Science.gov

Sample records for advanced oxidized protein

  1. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator.

    PubMed

    Torbitz, Vanessa Dorneles; Bochi, Guilherme Vargas; de Carvalho, José Antônio Mainardi; de Almeida Vaucher, Rodrigo; da Silva, José Edson Paz; Moresco, Rafael Noal

    2015-01-01

    Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes. Results of the present study suggest that the oxidation of FB may provoke the formation of AOPP, which in turn, may promote functional alterations in FB, thus causing changes in its structural domains and increasing its procoagulant activity.

  2. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification.

    PubMed

    Li, Shi-Yan; Du, Min; Dolence, E Kurt; Fang, Cindy X; Mayer, Gabriele E; Ceylan-Isik, Asli F; LaCour, Karissa H; Yang, Xiaoping; Wilbert, Christopher J; Sreejayan, Nair; Ren, Jun

    2005-04-01

    Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24-26-month) mice using a MyoCam system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/- dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, +/- dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was approximately 2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4-7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs.

  3. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque.

    PubMed Central

    Fu, S; Davies, M J; Stocker, R; Dean, R T

    1998-01-01

    Oxidative damage might be important in atherogenesis. Oxidized lipids are present at significant concentrations in advanced human plaque, although tissue antioxidants are mostly present at normal concentrations. Indirect evidence of protein modification (notably derivatization of lysine) or oxidation has been obtained by immunochemical methods; the specificities of these antibodies are unclear. Here we present chemical determinations of six protein-bound oxidation products: dopa, o-tyrosine, m-tyrosine, dityrosine, hydroxyleucine and hydroxyvaline, some of which reflect particularly oxy-radical-mediated reaction pathways, which seem to involve mainly the participation of transition- metal ions. We compared the relative abundance of these oxidation products in normal intima, and in human carotid plaque samples with that observed after radiolytically generated hydroxyl radical attack on BSA in vitro. The close similarities in relative abundances in the latter two circumstances indicate that hydroxyl radical damage might occur in plaque. The relatively higher level of dityrosine in plaque than that observed after radiolysis suggests the additional involvement of HOCl-mediated reactions in advanced plaque. PMID:9677308

  4. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique.

    PubMed

    Selmeci, László; Seres, Leila; Antal, Magda; Lukács, Júlia; Regöly-Mérei, Andrea; Acsády, György

    2005-01-01

    Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.

  5. In Vitro Oxidation of Collagen Promotes the Formation of Advanced Oxidation Protein Products and the Activation of Human Neutrophils.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; de Campos, Luízi Prestes; Sangoi, Manuela Borges; Fernandes, Natieli Flores; Gomes, Patrícia; Moretto, Maria Beatriz; Barbisan, Fernanda; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-04-01

    The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions. Here, we investigated collagen as a potential source for AOPP formation and determined the effects of hypochlorous acid (HOCl)-treated collagen (collagen-AOPPs) on human neutrophil activity. We also assessed whether alpha-tocopherol could counteract these effects. Exposure to HOCl increased the levels of collagen-AOPPs. Collagen-AOPPs also stimulated the production of AOPPs, nitric oxide (NO), superoxide radicals (O2(-)), and HOCl by neutrophils. Collagen-AOPPs induced apoptosis and decreased the number of viable cells. Alpha-tocopherol prevented the formation of collagen-AOPPs, strongly inhibited the collagen-AOPP-induced production of O2(-) and HOCl, and increased the viability of neutrophils. Our results suggest that collagen is an important protein that interacts with HOCl to form AOPPs, and consequently, collagen-AOPP formation is related to human neutrophil activation and cell death.

  6. Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation.

    PubMed

    Venturini, Danielle; Simão, Andréa Name Colado; Dichi, Isaias

    2015-09-01

    Although advanced oxidation protein products (AOPPs) have been reported as the most appropriate parameter for determination of oxidative stress in patients with metabolic syndrome (MetS), a direct comparison between protein and lipid peroxidation has not been performed yet. The aim of this study was to compare protein peroxidation with lipid peroxidation measured by 2 different methodologies (tert-butyl hydroperoxide-initiated chemiluminescence and ferrous oxidation-xylenol orange assay). The hypothesis of this study was that AOPPs would be more related to MetS than to oxidative markers of lipid peroxidation. This cross-sectional study evaluated 76 patients with MetS and 20 healthy subjects. Prooxidant-antioxidant index (PAI) assessed as AOPP/total radical-trapping antioxidant parameter ratio progressively increased (P < .05) according to the number of MetS components, whereas AOPPs and total radical-trapping antioxidant parameter increased (P < .05) when 5 components were compared with 3 components. Spearman test showed a positive correlation between AOPPs and waist circumference (r = 0.318, P < .01), fasting glucose (r = 0.250, P < .05), homeostasis model assessment insulin resistance (r = 0.043, P < .01), triacylglycerol (r = 0.713, P < .0001), highly sensitive C-reactive protein (r = 0.275, P < .05), and uric acid (r = 0.356, P < .01), whereas there was an inverse correlation with high-density lipoprotein cholesterol (r = -0.399, P < .001). Prooxidant-antioxidant index demonstrated a positive correlation with waist circumference (r = 0.386, P < .01), fasting glucose (r = 0.388, P < .01), fasting insulin (r = 0.344, P < .05), homeostasis model assessment insulin resistance (r = 0.519, P < .001), triacylglycerol (r = 0.687, P < .0001), highly sensitive C-reactive protein (r = 0.278, P < .05), and uric acid (r = 0.557, P < .0001), whereas there was an inverse correlation with high-density lipoprotein cholesterol (r = -0.480, P < .0001). In conclusion, protein

  7. Advanced oxidation protein products and total antioxidant activity in colorectal carcinoma.

    PubMed

    Avinash, S S; Anitha, M; Vinodchandran; Rao, Gayathri M; Sudha, K; Shetty, Beena V

    2009-01-01

    The present study was designed to assess the levels of advanced oxidation protein products (AOPP) and percent hemolysis (that indirectly indicates the degree of membrane damage secondary to lipid peroxidation) in colorectal carcinoma. Glutathione (GSH), total thiols and albumin were measured to determine the antioxidant status. Considering the dynamic interaction between various antioxidants in the body, we measured the total antioxidant activity (AOA). Globulin was measured to assess the inflammatory response secondary to oxidative stress. Investigations were conducted in 45 cases of recently diagnosed primary colorectal adenocarcinoma. As control, 45 age and sex matched healthy persons were chosen. GSH was estimated in whole blood, percent hemolysis in RBC suspension and other parameters in plasma. We observed a very high significant increase (P<0.001) in AOPP, percent hemolysis and a highly significant increase (P<0.01) in globulin in colorectal carcinoma. We observed a very high significant decrease (P<0.001) in whole blood GSH, total thiols, albumin, AOA and a significant decrease (P<0.05) in plasma GSH in colorectal carcinoma. A very high significant negative correlation between percent hemolysis and AOA and an apparent negative correlation between total thiols and AOPP was seen in colorectal carcinoma. This demonstrated oxidative stress, decreased antioxidant status and secondary inflammatory response in colorectal carcinoma.

  8. Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes.

    PubMed

    Zhou, Qiu Gen; Peng, Xin; Hu, Li Li; Xie, Di; Zhou, Min; Hou, Fan Fan

    2010-10-01

    Accumulation of advanced oxidation protein products (AOPPs) is prevalent in metabolic syndromes, a condition with impaired preadipocytes differentiation. In the present study, we tested the hypothesis that AOPPs disturb preadipocyte differentiation. Exposure of 3T3-L1 preadipocytes to increased levels of AOPPs inhibited accumulation of intracellular triglyceride and decreased the expression of the essential markers of matured adipocytes, such as adipocyte fatty-acid-binding protein (aP2), CAAT/enhancer-binding protein (C/EBP)-alpha, and peroxisome proliferator-activated receptor (PPAR)-gamma, in response to standard adipogenic induction. Inhibitory effects of AOPPs on preadipocytes differentiation was time sensitive, which occurred at the early stage of differentiation. In the presence of AOPPs, induction of preadipocytes differentiation resulted in upregulated expression of C/EBP homologous protein (CHOP) and CUG-Triplet repeat-binding protein (CUGBP), two important inhibitors of preadipocytes differentiation. In addition, treatment with AOPPs increased abundance of C/EBP-beta-liver enriched inhibitory protein (C/EBP-beta-LIP), a truncated C/EBP-beta isoform without adipogenic activity. Moreover, AOPPs-treated preadipocytes expressed a macrophage marker F4/80 and overexpressed tumor necrosis factor-alpha and interleukin-6 via nuclear factor-kappaB (NF-kappaB)-dependent pathway. However, blocking inflammation with NF-kappaB inhibitor failed to improve AOPPs-induced inhibition of preadipocytes differentiation. These data suggest that accumulation of AOPPs may inhibit differentiation of preadipocytes and activate inflammation in these cells. This information might have implication for understanding the impairment of preadipocytes differentiation and fat inflammation seen in metabolic syndrome.

  9. Advanced oxidation protein products in plasma: stability during storage and correlation with other clinical characteristics.

    PubMed

    Matteucci, E; Biasci, E; Giampietro, O

    2001-12-01

    Proteins are susceptible to free radical damage. We measured advanced oxidation protein products (AOPP) in the plasma of 56 hospitalised patients. Concentrations of AOPP were expressed as chloramine-T equivalents by measuring absorbance in acidic conditions at 340 nm in the presence of potassium iodide. We also determined erythrocyte sedimentation rate (ESR), circulating urea, creatinine, glucose, uric acid, electrolytes, lipids, total proteins and fractions and fibrinogen. Twenty-four samples were processed both immediately and after 7, 15, 30, 90, 180 and 438 days of storage at both at -20 degrees C and -80 degrees C (aliquots were frozen and thawed only once) to evaluate AOPP stability. The remaining 32 samples were also processed for thiobarbituric-acid-reactive substances (TBARS). Mean AOPP concentration in all 56 patients was 48.3+/-37.2 microM. Mean basal concentration of AOPP in the 24 plasma samples (55.0+/-47.1 microM) showed no significant change at each intermediate determination, yet significantly increased after 438 days of storage both at -80 degrees C (96.6+/-83.2, p<0.01) and, markedly, at -20 degrees C (171.3+/-94.6, p<0.001). TBARS concentration was 1.59+/-0.65 micromol/l. Multiple regression analysis evidenced that AOPP concentration was positively correlated (multiple r=0.62, p<0.001) with serum urea and triglycerides, but negatively correlated with patient age (indeed, serum albumin and total proteins decreased with increasing age, r=0.3, p<0.05). TBARS concentration was associated with ESR and serum glucose (multiple r=0.73, p<0.001), yet positively with AOPP (r=0.39, simple p<0.05). We conclude that AOPP remain stable during sample storage both at -20 degrees C and -80 degrees C for 6 months. Renal failure and hypertriglyceridemia probably enhance the in vivo process of AOPP formation. Oxidative damage as measured by TBARS may be increased because of exposure to hyperglycemia causing nonenzymatic glycation of plasma proteins.

  10. Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins.

    PubMed Central

    Fu, S; Fu, M X; Baynes, J W; Thorpe, S R; Dean, R T

    1998-01-01

    Glycation and subsequent Maillard or browning reactions of glycated proteins, leading to the formation of advanced glycation end products (AGEs), are involved in the chemical modification of proteins during normal aging and have been implicated in the pathogenesis of diabetic complications. Oxidative conditions accelerate the browning of proteins by glucose, and AGE proteins also induce oxidative stress responses in cells bearing AGE receptors. These observations have led to the hypothesis that glycation-induced pathology results from a cycle of oxidative stress, increased chemical modification of proteins via the Maillard reaction, and further AGE-dependent oxidative stress. Here we show that the preparation of AGE-collagen by incubation with glucose under oxidative conditions in vitro leads not only to glycation and formation of the glycoxidation product Nepsilon-(carboxymethyl)lysine (CML), but also to the formation of amino acid oxidation products on protein, including m-tyrosine, dityrosine, dopa, and valine and leucine hydroperoxides. The formation of both CML and amino acid oxidation products was prevented by anaerobic, anti-oxidative conditions. Amino acid oxidation products were also formed when glycated collagen, prepared under anti-oxidative conditions, was allowed to incubate under aerobic conditions that led to the formation of CML. These experiments demonstrate that amino acid oxidation products are formed in proteins during glycoxidation reactions and suggest that reactive oxygen species formed by redox cycling of dopa or by the metal-catalysed decomposition of amino acid hydroperoxides, rather than by redox activity or reactive oxygen production by AGEs on protein, might contribute to the induction of oxidative stress by AGE proteins. PMID:9461515

  11. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    PubMed

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  12. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  13. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  14. Antioxidants and protein oxidation.

    PubMed

    Griffiths, H R

    2000-11-01

    Proteins are susceptible to oxidation by reactive oxygen species, where the type of damage induced is characteristic of the denaturing species. The induction of protein carbonyls is a widely applied biomarker, arising from primary oxidative insult. However, when applied to complex biological and pathological conditions it can be subject to interference from lipid, carbohydrate and DNA oxidation products. More recently, interest has focused on the analysis of specific protein bound oxidised amino acids. Of the 22 amino acids, aromatic and sulphydryl containing residues have been regarded as being particularly susceptible to oxidative modification, with L-DOPA from tyrosine, ortho-tyrosine from phenylalanine; sulphoxides and disulphides from methionine and cysteine respectively; and kynurenines from tryptophan. Latterly, the identification of valine and leucine hydroxides, reduced from hydroperoxide intermediates, has been described and applied. In order to examine the nature of oxidative damage and protective efficacy of antioxidants the markers must be thoroughly evaluated for dosimetry in vitro following damage by specific radical species. Antioxidant protection against formation of the biomarker should be demonstrated in vitro. Quantification of biomarkers in proteins from normal subjects should be within the limits of detection of any analytical procedure. Further to this, the techniques for isolation and hydrolysis of specific proteins should demonstrate that in vitro oxidation is minimised. There is a need for the development of standards for quality assurance material to standardise procedures between laboratories. At present, antioxidant effects on protein oxidation in vivo are limited to animal studies, where dietary antioxidants have been reported to reduce dityrosine formation during rat exercise training. Two studies on humans have been reported last year. The further application of these methods to human studies is indicated, where the quality of the

  15. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W. Martin...Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W

  16. An Increase of Plasma Advanced Oxidation Protein Products Levels Is Associated with Cardiovascular Risk in Incident Peritoneal Dialysis Patients: A Pilot Study

    PubMed Central

    Gonzalez, Elena; Bajo, Maria-Auxiliadora; Carrero, Juan J.; Lindholm, Bengt; Grande, Cristina; Sánchez-Villanueva, Rafael; Del Peso, Gloria; Díaz-Almirón, Mariana; Iglesias, Pedro; Díez, Juan J.; Selgas, Rafael

    2015-01-01

    Advanced oxidation protein products (AOPPs) are considered as markers and even mediators of the proinflammatory effect of oxidative stress in uremia. We hypothesized that an increase of oxidative stress associated with peritoneal dialysis (PD), estimated by the variation of plasma AOPPs over time, might be associated with cardiovascular (CV) risk and overall prognosis. In 48 PD patients, blood samples were collected on two occasions: the first one in the first six months after starting PD therapy and the second one, one year after. The plasma AOPPs level variation over the first year on PD was significantly associated with CV antecedents and also with CV prognosis. In those patients in whom the AOPPs levels increased more than 50% above the baseline value, a significant association with past and future CV disease was confirmed. These patients had 4.7 times greater risk of suffering later CV disease than those with a smaller increase, even after adjusting for previous CV history. Our data suggest that the increase of AOPPs plasma level over the first year on PD is conditioned by CV antecedents but also independently predicts CV prognosis. AOPPs plasma levels seem to represent the CV status of PD patients with sufficient sensitivity to identify those with a clearly sustained higher CV risk. PMID:26581178

  17. Increased Advanced Oxidation Protein Products Generation by Cyclosporine-A and Angiotensin II in Human Gingival Fibroblasts – Ex-vivo Study

    PubMed Central

    Subbarayan, Rajasekaran; Ajitkumar, Supraja; Murugan Girija, Dinesh

    2017-01-01

    Introduction Cyclosporin-A (CsA), an immunosuppressant, induces renal fibrosis and Renin Angiotensin System (RAS) is known to play a major role. CsA has the potential to increase the oxidative stress; specifically through the Advanced Oxidation Protein Products (AOPP) which could possibly stimulate fibrosis. A similar type of pathology occurs even in the gingiva known as CsA Induced Gingival Overgrowth (CIGO). Aim This study was undertaken to estimate the AOPP generation by Human Gingival Fibroblasts (HGF) under the influence of CsA and Angiotensin II (Ang II). Materials and Methods Six healthy gingival tissue samples were obtained during crown lengthening procedure and primary HGF were cultured using enzymatic digestion method. The ideal non-cytotoxic concentrations of CsA and Ang II were identified using cytotoxicity assay. Later, HGF were incubated with CsA and Ang II for 12 hours and AOPP assay was performed at zero and one hour interval. Results There was a statistically significant increase in AOPP production in both the CsA and Ang II when compared to the control group with a p value<0.05. Conclusion CsA can induce oxidative stress and preventing/controlling it may be necessary to prevent untoward effect of the drug. PMID:28274044

  18. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  19. Advanced oxidation protein products decrease the expression of calcium transport channels in small intestinal epithelium via the p44/42 MAPK signaling pathway.

    PubMed

    Wu, Peiqun; Xie, Fang; Xue, Minmin; Xu, Xiaoping; He, Shuying; Lin, Minyi; Bai, Lan

    2015-05-01

    Advanced oxidation protein products (AOPPs), novel protein markers of oxidative damage, accumulate in the plasma of patients with inflammatory bowel disease (IBD). Osteoporosis, which is closely related to the regulation of intestinal calcium transport channels (CTCs), is a prevalent extraintestinal complication of IBD and is associated with oxidative stress. However, the underlying mechanisms are unknown. The present study aimed to verify whether AOPPs inhibit CTCs in the small intestinal epithelium and to identify the underlying mechanisms that may contribute to IBD-associated osteoporosis. Normal Sprague-Dawley rats were treated with AOPP-modified rat serum albumin. The calcium ion level in serum was not significantly altered, while the duodenal expression of CTCs (e.g. transient receptor potential vanilloid [TRPV6], calbindin-D9k [CaBP-D9k], plasma membrane Ca(2+)-ATPase 1 [PMCA1], and Na(+)/Ca(2+) exchanger 1 [NCX1]) were decreased. In contrast, the levels of the related hormones that regulate calcium absorption including parathyroid hormone (PTH), 25-(OH)D₃, and 1,25-(OH)₂D₃ were increased, although the trend toward an increase in PTH levels was not significant. In order to further investigate the effects of AOPP exposure, we also evaluated the expression of CTCs (including the voltage-dependent L-type calcium channel [CaV1.3], TRPV6, CaBP-D9k, PMCA1, and NCX1) in cultured human colorectal adenocarcinoma cells (Caco-2). The expression levels of total CTC protein and mRNA, except for CaV1.3, were significantly down-regulated in a concentration- and time-dependent manner. Moreover, phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) was observed in vivo and in vitro. The p44/42 inhibitor U0126 reversed the down-regulation of CTCs induced by AOPPs in the Caco-2 monolayer. Our results indicate that AOPPs down-regulate the expression of CTCs through p44/42 MAPK signaling mechanisms in the small intestinal epithelium. These data provide new

  20. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols

    PubMed Central

    Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio

    2017-01-01

    Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N-acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS

  1. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  2. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  3. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  4. Oxidation of advanced steam turbine alloys

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  5. Protein oxidation in aging and the removal of oxidized proteins.

    PubMed

    Höhn, Annika; König, Jeannette; Grune, Tilman

    2013-10-30

    Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

  6. Advanced metal oxide varistor concepts

    NASA Astrophysics Data System (ADS)

    Philipp, H. R.; Mahan, G. D.; Levinson, L. M.

    1984-07-01

    Zinc oxide varistors are ZnO-based ceramic semiconductor devices with highly nonlinear current-voltage characteristics similar to back-to-back Zener diodes but with much greater current, voltage, and energy-handling capabilities. Zinc oxide varistors have proven useful in a variety of applications, particularly as high-quality voltage suppression devices for the protection of ac and dc electric power transmission systems against the effects of transient overvoltages due to switching surges and lightning strikes. Simple varistor systems that use Bi or Pr as the varistor-forming additive and Co or Mn as the varistor-performance ingredient were studied. Commercial varistor materials generally use Bi as the varistor-forming ingredient, and the sintering process in such material probably proceeds in the liquid phase. Varistor materials that use Pr as the varistor-forming ingredient are also produced commercially.

  7. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  8. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  9. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  10. Degradation of formaldehyde by advanced oxidation processes.

    PubMed

    Guimarães, José Roberto; Farah, Carolina Rittes Turato; Maniero, Milena Guedes; Fadini, Pedro Sérgio

    2012-09-30

    The degradation of formaldehyde in an aqueous solution (400 mg L(-1)) was studied using photolysis, peroxidation and advanced oxidation processes (UV/H(2)O(2), Fenton and photo-Fenton). Photolysis was the only process tested that did not reduce formaldehyde concentration; however, only advanced oxidation processes (AOPs) significantly decreased dissolved organic carbon (DOC). UV/H(2)O(2) and photo-Fenton AOPs were used to degrade formaldehyde at the highest concentrations (1200-12,000 mg L(-1)); the processes were able to reduce CH(2)O by 98% and DOC by 65%. Peroxidation with ultraviolet light (UV/H(2)O(2)) improved the efficiency of treatment of effluent from an anatomy laboratory. The effluent's CH(2)O content was reduced by 91%, DOC by 48%, COD by 46% and BOD by 53% in 420 min of testing.

  11. A novel approach for oxidation analysis of therapeutic proteins.

    PubMed

    Turyan, Iva; Khatwani, Nikhil; Sosic, Zoran; Jayawickreme, Shiranthi; Mandler, Daniel

    2016-02-01

    Measuring and monitoring of protein oxidation modifications is important for biopharmaceutical process development and stability assessment during long-term storage. Currently available methods for biomolecules oxidation analysis use time-consuming peptide mapping analysis. Therefore, it is desirable to develop high-throughput methods for advanced process control of protein oxidation. Here, we present a novel approach by which oxidative protein modifications are monitored by an indirect potentiometric method. The method is based on adding an electron mediator, which enhances electron transfer (ET) between all redox species and the electrode surface. Specifically, the procedure involves measuring the sharp change in the open circuit potential (OCP) for the mediator system (redox couple) as a result of its interaction with the oxidized protein species in the solution. Application of Pt and Ag/AgCl microelectrodes allowed for a high-sensitivity protein oxidation analysis. We found that the Ru(NH3)6(2+/3+) redox couple is suitable for measuring the total oxidation of a wide range of therapeutic proteins between 1.1 and 13.6%. Accuracy determined by comparing with the known percentage oxidation of the reference standard showed that percentage oxidation determined for each sample was within ± 20% of the expected percentage oxidation determined by mass spectrometry.

  12. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  13. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces.

  14. Advances in the directed evolution of proteins

    PubMed Central

    Lane, Michael D.; Seelig, Burckhard

    2014-01-01

    Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable the generation of proteins with previously inaccessible properties. Novel selection strategies, faster techniques, the inclusion of unnatural amino acids or modifications, and the symbiosis of rational design approaches and directed evolution continue to advance protein engineering. PMID:25309990

  15. Contemporary techniques for detecting and identifying proteins susceptible to reversible thiol oxidation.

    PubMed

    Burgoyne, Joseph R; Eaton, Philip

    2011-10-01

    Elevated protein oxidation is a widely reported hallmark of most major diseases. Historically, this 'oxidative stress' has been considered causatively detrimental, as the protein oxidation events were interpreted simply as damage. However, recent advances have changed this antiquated view; sensitive methodology for detecting and identifying proteins susceptible to oxidation has revealed a fundamental role for this modification in physiological cell signalling during health. Reversible protein oxidation that is dynamically coupled with cellular reducing systems allows oxidative protein modifications to regulate protein function, analogous to phosphoregulation. However, the relatively labile nature of many reversible protein oxidation states hampers the reliable detection and identification of modified proteins. Consequently, specialized methods to stabilize protein oxidation in combination with techniques to detect specific types of modification have been developed. Here, these techniques are discussed, and their sensitivity, selectivity and ability to reliably identify reversibly oxidized proteins are critically assessed.

  16. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products.

  17. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  18. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  19. Analysis of oxidative modification of proteins.

    PubMed

    Yan, Liang-Jun

    2009-02-01

    Proteins are targets of oxidative modification. This unit describes detailed procedures for the analysis of popular indices of protein oxidation including protein carbonyl formation, loss of protein thiols, and nitrotyrosine and dityrosine formation, as well as isoaspartate formation. Procedures are detailed for the analysis of protein carbonyls labeled with 2,4-dinitrophenylhydrazine, tritiated sodium borohydride, and biotin-hydrazide, followed by detection measurements that are based on the distinguishing feature of each labeling chemical. Methods are outlined for the determination of protein cysteine oxidation by quantifying the loss of free protein thiols using radiolabeled [(14)C]-iodoacetamide. Protocols are described for the measurement of protein dityrosine by gas chromatography/mass spectrometry, as are the details for the detection of protein nitrotyrosine by a competitive ELISA approach. Finally, methods are described for the quantification of protein-bound isoaspartate using protein-L-isoaspartyl methyltransferase that converts aberrant L-isoaspartyl residues in peptides and proteins to normal aspartyl residues.

  20. Analysis of oxidative modification of proteins.

    PubMed

    Yan, Liang-Jun

    2009-04-01

    Proteins are targets of oxidative modification. This unit describes detailed procedures for the analysis of popular indices of protein oxidation including protein carbonyl formation, loss of protein thiols, and nitrotyrosine and dityrosine formation, as well as isoaspartate formation. Procedures are detailed for the analysis of protein carbonyls labeled with 2,4-dinitrophenylhydrazine, tritiated sodium borohydride, and biotin-hydrazide, followed by detection measurements that are based on the distinguishing feature of each labeling chemical. Methods are outlined for the determination of protein cysteine oxidation by quantifying the loss of free protein thiols using radiolabeled [(14)C]-iodoacetamide. Protocols are described for the measurement of protein dityrosine by gas chromatography/mass spectrometry, as are the details for the detection of protein nitrotyrosine by a competitive ELISA approach. Finally, methods are described for the quantification of protein-bound isoaspartate using protein-L-isoaspartyl methyltransferase that converts aberrant L-isoaspartyl residues in peptides and proteins to normal aspartyl residues.

  1. Advances in fluorescent protein technology.

    PubMed

    Shaner, Nathan C; Patterson, George H; Davidson, Michael W

    2007-12-15

    Current fluorescent protein (FP) development strategies are focused on fine-tuning the photophysical properties of blue to yellow variants derived from the Aequorea victoria jellyfish green fluorescent protein (GFP) and on the development of monomeric FPs from other organisms that emit in the yellow-orange to far-red regions of the visible light spectrum. Progress toward these goals has been substantial, and near-infrared emitting FPs may loom over the horizon. The latest efforts in jellyfish variants have resulted in new and improved monomeric BFP, CFP, GFP and YFP variants, and the relentless search for a bright, monomeric and fast-maturing red FP has yielded a host of excellent candidates, although none is yet optimal for all applications. Meanwhile, photoactivatable FPs are emerging as a powerful class of probes for intracellular dynamics and, unexpectedly, as useful tools for the development of superresolution microscopy applications.

