds. The present study demonstrates that in these compounds where 3 d and 4 f ions occupy different layers in the crystal structure, V substitution and subsequent lattice expansion results in the occurrence of inequivalent magnetic ions and complex interactions that lead to multiple magnetic transitions. At temperatures around 40-50 K, the temperature dependence of magnetization indicates a ferrimagnetic transition which is accompanied by a rapid decrease in the temperature dependence of resistivity. Below temperatures ∼30 K, the samples begin to show ferromagnetic-like behavior with the appearance of a coercive field and saturation in the magnetization at magnetic fields above ∼2 T. These two magnetic transitions are indicated also by prominent λ-like peaks in specific heat measurements. At around 10 K, a sharp drop in the resistivity indicates another magnetic transition which is followed by a rapid increase in coercive field with decrease in temperature. In a magnetic field of 9 T, the latter transition shifts to a lower temperature and that leads to a positive magnetoresistance. The onset of ferromagnetism at ∼30 K is accompanied with an exchange bias field which is observed for the first time in layered intermetallic compounds. The exchange bias field increases rapidly below the transition at ∼10 K and reaches ∼16% of coercive field at 2 K.

  20. Advanced thermoelectric materials and systems for automotive applications in the next millennium

    SciTech Connect

    Morelli, D.T.

    1997-07-01

    A combination of environmental, economic, and technological drivers has led to a reassessment of the potential for using thermoelectric devices in several automotive applications. In order for this technology to achieve its ultimate potential, new materials with enhanced thermoelectric properties are required. Experimental results on the fundamental physical properties of some new thermoelectric materials, including filled skutterudites and 1-1-1 intermetallic semiconductors, are presented.

  1. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    SciTech Connect

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  2. Single Crystal Plasticity Finite Element Analysis of Cu6Sn5 Intermetallic

    NASA Astrophysics Data System (ADS)

    Choudhury, Soud Farhan; Ladani, Leila

    2015-03-01

    Due to the miniaturization of the solder joints in micro/nanoelectronic devices, the volume ratio of intermetallic (IMCs) materials has substantially increased. This increased ratio could affect the reliability of solder joints depending on the regime and the rate of the loading. Cu6Sn5 is the primary IMC layer in the solder joint, and the primary crack initiation is observed in Cu6Sn5 site in the literature. As the size of the joints becomes closer to the grain size, joints may only contain a few numbers of grains of Cu6Sn5. This manifests itself in statistical grain size effects, as well as anisotropy. Modeling these joints using bulk properties of Cu6Sn5 does not capture the actual behavior of these joints especially when plastic deformation is involved. Plastic deformation, starting at yield point, happens to be associated with the activation of slip systems. Deformation of a slip system of single crystal largely rests on the slip parameters such as critical resolved shear stress (CRSS), initial hardening modulus, and saturation stress (Stage I stress when large plastic flow occurs). However, no efforts have been made to capture the slip parameters of Cu6Sn5 experimentally or analytically because of the difficulties of using conventional mechanical tests to measure the slip parameters of HCP single crystals. Due to wide range of CRSS values, it becomes difficult to isolate a specific slip system in testing without activating the other slip systems. The crystal plasticity finite-element (CPFE) method takes into account the effect of anisotropy and slip system behavior in modeling materials. This work uses a combined strategy based upon experiments, modeling, and a comparative analysis to obtain slip system parameters that could predict the slip process of Cu6Sn5. Nanoindentation tests were performed on Cu6Sn5 single crystal to extract the load-displacement curves, and a CPFE nanoindentation model analysis along with custom user material was utilized to obtain

  3. Influence of Dopant on Growth of Intermetallic Layers in Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Li, G. Y.; Bi, X. D.; Chen, Q.; Shi, X. Q.

    2011-02-01

    The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu- xSb ( x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.

  4. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF MO-SI-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-02-08

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the microstructure, bend strength and compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy were studied. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The elastic limit strength of the alloy remained quite high until 1200 C with a value of 800MPa, but dropped rapidly thereafter to a value of 220 MPa at 1400 C. Results of compressive creep tests at 1200 C showed that the creep rates were quite high and varied nearly linearly with stress between 250 and 500 MPa, which suggests that diffusional mechanisms dominate the creep process. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. These results and presented and discussed.

  5. On the formation of Al{sub 3}Ni{sub 2} intermetallic compound by aluminothermic reduction of nickel oxide

    SciTech Connect

    Parsa, M.R.; Soltanieh, M.

    2011-07-15

    Simultaneous reduction of NiO and formation of Al{sub 3}Ni{sub 2} intermetallic compound at 880, 940 and 1000 deg. C were investigated by means of the thermal reduction method. The optimal Ni contents for the starting samples were determined at different times and temperatures through the compositional analysis. The microstructure of the metallic quenched samples was observed by scanning electron microscope. Moreover, the X-ray diffraction analysis and energy disperse spectrometry were applied to characterize the formation of the phases. The results showed that the metallic samples consisted of Al{sub 3}Ni{sub 2}, Al{sub 3}Ni and Al phases and that there was no trace of Ni, NiO and Al{sub 2}O{sub 3}. It was found that after 10 min at the applied temperatures, the reaction completed. For the longer time, the dispersed Al{sub 3}Ni{sub 2} nuclei were grown and its continuous network formed. By increasing the temperature, the thickness of the Al{sub 3}Ni precipitation around Al{sub 3}Ni{sub 2} phase is enhanced in the samples with the same Ni content. A model was proposed for these reactions. - Research Highlights: {yields} Simultaneous reduction of NiO, and Al{sub 3}Ni{sub 2} intermetallics formation at temperatures lower than Ni melting point. {yields} Presently a mechanism for such a process. {yields} Parametric study of microstructure and formed phases.