  2. Oxidative modification of serum proteins in multiple sclerosis.

    PubMed

    Sadowska-Bartosz, Izabela; Adamczyk-Sowa, Monika; Galiniak, Sabina; Mucha, Sebastian; Pierzchala, Krystyna; Bartosz, Grzegorz

    2013-11-01

    Multiple sclerosis (MS) has been demonstrated to involve oxidative stress and augmented glycoxidation. In this study, several markers of protein oxidative damage and glycoxidation have been compared in 14 relapsing remittent in MS (RRMS) patients without immunomodifying treatment, 10 patients in clinical relapse, and clinically stable patient groups treated with interferon β 1a (18) , β 1b (19) and glatiramer acetate (GA; 6) in relation to healthy subjects (12). The glycophore content was increased in RRSM patients without treatment and in patients treated with GA. The level of advanced protein oxidation products (AOPP) was increased in RRSM patients without treatment and in patients with clinical relapse. The level of protein carbonyls was elevated in RRSM patients without treatment and in patients treated with interferon β 1b. The levels of dityrosine level and N'-formylkynureine were elevated in RRSM patients without treatment while serum protein thiol groups were decreased in RRSM patients in clinical relapse as well as RRMS patients treated with interferon β 1a. Several markers of protein modification showed correlation with the C-reactive protein level and white blood cell count, suggesting that oxidative protein modifications are linked to the inflammatory processes in MS. Results of this study confirm the occurrence of protein oxidative and glycoxidative damage in MS and show that spectrophotometric and fluorimetric markers of this damage, especially the AOPP level, may be useful in monitoring oxidative stress in the course of therapy of MS.

  3. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  4. Recent advances in (therapeutic protein) drug development

    PubMed Central

    Lagassé, H.A. Daniel; Alexaki, Aikaterini; Simhadri, Vijaya L.; Katagiri, Nobuko H.; Jankowski, Wojciech; Sauna, Zuben E.; Kimchi-Sarfaty, Chava

    2017-01-01

    Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016). PMID:28232867

  5. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway.

    PubMed

    Xie, F; Sun, S; Xu, A; Zheng, S; Xue, M; Wu, P; Zeng, J H; Bai, L

    2014-01-16

    Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn's disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor

  6. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  7. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  8. A novel approach in psoriasis: first usage of known protein oxidation markers to prove oxidative stress.

    PubMed

    Yazici, Cevat; Köse, Kader; Utaş, Serap; Tanrikulu, Esen; Taşlidere, Nazan

    2016-04-01

    Oxidative stress may play a pivotal role in the pathogenesis of psoriasis, an inflammatory/hyperproliferative skin disease characterized by the cutaneous accumulation of neutrophils releasing reactive oxygen species, as revealed in a number of studies. This study was performed to demonstrate the presence of oxidative stress in psoriasis, as measured by protein oxidation markers. Twenty-nine psoriasis patients were selected based on disease severity assessment using body surface area as well as the psoriasis area severity index (PASI), and were grouped as mild (PASI ≤ 10) and moderate-to-severe (PASI > 10). The measured parameters in psoriatic patients and fourteen healthy volunteers were as follows: erythrocyte sedimentation rate (ESR), high sensitive C-reactive protein (CRP), myeloperoxidase (MPO) activity, neopterin, total lipid hydroperoxides (LHP), pyrrolized protein (PP), protein carbonyl compounds (PCC), advanced oxidation protein products (AOPP), thiol levels, along with complete blood count. Except lower thiols, all parameters were found to be higher in total patients as well as in subgroups, compared to controls. There was no significant difference among the subgroups. In conclusion, protein oxidation in psoriatics, not only in moderate-to-severe, but also in mild patients, may be explained by the findings of inflammation, phagocytic cell oxidation, and MPO-hypochlorous acid-oxidation reactions; as reflected by increased total/differential leucocytes counts, CRP, ESR as well as MPO, neopterin, AOPP, PCC, PP, LHP, and decreased thiol levels. Demonstrating the AOPP and PP formation for the first time, oxidants from active neutrophils/monocytes may play an important role in the pathogenesis of psoriasis, leading to oxidative stress, especially by protein oxidation.

  9. Short communication: Effect of commercial or depurinized milk diet on plasma advanced oxidation protein products, cardiovascular markers, and bone marrow CD34+ stem cell potential in rat experimental hyperuricemia.

    PubMed

    Kocic, Gordana; Sokolovic, Dusan; Jevtovic, Tatjana; Cvetkovic, Tatjana; Veljkovic, Andrej; Kocic, Hristina; Stojanovic, Svetlana; Jovanovic, Aneta; Jovanovic, Jelena; Zivkovic, Petar

    2014-11-01

    Cardiovascular repair and myocardial contractility may be improved by migration of bone marrow stem cells (BMSC) and their delivery to the site of injury, a process known as BMSC homing. The aim of our study was to examine the dietary effect of a newly patented depurinized milk (DP) that is almost free of uric acid and purine and pyrimidine compounds compared with a standard commercial 1.5% fat UHT milk diet or allopurinol therapy in rat experimental hyperuricemia. Bone marrow stem cell potential (BMCD34(+), CD34-postive bone marrow cells), plasma oxidative stress parameters [advanced oxidation protein products, AOPP) and thiobarbituric acid reactive substances (TBARS)], myocardial damage markers [creatine phosphokinase (CPK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH)], plasma cholesterol, and high-density lipoprotein cholesterol were investigated. The DP milk diet significantly increased the number of BMCD34(+) stem cells compared with commercial UHT milk. Allopurinol given alone also increased the number of BMCD34(+). Hyperuricemia caused a significant increase in all plasma enzyme markers for myocardial damage (CPK, LDH, and AST). A cardioprotective effect was achieved with allopurinol but almost equally with DP milk and more than with commercial milk. Regarding plasma AOPP, TBARS, and cholesterol levels, the most effective treatment was DP milk. In conclusion, the protective role of a milk diet on cardiovascular function may be enhanced through the new depurinized milk diet, which may improve cardiovascular system function via increased bone marrow stem cell regenerative potential, decreased plasma oxidative stress parameters, and decreased levels of myocardial damage markers and cholesterol. New dairy technology strategies focused on eliminating harmful milk compounds should be completely nontoxic. Novel milk products should be tested for their ability to improve tissue repair and function.

  10. Advanced oxidation technologies for chemical demilitarization

    SciTech Connect

    Rosocha, L.A.; Korzekwa, R.A.; Monagle, M.; Coogan, J.J.; Tennant, R.A.; Brown, L.F.; Currier, R.P.

    1996-12-31

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. The main project objective was to establish a technical basis for future program development in the area of chemical warfare agent destruction using a Los Alamos-developed advanced oxidation process: a two-stage device consisting of thermal packed-bed reactor (PBR) and a nonthermal plasma (NTP) reactor. Various compounds were evaluated as potential surrogates for chemical warfare (CW) agents. Representative effluent mass balances were projected for future comparisons with incinerators. The design and construction of lab-scale PBR/NTP reactors (consisting of a liquid injection and metering system, electric furnace, condensers, chemical traps, plasma reactors, power supplies, and chemical diagnostics) has been completed. This equipment, the experience gained from chemical-processing experiments, process modeling, and an initial demonstration of the feasibility of closed-loop operation, have provided a technical basis for further demonstrations and program development efforts.

  11. Recent advances in engineering proteins for biocatalysis.

    PubMed

    Li, Ye; Cirino, Patrick C

    2014-07-01

    Protein engineers are increasingly able to rely on structure-function insights, computational methods, and deeper understanding of natural biosynthesis processes, to streamline the design and applications of enzymes. This review highlights recent successes in applying new or improved protein engineering strategies toward the design of improved enzymes and enzymes with new activities. We focus on three approaches: structure-guided protein design, computational design, and the use of novel scaffolding and compartmentalization techniques to improve performance of multienzyme systems. Examples described address problems relating to enzyme specificity, stability, and/or activity, or aim to balance sequential reactions and route intermediates by co-localizing multiple enzymes. Specific applications include improving production of biofuels using enzymes with altered cofactor specificity, production of high-value chiral compounds by enzymes with tailored substrate specificities, and accelerated cellulose degradation via multi-enzyme scaffold assemblies. Collectively, these studies demonstrate a growing variety of computational and molecular biology tools. Continued advances on these fronts coupled with better mindfulness of how to apply proteins in unique ways offer exciting prospects for future protein engineering and biocatalysis research.

  12. Average oxidation state of carbon in proteins.

    PubMed

    Dick, Jeffrey M

    2014-11-06

    The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (Z(C)) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation-reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between Z(C) and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in Z(C) in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower Z(C) tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales.

  13. Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants.

    PubMed

    Bonifay, Vincent; Barrett, Tessa J; Pattison, David I; Davies, Michael J; Hawkins, Clare L; Ashby, Michael T

    2014-12-15

    Human defensive peroxidases, including lactoperoxidase (LPO) and myeloperoxidase (MPO), are capable of catalyzing the oxidation of halides (X(-)) by H2O2 to give hypohalous acids (HOX) for the purpose of cellular defense. Substrate selectivity depends upon the relative abundance of the halides, but the pseudo-halide thiocyanate (SCN(-)) is a major substrate, and sometimes the exclusive substrate, of all defensive peroxidases in most physiologic fluids. The resulting hypothiocyanous acid (HOSCN) has been implicated in cellular damage via thiol oxidation. While thiols are believed to be the primary target of HOSCN in vivo, Trp residues have also been implicated as targets for HOSCN. However, the mechanism involved in HOSCN-mediated Trp oxidation was not established. Trp residues in proteins appeared to be susceptible to oxidation by HOSCN, whereas free Trp and Trp residues in small peptides were found to be unreactive. We show that HOSCN-induced Trp oxidation is dependent on pH, with oxidation of free Trp, and Trp-containing peptides observed when the pH is below 2. These conditions mimic those employed previously to precipitate proteins after treatment with HOSCN, which accounts for the discrepancy in the results reported for proteins versus free Trp and small peptides. The reactant in these cases may be thiocyanogen ((SCN)2), which is produced by comproportionation of HOSCN and SCN(-) at low pH. Reaction of thiocyanate-derived oxidants with protein Trp residues at low pH results in the formation of a number of oxidation products, including mono- and di-oxygenated derivatives, which are also formed with other hypohalous acids. Our data suggest that significant modification of Trp by HOSCN in vivo is likely to have limited biological relevance.

  14. Oxidative stress causes plasma protein modification.

    PubMed

    Tetik, Sermin; Kiliç, Arzu; Aksoy, Halil; Rizaner, Nahit; Ahmad, Sarfraz; Yardimci, Turay

    2015-01-01

    We investigated the effect of oxidative systems on plasma proteins using Chloramine-T, a source of free radicals. Plasma specimens from 10 healthy volunteers were treated with 40 mmol/L Chloramine-T (1:1 v/v). Total protein and plasma carbonyl levels were evaluated spectrophotometrically. Identification of plasma proteins modifications was performed by SDS-PAGE, protein and lipid electrophoresis. Protein fragmentation was evaluated by HPLC. Total protein levels of oxidised plasmas were significantly lower (4.08 ± 0.12 g/dL) than control (7.86 ± 0.03 g/dL) (P < 0.01). Plasma carbonyl levels were higher (1.94 ± 0.38 nmol/mg protein) in oxidised plasma than that of control (0.03 ± 0.01 nmol/mg protein) (P < 0.01). Plasma oxidation had no significant effect on the levels of proteins and lipids. Protein fragmentations were detected in oxidised groups compared to those of the control. We conclude that protein modifications have direct effect on the protein functions, which are related to stress agent, its treatment period(s), and the methodology used for evaluating such experimental results.

  15. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  16. Oxidation-Reduction Resistance of Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.

    2003-01-01

    Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.

  17. Average oxidation state of carbon in proteins

    PubMed Central

    Dick, Jeffrey M.

    2014-01-01

    The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation–reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between ZC and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in ZC in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower ZC tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales. PMID:25165594

  18. New developments advance forced-oxidation FGD

    SciTech Connect

    Ellison, W.; Kutemeyer, P.M.

    1983-02-01

    In the US, many utility companies are specifying forced oxidation to help to stabilize the sludge from wet-limestone scrubbers. This technique is already used in Japan and West Germany. The oxidized sludge can be more easily dewatered and thus requires considerably less disposal area than is needed for ponding the FGD sludge. The solids can also be upgraded to a commercial-grade gypsum. The processes required and the systems currently in use in Japan and West Germany are described.

  19. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  20. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  1. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  2. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.

    PubMed

    Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

    2014-01-01

    Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.

  3. Byonic: Advanced Peptide and Protein Identification Software

    PubMed Central

    Bern, Marshall; Kil, Yong J.; Becker, Christopher

    2013-01-01

    Byonic™ is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence Byonic can search for 10s or even 100s of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic’s Wildcard Search™ allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic’s Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites. PMID:23255153

  4. Two-dimensional oxides: multifunctional materials for advanced technologies.

    PubMed

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials.

  5. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  6. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  7. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  8. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities.

  9. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  10. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-08-01

    The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel.

  11. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  12. Oxidation of proteins: Basic principles and perspectives for blood proteomics.

    PubMed

    Barelli, Stefano; Canellini, Giorgia; Thadikkaran, Lynne; Crettaz, David; Quadroni, Manfredo; Rossier, Joël S; Tissot, Jean-Daniel; Lion, Niels

    2008-02-01

    Protein oxidation mechanisms result in a wide array of modifications, from backbone cleavage or protein crosslinking to more subtle modifications such as side chain oxidations. Protein oxidation occurs as part of normal regulatory processes, as a defence mechanism against oxidative stress, or as a deleterious processes when antioxidant defences are overcome. Because blood is continually exposed to reactive oxygen and nitrogen species, blood proteomics should inherently adopt redox proteomic strategies. In this review, we recall the biochemical basis of protein oxidation, review the proteomic methodologies applied to analyse redox modifications, and highlight some physiological and in vitro responses to oxidative stress of various blood components.

  13. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity.

    PubMed

    Kupsco, Allison; Schlenk, Daniel

    2015-01-01

    Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.

  14. Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity

    PubMed Central

    Kupsco, Allison; Schlenk, Daniel

    2016-01-01

    Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783

  15. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  16. Protein Oxidation in Aging: Does It Play a Role in Aging Progression?

    PubMed Central

    Reeg, Sandra

    2015-01-01

    Abstract Significance: A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. Recent Advances: The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. Critical Issues: It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. Future Directions: An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs. Antioxid. Redox Signal. 23, 239–255. PMID:25178482

  17. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed.

  18. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  19. Advanced treatment of sodium acetate in water by ozone oxidation.

    PubMed

    Yang, De-Min; Yuan, Jian-Mei

    2014-02-01

    Ozone oxidation is an advanced oxidation process for treatment of organic and inorganic wastewater. In this paper, sodium acetate (according to chemical oxygen demand [COD]) was selected as the model pollutant in water, and the degradation efficiencies and mechanism of sodium acetate in water by ozone oxidation were investigated. The results showed that the ozone oxidation was an effective treatment technology for advanced treatment of sodium acetate in water; the COD removal rate obtained the maximum value of 45.89% from sodium acetate solution when the pH value was 10.82, ozone concentration was 100 mg/L, reaction time was 30 minutes, and reaction temperature was 25 degrees C. The COD removal rate increased first and decreased subsequently with the bicarbonate (HCO3-) concentration from 0 to 200 mg/L, the largest decline being 20.35%. The COD removal rate declined by 25.38% with the carbonate (CO3(2-)) concentration from 0 to 200 mg/L; CO3(2-) has a more obvious scavenging effect to inhibit the formation of hydroxyl free radicals than HCO3-. Calcium chloride (CaCl2) and calcium hydroxide (Ca(OH)2) could enhance the COD removal rate greatly; they could reach 77.35 and 96.53%, respectively, after a reaction time of 30 minutes, which was increased by 31.46 and 50.64%, respectively, compared with only ozone oxidation. It was proved that the main ozone oxidation product of sodium acetate was carbon dioxide (CO2), and the degradation of sodium acetate in the ozone oxidation process followed the mechanism of hydroxyl free radicals.

  20. [Oxidative modification of proteins, its role in pathologic states].

    PubMed

    Dubinina, E E; Pustygina, A V

    2008-01-01

    Generalized literature data covering principal mechanisms of oxidative modification of protein and its role in various pathologies are presented in the paper. It is emphasized that due to peculiarities of protein structure organization the process of oxidative modification is of complicated and specific character, which is determined by amino acid composition of the protein. Oxidative modification of protein can be connected with impairment of not only a polypeptide chain itself, but also particular amino acid residues with formation of several types of radicals. Mechanisms of formation of long-life hydroperoxides and their role in oxidative stress are discussed. The role of electron-transfer (migratory) reactions in formation of radical centers on a protein molecule surface is elucidated. Oxidative modification of protein is considered as a process of regulation of their synthesis and degradation connected with activation of multicatalytic proteases. Oxidative destruction of protein is one of early and most reliable markers of tissue lesion in reactive species pathology.

  1. Biochemistry and pathology of radical-mediated protein oxidation.

    PubMed Central

    Dean, R T; Fu, S; Stocker, R; Davies, M J

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several categories of reactive species, and a range of stable products whose chemistry is currently being elucidated. Among the reactive products, protein hydroperoxides can generate further radical fluxes on reaction with transition-metal ions; protein-bound reductants (notably dopa) can reduce transition-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, this may contribute to the observed accumulation and damaging actions of oxidized proteins during aging and in pathologies such as diabetes, atherosclerosis and neurodegenerative diseases. Protein oxidation may also sometimes play controlling roles in cellular remodelling and cell growth. Proteins are also key targets in defensive cytolysis and in inflammatory self-damage. The possibility of selective protection against protein oxidation (antioxidation) is raised. PMID:9164834

  2. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  3. Advances in extrusion for texturized whey proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins like whey proteins play an important role in human nutrition because of their characteristic structure and associated numerous benefits such as ease of digestion, in- vivo assimilation, creating new or maintaining the muscle mass and the unique ability of boosting immune functions. W...

  4. On-plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry.

    PubMed

    Maleknia, Simin D; Downard, Kevin M

    2012-10-15

    The on-plate deposition of oxidized proteins is described to advance footprinting applications by radical probe mass spectrometry (RP-MS). An electrospray ionization (ESI) needle assembly mounted vertically over a 384-target matrix-assisted laser desorption/ionization (MALDI) plate enabled the limited oxidation of proteins as they were released in the charged droplets ahead of their deposition on the plate. This method combined with on-plate proteolytic digestion protocols expedites the analysis of proteins oxidized by RP-MS, and avoids the need to collect and reconstitute samples prior to analysis by MALDI mass spectrometry. Oxidation of peptides from solutions in water as well as an ammonium bicarbonate solution was investigated to test the optimal conditions required for on-plate oxidation of proteins. These comprised of peptides with a wide range of reactive amino acids including Phe, Tyr, Pro, His, Leu, Met and Lys that were previously shown to oxidize in both electrospray discharge and synchrotron radiolysis based footprinting experiments. The on-plate deposition of lysozyme oxidized at electrospray needle voltages of 6 and 9 kV were carried out to demonstrate conditions suitable for footprinting experiments as well as those that induce the onset of protein damage.

  5. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  6. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 × 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760°C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  7. Cyclooxygenase-2 Inhibition Limits Angiotensin II-Induced DNA Oxidation and Protein Nitration in Humans

    PubMed Central

    Pialoux, Vincent; Poulin, Marc J.; Hemmelgarn, Brenda R.; Muruve, Daniel A.; Chirico, Erica N.; Faes, Camille; Sola, Darlene Y.; Ahmed, Sofia B.

    2017-01-01

    Compared to other cyclooxygenase-2 inhibitors, celecoxib is associated with a lower cardiovascular risk, though the mechanism remains unclear. Angiotensin II is an important mediator of oxidative stress in the pathophysiology of vascular disease. Cyclooxygenase-2 may modify the effects of angiotensin II though this has never been studied in humans. The purpose of the study was to test the effects of selective cyclooxygenase-2 inhibition on plasma measures of oxidative stress, the vasoconstrictor endothelin-1, and nitric oxide metabolites, both at baseline and in respose to Angiotensin II challenge in healthy humans. Measures of 8-hydroxydeoxyguanosine, advanced oxidation protein products, nitrotyrosine, endothelin-1, and nitric oxide metabolites were assessed from plasma samples drawn at baseline and in response to graded angiotensin II infusion (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min) before and after 14 days of cyclooxygenase-2 inhibition in 14 healthy subjects (eight male, six female) in high salt balance, a state of maximal renin angiotensin system suppression. Angiotensin II infusion significantly increased plasma oxidative stress compared to baseline (8-hydroxydeoxyguanosine; +17%; advanced oxidation protein products; +16%), nitrotyrosine (+76%). Furthermore, levels of endothelin-1 levels were significantly increased (+115%) and nitric oxide metabolites were significantly decreased (−20%). Cycloxygenase-2 inhibition significantly limited the increase in 8-hydroxydeoxyguanosine, nitrotyrosine and the decrease in nitric oxide metabolites induced by angiotensin II infusion, though no changes in advanced oxidation protein products and endothelin-1 concentrations were observed. Cyclooxygenase-2 inhibition with celecoxib partially limited the angiotensin II-mediated increases in markers of oxidative stress in humans, offering a potential physiological pathway for the improved cardiovascular risk profile of this drug. PMID:28344559

  8. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  9. Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes.

    PubMed

    Skoumal, Marcel; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2008-04-01

    Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly methods based on the destruction of organic pollutants in wastewaters with in situ electrogenerated hydroxyl radical. This species is formed in anodic oxidation (AO) from water oxidation at the anode and in indirect electro-oxidation methods like electro-Fenton (EF) and photoelectro-Fenton (PEF) also from reaction between catalytic Fe2+ and H2O2 continuously produced at the O2-diffusion cathode. The PEF method involves the irradiation of the treated solution with UVA light to enhance the photolysis of organics including Fe(III) complexes. In this work, the oxidation power of such EAOPs to decontaminate synthetic wastewaters of the biocide chloroxylenol (4-chloro-3,5-dimethylphenol) at pH 3.0 is comparatively examined with an undivided electrolytic cell containing a Pt or boron-doped diamond (BDD) anode and a stainless steel or O2-diffusion cathode. The initial chlorine is released as Cl(-) ion, which remains stable in the medium using Pt or is oxidized to Cl2 on BDD. The biocide solutions can be completely decontaminated using AO with a BDD anode, as well as PEF with a Pt or BDD anode. The PEF procedure with a BDD anode is the most powerful method leading to total mineralization in about 300 min, practically independent of current density. When current density rises, the degradation rate of processes increases, but they become less efficient due to the larger enhancement of waste reactions of oxidants. Chloroxylenol is much more rapidly removed in EF and PEF than in AO. 2,6-dimethylhydroquinone, 2,6-dimethyl-p-benzoquinone and 3,5-dimethyl-2-hydroxy-p-benzoquinone are identified as aromatic by-products, and maleic, malonic, pyruvic, acetic and oxalic acids are found as generated carboxylic acids. A general pathway for chloroxylenol mineralization by all EAOPs including the above by-products is proposed.

  10. Oxidative modification of proteins: age-related changes.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2007-01-01

    Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.

  11. Analytical Protein Microarrays: Advancements Towards Clinical Applications

    PubMed Central

    Sauer, Ursula

    2017-01-01

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems. PMID:28146048

  12. Analytical Protein Microarrays: Advancements Towards Clinical Applications.

    PubMed

    Sauer, Ursula

    2017-01-29

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.

  13. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    PubMed

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  14. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  15. Protein Innovations Advance Drug Treatments, Skin Care

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Dan Carter carefully layered the sheets of tracing paper on the light box. On each sheet were renderings of the atomic components of an essential human protein, one whose structure had long been a mystery. With each layer Carter laid down, a never-before-seen image became clearer. Carter joined NASA s Marshall Space Flight Center in 1985 and began exploring processes of protein crystal growth in space. By bouncing intense X-rays off the crystals, researchers can determine the electron densities around the thousands of atoms forming the protein molecules, unveiling their atomic structures. Cultivating crystals of sufficient quality on Earth was problematic; the microgravity conditions of space were far more accommodating. At the time, only a few hundred protein structures had been mapped, and the methods were time consuming and tedious. Carter hoped his work would help reveal the structure of human serum albumin, a major protein in the human circulatory system responsible for ferrying numerous small molecules in the blood. More was at stake than scientific curiosity. Albumin has a high affinity for most of the world s pharmaceuticals, Carter explains, and its interaction with drugs can change their safety and efficacy. When a medication enters the bloodstream a cancer chemotherapy drug, for example a majority of it can bind with albumin, leaving only a small percentage active for treatment. How a drug interacts with albumin can influence considerations like the necessary effective dosage, playing a significant role in the design and application of therapeutic measures. In spite of numerous difficulties, including having no access to microgravity following the 1986 Space Shuttle Challenger disaster, the image Carter had hoped to see was finally clarifying. In 1988, his lab had acquired specialized X-ray and detection equipment a tipping point. Carter and his colleagues began to piece together albumin s portrait, the formation of its electron densities coalescing on

  16. Degradation of wine industry wastewaters by photocatalytic advanced oxidation.

    PubMed

    Navarro, P; Sarasa, J; Sierra, D; Esteban, S; Ovelleiro, J L

    2005-01-01

    Wine industry wastewaters contain a high concentration of organic biodegradable compounds as well as a great amount of suspended solids. These waters are difficult to treat by conventional biological processes because they are seasonal and a great flow variation exists. Photocatalytic advanced oxidation is a promising technology for waters containing high amounts of organic matter. In this study we firstly investigated the application of H2O2 as oxidant combined with light (artificial or natural) in order to reduce the organic matter in samples from wine industry effluents. Secondly, we studied its combination with heterogeneous catalysts: titanium dioxide and clays containing iron minerals. The addition of photocatalysts to the system reduces the required H2O2 concentration. Although the H2O2/TiO2 system produces higher efficiencies, the H2O2/clays system requires a H2O2 dosage between three and six times lower.

  17. Comparison of different advanced oxidation processes for phenol degradation.

    PubMed

    Esplugas, Santiago; Giménez, Jaime; Contreras, Sandra; Pascual, Esther; Rodríguez, Miguel

    2002-02-01

    Advanced Oxidation Processes (O3, O3/H2O2, UV, UV/O3, UV/H2O2, O3/UV/H2O2, Fe2+ /H2O2 and photocatalysis) for degradation of phenol in aqueous solution have been studied in earlier works. In this paper, a comparison of these techniques is undertaken: pH influence, kinetic constants, stoichiometric coefficient and optimum oxidant/pollutant ratio. Of the tested processes, Fenton reagent was found to the fastest one for phenol degradation. However, lower costs were obtained with ozonation. In the ozone combinations, the best results were achieved with single ozonation. As for the UV processes, UV/H2O2 showed the highest degradation rate.

  18. Advances in generating functional diversity for directed protein evolution.

    PubMed

    Shivange, Amol V; Marienhagen, Jan; Mundhada, Hemanshu; Schenk, Alexander; Schwaneberg, Ulrich

    2009-02-01

    Despite advances in screening technologies, only a very small fraction of theoretical protein sequence can be sampled in directed evolution experiments. At the current state of random mutagenesis technologies mutation frequencies have often been adjusted to values that cause a limited number of amino acid changes (often one to four amino acid changes per protein). For harvesting the power of directed evolution algorithms it is therefore important that generated mutant libraries are rich in diversity and enriched in active population. Insufficient knowledge about protein traits, mutational robustness of protein folds and technological limitations in diversity generating methods are main challenges for managing the complexity of protein sequence space. This review covers computational and experimental advances for high quality mutant library generation that have been achieved in the past two years.

  19. Advanced oxidation processes in azo dye wastewater treatment.

    PubMed

    Papić, Sanja; Koprivanac, Natalija; Bozić, Ana Loncarić; Vujević, Dinko; Dragicević, Savka Kusar; Kusić, Hrvoje; Peternel, Igor

    2006-06-01

    The chemical degradation of synthetic azo dyes color index (C.I.) Acid Orange 7, C.I. Direct Orange 39, and C.I. Mordant Yellow 10 has been studied by the following advanced oxidation processes: Fenton, Fenton-like, ozonation, peroxone without or with addition of solid particles, zeolites HY, and NH4ZSM5. Spectrophotometric (UV/visible light spectrum) and total organic carbon measurements were used for determination of process efficiency and reaction kinetics. The degradation rates are evaluated by determining their rate constants. The different hydroxyl radical generation processes were comparatively studied, and the most efficient experimental conditions for the degradation of organic azo dyes solutions were determined.

  20. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    PubMed Central

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions, such as respiratory diseases and parasitic infection; however, some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions, such as reproduction, nutrition, metabolism, lactation, gut health, and neonatal physiology. As the characterization of the mechanisms by which OS may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins. PMID:26664975

  1. Brain protein deciphered at Advanced Light Source

    SciTech Connect

    2010-01-01

    This computer-generated model of a rat glutamate receptor is the first complete portrait of this important link in the nervous system. At the top of the Y-shaped protein, a pair of molecules splay outward like diverging prongs. The bottom section, which is embedded in a neuronal membrane, houses the ion channel. The resolution of this image is 3.6 angstroms per pixel, or just under four ten-billionths of a meter per image unit. http://newscenter.lbl.gov/feature-stories/2010/01/21/glutamate-receptor/

  2. Recent advances in recombinant protein production

    PubMed Central

    Kunert, Renate; Casanova, Emilio

    2013-01-01

    Designing appropriate expression vectors is one of the critical steps in the generation of stable cell lines for recombinant protein production. Conventional expression vectors are severely affected by the chromatin environment surrounding their integration site into the host genome, resulting in low expression levels and transgene silencing. In the past, a new generation of expression vectors and different strategies was developed to overcome the chromatin effects. Bacterial artificial chromosomes (BACs) are cloning vectors capable of accommodating up to 350 Kb. Thus, BACs can carry a whole eukaryotic locus with all the elements controlling the expression of a gene; therefore, BACs harbor their own chromatin environment. Expression vectors based on BACs containing open/permissive chromatin loci are not affected by the chromatin surrounding their integration site in the host cell genome. Consequently, BAC-based expression vectors containing the appropriate loci confer predictable and high levels of expression over time. These properties make BAC-based expression vectors a very attractive tool applied to the recombinant protein production field. PMID:23680894

  3. Protein-protein interactions as druggable targets: recent technological advances.

    PubMed

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-10-01

    Classical target-based drug discovery, where large chemical libraries are screened using inhibitory assays for a single target, has struggled to find ligands that inhibit protein-protein interactions (PPI). Nevertheless, in the past decade there have been successes that have demonstrated that PPI can be useful drug targets, and the field is now evolving fast. This review focuses on the new approaches and concepts that are being developed to tackle these challenging targets: the use of fragment based methods to explore the chemical space, stapled peptides to regulate intracellular PPI, alternatives to competitive inhibition and the use of antibodies to enable small molecule discovery for these targets.

  4. Targeting the Reversibly Oxidized Protein Tyrosine Phosphatase Superfamily

    PubMed Central

    Boivin, Benoit; Yang, Ming; Tonks, Nicholas K.

    2010-01-01

    Controlled production of reactive oxygen species leads to reversible oxidation of protein tyrosine phosphatases (PTPs) and has emerged as an important tier of regulation over phosphorylation-dependent signal transduction. We present a modified cysteinyl-labeling assay that detects reversible oxidation of members of each of the different PTP subclasses. Here, we describe the methods for enriching reversibly oxidized PTPs from complex protein extracts, illustrating the procedure in IMR90 fibroblasts. PMID:20807953

  5. Definition study for temperature control in advanced protein crystal growth

    NASA Astrophysics Data System (ADS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-09-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  6. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  7. Advances in metal-induced oxidative stress and human disease.

    PubMed

    Jomova, Klaudia; Valko, Marian

    2011-05-10

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  8. Effect of metal catalyzed oxidation in recombinant viral protein assemblies

    PubMed Central

    2014-01-01

    Background Protein assemblies, such as virus-like particles, have increasing importance as vaccines, delivery vehicles and nanomaterials. However, their use requires stable assemblies. An important cause of loss of stability in proteins is oxidation, which can occur during their production, purification and storage. Despite its importance, very few studies have investigated the effect of oxidation in protein assemblies and their structural units. In this work, we investigated the role of in vitro oxidation in the assembly and stability of rotavirus VP6, a polymorphic protein. Results The susceptibility to oxidation of VP6 assembled into nanotubes (VP6NT) and unassembled VP6 (VP6U) was determined and compared to bovine serum albumin (BSA) as control. VP6 was more resistant to oxidation than BSA, as determined by measuring protein degradation and carbonyl content. It was found that assembly protected VP6 from in vitro metal-catalyzed oxidation. Oxidation provoked protein aggregation and VP6NT fragmentation, as evidenced by dynamic light scattering and transmission electron microscopy. Oxidative damage of VP6 correlated with a decrease of its center of fluorescence spectral mass. The in vitro assembly efficiency of VP6U into VP6NT decreased as the oxidant concentration increased. Conclusions Oxidation caused carbonylation, quenching, and destruction of aromatic amino acids and aggregation of VP6 in its assembled and unassembled forms. Such modifications affected protein functionality, including its ability to assemble. That assembly protected VP6 from oxidation shows that exposure of susceptible amino acids to the solvent increases their damage, and therefore the protein surface area that is exposed to the solvent is determinant of its susceptibility to oxidation. The inability of oxidized VP6 to assemble into nanotubes highlights the importance of avoiding this modification during the production of proteins that self-assemble. This is the first time that the role of

  9. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  10. Advances in protein complex analysis using mass spectrometry

    PubMed Central

    Gingras, Anne-Claude; Aebersold, Ruedi; Raught, Brian

    2005-01-01

    Proteins often function as components of larger complexes to perform a specific function, and formation of these complexes may be regulated. For example, intracellular signalling events often require transient and/or regulated protein–protein interactions for propagation, and protein binding to a specific DNA sequence, RNA molecule or metabolite is often regulated to modulate a particular cellular function. Thus, characterizing protein complexes can offer important insights into protein function. This review describes recent important advances in mass spectrometry (MS)-based techniques for the analysis of protein complexes. Following brief descriptions of how proteins are identified using MS, and general protein complex purification approaches, we address two of the most important issues in these types of studies: specificity and background protein contaminants. Two basic strategies for increasing specificity and decreasing background are presented: whereas (1) tandem affinity purification (TAP) of tagged proteins of interest can dramatically improve the signal-to-noise ratio via the generation of cleaner samples, (2) stable isotopic labelling of proteins may be used to discriminate between contaminants and bona fide binding partners using quantitative MS techniques. Examples, as well as advantages and disadvantages of each approach, are presented. PMID:15611014

  11. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    PubMed

    Yao, Chunxiang; Behring, Jessica B; Shao, Di; Sverdlov, Aaron L; Whelan, Stephen A; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A; Seta, Francesca; Costello, Catherine E; Cohen, Richard A; Matsui, Reiko; Colucci, Wilson S; McComb, Mark E; Bachschmid, Markus M

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  12. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process.

    PubMed

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-10-31

    Boron-doped diamond anodes allow to directly produce OH* radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included.

  13. Advances and Challenges in Protein-Ligand Docking

    PubMed Central

    Huang, Sheng-You; Zou, Xiaoqin

    2010-01-01

    Molecular docking is a widely-used computational tool for the study of molecular recognition, which aims to predict the binding mode and binding affinity of a complex formed by two or more constituent molecules with known structures. An important type of molecular docking is protein-ligand docking because of its therapeutic applications in modern structure-based drug design. Here, we review the recent advances of protein flexibility, ligand sampling, and scoring functions—the three important aspects in protein-ligand docking. Challenges and possible future directions are discussed in the Conclusion. PMID:21152288

  14. Coupling Oxidative Signals to Protein Phosphorylation via Methionine Oxidation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms involved in sensing oxidative signaling molecules such as H2O2 in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of methionine (Met) to Met sulfoxide (MetSO) can couple oxidative signals to changes in protein phosphor...

  15. [Chemical approaches for trapping protein thiols and their oxidative modification].

    PubMed

    Huang, Chu-Sen; Zhu, Wei-Ping; Xu, Yu-Fang; Qian, Xu-Hong

    2012-03-01

    Redox signal transduction, especially the oxidative modification of proein thiols, correlates with many diseases and becomes an expanding research area. However, there was rare method for quick and specific detection of protein thiols and their oxidative modification in living cells. In this article, we review the current chemical strategies for the detection and quantification of protein thiols and related cysteine oxidation. We also look into the future of the development of fluorescent probes for protein thiols and their potential application in the research of reactive cysteine proteomes and early detection of redox-related diseases.

  16. The Role of Ultrasound on Advanced Oxidation Processes.

    PubMed

    Babu, Sundaram Ganesh; Ashokkumar, Muthupandian; Neppolian, Bernaurdshaw

    2016-10-01

    This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.

  17. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  18. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage.

    PubMed

    Lu, Naihao; Chen, Puqing; Yang, Qin; Peng, Yi-Yuan

    2011-06-01

    Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a polyphenol identified in tea, cocoa, and red wine, on hemoglobin-induced protein oxidative damage. It was found that (+)-catechin had the capacities to act as a free radical scavenger and reducing agent to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the presence of (+)-catechin surprisingly promoted hemoglobin-induced protein oxidation, which was probably due to the ability of this anti-oxidant to rapidly trigger the oxidative degradation of normal hemoglobin. In addition, hemoglobin-H2O2-induced protein carbonyl formation was significantly enhanced by (+)-catechin at lower concentrations, while it was efficiently inhibited when higher concentrations were used. These novel results showed that the dietary intake and therapeutic use of catechins might possess pro-oxidant activity through aggravating hemoglobin-related oxidative damage. The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of tea extract and wine (catechins) with cellular heme proteins.

  19. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  20. An advanced oxidation process using ionized gas for wastewater treatment.

    PubMed

    Lee, Eun Ju; Chung, Paul Gene; Kwak, Dong Heui; Kim, Lee Hyung; Kim, Min Jeong

    2010-01-01

    This study on removing non-degradable materials in wastewater focused primarily on advanced oxidation methods such as ozone, ozone/UV and ozone/H2O2. Wastewater treatment using an ionized gas from plasma has been actively progressing. The ionized gas involves reactive species such as O2+, O2- cluster, O radical and OH radical. Since the ionized gas method has such outstanding characteristics as relatively simple structures, non-calorification, non-toxicity and low electricity consumption, it evidently of interest as a new process. A series of experiments were conducted to demonstrate the feasibility of ionized gas as a useful element for the diminution of nondegradable organic matters. On the other hand, a large amount of organic matters were changed to hydrophilic and the compounds containing aromatic functional group gradually decreased. The results implied that the ionized gas has been able to degrade the non-biodegradable organic matters. Therefore, the oxidation process by using an ionized gas process could be considered as an effective alternative unit in water and wastewater treatment plants.

  1. Oxidative Stress in Aging: Advances in Proteomic Approaches

    PubMed Central

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E.

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  2. [Oxidative modification of rat blood proteins after destruction capsaicin-sensitive nerve and change of nitric oxide level].

    PubMed

    Tolochko, Z S; Spiridonov, V K

    2010-01-01

    Content of blood protein carbonyl derivates in rats are determined to assess oxidative modification of protein after destruction of capsaicin-sensitive nerve and change of nitric oxide (NO) level. Deafferentation of these nerves produces increase of the protein carbonyl derivates content. The increase of NO by L-arginine does not affect protein oxidative destruction produced by ablation of capsaicin-sensitive nerve. Selective inhibitor of neuronal synthase NO (n-NOS) 7-nitroindazole (7-NI) results in similar effect. L-NAME increased oxidative destruction of proteins. These results demonstrate that deafferentation of capsaicin-sensitive nerve induces oxidative destruction of proteins. NO has party to mediating oxidative modification of proteins.

  3. Advances in Polymer and Polymeric Nanostructures for Protein Conjugation

    PubMed Central

    González-Toro, Daniella C.; Thayumanavan, S.

    2013-01-01

    Linear polymers have been considered the best molecular structures for the formation of efficient protein conjugates due to their biological advantages, synthetic convenience and ease of functionalization. In recent years, much attention has been dedicated to develop synthetic strategies that produce the most control over protein conjugation utilizing linear polymers as scaffolds. As a result, different conjugate models, such as semitelechelic, homotelechelic, heterotelechelic and branched or star polymer conjugates, have been obtained that take advantage of these well-controlled synthetic strategies. Development of protein conjugates using nanostructures and the formation of said nanostructures from protein-polymer bioconjugates are other areas in the protein bioconjugation field. Although several polymer-protein technologies have been developed from these discoveries, few review articles have focused on the design and function of these polymers and nanostructures. This review will highlight some recent advances in protein-linear polymer technologies that employ protein covalent conjugation and successful protein-nanostructure bioconjugates (covalent conjugation as well) that have shown great potential for biological applications. PMID:24058205

  4. Detection and Measurement of Methionine Oxidation in Proteins.

    PubMed

    Sen, K Ilker; Hepler, Robert; Nanda, Hirsh

    2017-02-02

    Methionine oxidation is a prevalent modification found in proteins both in biological settings and in the manufacturing of biotherapeutic molecules. In cells, the oxidation of specific methionine sites can modulate protein function or promote interactions that trigger signaling pathways. In biotherapeutic development, the formation of oxidative species could be detrimental to the efficacy or safety of the drug product. Thus, methionine oxidation is a critical quality attribute that needs to be monitored throughout development. Here we describe a method using LC/MS/MS to identify site-specific methionine modifications in proteins. Antibodies are stressed with hydrogen peroxide, and the level of Met oxidation is compared to that of reference molecules. The protocols presented here are not specific to methionine and can be used more generally to identify other PTM risk sites in molecules after various types of treatments. © 2017 by John Wiley & Sons, Inc.

  5. Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model.

    PubMed

    Yanar, Karolin; Aydın, Seval; Cakatay, Ufuk; Mengi, Murat; Buyukpınarbaşılı, Nur; Atukeren, Pınar; Sitar, Mustafa E; Sönmez, Aslı; Uslu, Ezel

    2011-12-01

    It has been reported that d-galactose administration causes an increase in oxidative and osmotic stresses in several tissues of rodents. In this study, we established a brain ageing model by using d-galactose and investigated the concentrations of oxidative stress markers on the hippocampus, parietal and frontal lobes of male Sprague-Dawley rats. A mimetic ageing model was established by injecting d-galactose (60 mg/kg/day/i.p.) in the experimental group for 42 days. At the end of this period, we tested spatial memory using the Morris water maze test. To investigate the magnitude of oxidative damage in proteins, lipids and DNA, we studied the concentrations of various oxidative stress parameters in the hippocampus, parietal and frontal lobes of the brain. Glial and neuronal cell oxidative damage was observed in each of the three anatomic regions. It was found that protein carbonyl groups and advanced oxidation product concentrations in the d-galactose applied group were significantly high in each of the three brain lobes compared with the control group. Thiol concentration was found to be decreased in the parietal lobe. A concurrent increase in lipid hydroperoxides was also observed in this lobe. On the other hand, 8-hydroxy-2'-deoxyguanosine concentration was significantly increased in the hippocampal lobe of rats in the experimental group when compared with the controls. The results obtained from the mimetic ageing model rats showed that various anatomical regions of brain have different susceptibility to oxidative damage of proteins, lipids and DNA.

  6. Lipid and protein oxidation of chicken breast rolls as affected by dietary oxidation levels and packaging.

    PubMed

    Xiao, Shan; Zhang, Wan Gang; Lee, Eun Joo; Ma, Chang Wei; Ahn, Dong U

    2011-05-01

    The objective of this study was to determine the effects of dietary treatment and packaging on the oxidative stability of breast rolls. A total of 120 4-wk-old broiler chickens were randomly assigned to control, oxidized diet (5% oxidized oil, PV = 100), or antioxidants-added diet (500 IU vitamin E + 200 ppm BHA) and fed for 2 wk. Breast muscles were separated from the carcasses and breast rolls were prepared. The rolls were cooked in a smoke house (85 °C) to an internal temperature of 74 °C, cooled, sliced to 2-cm thick pieces, individually packaged in oxygen permeable bags or vacuum-packaged in oxygen impermeable bags, and stored in a 4 °C cold room for 7 d. Lipid, protein oxidation and volatiles were determined at 1, 4, and 7 d of storage. Dietary supplementation of antioxidants significantly reduced lipid oxidation (TBARS) and protein oxidation (carbonyls) in breast rolls, and the effect of dietary antioxidants on lipid oxidation was more pronounced than protein oxidation. Chicken breast rolls from antioxidants treatment group produced significantly lower amounts of hexanal and pentanal than those from control and oxidized oil treatments (P < 0.05). However, dietary oxidized oil did not increase lipid and protein oxidation in breast rolls. Vacuum-packaging significantly delayed the onset of lipid oxidation and protein oxidation in chicken rolls during 7-day refrigerated storage (P < 0.05). Therefore, it is suggested that appropriate use of dietary supplementation of antioxidants in combination with packaging could minimize lipid oxidation in chicken breast rolls.

  7. Advanced Fluorescence Protein-Based Synapse-Detectors

    PubMed Central

    Lee, Hojin; Oh, Won Chan; Seong, Jihye; Kim, Jinhyun

    2016-01-01

    The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience. PMID:27445785

  8. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  9. Quantifying Reversible Oxidation of Protein Thiols in Photosynthetic Organisms

    NASA Astrophysics Data System (ADS)

    Slade, William O.; Werth, Emily G.; McConnell, Evan W.; Alvarez, Sophie; Hicks, Leslie M.

    2015-04-01

    Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches—suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.

  10. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    PubMed

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater.

  11. Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation.

    PubMed

    Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    Water contaminated with dissolved organic matter is an important issue to resolve for all-purpose uses. The catalytic behavior of iron-based nanocatalysts was investigated for the treatment of contaminated water in the advanced chemical oxidation process. In this study, typical organic contaminants, such as ethylene glycol and phenol, were chosen to simulate common contaminants. It was shown that the two substances are efficiently destroyed by the Fenton-like reaction using iron(3) oxide-based nanocatalysts in the presence of hydrogen peroxide without the need for UV or visible radiation sources at room temperature. A strong effect of nanocatalyst concentration on reaction rate was shown. The kinetic reaction was found and the reaction rate coefficient k was calculated.

  12. Oxidative modification of blood serum proteins in multiple sclerosis after interferon or mitoxantrone treatment.

    PubMed

    Sadowska-Bartosz, Izabela; Adamczyk-Sowa, Monika; Gajewska, Agnieszka; Bartosz, Grzegorz

    2014-01-15

    This study was aimed at (i) comparison of the usefulness of serum protein oxidation parameters for assessment of oxidative stress (OS) in multiple sclerosis (MS), and (ii) comparison of OS in MS patients subject to various therapies. Elevated glycophore level was noted in relapsing-remitting (RRMS) patients without treatment and patients treated with interferons β1a and β1b (10.33±3.27, 8.02±2.22 and 8.56±2.45 vs control 5.27±0.73 fluorescence units (FU)/mg protein). Advanced oxidation protein products (295±135 vs 83±65nmol/mg protein), carbonyl groups (3.68±1.44nmol/mg protein vs 2.03±0.23nmol/mg protein), kynurenine (7.71±0.1.67 vs 5.5±0.63 FU/mg protein) and N'-formylkynurenine (7.69±0.7 vs 4.97±0.59 FU/mg protein) levels were increased, while thioredoxin level was decreased in RRMS patients without treatment (5.03±2.18 vs 10.83±2.75ng/ml) with respect to control. The level of OS was higher in untreated RRMS patients and in SPMS patients treated with mitoxantrone than in patients treated with interferon.

  13. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.

    PubMed

    Wang, Guifang; Zhang, Ze-Ting; Jiang, Bin; Zhang, Xu; Li, Conggang; Liu, Maili

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography are the two main methods for protein three-dimensional structure determination at atomic resolution. According to the protein structures deposited in the Protein Data Bank, X-ray crystallography has become the dominant method for structure determination, particularly for large proteins and complexes. However, with the developments of isotope labeling, increase of magnetic field strength, common use of a cryogenic probe, and ingenious pulse sequence design, the applications of NMR spectroscopy have expanded in biological research, especially in characterizing protein dynamics, sparsely populated transient structures, weak protein interactions, and proteins in living cells at atomic resolution, which is difficult if not impossible by other biophysical methods. Although great advances have been made in protein NMR spectroscopy, its applications in protein therapeutics, which represents the fastest growing segment of the pharmaceutical industry, are still limited. Here we review the recent advances in the use of NMR spectroscopy in studies of large proteins or complexes, posttranslation modifications, weak interactions, and aggregation, and in-cell NMR spectroscopy. The potential applications of NMR spectroscopy in protein therapeutic assays are discussed.

  14. Protein oxidation and degradation caused by particulate matter

    PubMed Central

    Lai, Ching-Huang; Lee, Chun-Nin; Bai, Kuan-Jen; Yang, You-Lan; Chuang, Kai-Jen; Wu, Sheng-Ming; Chuang, Hsiao-Chi

    2016-01-01

    Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM. PMID:27644844

  15. Protein oxidation and degradation caused by particulate matter

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Huang; Lee, Chun-Nin; Bai, Kuan-Jen; Yang, You-Lan; Chuang, Kai-Jen; Wu, Sheng-Ming; Chuang, Hsiao-Chi

    2016-09-01

    Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM.

  16. Modeling the oxidation of methionine residues by peroxides in proteins.

    PubMed

    Chennamsetty, Naresh; Quan, Yong; Nashine, Vishal; Sadineni, Vikram; Lyngberg, Olav; Krystek, Stanley

    2015-04-01

    We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.

  17. Therapeutic advances in rheumatology with the use of recombinant proteins.

    PubMed

    Rothe, Achim; Power, Barbara E; Hudson, Peter J

    2008-11-01

    Antibody engineering and protein design have led to the creation of a new era of targeted anti-inflammatory therapies in rheumatology. Recombinant DNA technologies have enabled the selection and humanization of specific antibody fragments in order to develop therapeutic reagents of any specificity that can be 'armed' to deliver effective anti-inflammatory 'payloads'. Antibodies and antibody-like proteins provide the opportunity to block key soluble mediators of inflammation in their milieu, or alternatively to block intracellular inflammation-triggering pathways by binding to an upstream cell-surface receptor. These designer proteins can be tuned for desired pharmacokinetic and pharmacodynamic effects, and represent tools for specific therapeutic intervention by delivering precisely the required immunosuppressive effect. The extent of desired and undesired effects of a particular biologic therapy, however, can be broader than initially predicted and require careful evaluation during clinical trials. This Review highlights advances in recombinant technologies for the development of novel biologic therapies in rheumatology.

  18. OH radical monitoring technologies for AOP advanced oxidation process.

    PubMed

    Han, S K; Nam, S N; Kang, J W

    2002-01-01

    This study has been conducted to investigate OH radical monitoring technologies for the advanced oxidation process (AOP). OH radicals can be measured directly or indirectly through electron paramagnetic resonance (EPR), hydrogen peroxide method and probe compounds such as pCBA. Among the various AOPs, we focused on the application of EPR technique for *OH monitoring in the ultrasonic irradiation process. EPR method is a valuable tool and has a high sensitivity for radical measuring. Our study was performed with 20 kHz ultrasonic processor in 20 ml DMPO (1 mM) solution. The amount of DMPO-OH adduct with hyperfine constants aN = aH = 1.49 mT and g-value 2.0054, coincided with those of the DMPO-OH adduct depends on the reaction time of the sonication. Also, we have found that at least, *OH was accumulated by 2 x 10(-10) M for 10 min sonication, when 60% of the initial amount was destroyed through *OH monitoring using a probe compound. With these results, we could assume that recombination of *OH to form hydrogen peroxide occurs at the interfacial region.

  19. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  20. Inactivation of adenovirus using low-dose UV/H2O2 advanced oxidation.

    PubMed

    Bounty, Sarah; Rodriguez, Roberto A; Linden, Karl G

    2012-12-01

    Adenovirus has consistently been observed to be the most resistant known pathogen to disinfection by ultraviolet light. This has had an impact on regulations set by the United States Environmental Protection Agency regarding the use of UV disinfection for virus inactivation in groundwater and surface water. In this study, enhancement of UV inactivation of adenovirus was evaluated when hydrogen peroxide was added to create an advanced oxidation process (AOP). While 4 log reduction of adenovirus was determined to require a UV dose (UV fluence) of about 200 mJ/cm(2) from a low pressure (LP) UV source (emitting at 253.7 nm), addition of 10 mg/L H(2)O(2) achieved 4 log inactivation at a dose of 120 mJ/cm(2). DNA damage was assessed using a novel nested PCR approach, and similar levels of DNA damage between the two different treatments were noted, suggesting the AOP enhancement in inactivation was not due to additional DNA damage. Hydroxyl radicals produced in the advanced oxidation process are likely able to damage parts of the virus not targeted by LPUV, such as attachment proteins, enhancing the UV-induced inactivation. The AOP-enhanced inactivation potential was modeled in three natural waters. This research sheds light on the inactivation mechanisms of viruses with ultraviolet light and in the presence of hydroxyl radicals and provides a practical means to enhance inactivation of this UV-resistant virus.

  1. Evaluation of milk powder quality by protein oxidative modifications.

    PubMed

    Scheidegger, Dana; Radici, Paola M; Vergara-Roig, Víctor A; Bosio, Noelia S; Pesce, Silvia F; Pecora, Rolando P; Romano, José C P; Kivatinitz, Silvia C

    2013-06-01

    The objective of the present research was to evaluate commercially available milk powders according to their protein oxidative modifications and antioxidant capacity, and to evaluate if these characteristics are related to physical quality parameters such as dispersibility or stability during storage. Fifteen commercially processed spray-dried milk powders were evaluated: 6 whole milk powders (WMP), 4 skim milk powders (SMP), and 5 infant formula powders (IFP). Protein oxidative status was measured as protein carbonyl (PC) content, dityrosine content, and extent of protein polymerization. The level of PC was slightly lower in SMP than in WMP, whereas IFP had more than twice as much PC as WMP (2.8 ± 0.4, 2.1 ± 0.2, and 6.5 ± 1.3 nmol/mg of protein for WMP, SMP, and IFP, respectively). No differences were detected in dityrosine accumulation. Although all the possible pairs of parameters were tested for correlations, we found that 4 parameters were linked: PC, whey content, protein aggregate level, and dispersibility. After 9 mo of storage at -20°C or room temperature, all milk samples were analyzed to evaluate changes in protein oxidative status (PC, dityrosine, and protein integrity) and related parameters. Compared with the initial condition, PC increased in all tested samples after 9 mo of storage at -20°C or at room temperature. Stored milk powders had increased PC and decreased dispersibility compared with prestorage levels. Our results highlight the importance of protein oxidative status in milk powder and its relationship to other related quality parameters, such as protein integrity and dispersibility. Our findings suggest that the understanding of such relationships could help in developing quality differentiation for different types of milk powders in the product market.

  2. The effectiveness of a lipid peroxide in oxidizing protein and non-protein thiols

    PubMed Central

    Little, C.; O'Brien, P. J.

    1968-01-01

    1. Thiol oxidation by a lipid peroxide or hydrogen peroxide was as efficient in denatured non-haem proteins as in small thiols. Both peroxides were relatively ineffective in oxidizing haemoprotein thiols, especially at low pH. Increased amounts of haematin decreased greatly the efficiency of GSH oxidation by peroxides especially at low pH. 2. Other than the haematin ring, the thiol group was found to be probably the group in proteins most sensitive to modification by peroxides. 3. At low concentrations, the fatty acid moiety of a lipid peroxide appeared to impede thiol oxidation in proteins, probably by hydrophobic bonding to the protein, rather than to stimulate thiol oxidation by denaturing the protein and thereby increasing the exposure and reactivity of the thiol group. 4. The relative rates of thiol oxidation by peroxides in the different thiols were: haemoprotein thiols>small thiols>other protein thiols. In all cases, thiol oxidation was much more rapid by the lipid peroxide than by hydrogen peroxide. PMID:5637351

  3. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices.

  4. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  5. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  6. Oxidative stress, protein modification and Alzheimer disease.

    PubMed

    Tramutola, A; Lanzillotta, C; Perluigi, M; Butterfield, D Allan

    2016-06-15

    Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD.