  6. Electronic and high pressure elastic properties of RECd and REHg (RE=Sc, La and Yb) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Devi, Hansa; Pagare, Gitanjali; Chouhan, Sunil S.; Sanyal, Sankar P.

    2015-01-01

    Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B‧) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson's ratio (σ), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen's method has been used to predict the Vicker's hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.

  7. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    NASA Astrophysics Data System (ADS)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  8. Enthalpies of formation of Cd–Pr intermetallic compounds and thermodynamic assessment of the Cd–Pr system

    PubMed Central

    Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert

    2014-01-01

    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be −46.0, −38.8, −35.2 and −24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475

  9. CaO insulator and Be intermetallic coatings on V-base alloys for liquid-lithium fusion blanket applications

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-04-01

    The objective of this study is to develop (a) stable CaO insulator coatings at the Liquid-Li/structural-material interface, with emphasis on electrically insulating coating that prevent adverse MHD-generated currents from passing through the V-alloy wall, and (b) stable Be-V intermetallic coating for first-wall components that face the plasma. Electrically insulating and corrosion-resistant coatings are required at the liquid-Li/structural interface in fusion first-wall/blanket application. The electrical resistance of CaO coatings produced on oxygen-enriched surface layers of V-5%Cr-5%Ti by exposing the alloy to liquid Li that contained 0.5-85 wt% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. Crack-free Be{sub 2}V intermetallic coatings were also produced by exposing V-alloys to liquid Li that contained Be as a solute. These techniques can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coatings are formed by liquid-phase reactions.

  10. Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry.

    PubMed

    Liu, Ya L; Liu, Kui; Yuan, Li Y; Chai, Zhi F; Shi, Wei Q

    2016-08-15

    In this work, the compositions of Ce-Al, Er-Al and La-Bi intermetallic compounds were estimated by the cyclic voltammetry (CV) technique. At first, CV measurements were carried out at different reverse potentials to study the co-reduction processes of Ce-Al, Er-Al and La-Bi systems. The CV curves obtained were then re-plotted with the current as a function of time, and the coulomb number of each peak was calculated. By comparing the coulomb number of the related peaks, the compositions of the Ce-Al, Er-Al and La-Bi intermetallic compounds formed in the co-reduction process could be estimated. The results showed that Al11Ce3, Al3Ce, Al2Ce and AlCe could be formed by the co-reduction of Ce(iii) and Al(iii). For the co-reduction of Er(iii) and Al(iii), Al3Er2, Al2Er and AlEr were formed. In a La(iii) and Bi(iii) co-existing system in LiCl-KCl melts, LaBi2, LaBi and Li3Bi were the major products as a result of co-reduction.

  11. Nanocomposite Fe-Al Intermetallic Coating Obtained by Gas Detonation Spraying of Milled Self-Decomposing Powder

    NASA Astrophysics Data System (ADS)

    Senderowski, Cezary

    2014-10-01

    The nanocomposite structure of Fe-Al intermetallic coating, created in situ during gas detonation spraying (GDS) of as-milled self-decomposing powder and containing disordered 8 nm FeAl nanocrystals, was analyzed using scanning electron microscopy (SEM) with energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and x-ray diffraction methods. It is found that the Fe-Al coating is characterized by a sublayer morphology consisting of flattened and partially melted splats containing a wide Al range from about 26 to 52 at.%, as well as Al2O3 oxides, created in situ at the internal interfaces of splats during the GDS process. The complex oxide films, identified as amorphous Al2O3, which are formed in the nanocrystalline Fe-Al matrix of the GDS coating behave like a composite reinforcement in the intermetallic Fe-Al coating. The combined presence of nanosized subgrains in the Fe-Al matrix and the Al2O3 nanoceramic dispersoids significantly increases the microhardness of the coating.

  12. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong

    2016-09-01

    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  13. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  14. Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fesbnd Nisbnd Al ageing alloy characterized by resistivity measurements and positron annihilation

    NASA Astrophysics Data System (ADS)

    Druzhkov, A. P.; Danilov, S. E.; Perminov, D. A.; Arbuzov, V. L.

    2016-08-01

    In this paper, we study the effects of intermetallic nanoparticles like Ni3Al on the evolution of vacancy defects in the fcc Fesbnd Nisbnd Al alloy under electron irradiation using positron annihilation spectroscopy. Electrical resistivity measurements have been used as a testing method for characterizing the evolution in the underlying precipitate microstructure due to heat treatment and irradiation. It was shown that the nanosized (∼4.5 nm) intermetallic precipitates homogeneously distributed in the alloy matrix caused a several-fold decrease in the accumulation of vacancies as compared to their accumulation in the pre-quenched alloy. This effect was enhanced with the irradiation temperature. The irradiation-induced growth of intermetallic nanoparticles was also observed in the pre-quenched Fesbnd Nisbnd Al alloy under irradiation at 573 K. Thus, resistivity measurement and positron confinement in ultrafine intermetallic particles, which we revealed earlier, provided the control over the evolution of coherent precipitates, along with vacancy defects, during irradiation and annealing.