  7. DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells.

    PubMed

    Zhang, Yinghao; Chang, Fang-Mei; Huang, Jianjun; Junco, Jacob J; Maffi, Shivani K; Pridgen, Hannah I; Catano, Gabriel; Dang, Hong; Ding, Xiang; Yang, Fuquan; Kim, Dae Joon; Slaga, Thomas J; He, Rongqiao; Wei, Sung-Jen

    2014-02-01

    Timely removal of oxidatively damaged proteins is critical for cells exposed to oxidative stresses; however, cellular mechanism for clearing oxidized proteins is not clear. Our study reveals a novel type of protein modification that may play a role in targeting oxidized proteins and remove them. In this process, DSS1 (deleted in split hand/split foot 1), an evolutionally conserved small protein, is conjugated to proteins induced by oxidative stresses in vitro and in vivo, implying oxidized proteins are DSS1 clients. A subsequent ubiquitination targeting DSS1-protein adducts has been observed, suggesting the client proteins are degraded through the ubiquitin-proteasome pathway. The DSS1 attachment to its clients is evidenced to be an enzymatic process modulated by an unidentified ATPase. We name this novel protein modification as DSSylation, in which DSS1 plays as a modifier, whose attachment may render target proteins a signature leading to their subsequent ubiquitination, thereby recruits proteasome to degrade them.

  8. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  9. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics.

    PubMed

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V Ramgopal; Garnier, Gil

    2017-03-02

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  10. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  11. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    PubMed Central

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-01-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept. PMID:28252113

  12. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process.

    PubMed

    Sun, Jian-Hui; Sun, Sheng-Peng; Fan, Mao-Hong; Guo, Hui-Qin; Lee, Yi-Fan; Sun, Rui-Xia

    2008-05-01

    The degradation of p-nitroaniline (PNA) in water by solar photo-Fenton advanced oxidation process was investigated in this study. The effects of different reaction parameters including pH value of solutions, dosages of hydrogen peroxide and ferrous ion, initial PNA concentration and temperature on the degradation of PNA have been studied. The optimum conditions for the degradation of PNA in water were considered to be: the pH value at 3.0, 10 mmol L(-1) H(2)O(2), 0.05 mmol L(-1) Fe(2+), 0.072-0.217 mmol L(-1) PNA and temperature at 20 degrees C. Under the optimum conditions, the degradation efficiencies of PNA were more than 98% within 30 min reaction. The degradation characteristic of PNA showed that the conjugated pi systems of the aromatic ring in PNA molecules were effectively destructed. The experimental results indicated solar photo-Fenton process has more advantages compared with classical Fenton process, such as higher oxidation power, wider working pH range, lower ferrous ion usage, etc. Furthermore, the present study showed the potential use of solar photo-Fenton process for PNA containing wastewater treatment.

  13. Differential Measurements of Oxidatively Modified Proteins in Colorectal Adenopolyps

    PubMed Central

    Mehrabi, Sharifeh; Wallace, Lashanale; Cohen, Shakeria; Yao, Xuebiao; Aikhionbare, Felix O.

    2015-01-01

    Introduction Adenopolyps patients have a three-fold higher risk of colon cancer over the general population, which increases to six-fold if the polyps are multiple and with lower survival among African American population. Currently, 6% of CRC can be ascribed to mutations in particular genes. Moreover, the optimal management of patients with colorectal adenopolyps depends on the accuracy of appropriate staging strategies because patients with similar colorectal adenocarcinoma architecture display heterogeneity in the course and outcome of the disease. Oxidative stress, due to an imbalance between reactive oxygen species (ROS) and antioxidant capacities as well as a disruption of redox signaling, causes a wide range of damage to DNA, proteins, and lipids which promote tumor formation. Objective/Method This study applied spectrophotometric, dinitrophenylhydrazone (DNPH) assay, two-dimensional gel electrophoresis, and western blot analyses to assess the levels of oxidatively modified proteins in 41 pairs of primary colorectal tissues including normal/surrounding, adenopolyps (tubular, tubulovillous, villous, polypvillous) and carcinoma. Analysis of variance (ANOVA) and Student’s t-tests were utilized for the resulting data set. Results Our data showed that the levels of reactive protein carbonyl groups significantly increased as colorectal adenopolyps progresses to malignancy. No significant differences were found in the levels of carbonyl proteins between gender samples analyzed. For African American patients, there were, relative to Caucasians, 10% higher levels of reactive carbonyls in proteins of tubulovillous tissue samples (P < 0.05) and over 36% higher in levels in adenocarcinomas (P < 0.05). In normal tissues and tubular, there were no significant differences between the two groups in levels of protein carbonyls. Differences in the levels of protein carbonyl expression within individual patient samples with different number of tumor cells were notably

  14. Oxidation of kinetically trapped thiols by protein disulfide isomerase.

    PubMed

    Walker, K W; Gilbert, H F

    1995-10-17

    The formation of a stabilized structure during oxidative protein folding can severely retard disulfide formation if the structure must be disrupted to gain access to buried cysteines. These kinetic traps can slow protein folding and disulfide bond formation to the extent that unassisted folding is too slow to be kinetically competent in the cell. Protein disulfide isomerase (PDI) facilitates the oxidation of a kinetically trapped state of RTEM-1 beta-lactamase in which two cysteines that form the single disulfide bond in the native protein are buried and approximately 500-fold less reactive than exposed cysteines. Under second-order conditions, PDI-dependent oxidation of reduced, folded beta-lactamase is 500-fold faster than GSSG-dependent oxidation. The rate difference observed between PDI and GSSG can be accounted for by the 520-fold higher kinetic reactivity of PDI as an oxidant. Noncovalent interactions between PDI (35 microM) and beta-lactamase increase the reactivity or unfolding of beta-lactamase in the steady-state by less than 3-fold. At high concentrations of PDI or alkylating agents, the reaction of beta-lactamase cysteines approaches a constant rate, limited by the spontaneous unfolding of the protein (kunfold = 0.024 +/- 0.005 min-1). PDI does not substantially increase the rate of beta-lactamase unfolding; however, once beta-lactamase spontaneously unfolds, PDI at concentrations greater than 44 +/- 4 microM, oxidizes the unfolded substrate before it can refold (kfold = 1.5 +/- 0.2 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. IRON-PEROXYMONOSULFATE: A NOVEL SULFATE RADICAL BASED ADVANCED OXIDATION TECHNOLOGY FOR DEGRADATION OF PCBS

    EPA Science Inventory

    This study investigates the degradation of recalcitrant polychlorinated biphenyl (PCBs) using sulfate radical-based advanced oxidation technologies. Sulfate radicals are generated through coupling of peroxymonosulfate (PMS) with iron (Fe(II), Fe(III)). Sulfate radicals have very ...

  16. Demonstrating Advanced Oxidation Coupled with Biodegradation for Removal of Carbamazepine (WERF Report INFR6SG09)

    EPA Science Inventory

    Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...

  17. Multifunctional Oxide Films for Advanced Multifunction RF Systems

    DTIC Science & Technology

    2007-09-14

    layers . Methods for the dielectric characterization of the epitaxial oxide films have been evaluated and applied in collaboration with Dr. Lanagan (Penn...quality MgO epitaxial layers that will be used for the integration of tunable oxides on SiC and IIl-nitride substrates or templates. A study of the impact...likely cause for increased dielectric losses. Control of layer stoichiometry: Oxides exhibit high densities of vacancy-type defects. This is known to lead

  18. Human carotid atherosclerotic plaque protein(s) change HDL protein(s) composition and impair HDL anti-oxidant activity.

    PubMed

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Volkova, Nina; Vaya, Jacob

    2016-01-01

    High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.

  19. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  20. Recent advances in covalent, site-specific protein immobilization

    PubMed Central

    Meldal, Morten; Schoffelen, Sanne

    2016-01-01

    The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches based on bioorthogonal reactions, like the azide–alkyne cycloaddition, have proven to be powerful tools. The lack of comparative studies and quantitative analysis of these immobilization methods hampers the selection process of the optimal strategy for a given application. However, besides immobilization efficiency, the freedom in selecting the site of conjugation and the size of the conjugation tag and the researcher’s expertise regarding molecular biology and/or chemical techniques will be determining factors in this regard. PMID:27785356

  1. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source

    PubMed Central

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J.; Chance, Mark R.; Ralston, Corie

    2014-01-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale. PMID:24971962

  2. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    SciTech Connect

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  3. Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

    SciTech Connect

    Daly, Michael J.; Gaidamakova, E.; Matrosova, V.; Vasilenko, A.; Zhai, M.; leapman, Richard D.; Lai, Barry; Ravel, Bruce; Li, Shu-Mei W.; Kemner, Kenneth M.; Fredrickson, Jim K.

    2007-04-02

    In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of manganese-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications which introduce carbonyl groups. Conditions which inhibited Mn-accumulation or Mn redox-cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence (XRF) microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR resistant and sensitive bacteria, our findings support that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

  4. Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties.

    PubMed

    Utrera, Mariana; Morcuende, David; Estévez, Mario

    2014-03-01

    The effect of three frozen storage temperatures (-8, -18 and -80 °C) on protein oxidation in beef patties was studied through the analysis of novel oxidation markers. Additionally, the connection between lipid and protein oxidation and the impact of the latter on particular quality traits (water holding capacity, color and texture) of subsequently processed beef patties (cooking/cold-stored) were investigated. Protein oxidation was measured as the loss of tryptophan fluorescence and formation of diverse lysine oxidation products (α-aminoadipic semialdehyde, α-aminoadipic acid and Schiff bases). Lipid oxidation was assessed by levels of thiobarbituric acid reactive substances and hexanal. A significant effect of storage temperature on protein oxidation was detected. Frozen storage increased the susceptibility of meat proteins to undergo further oxidation during processing. Timely interactions were found between lipid and protein oxidation. Plausible mechanisms by which oxidative damage to proteins may have an impact in particular quality traits are thoroughly discussed.

  5. Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): α-dicarbonyls, radicals, oxidative stress and antioxidants.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2011-10-01

    Considerable attention has been paid to the toxicity of advanced glycation end products (AGEs), including relation to various illnesses. AGEs, generated nonenzymatically from carbohydrates and proteins, comprises large numbers of simple and more complicated compounds. Many reports deal with a role for receptors (RAGE) and cell signaling, including illnesses and aging. Reactive oxygen species appear to participate in signaling. RAGE include angiotensin II type 1 receptors. Many signaling pathways are involved, such as kinases, p38, p21, TGF-β, NF-κβ, TNF-α, JNK and STAT. A recent review puts focus on α-dicarbonyl metabolites, formed by carbohydrate oxidation, and imine derivatives from protein condensation, as a source via electron transfer (ET) of ROS and oxidative stress (OS). The toxic species have been related to illnesses and aging. Antioxidants alleviate the adverse effects.

  6. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine.

    PubMed

    Solivio, Morwena J; Nemera, Dessalegn B; Sallans, Larry; Merino, Edward J

    2012-02-20

    Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein.

  7. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  8. Oxidative modification of proteins: an emerging mechanism of cell signaling.

    PubMed

    Wall, Stephanie B; Oh, Joo-Yeun; Diers, Anne R; Landar, Aimee

    2012-01-01

    There are a wide variety of reactive species which can affect cell function, including reactive oxygen, nitrogen, and lipid species. Some are formed endogenously through enzymatic or non-enzymatic pathways, and others are introduced through diet or environmental exposure. Many of these reactive species can interact with biomolecules and can result in oxidative post-translational modification of proteins. It is well documented that some oxidative modifications cause macromolecular damage and cell death. However, a growing body of evidence suggests that certain classes of reactive species initiate cell signaling by reacting with specific side chains of peptide residues without causing cell death. This process is generally termed "redox signaling," and its role in physiological and pathological processes is a subject of active investigation. This review will give an overview of oxidative protein modification as a mechanism of redox signaling, including types of reactive species and how they modify proteins, examples of modified proteins, and a discussion about the current concepts in this area.

  9. Prospects and advancements in C-reactive protein detection

    PubMed Central

    Chandra, Pranjal; Suman, Pankaj; Airon, Himangi; Mukherjee, Monalisa; Kumar, Prabhanshu

    2014-01-01

    C-reactive protein (CRP) is one of the earliest proteins that appear in the blood circulation in most systemic inflammatory conditions and this is the reason for its significance, even after identification of many organ specific inflammatory markers which appear relatively late during the course of disease. Earlier methods of CRP detection were based on the classical methods of antigen-antibody interaction through precipitation and agglutination reactions. Later on, CRP based enzymatic assays came into the picture which were further modified by integration of an antigen-antibody detection system with surface plasma spectroscopy. Then came the time for the development of electrochemical biosensors where nanomaterials were used to make a highly sensitive and portable detection system based on silicon nanowire, metal-oxide-semiconductor field-effect transistor/bipolar junction transistor, ZnS nanoparticle, aptamer, field emission transmitter, vertical flow immunoassay etc. This editorial attempts to summarize developments in the field of CRP detection, with a special emphasis on biosensor technology. This would help in translating the latest development in CRP detection in the clinical diagnosis of inflammatory conditions at an early onset of the diseases. PMID:25237625

  10. Prospects and advancements in C-reactive protein detection.

    PubMed

    Chandra, Pranjal; Suman, Pankaj; Airon, Himangi; Mukherjee, Monalisa; Kumar, Prabhanshu

    2014-03-26

    C-reactive protein (CRP) is one of the earliest proteins that appear in the blood circulation in most systemic inflammatory conditions and this is the reason for its significance, even after identification of many organ specific inflammatory markers which appear relatively late during the course of disease. Earlier methods of CRP detection were based on the classical methods of antigen-antibody interaction through precipitation and agglutination reactions. Later on, CRP based enzymatic assays came into the picture which were further modified by integration of an antigen-antibody detection system with surface plasma spectroscopy. Then came the time for the development of electrochemical biosensors where nanomaterials were used to make a highly sensitive and portable detection system based on silicon nanowire, metal-oxide-semiconductor field-effect transistor/bipolar junction transistor, ZnS nanoparticle, aptamer, field emission transmitter, vertical flow immunoassay etc. This editorial attempts to summarize developments in the field of CRP detection, with a special emphasis on biosensor technology. This would help in translating the latest development in CRP detection in the clinical diagnosis of inflammatory conditions at an early onset of the diseases.

  11. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    PubMed

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  12. Redox Proteomics Identification of Oxidatively Modified Myocardial Proteins in Human Heart Failure: Implications for Protein Function

    PubMed Central

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF. PMID:22606238

  13. Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties.

    PubMed

    Rysman, Tine; Van Hecke, Thomas; Van Poucke, Christof; De Smet, Stefaan; Van Royen, Geert

    2016-10-15

    The effect of protein oxidation on proteolysis during meat digestion was investigated following storage and subsequent in vitro digestion of beef and pork patties. Protein oxidation was evaluated as thiol oxidation, total carbonylation, and specific carbonylation (α-amino adipic and γ-glutamic semialdehyde). Furthermore, 4-hydroxyphenylalanine, a hydroxylation product of phenylalanine, was identified and quantified as a new protein oxidation marker. After 7days of chilled illuminated storage (4°C), significant oxidative modifications were quantified and the oxidative degradation was continued during in vitro digestion. The observed effects were more abundant in beef patties. Protein oxidation before digestion resulted in impaired proteolysis during digestion.

  14. Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging.

    PubMed

    Safciuc, Florentina; Constantin, Alina; Manea, Adrian; Nicolae, Manuela; Popov, Doina; Raicu, Monica; Alexandru, Dorin; Constantinescu, Elena

    2007-11-01

    Biological aging is associated with an increased incidence of cerebrovascular disease. Recent findings indicate that oxidative stress promoting age-related changes of cerebral circulation are involved in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease. The aim of this study was to evaluate the contribution of cerebral microvessels to the oxidative stress during brain aging, by: (i) assessment of precursors for advanced glycation end products (AGE) formation, (ii) activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione disulfide reductase (GR), and (iii) the activities of metalloproteinases (MMPs), MMP-2 and MMP-9, involved in synaptogenesis and memory consolidation. The experiments were performed on two groups of male Wistar rats: 15 young (3-6 months old) and 15 aged (18-24 months old) animals. The cerebral microvessels were isolated by mechanical homogenization, the concentration of protein carbonyls and the activity of antioxidant enzymes were evaluated by spectrophotometry, and gelatin SDS-PAGE zymography was employed to evaluate MMP-2 and MMP-9 activities. The results showed that, by comparison with young rats, aged brain microvessels contain: (i) approximately 106 % increase of protein carbonyls production; (ii) approximately 68% higher GPx activity, unmodified activities of SOD and GR; (iii) approximately 30% diminishment in MMP-2 activity, and the specific occurrence of MMP-9 enzyme. The data suggest that the age-related changes of microvessels could increase the propensity for cerebral diseases and might represent, at least in part, a prerequisite for the deterioration of mental and physical status in the elderly.

  15. Advanced oxide dispersion strengthened sheet alloys for improved combustor durability

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.

    1981-01-01

    Burner design modifications that will take advantage of the improved creep and cyclic oxidation resistance of oxide dispersion strengthened (ODS) alloys while accommodating the reduced fatigue properties of these materials were evaluated based on preliminary analysis and life predictions, on construction and repair feasibility, and on maintenance and direct operating costs. Two designs - the film cooled, segmented louver and the transpiration cooled, segmented twin Wall - were selected for low cycle fatigue (LCF) component testing. Detailed thermal and structural analysis of these designs established the strain range and temprature at critical locations resulting in predicted lives of 10,000 cycles for MA 956 alloy. The ODs alloys, MA 956 and HDA 8077, demonstrated a 167 C (300 F) temperature advantage over Hastelloy X alloy in creep strength and oxidation resistance. The MA 956 alloy was selected for mechanical property and component test evaluations. The MA 956 alloy was superior to Hastelloy X in LCF component testing of the film cooled, segmented louver design.

  16. An Improved Fast Photochemical Oxidation of Proteins (FPOP) Platform for Protein Therapeutics

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Rempel, Don L.; Zhang, Hao; Gross, Michael L.

    2015-03-01

    Unlike small-molecule drugs, the size and dynamics of protein therapeutics challenge existing methods for assessing their high order structures (HOS). To extend fast photochemical oxidation of proteins (FPOP) to protein therapeutics, we modified its platform by introducing a mixing step prior to laser irradiation to minimize unwanted H2O2-induced oxidation. This improvement plus standardizing each step yield better reproducibility as determined by a fitting process whereby we used a non-FPOP spectrum as a template to report the unmodified level. We also tested different buffer systems for this modified FPOP platform with cytochrome c. The outcome is a standard oxidation profile that can be compared between different laboratories and regulatory agencies that wish to adopt FPOP for quality control purposes.

  17. An improved fast photochemical oxidation of proteins (FPOP) platform for protein therapeutics.

    PubMed

    Zhang, Ying; Rempel, Don L; Zhang, Hao; Gross, Michael L

    2015-03-01

    Unlike small-molecule drugs, the size and dynamics of protein therapeutics challenge existing methods for assessing their high order structures (HOS). To extend fast photochemical oxidation of proteins (FPOP) to protein therapeutics, we modified its platform by introducing a mixing step prior to laser irradiation to minimize unwanted H(2)O(2)-induced oxidation. This improvement plus standardizing each step yield better reproducibility as determined by a fitting process whereby we used a non-FPOP spectrum as a template to report the unmodified level. We also tested different buffer systems for this modified FPOP platform with cytochrome c. The outcome is a standard oxidation profile that can be compared between different laboratories and regulatory agencies that wish to adopt FPOP for quality control purposes.

  18. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform

    PubMed Central

    Zhang, Bojie; Rempel, Don; Gross, Michael L.

    2015-01-01

    Protein footprinting combined with mass spectrometry provides a method to study protein structures and interactions. To improve further current protein footprinting methods, we adapted a fast photochemical oxidation of proteins (FPOP) platform to utilize carbenes as the footprinting reagent. A Nd-YAG laser provides 355 nm laser for carbene generation in situ from photoleucine as the carbene precursor in a flow system with calmodulin as the test protein. Reversed-phase liquid chromatography coupled with mass spectrometry is appropriate to analyze the modifications produced in this footprinting. By comparing the modification extent of apo and holo calmodulin on the peptide level, we can resolve different structural domains of the protein. Carbene footprinting in a flow system is a promising strategy to investigate protein structures. PMID:26679355

  19. Thermochemical Compatibility and Oxidation Resistance of Advanced LWR Fuel Cladding

    SciTech Connect

    Besmann, T. M.; Yamamoto, Y.; Unocic, K. A.

    2016-06-21

    We assessed the thermochemical compatibility of potential replacement cladding materials for zirconium alloys in light water reactors. Considered were FeCrAl steel (similar to Kanthal APMT), Nb-1%Zr (similar to PWC-11), and a hybrid SiC-composite with a metallic barrier layer. The niobium alloy was also seen as requiring an oxidation protective layer, and a diffusion silicide was investigated. Metallic barrier layers for the SiC-composite reviewed included a FeCrAl alloy, Nb-1%Zr, and chromium. Thermochemical calculations were performed to determine oxidation behavior of the materials in steam, and for hybrid SiC-composites possible interactions between the metallic layer and SiC. Additionally, experimental exposures of SiC-alloy reaction couples at 673K, 1073K, and 1273K for 168 h in an inert atmosphere were made and microanalysis performed. Whereas all materials were determined to oxidize under higher oxygen partial pressures in the steam environment, these varied by material with expected protective oxides forming. Finally, the computed and experimental results indicate the formation of liquid phase eutectic in the FeCrAl-SiC system at the higher temperatures.

  20. Thermochemical Compatibility and Oxidation Resistance of Advanced LWR Fuel Cladding

    DOE PAGES

    Besmann, T. M.; Yamamoto, Y.; Unocic, K. A.

    2016-06-21

    We assessed the thermochemical compatibility of potential replacement cladding materials for zirconium alloys in light water reactors. Considered were FeCrAl steel (similar to Kanthal APMT), Nb-1%Zr (similar to PWC-11), and a hybrid SiC-composite with a metallic barrier layer. The niobium alloy was also seen as requiring an oxidation protective layer, and a diffusion silicide was investigated. Metallic barrier layers for the SiC-composite reviewed included a FeCrAl alloy, Nb-1%Zr, and chromium. Thermochemical calculations were performed to determine oxidation behavior of the materials in steam, and for hybrid SiC-composites possible interactions between the metallic layer and SiC. Additionally, experimental exposures of SiC-alloymore » reaction couples at 673K, 1073K, and 1273K for 168 h in an inert atmosphere were made and microanalysis performed. Whereas all materials were determined to oxidize under higher oxygen partial pressures in the steam environment, these varied by material with expected protective oxides forming. Finally, the computed and experimental results indicate the formation of liquid phase eutectic in the FeCrAl-SiC system at the higher temperatures.« less

  1. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.

    PubMed

    Bollineni, Ravi Chand; Hoffmann, Ralf; Fedorova, Maria

    2014-03-01

    A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.

  2. Myeloperoxidase activity and the oxidized proteins in blood neutrophils of patients with pneumonia.

    PubMed

    Muravlyova, Larissa; Molotov-Luchanskiy, Vilen; Bakirova, Ryszhan; Klyuyev, Dmitriy; Demidchik, Ludmila; Kolesnikova, Yevgeniya

    2014-10-01

    The main purpose of our investigation was to study myeloperoxidase activity and concentration of oxidized proteins in blood neutrophils of patients with ambulant pneumonia and secondary pneumonia which has arisen on a background of chronic obstructive pulmonary disease (COPD). Patients were divided into 2 groups. 17 patients with ambulant pneumonia moderate severity and respiratory insufficiency of grade 2 were included in the 1-st group. 20 COPD patients with secondary pneumonia moderate severity and with respiratory insufficiency of grade 2 were included in the 2-nd group. The control group consisted of 15 healthy subjects. The reactive protein carbonyl derivates, advanced oxidation protein products (AOPP) and myeloperoxidase activity were detected in neutrophils. In neutrophils of 1-st group patients the augmentation of reactive protein carbonyl derivates was observed in comparison with healthy ones. In neutrophils of 2-nd group patients the slight decrease of reactive protein carbonyl derivates was observed in comparison with healthy ones (by 17%). In neutrophils of 2-nd group patients the significant increasing AOPP in comparison with healthy ones (p <0.01) and 1 group patients (p <0.05) was fixed. Myeloperoxidase activity was higher in neutrophils of 1-th group patients in comparison with healthy ones. In neutrophils of 2-nd group patients myeloperoxidase activity was higher in comparison with the same of 1 group patients (by 67%, p <0.05). Our results showed the different direction of oxidized proteins formation neutrophils of patients with primary and secondary pneumonia. Besides that the varied degree of myeloperoxidase activity was fixed. Our results require more detailed understanding because they can reflect peculiar mechanisms of pneumonia development and determine the characteristics of their progression.

  3. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    PubMed Central

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  4. Novel fibrous catalyst in advanced oxidation of photographic processing effluents.

    PubMed

    Yang, Zhuxian; Ishtchenko, Vera V; Huddersman, Katherine D

    2006-01-01

    A novel fibrous catalyst was used to destroy the pollutants in Kodak Non-Silver-Bearing (NSB) photographic processing effluents with high chemical oxygen demand (COD) value. The oxidation activity of the catalyst was evaluated in terms of COD reduction of the effluent. The effects of concentrations of hydrogen peroxide and effluent, amount of catalyst, reaction time and temperature on the COD reduction were studied. In addition, the combination of catalysis with UV treatment on the COD reduction of the effluent was also investigated. Based on the experimental results, room temperature is preferred for the catalytic oxidation of NSB effluent. It was found that COD reduction of the effluent depends on the amount of hydrogen peroxide added to the feed in relation to the mass of catalyst used. Significant COD reduction (up to 52%) is achieved after 4 hours of catalytic treatment. Extending the duration of catalysis up to 24 hours gives further slight decrease in COD value.

  5. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform

    NASA Astrophysics Data System (ADS)

    Zhang, Bojie; Rempel, Don L.; Gross, Michael L.

    2016-03-01

    Protein footprinting combined with mass spectrometry provides a method to study protein structures and interactions. To improve further current protein footprinting methods, we adapted the fast photochemical oxidation of proteins (FPOP) platform to utilize carbenes as the footprinting reagent. A Nd-YAG laser provides 355 nm laser for carbene generation in situ from photoleucine as the carbene precursor in a flow system with calmodulin as the test protein. Reversed-phase liquid chromatography coupled with mass spectrometry is appropriate to analyze the modifications produced in this footprinting. By comparing the modification extent of apo and holo calmodulin on the peptide level, we can resolve different structural domains of the protein. Carbene footprinting in a flow system is promising.

  6. Protein oxidation: examination of potential lipid-independent mechanisms for protein carbonyl formation.

    PubMed

    Blakeman, D P; Ryan, T P; Jolly, R A; Petry, T W

    1998-01-01

    Previous data indicated that diquat-mediated protein oxidation (protein carbonyl formation) occurs through multiple pathways, one of which is lipid dependent, and the other, lipid independent. Studies reported here investigated potential mechanisms of the lipid-independent pathway in greater detail, using bovine serum albumin as the target protein. One hypothesized mechanism of protein carbonyl formation involved diquat-dependent production of H2O2, which would then react with site-specifically bound ferrous iron as proposed by Stadtman and colleagues. This hypothesis was supported by the inhibitory effect of catalase on diquat-mediated protein carbonyl formation. However, exogenous H2O2 alone did not induce protein carbonyl formation. Hydroxyl radical-generating reactions may result from the H2O2-catalyzed oxidation of ferrous iron, which normally is bound to protein in the ferric state. Therefore, the possible reduction of site-specifically bound Fe3+ to Fe2+ by the diquat cation radical (which could then react with H2O2) was also investigated. The combination of H2O2 and an iron reductant, ascorbate, however, also failed to induce significant protein carbonyl formation. In a phospholipid-containing system, an ADP:Fe2+ complex induced both lipid peroxidation and protein carbonyl formation; both indices were largely inhibitable by antioxidants. There was no substantial ADP:Fe(2+)-dependent protein carbonyl formation in the absence of phospholipid under otherwise identical conditions. Based on the lipid requirement and antioxidant sensitivity, these data suggest that ADP:Fe(2+)-dependent protein carbonyl formation occurs through reaction of BSA with aldehydic lipid peroxidation products. The precise mechanism of diquat-mediated protein carbonyl formation remains unclear, but it appears not to be a function of H2O2 generation or diquat cation radical-dependent reduction of bound Fe3+.