  15. Effect of trace elements vanadium and nickel on iron intermetallic phases formation and distribution in DC cast 5xxx series aluminum ingots

    NASA Astrophysics Data System (ADS)

    Li, Gaofeng

    AA5657 alloy is one of the important members of 5xxx-series alloys. It has application in many fields as packing, electricity, architectural, and printing. These applications require high quality surface finishing, and the alloy ingots require homogeneous microstructure. In the industry of DC (direct-chill) casting of 1xxx and 5xxx-series aluminium ingots, there exist different cooling rates from the casting surface to the ingot center. Thus, different Fe intermetallic phases such as AlmFe, Al6Fe, alpha-AlFeSi and Al3Fe can form preferentially in different positions of the ingot. The Fe intermetallic phase transition in DC casting ingot may cause microstructure inhomogeneities, which in turn cause the so called fir-tree zones (FTZs) in the ingots as well as streaks and bands on the Al sheets. Nowadays, with the increase of impurity in aluminium smelting raw materials (coke, alumina, etc.), the levels of trace elements present in the primary metal is gradually increasing. The impact of this increase on the aluminium transformation process and the final products is uncertain. Thus, there is a clear need to better understand these impacts, which will allow identifying ways to mitigate the negative impacts. The study presented in this thesis was performed on AA5657 alloys to study the effect of trace elements V and Ni on Fe intermetallic phases formation and distribution. A slice of AA1050 alloy ingot with visible FTZs was also studied to characterize the Fe intermetallic phases transition across the FTZs. A DC simulator was built in the lab, which can reproduce the solidification conditions in the sub-surface regions of industry ingots. The methods for the characterization of Fe intermetallic particles were developed in this research. AlmFe, Al6Fe, alpha-AlFeSi and alpha-Al3Fe intermetallic phases were successfully identified by using Deep-etching method, EDS and EBSD technique in combination. Quantitative analysis of the Fe intermetallic particles was carried out by

  16. Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment

    SciTech Connect

    Tongsri, Ruangdaj; Yotkaew, Thanyaporn; Krataitong, Rungtip; Wila, Pongsak; Sir-on, Autcharaporn; Muthitamongkol, Pennapa; Tosangthum, Nattaya

    2013-12-15

    Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu–61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal η-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic η-Cu{sub 6.25}Sn{sub 5} + β-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal η-Cu{sub 6.25}Sn{sub 5} dendrites followed by η-Cu{sub 6.25}Sn{sub 5} + β-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ε-Cu{sub 3}Sn dendrites were followed by peritectic reaction (ε-Cu{sub 3}Sn + liquid → η-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of η-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the η-Cu{sub 6.25}Sn{sub 5} + β-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ή-Cu{sub 6}Sn{sub 5} phase. - Highlights: • The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. • Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. • Water-atomized Cu–Sn powders contained mixed Cu–Sn phases. • Solidification and heat treatment of water-atomized Cu–Sn powders are explained.

  17. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.

    2016-01-01

    Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.

  18. Thermoelectric Properties of the Intermetallic Quasi-Two-Dimensional Layered Structure LiBe

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2016-11-01

    The electronic transport coefficients of LiBe for the intermetallic quasi-two-dimensional layered structure are evaluated by means of the semi-classical Boltzmann theory and the rigid band model. It has been found that the charge carrier concentration is about -0.0026 e/uc at low temperature ( T = 50 K), then it decreases with increase of temperature to reach -0.0028 e/uc at 250 K. Above this temperature the charge carriers concentration increases rapidly to reach -0.00228 e/uc at 600 K. The negative sign shows that LiBe exhibits n-type conduction at a certain value of chemical potential ( μ = E F). The calculated electrical conductivity ( σ/ τ) at μ = E F shows that at low temperatures (50 K) LiBe exhibits low σ/ τ of about 1.318 × 1021 (Ω ms)-1, this value increases rapidly with an increase of temperature to be 1.389 × 1021 (Ω ms)-1 at 300 K. Above 300 K the σ/ τ reach to the saturated value of about 1.389 × 1021 (Ω ms)-1. It has been found that LiBe possesses a thermo-power ( S) of about -460 μV/K at 50 K, which decreases with increase of temperatures to reach -220 μV/K at around 350 K. Increasing the temperatures above 350 K lead to a decrease S to be -190 μV/K at 600 K. It is clear that at a certain value of chemical potential LiBe exhibits n-type conduction as it has negative S in the whole temperature range; this supports our previous observation about the charge carriers concentration. It is a remarkable finding that LiBe exhibits a large Seebeck coefficient, which is attributed to the non-zero density of states at the Fermi level. The electron thermal conductivity ( κ e/ τ) increased linearly with the temperature, and we observed that at low temperature LiBe exhibits low κ e/ τ of about 0.2 × 1016 W/mKs at 50 K. A rapid increases in κ e/ τ occurs as a result of increasing the temperature to reach 2.1 × 1016 W/mKs at 600 K. The obtained values of the power factor ( S 2 σ/ τ) as function of temperature show that at low temperature

  19. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    SciTech Connect

    Pagare, G.; Abraham, Jisha A.; Sanyal, S. P.

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linear optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.

  20. Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002

    SciTech Connect

    McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E.; Shenoy, A.; Baccaglini, G.; Pletcher, R.H.; Wallace, J.M.; Vukoslavcevic, P.; Jackson, J.D.; Kunugi, T.; Satake, S.-i.

    2002-12-31

    The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.

  1. The evolution of γ-Mg17Al12 intermetallic compound during accumulative back extrusion and subsequent ageing treatment

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M. H.; Zarei-Hanzaki, A.; Abedi, H. R.; Shamsolhodaei, A.

    2015-11-01

    Accumulative back extrusion (ABE) processing, as a novel severe plastic deformation (SPD) method, has been recently justified to be capable of modifying the microstructural characteristics of alloys. In line to its ongoing researches, the present work has been planned to study the evolution of γ-Mg17Al12 intermetallic phase during ABE and subsequent ageing treatment in a high Al-bearing Mg-Al-Zn alloy. The behaviour of γ intermetallic has been systematically examined as following points of view: (i) strain-temperature-dependent morphology changes, (ii) strain-induced dissolution, and (iii) re-ageing behaviour as a function of time and temperature. Aiming to analyse the morphology of eutectic γ compound with respect to the strain and temperature, 2D projections of effective diameter, shape factor and globularity have been made in strain/temperature graphs. The processing conditions (strain and temperature) corresponding to the desired and undesired morphologies are introduced and microstructurally explained through underlying plasticity mechanisms, i.e., 'necking-thinning-particle separation' and 'brittle fragmentation.' The former mechanism is suggested to be in relation with partial strain-induced dissolution of eutectic γ phase, leading to generation of a supersaturated solid solution. This has resulted to the observation of 'off-stoichiometry' phenomena in Mg17Al12 phase and has been justified through dislocation-assisted deformation mechanism at elevated temperature. Surprisingly, a unique re-ageing behaviour has been found for the obtained solid solutions, where a modified kinetics and morphology of γ phase precipitation were characterized. The altered precipitation behaviour is attributed to the specific defect structure achieved by SPD acting as fast diffusion channel for Al solutes.

  2. Characterization of second-phase plates in a Gd5Ge3 intermetallic compound

    SciTech Connect

    Cao, Qing; Chumbley, Leonard S.

    2013-05-16

    Rare-earth compounds based on the stoichiometry R5(SixGe1-x)4 (R = rare-earth elements) exhibit many unusual features, including possessing R5(SixGe1-x)3 thin plates which always precipitate from the matrix despite efforts to suppress their formation. In an effort to better understand the unique relationship between these two intermetallic alloy systems, the bulk microstructure of the compound Gd5Ge3 was examined using scanning (SEM) and transmission electron microscopy (TEM) and optical microscopy. Surprisingly, SEM examination revealed a series of thin plates present in the Gd5Ge3 matrix similar to what is seen in Gd5Ge4. TEM observation revealed that a role reversal had occurred, with the thin plates possessing the orthorhombic structure and composition of Gd5Ge4. The orientation relationship between Gd5Ge4 thin plates and the Gd5Ge3 matrix was determined to be Graphic the same relationship reported for Gd5Ge3 plates precipitating from a Gd5Ge4 matrix. However, by exchanging the respective roles of the phases as regards matrix vs. precipitate, the total number of precipitation variants seen can be increased from two to six. The persistence with which these two intermetallic systems co-exist is truly unique. However, understanding exactly the kinetic and thermodynamic conditions that lead to their unique relationship is hampered by the high formation temperatures at which the observed reaction occurs.

  3. Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics

    SciTech Connect

    Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.

    1997-04-01

    The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect the structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.

  4. Advances in the U.S. Navy Non-hydrostatic Unified Model of the Atmosphere (NUMA): LES as a Stabilization Methodology for High-Order Spectral Elements in the Simulation of Deep Convection

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Giraldo, Frank

    2015-04-01

    The prediction of extreme weather sufficiently ahead of its occurrence impacts society as a whole and coastal communities specifically (e.g. Hurricane Sandy that impacted the eastern seaboard of the U.S. in the fall of 2012). With the final goal of solving hurricanes at very high resolution and numerical accuracy, we have been developing the Non-hydrostatic Unified Model of the Atmosphere (NUMA) to solve the Euler and Navier-Stokes equations by arbitrary high-order element-based Galerkin methods on massively parallel computers. NUMA is a unified model with respect to the following criteria: (a) it is based on unified numerics in that element-based Galerkin methods allow the user to choose between continuous (spectral elements, CG) or discontinuous Galerkin (DG) methods and from a large spectrum of time integrators, (b) it is unified across scales in that it can solve flow in limited-area mode (flow in a box) or in global mode (flow on the sphere). NUMA is the dynamical core that powers the U.S. Naval Research Laboratory's next-generation global weather prediction system NEPTUNE (Navy's Environmental Prediction sysTem Utilizing the NUMA corE). Because the solution of the Euler equations by high order methods is prone to instabilities that must be damped in some way, we approach the problem of stabilization via an adaptive Large Eddy Simulation (LES) scheme meant to treat such instabilities by modeling the sub-grid scale features of the flow. The novelty of our effort lies in the extension to high order spectral elements for low Mach number stratified flows of a method that was originally designed for low order, adaptive finite elements in the high Mach number regime [1]. The Euler equations are regularized by means of a dynamically adaptive stress tensor that is proportional to the residual of the unperturbed equations. Its effect is close to none where the solution is sufficiently smooth, whereas it increases elsewhere, with a direct contribution to the

  5. Advance care directives

    MedlinePlus

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  6. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography.

    PubMed

    Rademacher, Thomas; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-05-01

    Addition of ternary elements to the D0(3) ordered Fe(3)Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. PMID:21247699

  7. An evaluation of potential material coolant compatibility for applications in advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Watanabe, Y.; Yi, Y. S.; Hishinuma, A.

    1998-10-01

    In assessing possible potential issues for fusion applications, the compatibility of several metallic structural materials was examined using high temperature/pressure steam as test environment. High corrosion resistance associated with protective oxide film formation was regarded as essential for the function of protecting from tritium permeation and corrosion damage. A Ti-Al-based intermetallic compound with V addition, recently developed, showed excellent performance. A low-activation ferritic/martensitic steel, F82-H, was comparable with the current advanced materials for modern supercritical fossil boilers, while some potential vanadium alloys, although not intended for use in steam, were found less compatible.

  8. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOEpatents

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  9. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content.

    PubMed

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  10. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content

    PubMed Central

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  11. Epitaxial Stabilization between Intermetallic and Carbide Domains in the Structures of Mn16SiC4 and Mn17Si2C4.