  7. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis

    PubMed Central

    Creamer, Jessica S.; Oborny, Nathan J.; Lunte, Susan M.

    2014-01-01

    The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis. PMID:25126117

  8. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  9. Polyethylene Oxidation in Total Hip Arthroplasty: Evolution and New Advances

    PubMed Central

    Gómez-Barrena, Enrique; Medel, Francisco; Puértolas, José Antonio

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs. As THR results have been challenged by wear, oxidation, and liner fracture, relevant research on the material properties in the past decade has led to the development and clinical introduction of highly crosslinked polyethylenes (HXLPE). More stress on the bearing (more active, overweighted, younger patients), and more variability in the implantation technique in different small and large Hospitals may further compromise the clinical performance for many patients. The long-term in vivo performance of these materials remains to be proven. Clinical and retrieval studies after more than 5 years of in vivo use with HXLPE in THR are reviewed and consistently show a substantial decrease in wear rate. Moreover, a second generation of improved polyethylenes is backed by in vitro data and awaits more clinical experience to confirm the experimental improvements. Also, new antioxidant, free radical scavengers, candidates and the reinforcement of polyethylene through composites are currently under basic research. Oxidation of polyethylene is today significantly reduced by present formulations, and this forgiving, affordable, and wellknown material is still reliable to meet today’s higher requirements in total hip replacement. PMID:20111694

  10. Artemin protects cells and proteins against oxidative and salt stress.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi

    2017-02-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H2O2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions.

  11. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer.

    PubMed

    Puig-Vilanova, Ester; Rodriguez, Diego A; Lloreta, Josep; Ausin, Pilar; Pascual-Guardia, Sergio; Broquetas, Joan; Roca, Josep; Gea, Joaquim; Barreiro, Esther

    2015-02-01

    Muscle dysfunction and wasting are predictors of mortality in advanced COPD and malignancies. Redox imbalance and enhanced protein catabolism are underlying mechanisms in COPD. We hypothesized that the expression profile of several biological markers share similarities in patients with cachexia associated with either COPD or lung cancer (LC). In vastus lateralis of cachectic patients with either LC (n=10) or advanced COPD (n=16) and healthy controls (n=10), markers of redox balance, inflammation, proteolysis, autophagy, signaling pathways, mitochondrial function, muscle structure, and sarcomere damage were measured using laboratory and light and electron microscopy techniques. Systemic redox balance and inflammation were also determined. All subjects were clinically evaluated. Compared to controls, in both cachectic groups of patients, a similar expression profile of different biological markers was observed in their muscles: increased levels of muscle protein oxidation and ubiquitination (p<0.05, both), which positively correlated (r=0.888), redox-sensitive signaling pathways (NF-κB and FoxO) were activated (p<0.05, all), fast-twitch fiber sizes were atrophied, muscle structural abnormalities and sarcomere disruptions were significantly greater (p<0.05, both). Structural and functional protein levels were lower in muscles of both cachectic patient groups than in controls (p<0.05, all). However, levels of autophagy markers including ultrastructural autophagosome counts were increased only in muscles of cachectic COPD patients (p<0.05). Systemic oxidative stress and inflammation levels were also increased in both patient groups compared to controls (p<0.005, both). Oxidative stress and redox-sensitive signaling pathways are likely to contribute to the etiology of muscle wasting and sarcomere disruption in patients with respiratory cachexia: LC and COPD.

  12. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  13. Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization

    NASA Astrophysics Data System (ADS)

    Weng, Yejing; Jiang, Bo; Yang, Kaiguang; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2015-08-01

    A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g-1), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions.A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g-1), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions. Electronic supplementary information (ESI) available: Cell viability assay, enrichment of standard glycoprotein, pretreatment and analysis of real

  14. Wine protein haze: mechanisms of formation and advances in prevention.

    PubMed

    Van Sluyter, Steven C; McRae, Jacqui M; Falconer, Robert J; Smith, Paul A; Bacic, Antony; Waters, Elizabeth J; Marangon, Matteo

    2015-04-29

    Protein haze is an aesthetic problem in white wines that can be prevented by removing the grape proteins that have survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of more efficient processes for protein removal and haze prevention requires understanding the mechanisms such as the main drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.

  15. Dietary advanced lipid oxidation endproducts are risk factors to human health.

    PubMed

    Kanner, Joseph

    2007-09-01

    Lipid oxidation in foods is one of the major degradative processes responsible for losses in food quality. The oxidation of unsaturated fatty acids results in significant generation of dietary advanced lipid oxidation endproducts (ALEs) which are in part cytotoxic and genotoxic compounds. The gastrointestinal tract is constantly exposed to dietary oxidized food compounds, after digestion a part of them are absorbed into the lymph or directly into the blood stream. After ingestion of oxidized fats animals and human have been shown to excrete in urine increase amounts of malondialdehyde but also lipophilic carbonyl compounds. Oxidized cholesterol in the diet was found to be a source of oxidized lipoproteins in human serum. Some of the dietary ALEs, which are absorbed from the gut to the circulatory system, seems to act as injurious chemicals that activate an inflammatory response which affects not only circulatory system but also organs such as liver, kidney, lung, and the gut itself. We believe that repeated consumption of oxidized fat in the diet poses a chronic threat to human health. High concentration of dietary antioxidants could prevent lipid oxidation and ALEs generation not only in foods but also in stomach condition and thereby potentially decrease absorption of ALEs from the gut. This could explains the health benefit of diets containing large amounts of dietary antioxidants such those present in fruits and vegetables, or products such as red-wine or tea consuming during the meal.

  16. Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for Penetrator Application

    DTIC Science & Technology

    2005-09-30

    preparation, sintering, cyclic heat-treatment, swaging , and annealing processes, on microstructures and static/dynamic mechanical properties of ODS tungsten ... tungsten / tungsten contiguity. The swaging and annealing processes of ODS tungsten heavy alloy increase the tensile strength with decreasing the...Final Report for 2nd Year Contract of AOARD 034032 Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for

  17. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    EPA Science Inventory

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  18. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  19. DEMONSTRATION OF THE HIPOX ADVANCED OXIDATION TECHNOLOGY FOR THE TREATMENT OF MTBE-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...

  20. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  1. A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium).

    PubMed

    Crowe, Kristi M; Bushway, Alfred A; Bushway, Rodney J; Davis-Dentici, Katherine; Hazen, Russell A

    2007-05-01

    Advanced oxidation processes and single chemical oxidants were evaluated for their antimicrobial efficacy against common spoilage bacteria isolated from lowbush blueberries. Predominant bacterial flora were identified using biochemical testing with the assessment of relative abundance using non-selective and differential media. Single chemical oxidants evaluated for postharvest processing of lowbush blueberries included 1% hydrogen peroxide, 100 ppm chlorine, and 1 ppm aqueous ozone while advanced oxidation processes (AOPs) included combinations of 1% hydrogen peroxide/UV, 100 ppm chlorine/UV, and 1 ppm ozone/1% hydrogen peroxide/UV. Enterobacter agglomerans and Pseudomonas fluorescens were found to comprise 90-95% of the bacterial flora on lowbush blueberries. Results of inoculation studies reveal significant log reductions (p< or 5) in populations of E. agglomerans and P. fluorescens on all samples receiving treatment with 1% hydrogen peroxide, 1% hydrogen peroxide/UV, 1 ppm ozone, or a combined ozone/hydrogen peroxide/UV treatment as compared to chlorine treatments and unwashed control berries. Although population reductions approached 2.5 log CFU/g, microbial reductions among these treatments were not found to be significantly different (p< or 5) from each other despite the synergistic potential that should result from AOPs; furthermore, as a single oxidant, UV inactivation of inoculated bacteria was minimal and did not prove effective as a non-aqueous bactericidal process for fresh pack blueberries. Overall, results indicate that hydrogen peroxide and ozone, as single chemical oxidants, are as effective as AOPs and could be considered as chlorine-alternatives in improving the microbiological quality of lowbush blueberries.

  2. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus.

    PubMed

    Beavers, William N; Skaar, Eric P

    2016-08-01

    Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.

  3. Advances in Understanding the Actions of Nitrous Oxide

    PubMed Central

    Emmanouil, Dimitris E; Quock, Raymond M

    2007-01-01

    Nitrous oxide (N2O) has been used for well over 150 years in clinical dentistry for its analgesic and anxiolytic properties. This small and simple inorganic chemical molecule has indisputable effects of analgesia, anxiolysis, and anesthesia that are of great clinical interest. Recent studies have helped to clarify the analgesic mechanisms of N2O, but the mechanisms involved in its anxiolytic and anesthetic actions remain less clear. Findings to date indicate that the analgesic effect of N2O is opioid in nature, and, like morphine, may involve a myriad of neuromodulators in the spinal cord. The anxiolytic effect of N2O, on the other hand, resembles that of benzodiazepines and may be initiated at selected subunits of the γ-aminobutyric acid type A (GABAA) receptor. Similarly, the anesthetic effect of N2O may involve actions at GABAA receptors and possibly at N-methyl-D-aspartate receptors as well. This article reviews the latest information on the proposed modes of action for these clinicaleffects of N2O. PMID:17352529

  4. High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Wójcik, Magdalena; Telzerow, Aline; Quax, Wim J.; Boersma, Ykelien L.

    2015-01-01

    Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms. PMID:26492240

  5. Advanced oxidation for the treatment of chlorpyrifos in aqueous solution.

    PubMed

    Ismail, M; Khan, Hasan M; Sayed, Murtaza; Cooper, William J

    2013-10-01

    Chlorpyrifos is an organophosphate pesticide and is significant because of its extensive use, persistence in the environment, wide distribution, and its toxicity may lead to lung and central nervous system damage, developmental and autoimmune disorders and vomiting. In the present study, the irradiation of chlorpyrifos in aqueous solution by (60)Co γ-rays was conducted on a laboratory scale and the removal efficiency of chlorpyrifos was investigated. The SPME-GC-ECD method was used for analysis of chlorpyrifos. Aqueous solutions of different concentrations of target compound (200-1000 μg L(-1)) were irradiated through 30-575 Gy. Gamma irradiation showed 100% degradation for a 500 μg L(-1) solution at an absorbed dose of 575 Gy (the dose rate was 300 Gy h(-1)). The radiolysis of chlorpyrifos was pseudo-first order (decay) with respect to dose. The dose constants determined in this study ranged from 8.2×10(-3) to 2.6×10(-2) Gy(-1), and decreased with an increase in the initial concentration of chlorpyrifos, while the radiation chemical yield (G-value) for the loss of chlorpyrifos was found to decrease with increasing absorbed dose. The effect of saturated solutions of N2 and N2O, and radical scavengers tert-butanol, iso-propanol, H2O2, NaNO3 and NaNO2 on the degradation of chlorpyrifos were also studied. The results showed that the oxidative OH was the most important in the degradation of chlorpyrifos, while the reductive radicals, aqueous electron and H, were of less importance for the degradation of chlorpyrifos. The inorganic by-products Cl(-), SO4(2-) and PO4(3-) were quantitatively determined by IC.

  6. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  7. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  8. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation.

  9. Advanced alternate planar geometry solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells (SOFC) as high performance, high efficiency energy conversion devices is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes. A novel design concept was investigated which allows for the following: improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/sq cm at 0.4V/cell with an area specific resistance of 1 Ohm-sq cm/cell. Improvements in manifolding are expected to provide much higher performance.

  10. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers.

    PubMed

    Utrera, Mariana; Estévez, Mario

    2013-08-21

    The susceptibility of meats from different animal species (beef quadriceps femoris, porcine longissimus dorsi, and chicken pectoralis major) to undergo protein oxidation during frozen storage (20 weeks/-18 °C) was studied through the analysis of novel oxidation markers. Frozen storage induced protein carbonylation (α-aminoadipic and γ-glutamic semialdehydes), carboxylation (α-aminoadipic acid), and formation of Schiff bases in meat from the three species. Major rates of protein and lipid oxidation products [thiobarbituric-acid-reactive substances (TBARS) and hexanal] were found in beef patties. Among the endogenous factors having a potential influence on the susceptibility of meat to undergo protein oxidation, heme iron seemed to play a major role. The present study illustrates the severe chemical modifications induced by oxidative stress during frozen storage of ground meat and provides original insight into the underlying mechanisms and factors.

  11. Regulation of Protein Function by Reversible Methionine Oxidation and the Role of Selenoprotein MsrB1

    PubMed Central

    Kaya, Alaattin

    2015-01-01

    Abstract Significance: Protein structure and function can be regulated via post-translational modifications by numerous enzymatic and nonenzymatic mechanisms. Regulation involving oxidation of sulfur-containing residues emerged as a key mechanism of redox control. Unraveling the participants and principles of such regulation is necessary for understanding the biological significance of redox control of cellular processes. Recent Advances: Reversible oxidation of methionine residues by monooxygenases of the Mical family and subsequent reduction of methionine sulfoxides by a selenocysteine-containing methionine sulfoxide reductase B1 (MsrB1) was found to control the assembly and disassembly of actin in mammals, and the Mical/MsrB pair similarly regulates actin in fruit flies. This finding has opened up new avenues for understanding the use of stereospecific methionine oxidation in regulating cellular processes and the roles of MsrB1 and Micals in regulation of actin dynamics. Critical Issues: So far, Micals have been the only known partners of MsrB1, and actin is the only target. It is important to identify additional substrates of Micals and characterize other Mical-like enzymes. Future Directions: Oxidation of methionine, reviewed here, is an emerging but not well-established mechanism. Studies suggest that methionine oxidation is a form of oxidative damage of proteins, a modification that alters protein structure or function, a tool in redox signaling, and a mechanism that controls protein function. Understanding the functional impact of reversible oxidation of methionine will require identification of targets, substrates, and regulators of Micals and Msrs. Linking the biological processes, in which these proteins participate, might also lead to insights into disease conditions, which involve regulation of actin by Micals and Msrs. Antioxid. Redox Signal. 23, 814–822. PMID:26181576

  12. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers

    PubMed Central

    Almogbel, Ebtehal

    2017-01-01

    Introduction Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. Aim To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. Materials and Methods Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients’ age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. Results Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1C<8.8). Similar pattern of protein carbonyls formation was also observed with patients’ ages or with patient’s disease durations, suggesting a possible relationship between protein oxidation and disease progression. Furthermore, sera from DMN patients had higher levels of protein carbonylation compared with non-neuropathic DM patients’ sera, suggesting an involvement of protein oxidation in the progression of diabetes to diabetes neuropathy. Conclusion These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients’ ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the

  13. Application of UV based advanced oxidation to treat sulfolane in an aqueous medium.

    PubMed

    Yu, Linlong; Mehrabani-Zeinabad, Mitra; Achari, Gopal; Langford, Cooper H

    2016-10-01

    Several oxidative methods were studied to degrade sulfolane in an aqueous medium. These include UVA and UVC irradiation with suitable photoactive oxidants, including ozone, H2O2, and TiO2 based photocatalysis and their combinations. Since sulfolane lacks absorption bands in the UV range beyond 200 nm, initiation of reactions depends on the spectra and photochemistry of the oxidants. Among all the advanced oxidation processes investigated, combinations of (a) UVC with H2O2 and O3 (b) UVC with H2O2 and (c) UVC with O3 led to the highest rate of sulfolane loss in synthetic water samples. Experiments on sulfolane contaminated groundwater samples also indicated that these three combinations can efficiently degrade sulfolane. Furthermore, a synergistic effect was observed in the combination of H2O2 and O3 photolysis.

  14. Recent advances (2010-2015) in studies of cerium oxide nanoparticles' health effects.

    PubMed

    Li, Yan; Li, Peng; Yu, Hua; Bian, Ying

    2016-06-01

    Cerium oxide nanoparticles, widespread applied in our life, have attracted much concern for their human health effects. However, most of the works addressing cerium oxide nanoparticles toxicity have only used in vitro models or in vivo intratracheal instillation methods. The toxicity studies have varied results and not all are conclusive. The information about risk assessments derived from epidemiology studies is severely lacking. The knowledge of occupational safety and health (OSH) for exposed workers is very little. Thus this review focuses on recent advances in studies of toxicokinetics, antioxidant activity and toxicity. Additionally, aim to extend previous health effects assessments of cerium oxide nanoparticles, we summarize the epidemiology studies of engineered cerium oxide nanoparticles used as automotive diesel fuel additive, aerosol particulate matter in air pollution, other industrial ultrafine and nanoparticles (e.g., fumes particles generated in welding and flame cutting processes).

  15. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  16. PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data

    PubMed Central

    2013-01-01

    Background Tandem affinity purification coupled with mass-spectrometry (TAP/MS) analysis is a popular method for the identification of novel endogenous protein-protein interactions (PPIs) in large-scale. Computational analysis of TAP/MS data is a critical step, particularly for high-throughput datasets, yet it remains challenging due to the noisy nature of TAP/MS data. Results We investigated several major TAP/MS data analysis methods for identifying PPIs, and developed an advanced method, which incorporates an improved statistical method to filter out false positives from the negative controls. Our method is named PPIRank that stands for PPI ranking in TAP/MS data. We compared PPIRank with several other existing methods in analyzing two pathway-specific TAP/MS PPI datasets from Drosophila. Conclusion Experimental results show that PPIRank is more capable than other approaches in terms of identifying known interactions collected in the BioGRID PPI database. Specifically, PPIRank is able to capture more true interactions and simultaneously less false positives in both Insulin and Hippo pathways of Drosophila Melanogaster. PMID:24565074

  17. Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice.

    PubMed

    Poon, H Fai; Vaishnav, Radhika A; Getchell, Thomas V; Getchell, Marilyn L; Butterfield, D Allan

    2006-07-01

    The brain is susceptible to oxidative stress, which is associated with age-related brain dysfunction, because of its high content of peroxidizable unsaturated fatty acids, high oxygen consumption per unit weight, high content of key components for oxidative damage, and the relative scarcity of antioxidant defense systems. Protein oxidation, which results in functional disruption, is not random but appears to be associated with increased oxidation in specific proteins. By using a proteomics approach, we have compared the protein levels and specific protein carbonyl levels, an index of oxidative damage in the brains of old mice, to these parameters in the brains of young mice and have identified specific proteins that are altered as a function of aging. We show here that the expression levels of dihydropyrimidinase-like 2 (DRP2), alpha-enolase (ENO1), dynamin-1 (DNM1), and lactate dehydrogenase 2 (LDH2) were significantly increased in the brains of old versus young mice; the expression levels of three unidentified proteins were significantly decreased. The specific carbonyl levels of beta-actin (ACTB), glutamine synthase (GS), and neurofilament 66 (NF-66) as well as a novel protein were significantly increased, indicating protein oxidation, in the brains of old versus young mice. These results were validated by immunochemistry. In addition, enzyme activity assays demonstrated that oxidation was associated with decreased GS activity, while the activity of lactate dehydrogenase was unchanged in spite of an up-regulation of LDH2 levels. Several of the up-regulated and oxidized proteins in the brains of old mice identified in this report are known to be oxidized in neurodegenerative diseases as well, suggesting that these proteins may be particularly susceptible to processes associated with neurodegeneration. Our results establish an initial basis for understanding protein alterations that may lead to age-related cellular dysfunction in the brain.

  18. A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.

    PubMed

    Pešoutová, Radka; Stříteský, Luboš; Hlavínek, Petr

    2014-01-01

    This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L(-1). All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L(-1). At a dose of 4.4 · mg L(-1) ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers - carbonates and bicarbonates.

  19. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  20. TET proteins and 5-methylcytosine oxidation in hematological cancers

    PubMed Central

    An, Jungeun; Pastor, William A.; Ko, Myunggon; Rao, Anjana

    2015-01-01

    Summary DNA methylation has pivotal regulatory roles in mammalian development, retrotransposon silencing, genomic imprinting and X-chromosome inactivation. Cancer cells display highly dysregulated DNA methylation profiles characterized by global hypomethylation in conjunction with hypermethylation of promoter CpG islands (CGIs) that presumably lead to genome instability and aberrant expression of tumor suppressor genes or oncogenes. The recent discovery of Ten-Eleven-Translocation (TET) family dioxygenases that oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in DNA has led to profound progress in understanding the mechanism underlying DNA demethylation. Among the three TET genes, TET2 recurrently undergoes inactivating mutations in a wide range of myeloid and lymphoid malignancies. TET2 functions as a bona fide tumor suppressor particularly in the pathogenesis of myeloid malignancies resembling chronic myelomoncytic leukemia (CMML) and myelodysplastic syndromes (MDS) in human. Here we review diverse functions of TET proteins and the novel epigenetic marks that they generate in DNA methylation/demethylation dynamics and normal and malignant hematopoietic differentiation. The impact of TET2 inactivation in hematopoiesis and various mechanisms modulating the expression or activity of TET proteins are also discussed. Furthermore, we also present evidence that TET2 and TET3 collaborate to suppress aberrant hematopoiesis and hematopoietic transformation. A detailed understanding of the normal and pathological functions of TET proteins may provide new avenues to develop novel epigenetic therapies for treating hematological malignancies. PMID:25510268

  1. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    PubMed

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  2. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1990-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra-efficient and low-emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttria based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  3. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra efficient and low emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttna based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  4. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    PubMed

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+).

  5. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    PubMed

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  6. [The evaluation of oxidative modification of proteins in patients with chronic disseminated dermatosis].

    PubMed

    Kopitova, T V; Panteleyeva, G A; Dmitriyeva, O N; Kotkova, E V

    2014-02-01

    The analysis was made concerning oxidative modification of proteins of blood serum and erythrocytes in patients with chronic disseminated dermatosis. The high degree of total oxidative modification of proteins was established in patients with psoriasis and atopic dermatitis. The increase of level of oxidized derivatives of apoproteins in compound of lipoproteins of low density under psoriasis, atopic dermatitis and pemphigus was detected The increase of amount of carbonyl derivative of oligopeptids under psoriasis was revealed. In patients with resistance to applied therapy the statistically significant decrease of total oxidative modification of proteins of blood serum and erythrocytes was detected. This occurrence is possibly related to derangement of process of proteolytic destruction of proteins.

  7. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer.

    PubMed

    Wan, Fangning; Qin, Xiaojian; Zhang, Guiming; Lu, Xiaolin; Zhu, Yao; Zhang, Hailiang; Dai, Bo; Shi, Guohai; Ye, Dingwei

    2015-05-01

    Clinical and epidemiological data suggest coronary artery disease shares etiology with prostate cancer (PCa). The aim of this work was to assess the effects of several serum markers reported in cardiovascular disease on PCa. Serum markers (oxidized low-density lipoprotein [ox-LDL], apolipoprotein [apo] B100, and apoB48) in peripheral blood samples from 50 patients from Fudan University Shanghai Cancer Center (FUSCC) with localized or lymph node metastatic PCa were investigated in this study. Twenty-five samples from normal individuals were set as controls. We first conducted enzyme-linked immunosorbent assay analysis to select candidate markers that were significantly different between these patients and controls. Then, the clinical relevance between OLR1 (the ox-LDL receptor) expression and PCa was analyzed in The Cancer Genome Atlas (TCGA) cohort. We also investigated the function of ox-LDL in PCa cell lines in vitro. Phosphorylation protein chips were used to analyze cell signaling pathways in ox-LDL-treated PC-3 cells. The ox-LDL level was found to be significantly correlated with N stage of prostate cancer. OLR1 expression was correlated with lymph node metastasis in the TCGA cohort. In vitro, ox-LDL stimulated the proliferation, migration, and invasion of LNCaP and PC-3 in a dose-dependent manner. The results of phosphoprotein microarray illustrated that ox-LDL could influence multiple signaling pathways of PC-3. Activation of proliferation promoting signaling pathways (including β-catenin, cMyc, NF-κB, STAT1, STAT3) as well as apoptosis-associating signaling pathways (including p27, caspase-3) demonstrated that ox-LDL had complicated effects on prostate cancer. Increased serum ox-LDL level and OLR1 expression may indicate advanced-stage PCa and lymph node metastasis. Moreover, ox-LDL could stimulate PCa proliferation, migration, and invasion in vitro.

  8. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes.

    PubMed

    Zhihui, Ai; Peng, Yang; Xiaohua, Lu

    2005-08-01

    In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.

  9. Oxidative stress responses of Daphnia magna exposed to effluents spiked with emerging contaminants under ozonation and advanced oxidation processes.

    PubMed

    Oropesa, Ana Lourdes; Novais, Sara C; Lemos, Marco F L; Espejo, Azahara; Gravato, Carlos; Beltrán, Fernando

    2017-01-01

    Integration of conventional wastewater treatments with advanced oxidation processes (AOPs) has become of great interest to remove pharmaceuticals and their metabolites from wastewater. However, application of these technologies generates reactive oxygen species (ROS) that may reach superficial waters through effluents from sewage treatment plants. The main objective of the present study was to elucidate if ROS present in real effluents after biological and then chemical (single ozonation, solar photolytic ozonation, solar photocatalytic ozonation (TiO2, Fe3O4) and solar photocatalytic oxidation (TiO2)) treatments induce oxidative stress in Daphnia magna. For this, the activity of two antioxidant enzymes (superoxide dismutase and catalase) and the level of lipid peroxidation were determined in Daphnia. The results of oxidative stress biomarkers studied suggest that D. magna is able to cope with the superoxide ion radical (O2·(-)) present in the treated effluent due to single ozonation by mainly inducing the antioxidant activity superoxide dismutase, thus preventing lipid peroxidation. Lethal effects (measured in terms of immobility) were not observed in these organisms after exposure to any solution. Therefore, in order to probe the ecological efficiency of urban wastewater treatments, studies on lethal and sublethal effects in D. magna would be advisable.

  10. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  11. Accessories to the crime: recent advances in HIV accessory protein biology.

    PubMed

    Gramberg, Thomas; Sunseri, Nicole; Landau, Nathaniel R

    2009-02-01

    Recent advances in understanding the roles of the lentiviral accessory proteins have provided fascinating insight into the molecular biology of the virus and uncovered previously unappreciated innate immune mechanisms by which the host defends itself. HIV-1 and other lentiviruses have developed accessory proteins that counterattack the antiviral defenses in a sort of evolutionary battle. The virus is remarkably adept at co-opting cellular degradative pathways to destroy the protective proteins. This review focuses on recent advances in understanding three of the accessory proteins-virion infectivity factor (Vif), viral protein R (Vpr), and viral protein U (Vpu)-that target different restriction factors to ensure virus replication. These proteins may provide promising targets for the development of novel classes of antiretroviral drugs.

  12. Iron(II) Initiation of Lipid and Protein Oxidation in Pork: The Role of Oxymyoglobin.

    PubMed

    Zhou, Feibai; Jongberg, Sisse; Zhao, Mouming; Sun, Weizheng; Skibsted, Leif H

    2016-06-08

    Iron(II), added as FeSO4·7H2O, was found to increase the rate of oxygen depletion as detected electrochemically in a pork homogenate from Longissimus dorsi through an initial increase in metmyoglobin formation from oxymyoglobin and followed by formation of primary and secondary lipid oxidation products and protein oxidation as detected as thiol depletion in myofibrillar proteins. Without added iron(II), under the same conditions at 37 °C, oxygen consumption corresponded solely to the slow oxymyoglobin autoxidation. Long-lived myofibrillar protein radicals as detected by ESR spectroscopy in the presence of iron(II) were formed subsequently to oxymyoglobin oxidation, and their level was increased by lipid oxidation when oxygen was completely depleted. Similarly, the time profile for formation of lipid peroxide indicated that oxymyoglobin oxidation initiates both protein oxidation and lipid oxidation.