    PubMed

    Fredrickson, Rie T; Guo, Yiming; Fredrickson, Daniel C

    2016-01-13

    The concept of frustration between competing geometrical or bonding motifs is frequently evoked in explaining complex phenomena in the structures and properties of materials. This idea is of particular importance for metallic systems, where frustration forms the basis for the design of metallic glasses, a source of diverse magnetic phenomena, and a rationale for the existence of intermetallics with giant unit cells containing thousands of atoms. Unlike soft materials, however, where conflicts can be synthetically encoded in the molecular structure, staging frustration in the metallic state is challenging due to the ease of macroscopic segregation of incompatible components. In this Article, we illustrate one approach for inducing the intergrowth of incompatible bonding motifs with the synthesis and characterization of two new intermetallic carbides: Mn16SiC4 (mC42) and Mn17Si2C4 (mP46). Similar to the phases Mn5SiC and Mn8Si2C in the Mn-Si-C system, these compounds appear as intergrowths of Mn3C and tetrahedrally close-packed (TCP) regions reminiscent of Mn-rich Mn-Si phases. The nearly complete spatial segregation of Mn-Si (intermetallic) and Mn-C (carbide) interactions in these structures can be understood from the differing geometrical requirements of C and Si. Rather than macroscopically separating into distinct phases, though, the two bonding types are tightly interwoven, with most Mn atoms being on the interfaces. DFT chemical pressure analysis reveals a driving force stabilizing these interfaces: the major local pressures acting between the Mn atoms in the Mn-Si and Mn-C systems are of opposite signs. Joining the intermetallic and carbide domains together then provides substantial relief to these local pressures, an effect we term epitaxial stabilization.

  12. Order without design.

    PubMed

    Kurakin, Alexei

    2010-04-14

    Experimental reality in molecular and cell biology, as revealed by advanced research technologies and methods, is manifestly inconsistent with the design perspective on the cell, thus creating an apparent paradox: where do order and reproducibility in living systems come from if not from design? I suggest that the very idea of biological design (whether evolutionary or intelligent) is a misconception rooted in the time-honored and thus understandably precious error of interpreting living systems/organizations in terms of classical mechanics and equilibrium thermodynamics. This error, introduced by the founders and perpetuated due to institutionalization of science, is responsible for the majority of inconsistencies, contradictions, and absurdities plaguing modern sciences, including one of the most startling paradoxes - although almost everyone agrees that any living organization is an open nonequilibrium system of continuous energy/matter flow, almost everyone interprets and models living systems/organizations in terms of classical mechanics, equilibrium thermodynamics, and engineering, i.e., in terms and concepts that are fundamentally incompatible with the physics of life. The reinterpretation of biomolecules, cells, organisms, ecosystems, and societies in terms of open nonequilibrium organizations of energy/matter flow suggests that, in the domain of life, order and reproducibility do not come from design. Instead, they are natural and inevitable outcomes of self-organizing activities of evolutionary successful, and thus persistent, organizations co-evolving on multiple spatiotemporal scales as biomolecules, cells, organisms, ecosystems, and societies. The process of self-organization on all scales is driven by economic competition, obeys empirical laws of nonequilibrium thermodynamics, and is facilitated and, thus, accelerated by memories of living experience persisting in the form of evolutionary successful living organizations and their constituents.

  13. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  14. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGES

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  15. Metal-Intermetallic Laminate Ti-Al3Ti Composites Produced by Spark Plasma Sintering of Titanium and Aluminum Foils Enclosed in Titanium Shells

    NASA Astrophysics Data System (ADS)

    Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.

    2015-09-01

    Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.

  16. Formation of NiAl Intermetallic Compound by Cold Spraying of Ball-Milled Ni/Al Alloy Powder Through Postannealing Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Chang-Jiu; Wang, Xiu-Ru; Ren, Zhi-Liang; Li, Cheng-Xin; Yang, Guan-Jun

    2008-12-01

    Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N2 as accelerating gas. NiAl intermetallic compound was evolved in situ through postspray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and x-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can be successfully deposited by cold spraying using the mechanically alloyed powder as feedstocks. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850 °C leads to complete transformation from Ni/Al alloy to NiAl intermetallic compound.

  17. Variable Order and Distributed Order Fractional Operators

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2002-01-01

    Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. This paper develops the concept of variable and distributed order fractional operators. Definitions based on the Riemann-Liouville definitions are introduced and behavior of the operators is studied. Several time domain definitions that assign different arguments to the order q in the Riemann-Liouville definition are introduced. For each of these definitions various characteristics are determined. These include: time invariance of the operator, operator initialization, physical realization, linearity, operational transforms. and memory characteristics of the defining kernels. A measure (m2) for memory retentiveness of the order history is introduced. A generalized linear argument for the order q allows the concept of "tailored" variable order fractional operators whose a, memory may be chosen for a particular application. Memory retentiveness (m2) and order dynamic behavior are investigated and applications are shown. The concept of distributed order operators where the order of the time based operator depends on an additional independent (spatial) variable is also forwarded. Several definitions and their Laplace transforms are developed, analysis methods with these operators are demonstrated, and examples shown. Finally operators of multivariable and distributed order are defined in their various applications are outlined.

  18. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF Mo-Si-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-12-21

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy at 1100 and 1200 C were studied and related to the deformation mechanisms through electron microscopy observations of microstructural changes and deformation structures. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. Results of compressive creep tests at 1200 and 1100 C showed that the creep rates were quite high at stress levels between 250 and 500 MPa, Two minima in the creep strain rate versus strain data were noted, one at small strain values and the second at much larger strains. A stress exponent of 4.26 was obtained upon plotting the strain rate corresponding to the first minima versus stress, which suggests that dislocation climb and glide dominate the creep process in the early stages. On the other hand, the large strain, minimum creep rate versus stress data gave a stress exponent of {approx}1.18, which indicates diffusional mechanisms and recrystallization dominate the later stages of the creep process. At 1100 C, a stress exponent of 2.26 was obtained, which suggests that both diffusional and dislocation mechanisms contribute to the creep strain. Based on the minimum creep rate data at 1100 C and 1200 C, the activation energy for creep was determined to be 525 kJ/mole, which is somewhat higher than that reported for self diffusion in {alpha}-Mo. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. In addition, TEM observations revealed the presence of recrystallized grains and sub-grain boundaries composed of dislocation arrays

  19. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  20. Advanced Composition

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    1974-01-01

    This is an excerpt from a course for advanced students, designed to teach proficiency in English composition by providing activities specifically geared to the elimination of native language interference. (LG)

  1. Enhanced survival of short-range magnetic correlations and frustrated interactions in R3T intermetallics

    SciTech Connect

    Baranov, Nikolai; Proshkin, Aleksei; Gubkin, Andrey; Cervellino, A.; Michor, H.; Hilsher, G.; Gerasimov, E.G.; Ehlers, Georg; Frontzek, Matthias D; Podlesnyak, Andrey A

    2012-01-01

    Elastic and inelastic neutron scattering and magnetization measurements have been used to study peculiarities of the magnetic state in R{sub 3}T compounds (R=Gd, Er, Tb; T=Ni, Co) below and above magnetic ordering temperatures. A pronounced non-Brillouin shape of the magnetization curves observed in the antiferromagnetic compounds Gd{sub 3}Ni and Tb{sub 3}Ni above their magnetic ordering temperatures together with earlier reported data about the retention of the magnetic contribution to the total specific heat of Gd{sub 3}T and anomalous behavior of the electrical resistivity above magnetic ordering temperatures are ascribed to the existence of short-range magnetic correlations in the wide temperature range in the paramagnetic state. The persistence of short-range magnetic order up to temperatures greater than 5-6 times the Neel temperature has been revealed by powder neutron diffraction measurements performed for Tb{sub 3}Ni and Tb{sub 3}Co. On the other hand, results from inelastic neutron scattering show that the low temperature magnetic excitations are strongly suppressed in both Tb{sub 3}Co and Er{sub 3}Co. It is suggested that the extended short-range magnetic correlations, which turn out to be an inherent feature of R{sub 3}T type compounds, are due to the layered crystal structure and to the difference between geometrically frustrated intra-layer exchange interactions and inter-layer exchange.

  2. A phase width for CaGaSn. Crystal structure of mixed intermetallic Ca4Ga4+xSn4-x and SmGaxSn3-x, stability, geometry and electronic structure

    NASA Astrophysics Data System (ADS)

    Tillard, Monique

    2016-10-01

    X-ray single-crystal structure has been established for new compositions in intermetallic systems of tin and gallium. Crystals were successfully obtained in alloys prepared from elements. The structure of SmGaSn2 (cubic Pm3¯m, a=4.5778(8) Å, Z=1, R1=0.012) is described with atomic disorder at all Sn/Ga positions and the structure of Ca4Ga4.9Sn3.1 (hexagonal, P63/mmc, a=4.2233(9), c=17.601(7) Å, Z=1, R1=0.062) raises an interesting question about existence of a composition domain for CaGaSn. Finally, Ca4Ga4.9Sn3.1 should be considered as a particular composition of Ca4Ga4+xSn4-x, a compound assumed to exist in the range x ~ 0-1. Partial atomic ordering characterizes the Sn/Ga puckered layers of hexagons whose geometries are analyzed and discussed comparatively with analogous arrangements in AlB2 related hexagonal compounds. The study is supported by rigid band model and DFT calculations performed for different experimental and hypothetic arrangements.

  3. Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.

    2016-01-01

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni7Zr2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni7Zr2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni7Zr2 alloy fitted by Vogel-Fulcher-Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni7Zr2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s-1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s-1.

  4. Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds.

    PubMed

    Kronmüller, H; Yang, J B; Goll, D

    2014-02-12

    The uniaxial intermetallic compounds of L10-FePt and the low temperature NiAs structure of MnBi are suitable alloys for application as high-density recording materials or as high-coercivity permanent magnets. Single domain particles of these materials are characterized by coercive fields above 1 T over a large temperature range. In particular MnBi shows a coercive field of 2 T at 450 K. Its extraordinary magnetic properties in the temperature range up to 600 K are due to an increase of the magnetocrystalline anisotropy constant from 1.2 MJ m(-3) at 300 K to 2.4 MJ m(-3) at 450 K. In spite of the large coercivities obtained for both type of materials their experimental values deviate considerably from the theoretical values Hc = 2K1/Js valid for a homogeneous rotation process in spherical particles. As is well known these discrepancies are due to the deteriorating effects of the microstructure. For an analysis of the coercive fields the Stoner-Wohlfarth theory has to be expanded with respect to higher anisotropy constants and to microstructural effects such as misaligned grains and grain surfaces with reduced anisotropy constants. It is shown that the temperature dependence and the angular dependence of Hc for FePt as well as MnBi can be quantitatively interpreted by taking into account the above mentioned intrinsic and microstructural effects. PMID:24469256

  5. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-07-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  6. Slater-Pauling behavior within quaternary intermetallic borides of the Ti 3Co 5B 2 structure-type

    NASA Astrophysics Data System (ADS)

    Burghaus, Jens; Dronskowski, Richard; Miller, Gordon J.

    2009-10-01

    First-principles, density-functional studies of several intermetallic borides of the general type M2M'Ru 5-nRh nB 2 ( n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3 d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions in this family of complex borides. COHP analyses of the M'- M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases.

  7. Experimental and theoretical investigations of the polar intermetallics SrPt3Al2 and Sr2Pd2Al

    NASA Astrophysics Data System (ADS)

    Stegemann, Frank; Benndorf, Christopher; Touzani, Rachid St.; Fokwa, Boniface P. T.; Janka, Oliver

    2016-10-01

    SrPt3Al2, a CaCu5 relative (P6/mmm; a = 566.29(3), c = 389.39(3) pm; wR2 = 0.0202, 121 F2 values, 9 parameters), and Sr2Pd2Al, isostructural to Ca2Pt2Ge (Fdd2; a = 1041.45(5), b = 1558.24(7), c = 604.37(3) pm; wR2 = 0.0291, 844 F2 values, 25 parameters) have been prepared from the elements. The crystal structures have been investigated by single crystal X-ray diffraction. Structural relaxation confirmed the electronic stability of SrPt3Al2, while orthorhombic Sr2Pd2Al might be a metastable polymorph as it is energetically competitive to its monoclinic variant. Both compounds are predicted to be metallic conductors as their density-of-states (DOS) are non-zero at the Fermi level. COHP bonding analysis coupled with Bader effective charge analysis suggest that the title compounds are polar intermetallic phases in which strong Pt-Al and Pd-Al covalent bonds are present, while a significant electron transfer from Sr atoms to the [Pt3Al2]δ- or [Pd2Al]δ- network is found.