  13. The study of leachate treatment by using three advanced oxidation process based wet air oxidation.

    PubMed

    Karimi, Behroz; Ehrampoush, Mohammad Hassan; Ebrahimi, Asghar; Mokhtari, Mehdi

    2013-01-02

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  14. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    PubMed Central

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter. PMID:23369258

  15. Pre-treatment of penicillin formulation effluent by advanced oxidation processes.

    PubMed

    Arslan-Alaton, Idil; Dogruel, Serdar

    2004-08-09

    A variety of advanced oxidation processes (AOPs; O3/OH-, H2O2/UV, Fe2+/H2O2, Fe3+/H2O2, Fe2+/H2O2/UV and Fe3+/H2O2/UV) have been applied for the oxidative pre-treatment of real penicillin formulation effluent (average COD0 = 1395 mg/L; TOC0 = 920 mg/L; BOD(5,0) approximately 0 mg/L). For the ozonation process the primary involvement of free radical species such as OH* in the oxidative reaction could be demonstrated via inspection of ozone absorption rates. Alkaline ozonation and the photo-Fenton's reagents both appeared to be the most promising AOPs in terms of COD (49-66%) and TOC (42-52%) abatement rates, whereas the BOD5 of the originally non-biodegradable effluent could only be improved to a value of 100 mg/L with O3/pH = 3] treatment (BOD5/COD, f = 0.08). Evaluation on COD and TOC removal rates per applied active oxidant (AOx) and oxidant (Ox) on a molar basis revealed that alkaline ozonation and particularly the UV-light assisted Fenton processes enabling good oxidation yields (1-2 mol COD and TOC removal per AOx and Ox) by far outweighed the other studied AOPs. Separate experimental studies conducted with the penicillin active substance amoxicillin trihydrate indicated that the aqueous antibiotic substance can be completely eliminated after 40 min advanced oxidation applying photo-Fenton's reagent (pH = 3; Fe(2+):H2O2 molar ratio = 1:20) and alkaline ozonation (at pH = 11.5), respectively.

  16. [Oxidative modification of serum proteins in rats exposed to nonsymmetric dimethylhydrazine poisoning].

    PubMed

    Kulmagambetov, I R; Muravleva, L E; Koĭkov, V V

    2009-01-01

    Studies of serum proteins modifications both spontaneous and catalyzed by metals in rats under single exposure to nonsymmetric dimethylhydrazine revealed reliable, significant increase in oxidative destruction of proteins. That proves deep peroxidative syndrome in the experimental animals.

  17. Recent Advances in Transferable Coarse-Grained Modeling of Proteins

    PubMed Central

    Kar, Parimal; Feig, Michael

    2017-01-01

    Computer simulations are indispensable tools for studying the structure and dynamics of biological macromolecules. Biochemical processes occur on different scales of length and time. Atomistic simulations cannot cover the relevant spatiotemporal scales at which the cellular processes occur. To address this challenge, coarse-grained (CG) modeling of the biological systems are employed. Over the last few years, many CG models for proteins continue to be developed. However, many of them are not transferable with respect to different systems and different environments. In this review, we discuss those CG protein models that are transferable and that retain chemical specificity. We restrict ourselves to CG models of soluble proteins only. We also briefly review recent progress made in the multi-scale hybrid all-atom/coarse-grained simulations of proteins. PMID:25443957

  18. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  19. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation endproducts.

    PubMed

    Chandler, Dave; Woldu, Ameha; Rahmadi, Anton; Shanmugam, Kirubakaran; Steiner, Nicole; Wright, Elise; Benavente-García, Obdulio; Schulz, Oliver; Castillo, Julián; Münch, Gerald

    2010-07-01

    Advanced glycation endproducts (AGEs) accumulate on protein deposits including the beta-amyloid plaques in Alzheimer's disease. AGEs interact with the "receptor for advanced glycation endproducts", and transmit their signals using intracellular reactive oxygen species as second messengers. Ultimately, AGEs induce the expression of a variety of pro-inflammatory markers including the tumor necrosis factor (TNF-alpha) and inducible nitric oxide (NO) synthase. Antioxidants that act intracellularly, including polyphenols, have been shown to scavenge these "signaling" reactive oxygen species, and thus perform in an anti-inflammatory capacity. This study tested the pure compounds apigenin and diosmetin as well as extracts from silymarin, uva ursi (bearberry) and green olive leaf for their ability to attenuate AGE-induced NO and TNF-alpha production. All five tested samples inhibited BSA-AGE-induced NO production in a dose-dependent manner. Apigenin and diosmetin were most potent, and exhibited EC(50) values approximately 10 microM. In contrast, TNF-alpha expression was only reduced by apigenin, diosmetin and silymarin; not by the bearberry and green olive leaf extracts. In addition, the silymarin and bearberry extracts caused significant cell death at concentrations >or=10 microg/mL and >or=50 microg/mL, respectively. In conclusion, we suggest that plant-derived polyphenols might offer therapeutic opportunities to delay the progression of AGE-mediated and receptor for advanced glycation endproducts-mediated neuro-inflammatory diseases including Alzheimer's disease.

  20. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  1. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases.

    PubMed

    Gutscher, Marcus; Sobotta, Mirko C; Wabnitz, Guido H; Ballikaya, Seda; Meyer, Andreas J; Samstag, Yvonne; Dick, Tobias P

    2009-11-13

    H(2)O(2) acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H(2)O(2)-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H(2)O(2)-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H(2)O(2), and the Orp1-roGFP2 redox relay effectively converts physiological H(2)O(2) signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H(2)O(2)-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins.

  2. Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases*♦

    PubMed Central

    Gutscher, Marcus; Sobotta, Mirko C.; Wabnitz, Guido H.; Ballikaya, Seda; Meyer, Andreas J.; Samstag, Yvonne; Dick, Tobias P.

    2009-01-01

    H2O2 acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H2O2-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H2O2-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H2O2, and the Orp1-roGFP2 redox relay effectively converts physiological H2O2 signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H2O2-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins. PMID:19755417

  3. Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition

    NASA Astrophysics Data System (ADS)

    Solis, J. L.; Hoel, A.; Lantto, V.; Granqvist, C. G.

    2001-03-01

    Nanocrystalline W oxide films were produced by advanced reactive gas deposition. The material consisted of ˜6 nm diameter tetragonal crystallites, as found from x-ray diffraction and electron microscopy. Optoelectrochemical measurements demonstrated electrochromism upon Li+ intercalation/deintercalation, and infrared absorption spectroscopy gave clear evidence for longitudinal and transversal optical modes being modified following the lithiation. Our data were consistent with ionic transport predominantly in disordered grain boundaries and intercrystalline regions and with electrochromism being associated with small polaron formation.

  4. Metal Organic Chemical Vapor Deposition of Oxide Films for Advanced Applications

    DTIC Science & Technology

    2000-06-01

    recirculating forced convection flow in the system. Samples are heated by a fixed radiative heater below the rotating susceptor. Thermophoresis ...technology. FOCUS ON ZINC OXIDE TCO A natural outgrowth of display technology efforts is the development of advanced transparent and...studies emphasized surface morphology and preferred orientation effects , rather than the electrical and optical properties of ZnO films[1]. ZnO ceramics

  5. Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions.

    PubMed

    Bobu, Maria; Yediler, Ayfer; Siminiceanu, Ilie; Zhang, Feifang; Schulte-Hostede, Sigurd

    2013-01-01

    In this study a comparative assessment using various advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(II), O(3), O(3)/UV, O(3)/UV/H(2)O(2) and O(3)/UV/H(2)O(2)/Fe(II)) was attempted to degrade efficiently two fluoroquinolone drugs ENR [enrofloxacin (1-Cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinolonecarboxylic acid)] and CIP [ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-quinoline-3-carboxylic acid)] in aqueous solutions at a concentrations of 0.15 mM for each drug. The efficiency of the applied oxidation processes (AOPs) has been estimated by the conversion of the original substrate (X(ENR) and X(CIP)) and the reduction of chemical oxygen demand (COD), total organic carbon (TOC). Special emphasis was laid on the effect of varying reaction pH as well as of the applied oxidant doses on the observed reaction kinetics for each advanced oxidation processes. High degradation efficiencies, particularly in terms of rates of TOC and COD abatement, were obtained for photo-Fenton assisted ozonation [O(3)/UV/H(2)O(2)/Fe(II)], compared to other advanced oxidation processes. At pH 3 and 25°C best results for the degradation of both investigated drugs were achieved when 10 mM H(2)O(2), 0.5 mM Fe(II) and an initial dose of 8.5 mg L(-1) ozone were applied. In addition, the evolution of toxicity of the reaction mixtures for different AOPs has been studied by the bioluminescence test (LUMIStox 300).

  6. Gas-phase advanced oxidation for effective, efficient in situ control of pollution.

    PubMed

    Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.

  7. Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration.

    PubMed

    Saxena, Ina; Shekhawat, G S

    2013-08-01

    Nitric oxide (NO) is recognized as a biological messenger in various tissues to regulate diverse range of physiological process including growth, development and response to abiotic and biotic factors. The NO emission from plants is known since the 1970s, and there is copious information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. Heavy metal toxicity is one of the major abiotic stresses leading to hazardous effects in plants and its toxicity is based on chemical and physical property. A common consequence of heavy metal toxicity is the uncontrolled and excessive accumulation of reactive oxygen species (ROS) which leads to peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Recently, an increasing number of articles have reported the effects of exogenous NO on alleviating heavy metal toxicity in plants but knowledge of physiological mechanisms of NO in alleviating heavy metal toxicity is quite limited, and some results contradict one another. Therefore, to help clarify the roles of NO in heavy metal tolerance, it is important to review and discuss the recent advances on this area of research. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in the plant cells. NO alleviates the harmfulness of the ROS, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions. This manuscript includes, the latest advances in understanding the effects of endogenous NO on heavy metal toxicity and the mechanisms and role of NO as an antioxidant as well as in protein nitration are highlighted.

  8. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives

    PubMed Central

    Martinez-Rossi, Nilce M.; Jacob, Tiago R.; Sanches, Pablo R.; Peres, Nalu T.A.; Lang, Elza A.S.; Martins, Maíra P.; Rossi, Antonio

    2016-01-01

    Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5′-nGAAn-3′) in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process. PMID:27226766

  9. Application of advanced oxidation processes for the treatment of cyanide containing effluent.

    PubMed

    Kim, Y J; Qureshi, T I; Min, K S

    2003-10-01

    Batch experiments were carried out for the removal of cyanide in the effluent of plating industry by the application of advanced oxidation processes. Four systems with different modes of oxidation in combination of ultra violet (UV) light with hydrogen peroxide and/or ozone were investigated. Of all the applied systems, UV-light with two oxidants, i.e. O3 (32 mg min(-1)), and H2O2 (1.36 g l(-1)) was found successful in bringing down the amount of cyanide from 157.32 mg l(-1) to 1.0 mg l(-1), which is the limit set by the Ministry of Environment of Korea for cyanide-containing discharges. Other systems, however, could not bring the cyanide abatement to the targeted value even with higher dosage of oxidants and an extended period of reaction time. Regardless of the oxidation modes applied, all the heavy metal ions in the treated effluent were reduced to 90%. Ultra violet light with the combination of two oxidants had the economic preference over the other systems since a relatively lower dosage of UV-light (2484 W-S cm(-2)) was found effective at achieving the targeted level of cyanide removal.

  10. Treatment of yellow water by membrane separations and advanced oxidation methods.

    PubMed

    Lazarova, Z; Spendlingwimmer, R

    2008-01-01

    Comparative experimental study is performed on purification of yellow wastewaters separated and collected in solarCity, Linz, Austria. Three membrane methods (micro-, ultra-, and nano-filtration), and two advanced oxidations (gamma radiation and electrochemical oxidation) were applied. Best results concerning the removal of pharmaceuticals and hormones from urine by membrane separation were achieved using the membrane NF-200 (FilmTec). Pharmaceuticals (ibuprofen and diclofenac), and hormones (oestrone, beta-oestradiol, ethenyloestradiol, oestriol) were removed completely from urine. NF-separation also has some disadvantages: losses of urea, and lowering the conductivity in the product (permeate). The retentates (concentrates) received have to be treated further by oxidation to destroy the "problem" compounds. The results showed that electrochemical oxidation is more suitable than gamma radiation. Gamma-radiation with intensities higher than 10 kGy has to be applied for efficiently destroying of ibuprofen, and especially diclofenac. A high quantity of intermediate "problem" substances with oestrone structure was formed during the gamma oxidation of hormone containing urine samples. The electrochemical oxidation can be successfully applied for elimination of pharmaceuticals such as diclofenac, and hormones (oestrone, beta-oestradiol) from yellow wastewater without loss of urea (nitrogen fertiliser).

  11. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.

  12. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  13. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g‑1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  14. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP).

    PubMed

    Sillanpää, Mika E T; Kurniawan, Tonni Agustiono; Lo, Wai-hung

    2011-06-01

    This article presents an overview with critical analysis of technical applicability of advanced oxidation process (AOP) in removing chelating agents from aqueous solution. Apart from the effect of metals for chelating agents as a major influencing factor, selected information such as pH, oxidant's dose, concentrations of pollutants and treatment performance is presented. The performance of individual AOP is compared. It is evident from our literature survey that photocatalysis with UV irradiation alone or coupled with TiO(2), ozonation and Fenton's oxidation are frequently applied to mineralize target pollutants. Overall, the selection of the most suitable AOP depends on the characteristics of effluents, technical applicability, discharge standard, regulatory requirements and environmental impacts.

  15. Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes.

    PubMed

    Cabrera-Codony, Alba; Gonzalez-Olmos, Rafael; Martín, Maria J

    2015-03-21

    In the context of the biogas upgrading, siloxane exhausted activated carbons need to be regenerated in order to avoid them becoming a residue. In this work, two commercial activate carbons which were proved to be efficient in the removal of octamethylcyclotetrasiloxane (D4) from biogas, have been regenerated through advanced oxidation processes using both O3 and H2O2. After the treatment with O3, the activated carbon recovered up to 40% of the original adsorption capacity while by the oxidation with H2O2 the regeneration efficiency achieved was up to 45%. In order to enhance the H2O2 oxidation, activated carbon was amended with iron. In this case, the regeneration efficiency increased up to 92%.

  16. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries.

    PubMed

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-15

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g(-1), long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  17. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    PubMed Central

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-01-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g−1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials. PMID:28294179

  18. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-02-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  19. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-03-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  20. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  1. Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Li, Zixuan; Xie, Boer; Sharp, Joshua S.

    2013-11-01

    Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

  2. The development of transgenic crops to improve human health by advanced utilization of seed storage proteins.

    PubMed

    Maruyama, Nobuyuki; Mikami, Bunzo; Utsumi, Shigeru

    2011-01-01

    Seed storage proteins are a major component of mature seeds. They are utilized as protein sources in foods. We designed seed storage proteins containing bioactive peptides based on their three-dimensional structures. Furthermore, to create crops with enhanced food qualities, we developed transgenic crops producing seed storage proteins with bioactive peptides. This strategy promises to prevent lifestyle-related diseases by simple daily food consumption. In this review, we discuss a strategy to develop transgenic crops to improve human health by advanced utilization of seed storage proteins.

  3. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges

    PubMed Central

    Vugmeyster, Yulia; Xu, Xin; Theil, Frank-Peter; Khawli, Leslie A; Leach, Michael W

    2012-01-01

    Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins. PMID:22558487

  4. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury.

    PubMed

    Ansari, Mubeen A; Roberts, Kelly N; Scheff, Stephen W

    2008-08-15

    Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.

  5. Increased Nitration and Carbonylation of Proteins in MRL +/+ Mice Exposed to Trichloroethene: Potential Role of Protein Oxidation in Autoimmunity

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Firoze Khan, M.

    2009-01-01

    Even though reactive oxygen and nitrogen species (RONS) are implicated as mediators of autoimmune diseases (ADs), little is known about contribution of protein oxidation (carbonylation and nitration) in the pathogenesis of such diseases. The focus of this study was, therefore, to establish a link between protein oxidation and induction and/or exacerbation of autoimmunity. To achieve this, female MRL +/+ mice were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 6 or 12 weeks (10 mmol/kg, i.p., every 4th day). TCE treatment resulted in significantly increased formation of nitrotyrosine (NT) and induction of iNOS in the serum at both 6 and 12 weeks of treatment, but the response was greater at 12 weeks. Likewise, TCE treatment led to greater NT formation, and iNOS protein and mRNA expression in the livers and kidneys. Moreover, TCE treatment also caused significant increases (~3 fold) in serum protein carbonyls (a marker of protein oxidation) at both 6 and 12 weeks. Significantly increased protein carbonyls were also observed in the livers and kidneys (2.1 and 1.3 fold, respectively) at 6 weeks, and to a greater extent at 12 weeks (3.5 and 2.1 fold, respectively) following TCE treatment. The increases in TCE-induced protein oxidation (carbonylation and nitration) were associated with significant increases in Th1 specific cytokine (IL-2, IFN-γ) release into splenocyte cultures. These results suggest an association between protein oxidation and induction/exacerbation of autoimmune response. The results present a potential mechanism by which oxidatively modified proteins could contribute to TCE-induced autoimmune response and necessitates further investigations for clearly establishing the role of protein oxidation in the pathogenesis of ADs. PMID:19332086

  6. Increased nitration and carbonylation of proteins in MRL +/+ mice exposed to trichloroethene: Potential role of protein oxidation in autoimmunity

    SciTech Connect

    Wang Gangduo; Wang Jianling; Ma Huaxian; Khan, M. Firoze

    2009-06-01

    Even though reactive oxygen and nitrogen species (RONS) are implicated as mediators of autoimmune diseases (ADs), little is known about contribution of protein oxidation (carbonylation and nitration) in the pathogenesis of such diseases. The focus of this study was, therefore, to establish a link between protein oxidation and induction and/or exacerbation of autoimmunity. To achieve this, female MRL +/+ mice were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 6 or 12 weeks (10 mmol/kg, i.p., every 4{sup th} day). TCE treatment resulted in significantly increased formation of nitrotyrosine (NT) and induction of iNOS in the serum at both 6 and 12 weeks of treatment, but the response was greater at 12 weeks. Likewise, TCE treatment led to greater NT formation, and iNOS protein and mRNA expression in the livers and kidneys. Moreover, TCE treatment also caused significant increases ({approx}3 fold) in serum protein carbonyls (a marker of protein oxidation) at both 6 and 12 weeks. Significantly increased protein carbonyls were also observed in the livers and kidneys (2.1 and 1.3 fold, respectively) at 6 weeks, and to a greater extent at 12 weeks (3.5 and 2.1 fold, respectively) following TCE treatment. The increases in TCE-induced protein oxidation (carbonylation and nitration) were associated with significant increases in Th1 specific cytokine (IL-2, IFN-{gamma}) release into splenocyte cultures. These results suggest an association between protein oxidation and induction/exacerbation of autoimmune response. The results present a potential mechanism by which oxidatively modified proteins could contribute to TCE-induced autoimmune response and necessitates further investigations for clearly establishing the role of protein oxidation in the pathogenesis of ADs.

  7. Comparative proteomic analysis of thiol proteins in the liver after oxidative stress induced by diethylnitrosamine.

    PubMed

    Aparicio-Bautista, Diana I; Pérez-Carreón, Julio I; Gutiérrez-Nájera, Nora; Reyes-Grajeda, Juan P; Arellanes-Robledo, Jaime; Vásquez-Garzón, Verónica R; Jiménez-García, Mónica N; Villa-Treviño, Saúl

    2013-12-01

    Conversion of protein -SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period.

  8. Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability.

    PubMed

    Halldorsdottir, Sigrun M; Sveinsdottir, Holmfridur; Freysdottir, Jona; Kristinsson, Hordur G

    2014-01-01

    Fish protein hydrolysates (FPH) have many desirable properties, however heating and shifts in pH can cause oxidation during enzymatic hydrolysis. The objective was to investigate oxidative processes during enzymatic hydrolysis of fish protein and the impact of oxidation on the antioxidant and immunomodulating ability of FPH. Protease P "Amano" 6 was used to hydrolyze cod protein in the presence and absence of pro-oxidants at pH 8 and 36°C to achieve 20% degree of hydrolysis. Results from thiobarbituric acid reactive substances (TBARS) and sensory analysis indicate that oxidation can develop rapidly during hydrolysis. A cellular antioxidant assay using a HepG2 cell model indicated a negative impact of oxidation products on antioxidant properties of the FPH while results obtained in chemical assays showed a negligible impact. Results from a dendritic cell model indicating that oxidation products may affect anti-inflammatory activity in the body. This study provides important information regarding bioactive FPH.

  9. Protein oxidation of a hair sample kept in Alaskan ice for 800-1000 years.

    PubMed

    Lubec, G; Zimmerman, M R; Teschler-Nicola, M; Stocchi, V; Aufderheide, A C

    1997-05-01

    Ancient finds of organic matter are not only of the highest value for palaeochemists and palaeobiologists but can be used to determine basic chemical reactions, such as protein oxidation, over long time periods. We studied oxidation of human hair protein about one thousand years old of an Alaskan child buried in ice, ten hair samples of copts of comparable age buried in graves of hot dry sand and compared the results to ten recent hair samples. Protein oxidation parameters o-tyrosine and cysteic acid of the Alaskan child were comparable to recent samples whereas they were higher in the coptic specimen. N-epsilon-carboxymethyllysine, a parameter for glycoxidation, however, was as high in coptic specimen. We conclude that ice in contrast to soil prevented protein oxidation but failed to inhibit glycoxidation, a reaction initiated by autooxidation of glucose. This study therefore has implications for the interpretation of oxidation and glycoxidation as well as preservation mechanisms of proteins.

  10. Online monitoring of Escherichia coli and Bacillus thuringiensis spore inactivation after advanced oxidation treatment.

    PubMed

    Sherchan, Samendra P; Snyder, Shane A; Gerba, Charles P; Pepper, Ian L

    2014-01-01

    Various studies have shown that advanced oxidation processes (AOPs) such as UV light in combination with hydrogen peroxide is an efficient process for the removal of a large variety of emerging contaminants including microorganisms. The mechanism of destruction in the presence of hydrogen peroxide (H2O2) is the enhanced formation of hydroxyl (·OH) radicals, which have a high oxidation potential. The goal of this study was to utilize in-line advanced oxidation to inactivate microbes, and document the inactivation via an in-line, real-time sensor. Escherichia coli cells and Bacillus thuringiensis spores were exposed to UV/H2O2 treatment in DI water, and the online sensor BioSentry(®) was evaluated for its potential to monitor inactivation in real-time. B. thuringiensis was selected as a non-pathogenic surrogate for B. anthracis, the causative agent of anthrax and a proven biological weapon. UV radiation and UV/H2O2 exposure resulted in a >6 log10 reduction of the viable culturable counts of E. coli vegetative cells, and a 3 log10 reduction of B. thuringiensis spores. Scanning electron microscopy of the treated samples revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the morphology of the B. thuringiensis spores. Following AOP exposure, the BioSentry sensor showed an increase in the categories of unknown, rod and spores counts, but overall, did not correspond well with viable count assays. Data from this study show that advanced oxidation processes effectively inactivate E. coli vegetative cells, but not B. thuringiensis spores, which were more resistant to AOP. Further, the BioSentry in-line sensor was not successful in documenting destruction of the microbial cells in real-time.

  11. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  12. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  13. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives.

  14. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system.

    PubMed

    Kastle, Marc; Grune, Tilman

    2011-12-01

    Living in an oxygen containing environment is automatically connected to oxidative stress. Beside lipids and nucleic acids, especially proteins are very susceptible for oxidative modifications. These oxidative modifications comprise alterations of single amino acids, like the formation of protein carbonyls and methionine sulfoxide, or the aggregation of whole proteins. Due to the ongoing accumulation of protein aggregates during the aging process, the cellular protein quality control system becomes more and more overwhelmed. One essential element of the protein quality control machinery is the ubiquitin proteasomal system which plays therefore a crucial part in the aging process, too. Ubiquitination of proteins is a three step mechanism to tag proteins with a polyubiquitin chain for the proteasome. The proteasome is a regulated, barrel-shaped multi-enzyme complex which is responsible for the degradation of proteins. Although there is no drastic loss of all proteasomal subunits during the aging process, there is a functional decline of the proteasome activity in aging organisms. Impairment of the ubiquitin proteasome system leads to increasing protein aggregation and cellular death. A lot of age related diseases are closely connected to an inhibition of the proteasome and the formation of large protein aggregates. Especially skin aging, atherosclerosis, age-dependent macula degeneration, cataract formation and several neurodegenerative diseases are directly connected to the decline of proteasome function. This review outlines the connections between aging, oxidative stress and protein oxidation, as well as the influence on the ubiquitin proteasomal system and several associated diseases.

  15. Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment.

    PubMed

    Güler, Göknur; Türközer, Zerrin; Ozgur, Elcin; Tomruk, Arin; Seyhan, Nesrin; Karasu, Cimen

    2009-03-01

    Modern age exposes humans to an increasing level of electromagnetic activity in their environment due to overhead power lines and transformers around residential areas. Studies have shown that treatment with antioxidants can suppress the oxidative damage induced by electromagnetic fields in various frequencies of the non-ionizing radiation band. In this study, we detected protein carbonyl content (PCO), advanced oxidation protein products (AOPP) in liver and 3-nitrotyrosine (3-NT) levels in plasma of guinea pigs in order to investigate the effects of N-acetyl-L-cysteine (NAC) administration on oxidative protein damage induced by power frequency electric (E) field (50 Hz, 12 kV/m, 7 days/8 h/day). We also analyzed hepatic hydroxyproline level to study protein synthesis. According to the findings of the present study, no statistically significant changes occurred in PCO, AOPP and 3-NT levels of the guinea pigs that were exposed to the E field with respect to the control group. However, liver hydroxyproline level was significantly diminished in the E field exposure group compared to the control and PCO, hydroxyproline and 3-NT levels changed significantly in the NAC-administrated groups.

  16. Dihydroxyacetone-induced death is accompanied by advanced glycation endproduct formation in selected proteins of Saccharomyces cerevisiae and Caenorhabditis elegans.

    PubMed

    Molin, Mikael; Pilon, Marc; Blomberg, Anders

    2007-10-01

    Advanced glycation endproduct (AGE) formation is an important mechanism for protein deterioration during diabetic complications and ageing. The effects on AGE formation following dihydroxyacetone (DHA) stress were studied in two model organisms, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Total protein AGEs, detected using an anti-N(epsilon)-carboxyalkyllysine-specific monoclonal antibody, displayed a strong correlation to DHA-induced yeast cell mortality in the wild-type and hypersensitive as well as resistant mutant strains. During DHA-induced cell death we also detected AGEs as the formation of acidic protein modifications by 2-D PAGE. Furthermore, we confirmed AGE targets immunologically on 2-D gel-separated protein extracted from DHA-treated cells. AGE modification of several metabolic enzymes (Eno2p, Adh1p, Met6 and Pgk1p) and actin (Act1p) displayed a strong correlation to DHA-induced cell death. DHA was toxic to C. elegans even at low concentration and also in this organism AGE formation accompanied death. We propose the use of DHA as a model AGE-generating substance for its apparent lack of a clear oxidative stress connection, and yeast and worm as model organisms to identify genetic determinants of protein AGE formation.

  17. Influence of sodium nitrite on protein oxidation and nitrosation of sausages subjected to processing and storage.

    PubMed

    Feng, Xianchao; Li, Chenyi; Jia, Xu; Guo, Yan; Lei, Na; Hackman, Robert M; Chen, Lin; Zhou, Guanghong

    2016-06-01

    The influence of NaNO2 content on protein oxidation and nitrosation was investigated in cooked sausages at different concentrations (0, 50, 100, 200 and 400 mg NaNO2/kg). Dependent on concentration, NaNO2 had both anti- and pro-oxidant effects on protein oxidation. The antioxidant effects of NaNO2 on the protein oxidation were evidenced by significantly lower carbonyl contents, higher free amines and lower surface hydrophobicities. The pro-oxidant effects of NaNO2 on protein oxidation resulted in a decrease of sulfhydryls and an increase of disulfide bonds. NaNO2 also improved the protein nitrosation inducing the formation of 3-nitrotyrosine (3-NT). Moreover, 3-NT had significant correlations with parameters of protein oxidation, indicating that 3-NT may be a possible marker for protein oxidation. Results of this study contribute to an understanding of the impact of NaNO2 on food quality and help to identify optimal formulations of cured meat products.