  8. First principles study of structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallics

    NASA Astrophysics Data System (ADS)

    Chouhan, Sunil Singh; Pagare, Gitanjali; Rajagopalan, M.; Sanyal, S. P.

    2012-08-01

    The structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallic compounds crystallizing in B2-type structure have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Amongst all the YX compounds, YIn is stable in distorted tetragonal (P4/mmm) CuAu-type structure at ambient pressure with very small energy difference of 0.00681 Ry. but it undergoes to CsCl-type (B2 phase) structure at 23.3 GPa. Rest of the compounds are stable in B2 structure at ambient condition. The values of elastic moduli as a function of pressure are also reported. The ductility of these compounds has been analyzed using the Pugh rule. Our calculated results indicate that YTl is the most ductile amongst all the B2-YX compounds. YAu is the hardest and less compressible compound due to the largest bulk modulus. The elastic properties such as Young's modulus (E), Poisson's ratio (σ) and anisotropic ratio (A) are also predicted. The anisotropic factor is found to be unity for YHg which shows that this compound is isotropic.

  9. Failure Analysis and Recovery of a 50-mm Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis

    2016-01-01

    Ball bearings used inside the ISS Distillation Assembly centrifuge require superior corrosion and shock resistance to withstand acidic wastewater exposure and heavy spacecraft launch related loads. These requirements challenge conventional steel bearings and provide an ideal pathfinder application for 50-mm bore, deep-groove ball bearings made from the corrosion immune and highly elastic intermetallic material 60NiTi. During early ground testing in 2014 one 60NiTi bearing unexpectedly and catastrophically failed after operating for only 200 hr. A second bearing running on the same shaft was completely unaffected. An investigation into the root cause of the failure determined that an excessively tight press fit of the bearing outer race coupled with NiTi's relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully replicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  10. Influence of Ti and La Additions on the Formation of Intermetallic Compounds in the Al-Zn-Si Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Gu, Qin-Fen; Li, Qian; Lu, Hu-Sheng

    2016-09-01

    The effect of Ti and La additions on the formation of intermetallic compounds (IMCs) in the galvalume (55Al-Zn-1.6Si wt pct) bath was investigated experimentally and further studied with first-principles calculation. The studied baths contain: 1 wt pct Fe, with Ti content ranging from 0.05 to 0.15 wt pct and La content ranging from 0.05 to 0.30 wt pct. Combination of the experimental results with the thermodynamic analysis shows that the solubility of Fe in the alloy bath decreases with an increase of Ti content, which results in the formation of mass dross. Compared with the Ti-containing alloy, La promotes the formation of τ 5 phase (Fe2Al8Si). When both Ti and La are added, Fe4Al13, τ 5, τ 6 (β-Al4.5FeSi), TiAl3, and Ti2Al20La phases were observed. Since these IMCs would consume more Si in the bath, the decrease of Si content with Ti and La additions is more significant than that of the bath without these additions. Furthermore, the formation mechanism of Ti/TiAl3/Ti2La20La core-shell structure in the coating bath is proposed. This study has implications for strategic design of industry hot-dip production with exceptional mechanical properties of Al alloy coating.

  11. Crystal structure and chemical bonding of the intermetallic Zintl phase Yb[subscript 11]AlSb[subscript 9

    SciTech Connect

    Kastbjerg, Sofie; Uvarov, Catherine A.; Kauzlarich, Susan M.; Chen, Yu-Sheng; Nishibori, Eiji; Spackman, Mark A.; Iversen, Bo Brummerstedt

    2012-10-09

    High resolution single crystal synchrotron X-ray diffraction data measured at 15(2) K were used to solve the structure of the complex intermetallic Zintl phase, Yb{sub 11}AlSb{sub 9} (space group Iba2), made up of Yb cations and polyanions along with isolated Sb anions. The 15(2) K cell parameters are a = 11.7383(4) {angstrom}, b = 12.3600(4) {angstrom}, c = 16.6796(6) {angstrom}. The temperature dependence of the structure was investigated through high resolution synchrotron powder X-ray diffraction (PXRD) data measured from 90 K to 1000 K. Rietveld refinements of the crystal structure revealed near linear thermal expansion of Yb{sub 11}AlSb{sub 9} with expansion coefficients of 1.49(2) x 10{sup -5} K{sup -1}, 1.71(3) x 10{sup -5} K{sup -1}, 1.13(1) x 10{sup -5} K{sup -1} for a, b and c, respectively. The chemical bonding in Yb{sub 11}AlSb{sub 9} was analyzed using atomic Hirshfeld surfaces, and the analysis supports the presence of the structural elements of Yb cations, [AlSb{sub 4}]{sup 9-} tetrahedra, [Sb{sub 2}]{sup 4-} dimers and isolated Sb{sup 3-} anions. However, indications of interatomic interactions between the Zintl anions and the Yb cations were also observed.