  18. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. First year progress report

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.

    1997-07-01

    'The authors have made considerable progress toward a number of project objectives during the first several months of activity on the project. An exhaustive analysis was made of the growth rate and biomass yield (both derived from measurements of cell protein production) of two representative strains of Fe(III)-reducing bacteria (Shewanellaalga strain BrY and Geobactermetallireducens) growing with different forms of Fe(III) as an electron acceptor. These two fundamentally different types of Fe(III)-reducing bacteria (FeRB) showed comparable rates of Fe(III) reduction, cell growth, and biomass yield during reduction of soluble Fe(III)-citrate and solid-phase amorphous hydrous ferric oxide (HFO). Intrinsic growth rates of the two FeRB were strongly influenced by whether a soluble or a solid-phase source of Fe(III) was provided: growth rates on soluble Fe(III) were 10--20 times higher than those on solid-phase Fe(III) oxide. Intrinsic FeRB growth rates were comparable during reduction of HF0 and a synthetic crystalline Fe(III) oxide (goethite). A distinct lag phase for protein production was observed during the first several days of incubation in solid-phase Fe(III) oxide medium, even though Fe(III) reduction proceeded without any lag. No such lag between protein production and Fe(III) reduction was observed during growth with soluble Fe(III). This result suggested that protein synthesis coupled to solid-phase Fe(III) oxide reduction in batch culture requires an initial investment of energy (generated by Fe(III) reduction), which is probably needed for synthesis of materials (e.g. extracellular polysaccharides) required for attachment of the cells to oxide surfaces. This phenomenon may have important implications for modeling the growth of FeRB in subsurface sedimentary environments, where attachment and continued adhesion to solid-phase materials will be required for maintenance of Fe(III) reduction activity. Despite considerable differences in the rate and pattern

  19. Dynamics of protein damage in yeast frataxin mutant exposed to oxidative stress.

    PubMed

    Kim, Jin-Hee; Sedlak, Miroslav; Gao, Qiang; Riley, Catherine P; Regnier, Fred E; Adamec, Jiri

    2010-12-01

    Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.

  20. The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks.

    PubMed

    Sinz, Andrea

    2014-12-01

    During the last 15 years, chemical cross-linking combined with mass spectrometry (MS) and computational modeling has advanced from investigating 3D-structures of isolated proteins to deciphering protein interaction networks. In this article, the author discusses the advent, the development and the current status of the chemical cross-linking/MS strategy in the context of recent technological developments. A direct way to probe in vivo protein-protein interactions is by site-specific incorporation of genetically encoded photo-reactive amino acids or by non-directed incorporation of photo-reactive amino acids. As the chemical cross-linking/MS approach allows the capture of transient and weak interactions, it has the potential to become a routine technique for unraveling protein interaction networks in their natural cellular environment.

  1. Basics and recent advances in peptide and protein drug delivery

    PubMed Central

    Bruno, Benjamin J; Miller, Geoffrey D; Lim, Carol S

    2014-01-01

    While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed. PMID:24228993

  2. Advances in chemical labeling of proteins in living cells

    PubMed Central

    Yan, Qi; Bruchez, Marcel P.

    2015-01-01

    Summary The pursuit of quantitative biological information with imaging requires robust labeling approaches that can be used in multiple applications and with a variety of detectable colors and properties. In addition to conventional fluorescent proteins, chemists and biologists have come together to provide a range of approaches that combine dye chemistry with the convenience of genetic targeting. This hybrid-tagging approach combines the rational design of properties available through synthetic dye chemistry with the robust biological targeting available with genetic encoding. In this review, we discuss the current range of approaches that have been exploited for dye targeting, or targeting and activation, and some of the recent applications that are uniquely enabled by these hybrid-tagging approaches. PMID:25743694

  3. Protein oxidation during frozen storage and subsequent processing of different beef muscles.

    PubMed

    Utrera, Mariana; Parra, Vita; Estévez, Mario

    2014-02-01

    This study examined the relationship between protein and lipid oxidation and the impairment of the water holding capacity (WHC), redness and instrumental hardness occurring during 20 weeks of frozen storage (-18 °C) and subsequent processing (cooking, chilled storage) of psoas major, quadriceps femoris and longissimus dorsi beef patties. Patties were analyzed at sampling times upon thawing (weeks 0, 4, 8, 12 and 20) for lipid (TBARS, hexanal) and protein oxidation products (α-aminoadipic and γ-glutamic semialdehydes, α-aminoadipic acid, Schiff bases). A significant impact of frozen storage on protein oxidation was found, which occurred concomitantly with a loss of WHC, redness and significant changes in the hardness of cooked patties. Heme-iron, endogenous antioxidant enzymes and to a lower extent, fatty acid composition, played a role in the oxidative stability of patties. Plausible mechanisms by which particular protein oxidation changes may lead to loss of WHC and impaired quality traits were discussed.

  4. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages.

    PubMed

    Fuentes, Verónica; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-03-15

    This study aims to investigate the effect of lipid content (∼4%, ∼10% and ∼15%) and composition (different lipid sources; animal fat and sunflower oil) on the oxidative stability of proteins and lipids in experimental fermented sausages. Increasing the lipid content of sausages enhanced the susceptibility of lipids to oxidation whereas the effect on the formation of specific carbonyls from protein oxidation was not so evident. Sausages manufactured with different lipid sources affected the susceptibility of lipids and proteins to oxidation as a likely result of the modifications in the fatty acid profile, as well as to the presence of antioxidant compounds. While the fatty acid profile had a major effect on the occurrence and extent of lipid oxidation, the presence of compounds with potential antioxidant activity may be more influential on the extent of protein carbonylation.

  5. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain.

    PubMed

    Korolainen, Minna A; Goldsteins, Gundars; Nyman, Tuula A; Alafuzoff, Irina; Koistinaho, Jari; Pirttilä, Tuula

    2006-01-01

    There is a large body of evidence highlighting the importance of oxidative stress in the pathogenesis of Alzheimer's disease (AD). We have previously standardised a method that can be applied to study oxidative changes in individual brain proteins by using two-dimensional oxyblots (Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J, Pirttilä T. Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 2002;23(19):3428-33). Here we have identified proteins that exhibited oxidative changes in AD when compared to age-matched controls and these protein changes have been further examined in relation to the neuropathological data. Indeed, several Tris-HCl soluble proteins tended to be less oxidised in AD when compared to controls. Two enzymes, mitochondrial glutamate dehydrogenase and cytosolic malate dehydrogenase, were increased in amount but showed significantly decreased degree of oxidation in AD brains when compared to controls. Furthermore, some changes related to the amounts or oxidation statuses of proteins were associated with the duration of the clinical impairment and also with the neuropathology. These results do not contradict the hypothesis of increased oxidative stress in AD but may represent co-existing compensatory changes in response to oxidative stress.

  6. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds.

    PubMed

    Viljanen, Kaarina; Kivikari, Riitta; Heinonen, Marina

    2004-03-10

    Oxidation of bovine serum albumin, casein, and lactalbumin and the effect of different procyanidins, anthocyanins, and their aglycons (10 and 20 microM) on lactalbumin oxidation were investigated in a liposome system. Samples were incubated in the dark at 37 degrees C with copper, and the extent of oxidation was measured by determining the loss of tryptophan fluorescence and the formation of protein carbonyls, conjugated diene hydroperoxides, and hexanal. The correlation between different protein and lipid oxidation measurements was good and statistically significant. Casein was the most stable protein in the liposome model, and it was also the best inhibitor of liposome oxidation. All tested anthocyanins and other phenolic compounds inhibited both lipid and protein oxidation. There were no systematic differences with anthocyanins and their aglycons in relation to the concentrations used or glycosylation with either glucose or rutinose. Procyanidins B1 and B2 and ellagic acid were potentially better antioxidants than anthocyanins due to their several hydroxyl groups as measured by both protein and lipid oxidation. In conclusion, oxidative deterioration of liposomes due to protein-lipid interaction is inhibited by anthocyanins, procyanidins, and ellagitannin present, for example, in berries.

  7. Biodegradability of iopromide products after UV/H₂O₂ advanced oxidation.

    PubMed

    Keen, Olya S; Love, Nancy G; Aga, Diana S; Linden, Karl G

    2016-02-01

    Iopromide is an X-ray and MRI contrast agent that is virtually non-biodegradable and persistent through typical wastewater treatment processes. This study determined whether molecular transformation of iopromide in a UV/H2O2 advanced oxidation process (AOP) can result in biodegradable products. The experiments used iopromide labeled with carbon-14 on the aromatic ring to trace degradation of iopromide through UV/H2O2 advanced oxidation and subsequent biodegradation. The biotransformation assay tracked the formation of radiolabeled (14)CO2 which indicated full mineralization of the molecule. The results indicated that AOP formed biodegradable iopromide products. There was no (14)C released from the pre-AOP samples, but up to 20% of all radiolabeled carbon transformed into (14)CO2 over the course of 42 days of biodegradation after iopromide was exposed to advanced oxidation (compared to 10% transformation in inactivated post-AOP controls). In addition, the quantum yield of photolysis of iopromide was determined using low pressure (LP) and medium pressure (MP) mercury lamps as 0.069 ± 0.005 and 0.080 ± 0.007 respectively. The difference in the quantum yields for the two UV sources was not statistically significant at the 95% confidence interval (p = 0.08), which indicates the equivalency of using LP or MP UV sources for iopromide treatment. The reaction rate between iopromide and hydroxyl radicals was measured to be (2.5 ± 0.2) × 10(9) M(-1) s(-1). These results indicate that direct photolysis is a dominant degradation pathway in UV/H2O2 AOP treatment of iopromide. Other iodinated contrast media may also become biodegradable after exposure to UV or UV/H2O2.

  8. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    PubMed

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment.

  9. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems.

  10. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes.

    PubMed

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs.

  11. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Lai, Peng

    2009-09-01

    Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density 20-60mAcm(-2), pH 3-11, and temperature 20-60 degrees C) using BDD anode, complete mineralization of organic pollutants was almost achieved, and surplus ammonia-nitrogen (NH(3)-N) was further removed thoroughly when pH was not adjusted or at alkaline value. Moreover, the TOC and NH(3)-N removal rates in BDD anode cell were much greater than those in other common anode systems such as SnO(2) and PbO(2) anodes cells. Given the same target to meet the National Discharge Standard of China, the energy consumption of 64kWhkgCOD(-1) observed in BDD anode system was only about 60% as much as those observed in SnO(2) and PbO(2) anode systems. Further investigation revealed that, in BDD anode cell, organic pollutants were mainly degraded by reaction with free hydroxyl radicals and electrogenerated oxidants (S(2)O(8)(2-), H(2)O(2), and other oxidants) played a less important role, while direct electrochemical oxidation and indirect electrochemical oxidation mediated by active chlorine can be negligible. These results showed great potential of BDD anode system in engineering application as a final treatment of coking wastewater.

  12. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  13. Ozone catalysed with solids as an advanced oxidation process for landfill leachate treatment.

    PubMed

    Tizaoui, C; Mansouri, L; Bousselmi, L

    2007-01-01

    Heterogeneous catalytic ozonation (HCO) of wastewater is gaining both research and industrial interests. It is proved to be an advanced oxidation process since it involves hydroxyl radicals as oxidation species. Few studies have been carried out to test HCO in the treatment of landfill leachates. This work has been carried out to test three types of catalysts: activated carbon (AC), expanded perlite (EP) and titanium dioxide (TiO2) combined with ozone at 80 g/m3 gas concentration for the treatment of a leachate generated by Jebel Chakir landfill site near Tunis-capital of Tunisia. The work has shown a reduction in COD of about 45% and an increase in biodegradability (BOD5/COD) from 0.1 to 0.34. A catalyst concentration of 0.7 g/L was found optimal for the treatment of the leachate.

  14. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  15. Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides.

    PubMed

    Kovács, Krisztina; Farkas, János; Veréb, Gábor; Arany, Eszter; Simon, Gergő; Schrantz, Krisztina; Dombi, András; Hernádi, Klára; Alapi, Tünde

    2016-01-01

    Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization.

  16. Remediation of phenol, lignin and paper effluents by advanced oxidative processes.

    PubMed

    Peralta-Zamora, P; Wypych, F; Carneiro, L M; Vaz, S R

    2004-12-01

    The tremendous environmental impact of pulping and bleaching effluents and the relatively low efficiency of the current biological remediation processes represent one of the most important problems of the paper industry. In this work the efficiency of heterogeneous and homogeneous advanced oxidative processes was evaluated toward the degradation of model substrates (phenol and lignin) and the remediation of paper effluents. Best results were found by application of the UV-H2O2 system, with almost total discoloration of both pulping and bleaching effluents and typical COD removal higher than 60%, at reaction times of 120 min. In view of the reported results, and mainly on account of the simplicity of the UV-H2O2 system, shows good potential for the advanced process to remediation of recalcitrant effluents like those studied in this present work.

  17. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  18. Association of oxidative DNA damage, protein oxidation and antioxidant function with oxidative stress induced cellular injury in pre-eclamptic/eclamptic mothers during fetal circulation.

    PubMed

    Negi, Reena; Pande, Deepti; Karki, Kanchan; Kumar, Ashok; Khanna, Ranjana S; Khanna, Hari D

    2014-02-05

    Pre-eclampsia is a devastating multi system syndrome and a major cause of maternal, fetal, neonatal morbidity and mortality. Pre-eclampsia is associated with oxidative stress in the maternal circulation. To have an insight on the effect of pre-eclampsia/eclampsia on the neonates, the study was made to explore the oxidative status by quantification of byproducts generated during protein oxidation and oxidative DNA damage and deficient antioxidant activity in umbilical cord blood of pre-eclamptic/eclamptic mothers during fetal circulation. Umbilical cord blood during delivery from neonates born to 19 pre-eclamptic mothers, 14 eclamptic mothers and 18 normotensive mothers (uncomplicated pregnancy) as control cases was collected. 8-OHdG (8-hydroxy-2-deoxyguanosine), protein carbonyl, nitrite, catalase, non-enzymatic antioxidants (vitamin A, E, C), total antioxidant status and iron status were determined. Significant elevation in the levels of 8-OHdG, protein carbonyl, nitrite and iron along with decreased levels of catalase, vitamin A, E, C, total antioxidant status were observed in the umbilical cord blood of pre-eclamptic and eclamptic pregnancies. These parameters might be influential variables for the risk of free radical damage in infants born to pre-eclamptic/eclamptic pregnancies. Increased oxidative stress causes oxidation of DNA and protein which alters antioxidant function. Excess iron level and decreased unsaturated iron binding capacity may be the important factor associated with oxidative stress and contribute in the pathogenesis of pre-eclampsia/eclampsia which is reflected in fetal circulation.

  19. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  20. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    PubMed

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings

  1. Efficiency of advanced oxidation processes in lowering bisphenol A toxicity and oestrogenic activity in aqueous samples.

    PubMed

    Plahuta, Maja; Tišler, Tatjana; Toman, Mihael Jožef; Pintar, Albin

    2014-03-01

    Bisphenol A (BPA) is a well-known endocrine disruptor with adverse oestrogen-like effects eliciting adverse effects in humans and wildlife. For this reason it is necessary to set up an efficient removal of BPA from wastewaters, before they are discharged into surface waters. The aim of this study was to compare the efficiency of BPA removal from aqueous samples with photolytic, photocatalytic, and UV/H₂O₂ oxidation. BPA solutions were illuminated with different bulbs (halogen; 17 W UV, 254 nm; and 150 W UV, 365 nm) with or without the TiO₂ P-25 catalyst or H₂O₂ (to accelerate degradation). Acute toxicity and oestrogenic activity of treated samples were determined using luminescent bacteria (Vibrio fischeri), water fleas (Daphnia magna), zebrafish embryos (Danio rerio), and Yeast Estrogen Screen (YES) assay with genetically modified yeast Saccharomyces cerevisiae. The results confirmed that BPA is toxic and oestrogenically active. Chemical analysis showed a reduction of BPA levels after photolytic treatment and 100 % conversion of BPA by photocatalytic and UV/H₂O₂ oxidation. The toxicity and oestrogenic activity of BPA were largely reduced in photolytically treated samples. Photocatalytic oxidation, however, either did not reduce BPA toxic and oestrogenic effects or even increased them in comparison with the baseline, untreated BPA solution. Our findings suggest that chemical analysis is not sufficient to determine the efficiency of advanced oxidation processes in removing pollutants from water and needs to be complemented with biological tests.

  2. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants.

  3. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources.

  4. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods.

    PubMed

    Boye, Birame; Dieng, Momar M; Brillas, Enric

    2002-07-01

    The herbicide 4-chlorophenoxyacetic acid (4-CPA) has been degraded in aqueous medium by advanced electrochemical oxidation processes such as electro-Fenton and photoelectro-Fenton with UV light, using an undivided cell containing a Pt anode. In these environmentally clean methods, the main oxidant is the hydroxyl radical produced from Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated from an 02-diffusion cathode. Solutions of a 4-CPA concentration <400 ppm within the pH range of 2.0-6.0 at 35 degrees C can be completely mineralized at low current by photoelectro-Fenton, while electro-Fenton leads to ca. 80% of mineralization. 4-CPA is much more slowly degraded by anodic oxidation in the absence and presence of electrogenerated H2O2. 4-Chlorophenol, 4-chlorocatechol, and hydroquinone are identified as aromatic intermediates by CG-MS and quantified by reverse-phase chromatography. Further oxidation of these chloroderivatives yields stable chloride ions. Generated carboxylic acids such as glycolic, glyoxylic, formic, malic, maleic, fumaric, and oxalic are followed by ion exclusion chromatography. The highest mineralization rate found for photoelectro-Fenton is accounted for by the fast photodecomposition of complexes of Fe3+ with such short-chain acids, mainly oxalic acid, under the action of UV light.

  5. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  6. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  7. US-UK Collaboration on Fossil Energy Advanced Materials: Task 1—Steam Oxidation

    SciTech Connect

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    2016-04-19

    This presentation goes over the following from the US-UK collaboration on Fossil Energy Advanced Materials: Task 1, Steam Oxidation: US-led or co-led deliverables, Phase II products (US), 2011-present, Phase III products, Phase III Plan, an explanation of sCO2 compared with sH2O, an explanation of Ni-base Alloys, an explanation of 300 Series (18Cr-8Ni)/E-Brite, an explanation of the typical Microchannel HX Fabrication process, and an explanation of diffusion bonded Ni-base superalloys.

  8. Sono-bromination of aromatic compounds based on the ultrasonic advanced oxidation processes.

    PubMed

    Fujita, Mitsue; Lévêque, Jean-Marc; Komatsu, Naoki; Kimura, Takahide

    2015-11-01

    A novel, mild "sono-halogenation" of various aromatic compounds with potassium halide was investigated under ultrasound in a biphasic carbon tetrachloride/water medium. The feasibility study was first undertaken with the potassium bromide and then extended to chloride and iodide analogues. This methodology could be considered as a new expansion of the ultrasonic advanced oxidation processes (UAOPs) into a synthetic aspect as the developed methodology is linked to the sonolytic disappearance of carbon tetrachloride. Advantages of the present method are not only that the manipulation of the bromination is simple and green, but also that the halogenating agents used are readily available, inexpensive, and easy-handling.

  9. Back-regulation of six oxidative stress proteins with grape seed proanthocyanidin extracts in rat diabetic nephropathy.

    PubMed

    Li, Bao-Ying; Cheng, Mei; Gao, Hai-Qing; Ma, Ya-Bing; Xu, Ling; Li, Xian-Hua; Li, Xiao-Li; You, Bei-An

    2008-05-15

    Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetic patients. To prevent the development of this disease and to improve advanced kidney injury, effective therapies directed toward the key molecular target are required. Grape seed proanthocyanidin extracts (GSPE) have been reported to be effective in treating DN, while little is known about the functional protein changes. In this study, we used streptozotocin (STZ) to induce diabetic rats. GSPE (250 mg/kg body weight/day) were administrated to diabetic rats for 24 weeks. Serum glucose, glycated hemoglobin, and advanced glycation end products were determined. Consequently, 2-D difference gel electrophoresis and mass spectrometry were used to investigate kidney protein profiles among the control, untreated and GSPE treated diabetic rats. Twenty-five proteins were found either up-regulated or down-regulated in the kidneys of untreated diabetic rats. Only nine proteins in the kidneys of diabetic rats were found to be back-regulated to normal levels after GSPE therapy. These back-regulated proteins are involved in oxidative stress, glycosylation damage, and amino acids metabolism. Our findings might help to better understanding of the mechanism of DN, and provide novel targets for estimating the effects of GSPE therapy.

  10. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    NASA Astrophysics Data System (ADS)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  11. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress.

    PubMed

    Murray, James; Oquendo, C Elisa; Willis, John H; Marusich, Michael F; Capaldi, Roderick A

    2008-01-01

    High levels of free radicals produced by the mitochondrial respiratory chain, with subsequent damage to mitochondria have been implicated in a large and growing number of diseases. The underlying pathology of these diseases is oxidative damage to mitochondrial DNA, lipids and proteins which accumulate over time to produce a metabolic deficiency. We are developing an antibody based immunocapture array for many important mitochondrial proteins involved in free radical production, detoxification and mitochondrial energy production. Our array is capable of a multi-parameter measurement including enzyme activity, quantity, and oxidative protein modifications. Here we demonstrate the use of this array by analyzing the proteomic differences in OXPHOS (oxidative phosphorylation) enzymes between human heart and liver tissues, cells grown in media promoting aerobic versus anaerobic metabolism, and the catalytic/proteomic effects of mitochondria exposed to oxidative stress. Protein oxidation is identified as carbonyl formation arising from reactive oxygen species and 3-nitrotyrosine as a marker of reactive nitrogen species. Several identified modifications are confirmed by electrophoresis and mass spectrometry of immunocaptured material. We continue to expand this array as antibodies for enzyme isolation and detection become available.

  12. Advances in Instrumentation for Quantification of Isotopic Nitrous Oxide from ppb levels to 100%

    NASA Astrophysics Data System (ADS)

    Dong, F.; Gupta, M.; Leen, J.; Provencal, R. A.; Owano, T. G.; Baer, D. S.

    2013-12-01

    The isotopic composition of trace gases provides information of their origin and fate that cannot be determined from their concentration measurements alone. Biological source and loss processes, like bacterial production of nitrous oxide, are typically accompanied by isotopic selectivity associated with the kinetics of bond formation and destruction. Of the three important biologically mediated greenhouse gases (CO2, CH4 and N2O), the understanding of nitrous oxide isotopic budget in air lags behind the other two gases primarily due to the relatively low concentration of N2O in ambient air (~320 ppb). Furthermore, the origin of nitrates in rivers, lakes, ocean and other water supplies may be determined from analyses of isotopic nitrous oxide produced via chemical reduction or biological conversion. These processes can produce nitrous oxide at levels considerably greater than those present in ambient air. To date, analyses of isotopic nitrous oxide requires either pre-concentration of samples containing low concentrations or dilution of samples with high concentrations. We report significant advances of instrumentation for real-time measurements of site-specific isotopic nitrogen (δ15Nα, δ15Nβ, δ15N, δ18O) and mixing ratio [N2O] of nitrous oxide over a very wide range of mole fractions in air. Specifically, LGR's Isotopic N2O Analyzer can report site-specific isotopic nitrogen and isotopic oxygen continuously in flows ranging from 0.2 to over 20 ppm (parts per million) nitrous oxide in air (with preconcentration or dilution). Furthermore, for samples of limited volume, a batch technique may be used for similar isotopic measurements in discrete samples containing 0.2 ppm to 100% nitrous oxide (e.g., sample volumes from bacterial digestion can be as little as 1-10 mL). This novel technology, which employs cavity enhanced absorption spectroscopy (Off-Axis ICOS) and a mid-infrared laser (4.56 microns) and does not require any cryogenic components, has been

  13. Recent advances from studies on the role of structural proteins in enterovirus infection.

    PubMed

    Wen, Xingjian; Cheng, Anchun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Chen, Shun; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue

    2015-01-01

    Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus-host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.

  14. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    PubMed

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to <1ppm, DNA to <1ppb, protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%.

  15. Protein oxidation in processed cheese slices treated with pulsed light technology.

    PubMed

    Fernández, M; Ganan, M; Guerra, C; Hierro, E

    2014-09-15

    The effect of pulsed light technology on protein oxidation was studied in sliced processed cheese by measuring the protein-bound carbonyls with a spectrophotometric DNPH assay. Bovine serum albumin was also tested as a protein standard. Fluences of 0.7, 2.1, 4.2, 8.4 and 11.9 J/cm(2) were applied to vacuum-packaged cheese slices and to an aqueous solution of the protein. Treatments up to 4.2 J/cm(2) did not promote protein oxidation immediately after flashing either in cheese or in the standard. Samples treated with 8.4 and 11.9 J/cm(2) showed significantly higher carbonyl amounts than non-treated ones. Protein oxidation increased along cheese storage at 4°C, and differences among treatments remained. Further studies on the sensory properties will be needed to clarify the impact of pulsed light on processed cheese quality.

  16. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.

    PubMed

    Durante, Christian; Cuscov, Marco; Isse, Abdirisak Ahmed; Sandonà, Giancarlo; Gennaro, Armando

    2011-02-01

    Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste, EDTA has been used both as a chelating agent and as a mimic of the organic content of a typical wastewater provided by a purification leather plant. A crucial point evaluated is the influence of the oxidative pretreatment on the chemical modification of the synthetic waste and hence on the electrocoagulation efficacy. Because of the great stability of Cr complexes, such as Cr-EDTA, the classical coagulation methods, based on ligand exchange between Cr(III) and Fe(II) or Fe(III), are ineffective toward Cr abatement in the presence of organic substances. On the contrary, when advanced oxidation processes (AOPs), such as ozonization or electrooxidation at a BDD anode are applied in series with electrocoagulation (EC), complete abatement of the recalcitrant Cr fraction can be achieved. ECs have been carried out by using Fe sacrificial anodes, with alternating polarization and complete Cr abatement (over 99%) has been obtained with modest charge consumption. It has been found that Cr(III) is first oxidized to Cr(VI) in the AOP preceding EC. Then, during EC, Cr(VI) is mainly reduced back to Cr(III) by electrogenerated Fe(II). Thus, Cr is mainly eliminated as Cr(III). However, a small fraction of Cr(VI) goes with the precipitate as confirmed by XPS analysis of the sludge.

  17. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

  18. Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes.

    PubMed

    Afonso-Olivares, Cristina; Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2016-12-01

    Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.

  19. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.

  20. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes.

    PubMed

    Sanches, Sandra; Barreto Crespo, Maria T; Pereira, Vanessa J

    2010-03-01

    This study reports the efficiency of low pressure UV photolysis for the degradation of pesticides identified as priority pollutants by the European Water Framework Directive 2000/60/EC. Direct low pressure UV photolysis and advanced oxidation processes (using hydrogen peroxide and titanium dioxide) experiments were conducted in laboratory grade water, surface water, and groundwater. LP direct photolysis using a high UV fluence (1500 mJ/cm(2)) was found to be extremely efficient to accomplish the degradation of all pesticides except isoproturon, whereas photolysis using hydrogen peroxide and titanium dioxide did not significantly enhance their removal. In all matrices tested the experimental photolysis of the pesticides followed the same trend: isoproturon degradation was negligible, alachlor, pentachlorophenol, and atrazine showed similar degradation rate constants, whereas diuron and chlorfenvinphos were highly removed. The degradation trend observed for the selected compounds followed the decadic molar absorption coefficients order with exception of isoproturon probably due to its extremely low quantum yield. Similar direct photolysis rate constants were obtained for each pesticide in the different matrices tested, showing that the water components did not significantly impact degradation. Extremely similar photolysis rate constants were also obtained in surface water for individual compounds when compared to mixtures. The model fluence and time-based rate constants reported were very similar to the direct photolysis experimental results obtained, while overestimating the advanced oxidation results. This model was used to predict how degradation of isoproturon, the most resilient compound, could be improved.