  12. Characterization of Nanostructured NbSi2 Intermetallic Coatings Obtained by Plasma Spraying of Mechanically Alloyed Powders

    NASA Astrophysics Data System (ADS)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan

    2015-08-01

    Nanostructured NbSi2 powders plasma sprayed on to Ti-6Al-4V substrates were characterized in this research. After preparation of the nanostructured NbSi2 powders by mechanical alloying of an Nb-Si powder mixture, agglomeration was performed to obtain a particle size suitable for spraying. The agglomerated powders were then sprayed by atmospheric plasma spraying. Structural transformation of the powders and morphological and mechanical changes of the coatings were examined by use of x-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, and microhardness testing. During milling, NbSi2 intermetallic with a grain size of approximately 15 nm was gradually formed. After plasma spraying, a coating of hardness 550 ± 8 HV with a uniform nanocrystalline structure, low oxide content, low porosity, and a good adhesion to the substrate was obtained. No phase change occurred after spraying and the NbSi2 compound remained nanostructured with a grain size of approximately 82 nm.

  13. Evolution of Intermetallics, Dispersoids, and Elevated Temperature Properties at Various Fe Contents in Al-Mn-Mg 3004 Alloys

    NASA Astrophysics Data System (ADS)

    Liu, K.; Chen, X.-G.

    2015-12-01

    Nowadays, great interests are rising on aluminum alloys for the applications at elevated temperature, driven by the automotive and aerospace industries requiring high strength, light weight, and low-cost engineering materials. As one of the most promising candidates, Al-Mn-Mg 3004 alloys have been found to possess considerably high mechanical properties and creep resistance at elevated temperature resulted from the precipitation of a large number of thermally stable dispersoids during heat treatment. In present work, the effect of Fe contents on the evolution of microstructure as well as high-temperature properties of 3004 alloys has been investigated. Results show that the dominant intermetallic changes from α-Al(MnFe)Si at 0.1 wt pct Fe to Al6(MnFe) at both 0.3 and 0.6 wt pct Fe. In the Fe range of 0.1-0.6 wt pct studied, a significant improvement on mechanical properties at elevated temperature has been observed due to the precipitation of dispersoids, and the best combination of yield strength and creep resistance at 573 K (300 °C) is obtained in the 0.3 wt pct Fe alloy with the finest size and highest volume fraction of dispersoids. The superior properties obtained at 573 K (300 °C) make 3004 alloys more promising for high-temperature applications. The relationship between the Fe content and the dispersoid precipitation as well as the materials properties has been discussed.

  14. Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating

    NASA Astrophysics Data System (ADS)

    Lu, X. D.; Wang, H. M.

    2005-05-01

    Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.

  15. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  16. Investigating the Effects of Lead Forming Parameters on Intermetallic Layer Crack Using the Finite-Element Method

    NASA Astrophysics Data System (ADS)

    Chin, J. W. C.; Kok, C. K.; Rajmohan, M. M.; Yeo, V. S. H.; Said, M. R.

    2012-04-01

    The lead trim-and-form process is important in the manufacturing of programmable logic devices, microprocessors, and memories. Normally, inspection of a chip package is performed in a lead inspection machine after the lead forming process to detect defects on the leads. One such defect is the lead intermetallic compound (IMC) crack, exhibiting itself as plating crack. In this study, IMC crack of package leads, which causes loose connection between the copper lead and the tin plating, was analyzed using the finite-element method. The simulation results were verified by matching the simulated and actual formed lead profile. Simulation results showed a strong correlation between IMC crack after forming and aging and high residual tensile strain induced during lead forming. A proposal was made to resolve the crack issue by performing design of experiment (DOE) to reduce the residual tensile strain of the lead upon forming. Three optimization parameters were chosen, namely the forming angle, the shank angle, and the pre-forming angle. It is shown that, with the optimized parameter setting, a reduction of the residual strain can be achieved, thus minimizing the risk of IMC crack.

  17. In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction

    SciTech Connect

    Qu, Lin; Zhao, Ning; Ma, Haitao Zhao, Huijing; Huang, Mingliang

    2014-05-28

    Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu{sub 6}Sn{sub 5} IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end after solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu{sub 6}Sn{sub 5} IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.

  18. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  19. Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys

    SciTech Connect

    Misra, A.; Bibala

    1999-04-01

    Directionally solidified (DS) alloys with the nominal composition Ni-30 at. pct Fe-20 at. pct Al having eutectic microstructures were used to study slip transfer across interphase boundaries and dislocation nucleation at the interfacial steps. The slip transfer from the ductile second phase, {gamma}(fcc) containing ordered {gamma}{prime}(L1{sub 2}) precipitates, to the ordered {beta}(B2) phase and the generation of dislocations at the interface steps were interpreted using the mechanisms proposed for similar processes involving grain boundaries in polycrystalline single-phase materials. The criteria for predicting the slip systems activated as a result of slip transfer across grain boundaries were found to be applicable for interphase boundaries in the multiphase ordered Ni-Fe-Al alloys. The potential of tailoring the microstructures and interfaces to promote slip transfer and thereby enhance the intrinsic ductility of dislocation-density-limited intermetallic alloys is discussed.

  20. Metamagnetism-enhanced magnetocaloric effect in the rare earth intermetallic compound Ho5Ge4

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Morozkin, A. V.; Rajivgandhi, R.; Nigam, A. K.; Quezado, S.; Malik, S. K.

    2016-11-01

    Magnetic and magnetocaloric properties of polycrystalline Ho5Ge4 (orthorhombic, Sm5Ge4-type, Space group Pnma, No. 62, oP36) compound have been studied. This compound orders antiferromagnetically at ~24 K (TN). From the magnetization vs field isotherms obtained close to the magnetic transition temperature, magnetocaloric effect (MCE) has been estimated. The isothermal magnetic entropy change (ΔSM) reaches a maximum value of ~-27 J/kg-K at ~30 K for a field change of 140 kOe. A metamagnetic transition is observed in the field dependent magnetization data at temperatures below 20 K, for critical fields above 20 kOe, giving rise to a ferromagnetic order and hence a large MCE. The magnetic moment value at 2.5 K is ~8μB/Ho3+ in 90 kOe field.