  1. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    PubMed

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent.

  2. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  3. Development of Polyclonal Antibodies for the Detection of Styrene Oxide Modified Proteins

    PubMed Central

    Yuan, Wei; Chung, Jouku; Gee, Shirley; Hammock, Bruce D.; Zheng, Jiang

    2008-01-01

    Styrene is widely used as one of the most important industrial materials for the production of synthetic rubbers, plastic, insulation, fiberglass, and automobile parts. Inhaled styrene has been reported to produce respiratory toxicity in humans and animals. Styrene oxide, a reactive metabolite of styrene formed via cytochrome P450 enzymes, has been reported to form covalent bonds with proteins, such as albumin and hemoglobin. Among all of the amino acids, cysteine is the most reactive amino acid to be modified by electrophilic species. The purpose of this study is to develop polyclonal antibodies for the detection of styrene oxide cysteinyl protein adducts. Two immunogens were designed, synthesized, and used to induce polyclonal antibodies in rabbits. Immune responses were observed from the raised antibodies by antiserum dilution tests. Competitive ELISA demonstrated that the resulting antibodies specifically recognized the styrene oxide-derived N-acetylcysteine adduct. Western blot results showed that the antibodies recognize styrene oxide-modified albumin. The binding was found to depend on the amount of protein adducts blotted and hapten loading in protein adducts. No cross reaction was observed from the native protein. Competitive Western blots further indicated that these antibodies specifically recognized styrene oxide cysteinyl–protein adducts. Immunoblots revealed the presence of several bands at a molecular weight ranging from 50 to 80 kDa in rat nasal mucosa treated with styrene. In conclusion, we successfully raised polyclonal antibodies to detect styrene oxide-derived protein/cysteine adducts. PMID:17266334

  4. Effects of protein and peptide addition on lipid oxidation in powder model system.

    PubMed

    Park, Eun Young; Murakami, Hiroshi; Mori, Tomohiko; Matsumura, Yasuki

    2005-01-12

    The effect of protein and peptide addition on the oxidation of eicosapentaenoic acid ethyl ester (EPE) encapsulated by maltodextrin (MD) was investigated. The encapsulated lipid (powder lipid) was prepared in two steps, i.e., mixing of EPE with MD solutions (+/- protein and peptides) to produce emulsions and freeze-drying of the resultant emulsions. EPE oxidation in MD powder progressed more rapidly in the humid state [relative humidity (RH) = 70%] than in the dry state (RH = 10%). The addition of soy protein, soy peptide, and gelatin peptides improved the oxidation stability of EPE encapsulated by MD, and the inhibition of lipid oxidation by the protein and the peptides was more dramatic in the humid state. Especially, the oxidation of EPE was almost perfectly suppressed when the lipid was encapsulated with MD + soy peptide during storage in the humid state for 7 days. Several physical properties such as the lipid particle size of the emulsions, the fraction of nonencapsulated lipids, scanning electron microscopy images of powder lipids, and the mobility of the MD matrix were investigated to find the modification of encapsulation behavior by the addition of the protein and peptides, but no significant change was observed. On the other hand, the protein and peptides exhibited a strong radical scavenging activity in the powder systems as well as in the solution systems. These results suggest that a chemical mechanism such as radical scavenging ability plays an important role in the suppression of EPE oxidation in MD powder by soy proteins, soy peptides, and gelatin peptides.

  5. In situ observation of elementary growth processes of protein crystals by advanced optical microscopy.

    PubMed

    Sazaki, Gen; Van Driessche, Alexander E S; Dai, Guoliang; Okada, Masashi; Matsui, Takuro; Otálora, Fermin; Tsukamoto, Katsuo; Nakajima, Kazuo

    2012-07-01

    To start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals. AFM also cannot visualize the dynamic behavior of mobile solute and impurity molecules on protein crystal surfaces. To compensate for these disadvantages of AFM, in situ observation by two types of advanced optical microscopy has been recently performed. To observe the elementary steps of protein crystals noninvasively, laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM) was developed. To visualize individual mobile protein molecules, total internal reflection fluorescent (TIRF) microscopy, which is widely used in the field of biological physics, was applied to the visualization of protein crystal surfaces. In this review, recent progress in the noninvasive in situ observation of elementary steps and individual mobile protein molecules on protein crystal surfaces is outlined.

  6. Degradation of diethyl phthalate in treated effluents from an MBR via advanced oxidation processes: effects of nitrate on oxidation and a pilot-scale AOP operation.

    PubMed

    Park, J H; Park, C G; Lee, J W; Ko, K B

    2010-01-01

    The major objective of this study was to delineate the oxidation of diethyl phthalate (DEP) in water, using bench-scale UV/H2O2 and O3/H2O2 processes, and to determine the effects of nitrate (NO(3-)-N, 5 mg L(-1)) on this oxidation. The oxidation of DEP was also investigated through a pilot-scale advanced oxidation process (AOP), into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. The bench-scale operation showed that DEP could be oxidized via solely UV oxidation or O3 oxidation. The adverse effect of nitrate on the DEP oxidation was remarkable in the UV/H2O2 process, and the nitrate clearly reduced its oxidation. The adverse effect of nitrate on O3 oxidation was also observed. It was noted, however, that the nitrate clearly enhanced the DEP oxidation in the O3/H2O2 process. A series of pilot-scale AOP operations indicated that the addition of H2O2 enhanced DEP oxidation in both the UV/H2O2 and O3/H2O2 processes. No noticeable adverse effect of nitrate was observed in the NO(3-)-N concentration of about 6.0 mg L(-1), which was naturally contained in the treatment stream. About 52% and 61% of the DEP were oxidized by each of these two oxidation processes in this pilot-scale operation. Both the UV/H2O2 and O3/H2O2 processes appeared to be desirable alternatives for DEP oxidation in treatment effluent streams.

  7. Advances in membrane protein crystallography: in situ and in meso data collection

    SciTech Connect

    Weyand, Simone; Tate, Christopher G.

    2015-05-23

    Membrane protein structural biology has made tremendous advances over the last decade but there are still many challenges associated with crystallization, data collection and structure determination. Two independent groups, Axford et al. [(2015), Acta Cryst. D71, 1228–1237] and Huang et al. [(2015), Acta Cryst. D71, 1238–1256], have published methods that make a major contribution to addressing these challenges.

  8. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    PubMed

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products.

  9. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants

    PubMed Central

    Chmielowska-Bąk, Jagna; Izbiańska, Karolina; Deckert, Joanna

    2015-01-01

    Reactive oxygen species (ROS) are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation. PMID:26082792

  10. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway.

    PubMed

    Yang, Xiaoling; Huang, Jun; Zhang, Kunlun; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-03-01

    Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe(2+)/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 (2-)) and fluoride (F(-)) were found to be the final products. The high yields of SO4 (2-) and F(-) indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential "flake off" of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.

  11. Advanced oxidation treatment of physico-chemically pre-treated olive mill industry effluent.

    PubMed

    Gomec, Cigdem Y; Erdim, Esra; Turan, Ilknur; Aydin, Ali F; Ozturk, Izzet

    2007-08-01

    In this study, the applicability of physico-chemical methods was investigated for the pre-treatment of the olive mill effluents prior to the discharge into the common sewerage ending with a municipal wastewater treatment plant. The samples were taken from an olive oil industry operated as three-phase process located in Turkey. Various pre-treatment methods including acid craking, polyelectrolyte and lime additions were applied. Advanced oxidation study using Fenton's process was also investigated following pre-treatment by acid cracking and cationic polyelectrolyte. Acid cracking alone gave satisfactory treatment efficiencies and polyelectrolite additions to the acid-cracked samples enhanced treatment efficiency. Since a complete treatment plant is available at the end of the sewer system, results indicated that the effluents of the investigated industry could be discharged into the municipal sewerage in the case of total chemical oxygen demand (COD(tot)), suspended solid (SS) and volatile suspended solid (VSS) concentrations according to the Turkish Water Pollution Control Regulation after pre-treatment with 5 ppm anionic polyelectrolyte following acid cracking. The minimum COD(tot), SS and VSS removals were observed when raw wastewater was pre-treated with lime and the discharge standards to the municipal sewer system could not be met. Advanced oxidation with Fenton's process was applied after acid cracking and cationic polyelectrolyte treatment in order to investigate further reduction in chemical oxygen demand (COD) concentration for minimizing the influence of this industrial discharge on the existing municipal wastewater treatment plant. Results indicated that COD(tot) removal increased up to 89% from 74% after Fenton's oxidation for the acid cracked samples in which cationic polyelectrolite (10 ppm) was added.

  12. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Shenton, Daniel; Grant, Chris M

    2003-01-01

    The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H(2)O(2). In particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde-3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, the enzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation. PMID:12755685

  13. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting.

    PubMed

    Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S

    2009-06-01

    Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation, which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues.

  14. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2011-11-01

    Oxidative degradation of aqueous organic pollutants, using 4-chlorophenol (4-CP) as a main model substrate, was achieved with the concurrent H(2)O(2)-mediated transformation of Cr(III) to Cr(VI). The Fenton-like oxidation of 4-CP is initiated by the reaction between the aquo-complex of Cr(III) and H(2)O(2), which generates HO(•) along with the stepwise oxidation of Cr(III) to Cr(VI). The Cr(III)/H(2)O(2) system is inactive in acidic condition, but exhibits maximum oxidative capacity at neutral and near-alkaline pH. Since we previously reported that Cr(VI) can also activate H(2)O(2) to efficiently generate HO(•), the dual role of H(2)O(2) as an oxidant of Cr(III) and a reductant of Cr(VI) can be utilized to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). As a result, HO(•) can be generated using both Cr(III)/H(2)O(2) and Cr(VI)/H(2)O(2) reactions, either concurrently or sequentially. The formation of HO(•) was confirmed by monitoring the production of p-hydroxybenzoic acid from [benzoic acid + HO(•)] as a probe reaction and by quenching the degradation of 4-CP in the presence of methanol as a HO(•) scavenger. The oxidation rate of 4-CP in the Cr(III)/H(2)O(2) solution was highly influenced by pH, which is ascribed to the hydrolysis of Cr(III)(H(2)O)(n) into Cr(III)(H(2)O)(n-m)(OH)(m) and the subsequent condensation to oligomers. The present study proposes that the Cr(III)/H(2)O(2) combined with Cr(VI)/H(2)O(2) process is a viable advanced oxidation process that operates over a wide pH range using the reusable redox cycle of Cr(III) and Cr(VI).

  15. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures.

  16. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed. PMID:27711259

  17. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    PubMed

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH(•)) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH(•) probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH(•) adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH(•) formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH(•) mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH(•) probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH(•) probe compound for the characterization of electrochemical and catalytic systems.

  18. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes.

    PubMed

    Jović, Milica; Manojlović, Dragan; Stanković, Dalibor; Dojčinović, Biljana; Obradović, Bratislav; Gašić, Uroš; Roglić, Goran

    2013-09-15

    Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC-DAD) and UHPLC-Orbitrap-MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes.

  19. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    PubMed

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  20. Critical review of electrochemical advanced oxidation processes for water treatment applications.

    PubMed

    Chaplin, Brian P

    2014-05-01

    Electrochemical advanced oxidation processes (EAOPs) have emerged as novel water treatment technologies for the elimination of a broad-range of organic contaminants. Considerable validation of this technology has been performed at both the bench-scale and pilot-scale, which has been facilitated by the development of stable electrode materials that efficiently generate high yields of hydroxyl radicals (OH˙) (e.g., boron-doped diamond (BDD), doped-SnO2, PbO2, and substoichiometic- and doped-TiO2). Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during EAOPs and the corresponding environmental impacts of their use have not been fully addressed. In order to unify the state of knowledge, identify research gaps, and stimulate new research in these areas, this review critically analyses published research pertaining to EAOPs. Specific topics covered in this review include (1) EAOP electrode types, (2) oxidation pathways of select classes of contaminants, (3) rate limitations in applied settings, and (4) long-term sustainability. Key challenges facing EAOP technologies are related to toxic byproduct formation (e.g., ClO4(-) and halogenated organic compounds) and low electro-active surface areas. These challenges must be addressed in future research in order for EAOPs to realize their full potential for water treatment.

  1. Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility

    SciTech Connect

    Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

    1989-05-01

    The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

  2. Oxidative stress and protein oxidation in the brain of water drinking and alcohol drinking rats administered the HIV envelope protein, gp120.

    PubMed

    Singh, Ashok K; Gupta, Shveta; Jiang, Yin

    2008-03-01

    Possible roles of oxidative stress and protein oxidation on alcohol-induced augmentation of cerebral neuropathy in gp120 administered alcohol preferring rats drinking either pure water (W rats) or a free-choice ethanol and water (E rats) for 90 days. This study showed that peripherally administered gp120 accumulated into the brain, liver, and RBCs samples from water drinking - gp120 administered rats (Wg rats) and ethanol drinking - gp120 administered rats (Eg rats), although gp120 levels in samples from Eg rats were significantly greater than the levels in samples from Wg rats. The brain samples from ethanol drinking-saline administered (EC) and Wg rats exhibited comparable levels of free radicals that were significantly lower than the levels in Eg rats. Peroxiredoxin-I (PrxI) activity in the brain samples exhibited the following pattern: Wg > > WC > EC > Eg. Total protein-carbonyl and carbonylated hippocampal cholinergic neurostimulating peptide precursor protein levels, but not N-acetylaspartate or N-acetyl aspartylglutamate or total protein-thiol levels, paralleled the free radical levels in the brain of all four groups. This suggests PrxI inhibition may be more sensitive indicator of oxidative stress than measuring free radicals or metabolites. As PrxI oxidation in WC, Wg, and EC rats was reversible, while PrxI oxidation in Eg rats was not, we suggest that alcohol drinking and gp120 together hyperoxidized and inactivated PrxI that suppressed free radical neutralization in the brain of Eg rats. In conclusion, chronic alcohol drinking, by carbonylating and hyperoxidizing free radical neutralization proteins, augmented the gp120-induced oxidative stress that may be associated with an increase in severity of the brain neuropathy.

  3. Helicobacter pylori protein oxidation influences the colonization process.

    PubMed

    Godlewska, Renata; Dzwonek, Artur; Mikuła, Michał; Ostrowski, Jerzy; Pawłowski, Marcin; Bujnicki, Janusz M; Jagusztyn-Krynicka, Elzbieta K

    2006-08-01

    Dsb proteins control the formation and rearrangement of disulfide bonds during the folding of membrane and exported proteins. Here we examined the role of DsbI protein in Helicobacter pylori pathogenesis and demonstrated that a dsbI mutant impaired in disulfide bond formation revealed a greatly reduced ability to colonize mice gastric mucosa.

  4. Inhibitory effects of aromatic herbs on lipid peroxidation and protein oxidative modification by copper.

    PubMed

    Toda, Shizuo

    2003-05-01

    Aromatic herbs have been used as carminatives. Oxygen free radicals are generated in ischaemia/reperfusion injury in the stomach, and induce lipid peroxidation or protein oxidative modification. Several aromatic herbs were shown to have inhibitory effects on the generation of oxygen free radicals. It was shown that several aromatic herbs, Caryophylli Flos, Cinnamomi Cortex, Foeniculi Fructus and Zedoariae Rhizoma, have inhibitory effects on lipid peroxidation or protein oxidative modification by copper.

  5. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Ahn, Dong Uk

    2016-10-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.

  6. Inhibition of protein and lipid oxidation in liposomes by berry phenolics.

    PubMed

    Viljanen, Kaarina; Kylli, Petri; Kivikari, Riitta; Heinonen, Marina

    2004-12-01

    The antioxidant activity of berry phenolics (at concentrations of 1.4, 4.2, and 8.4 mug of purified extracts/mL of liposome sample) such as anthocyanins, ellagitannins, and proanthocyanidins from raspberry (Rubus idaeus), bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and black currant (Ribes nigrum) was investigated in a lactalbumin-liposome system. The extent of protein oxidation was measured by determining the loss of tryptophan fluorescence and formation of protein carbonyl compounds and that of lipid oxidation by conjugated diene hydroperoxides and hexanal analyses. The antioxidant protection toward lipid oxidation was best provided by lingonberry and bilberry phenolics followed by black currant and raspberry phenolics. Bilberry and raspberry phenolics exhibited the best overall antioxidant activity toward protein oxidation. Proanthocyanidins, especially the dimeric and trimeric forms, in lingonberries were among the most active phenolic constituents toward both lipid and protein oxidation. In bilberries and black currants, anthocyanins contributed the most to the antioxidant effect by inhibiting the formation of both hexanal and protein carbonyls. In raspberries, ellagitannins were responsible for the antioxidant activity. While the antioxidant effect of berry proanthocyanidins and anthocyanins was dose-dependent, ellagitannins appeared to be equally active at all concentrations. In conclusion, berries are rich in monomeric and polymeric phenolic compounds providing protection toward both lipid and protein oxidation.

  7. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    PubMed

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  8. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    SciTech Connect

    Kashyap, Sanjay; Woehl, Taylor J; Liu, Xunpei; Mallapragada, Surya K; Prozorov, Tanya

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.

  9. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    DOE PAGES

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), and (3) Y2O3 + HfO2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al2O3 and yttrium–aluminum garnet (YAG) phases (Y3Al5O12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al2O3 phases,more » Hf(C,N), Y2Hf2O7, and HfO2 precipitates were also found. The presence of HfO2 was mainly due to the incomplete incorporation of HfO2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y2O3 + ZrO2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.« less

  10. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    SciTech Connect

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-04-03

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  11. Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater.

    PubMed

    Espejo, Azahara; Aguinaco, Almudena; García-Araya, J F; Beltrán, Fernando J

    2014-01-01

    Sequential treatments consisting in a chemical process followed by a conventional biological treatment, have been applied to remove mixtures of nine contaminants of pharmaceutical type spiked in a primary sedimentation effluent of a municipal wastewater. Combinations of ozone, UVA black light (BL) and Fe(III) or Fe₃O₄ catalysts constituted the chemical systems. Regardless of the Advanced Oxidation Process (AOP), the removal of pharmaceutical compounds was achieved in 1 h of reaction, while total organic carbon (TOC) only diminished between 3.4 and 6%. Among selected ozonation systems to be implemented before the biological treatment, the application of ozone alone in the pre-treatment stage is recommended due to the increase of the biodegradability observed. The application of ozone followed by the conventional biological treatment leads high TOC and COD removal rates, 60 and 61%, respectively, and allows the subsequent biological treatment works with shorter hydraulic residence time (HRT). Moreover, the influence of the application of AOPs before and after a conventional biological process was compared, concluding that the decision to take depends on the characterization of the initial wastewater with pharmaceutical compounds.

  12. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins

    PubMed Central

    2012-01-01

    Background Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. Results We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. Conclusion Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation. PMID:23088625

  13. Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases.

    PubMed

    Wu, Yu-Ting; Wu, Shi-Bei; Lee, Wan-Yu; Wei, Yau-Huei

    2010-07-01

    Pathogenic mutation in mtDNA and mitochondrial dysfunction are associated with mitochondrial diseases. In this review, we discuss the oxidative stress-elicited mitochondrial protein modifications that may contribute to the pathophysiology of mitochondrial diseases. We demonstrated that excess ROS produced by defective mitochondria could increase the acetylation of microtubule proteins through the suppression of Sirt2, which results in perinuclear distribution of mitochondria in skin fibroblasts of patients with CPEO syndrome. Our recent work showed that mitochondrial dysfunction-induced oxidative stress can disrupt protein degradation system by inhibiting the ubiquitin-proteasome pathway and protease activity in human cells harboring mutant mtDNA. This in turn causes accumulation of aberrant proteins in mitochondria and renders the mutant cells more susceptible to apoptosis induced by oxidative stress. Furthermore, oxidative stress can modulate phosphorylation of mitochondrial proteins, which can affect metabolism in a number of diseases. Taken together, we suggest that oxidative stress-triggered protein modifications and defects in protein turnover play an important role in the pathogenesis and progression of mitochondrial diseases.

  14. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  15. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    PubMed

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  16. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV

  17. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish.

    PubMed

    Blaise, Mickaël; Alsarraf, Husam M A B; Wong, Jaslyn E M M; Midtgaard, Søren Roi; Laroche, Fabrice; Schack, Lotte; Spaink, Herman; Stougaard, Jens; Thirup, Søren

    2012-06-01

    The oxidation resistance proteins (OXR) help to protect eukaryotes from reactive oxygen species. The sole C-terminal domain of the OXR, named TLDc is sufficient to perform this function. However, the mechanism by which oxidation resistance occurs is poorly understood. We present here the crystal structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices. The fold shares low structural similarity to known structures.

  18. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications.

  19. Tempol protects blood proteins and lipids against peroxynitrite-mediated oxidative damage

    PubMed Central

    Mustafa, Ayman G; Bani-Ahmad, Mohammad A; Jaradat, Ahmad Q

    2015-01-01

    Oxidative stress is characterized by excessive production of various free radicals and reactive species among which, peroxynitrite is most frequently produced in several pathological conditions. Peroxynitrite is the product of the superoxide anion reaction with nitric oxide, which is reported to take place in the intravascular compartment. Several studies have reported that peroxynitrite targets red blood cells, platelets and plasma proteins, and induces various forms of oxidative damage. This in vitro study was designed to further characterize the types of oxidative damage induced in platelets and plasma proteins by peroxynitrite. This study also determined the ability of tempol to protect blood plasma and platelets against peroxynitrite-induced oxidative damage. The ability of various concentrations of tempol (25, 50, 75, and 100 µM) to antagonize peroxynitrite-induced oxidation was evaluated by measuring the levels of protein carbonyl groups and thiobarbituric-acid-reactive substances in experimental groups. Exposure of platelets and plasma to 100 µM peroxynitrite resulted in an increased levels of carbonyl groups and lipid peroxidation (P < 0.05). Tempol significantly inhibited carbonyl group formation in plasma and platelet proteins (P < 0.05). In addition, tempol significantly reduced the levels of lipid peroxidation in both plasma and platelet samples (P < 0.05). Thus, tempol has antioxidative properties against peroxynitrite-induced oxidative damage in blood plasma and platelets. PMID:25107897

  20. Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications.

    PubMed

    Steffensen, Charlotte L; Andersen, Mogens L; Degn, Peter E; Nielsen, Jacob H

    2008-12-24

    Laccase-catalyzed oxidation was able to induce intermolecular cross-links in beta-lactoglobulin, and ferulic acid-mediated laccase-catalyzed oxidation was able to induce intermolecular cross-links in alpha-casein, whereas transglutaminase cross-linked only alpha-casein. In addition, different patterns of laccase-induced oxidative modifications were detected, including dityrosine formation, formation of fluorescent tryptophan oxidation products, and carbonyls derived from histidine, tryptophan, and methionine. Laccase-catalyzed oxidation as well as transglutaminase induced only minor changes in surface tension of the proteins, and the changes could not be correlated to protein cross-linking. The presence of ferulic acid was found to influence the effect of laccase, allowing laccase to form irreducible intermolecular cross-links in beta-lactoglobulin and resulting in proteins exercising higher surface tensions due to cross-linking as well as other oxidative modifications. The outcome of using ferulic acid-mediated laccase-catalyzed oxidation to modify the functional properties of proteinaceous food components or other biosystems is expected to be highly dependent on the protein composition, resulting in different changes of the functional properties.

  1. Bone Marrow Protein Oxidation in Response to Ionizing Radiation in C57BL/6J Mice

    PubMed Central

    Kim, Yong-Chul; Barshishat-Kupper, Michal; McCart, Elizabeth A.; Mueller, Gregory P.; Day, Regina M.

    2014-01-01

    The bone marrow is one of the most radio-sensitive tissues. Accidental ionizing radiation exposure can damage mature blood cells and hematopoietic progenitor/stem cells, and mortality can result from hematopoietic insufficiency and infection. Ionizing radiation induces alterations in gene and protein expression in hematopoietic tissue. Here we investigated radiation effects on protein carbonylation, a primary marker for protein oxidative damage. C57BL/6 mice were either sham irradiated or exposed to 7.5 Gy 60Co (0.6 Gy/min) total body irradiation. Bone marrow was obtained 24 h post-irradiation. Two dimensional (2-D) gel electrophoresis and Oxyblot immunodetection were used to discover carbonylated proteins, and peptide mass fingerprinting was performed for identification. 2D gels allowed the detection of 13 carbonylated proteins in the bone marrow; seven of these were identified, with two pairs of the same protein. Baseline levels of carbonylation were found in 78 kDa glucose-related protein, heat shock protein cognate 71 KDa, actin, chitinase-like protein 3 (CHI3L1), and carbonic anhydrase 2 (CAII). Radiation increased carbonylation in four proteins, including CHI3L1 and CAII, and induced carbonylation of one additional protein (not identified). Our findings indicate that the profile of specific protein carbonylation in bone marrow is substantially altered by ionizing radiation. Accordingly, protein oxidation may be a mechanism for reduced cell viability. PMID:28250382

  2. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  3. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water.

    PubMed

    Huanosta-Gutiérrez, T; Dantas, Renato F; Ramírez-Zamora, R M; Esplugas, S

    2012-04-30

    The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H(2)O(2) (slag/H(2)O(2)) and H(2)O(2)/UV (slag/H(2)O(2)/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H(2)O(2)/UV and slag/H(2)O(2) treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD(5)/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  4. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    PubMed

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  5. Nitric Oxide Dysregulation in Platelets from Patients with Advanced Huntington Disease

    PubMed Central

    Maglione, Vittorio; Damato, Antonio; Amico, Enrico; Formisano, Luigi; Vecchione, Carmine; Squitieri, Ferdinando

    2014-01-01

    Nitric oxide (NO) is a biologically active inorganic molecule involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission and neuromodulation. In the present study, for the first time, we investigated the modulation of NO signaling in platelets of HD patients. We recruited 55 patients with manifest HD and 28 gender- and age-matched healthy controls. Our data demonstrated that NO-mediated vasorelaxation, when evoked by supernatant from insulin-stimulated HD platelets, gradually worsens along disease course. The defective vasorelaxation seems to stem from a faulty release of NO from platelets of HD patients and, it is associated with impairment of eNOS phosphorylation (Ser1177) and activity. This study provides important insights about NO metabolism in HD and raises the hypothesis that the decrease of NO in platelets of HD individuals could be a good tool for monitoring advanced stages of the disease. PMID:24587005

  6. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process.

    PubMed

    Bragg, Stefanie A; Armstrong, Kristie C; Xue, Zi-Ling

    2012-08-15

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H(2)O(2) and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high C(H(2)O(2),t=0), the reaction is zeroth order with respect to C(H(2)O(2)) and first order with respect to C(blood). The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods.

  7. [The functional properties and oxidative modification of plasma and neutrophil proteins in community-acquired pneumonia].

    PubMed

    Stepovaia, E A; Petina, G V; Zhavoronok, T V; Riazantseva, N V; Ivanov, V V; Ageeva, T S; Tetenev, F F; Bezmenova, M A

    2010-03-01

    The functional properties of neutrophils (the activity of myeloperoxidase and the production of hydroxyl radical) were studied in community-acquired pneumonia (CAP) predominantly with the alveolar and interstitial types of lung parenchymal infiltration. Protein oxidative modification was estimated from the content of protein carbonyl derivatives in neutrophilic leukocytes and plasma and from the plasma concentration of bityrosine and oxidized tryptophan in patients with CAP. The production of hydroxyl radical and the activity of myeloperoxidase in the neutrophils of patients with CAP were increased and did not depend on the type of lung tissue infiltration. The development of oxidative stress in CAP was accompanied by the substantiation activation of protein oxidative modification processes in the neutrophilic leukocytes and plasma.

  8. Oxidative stress-induced posttranslational modification of proteins as a target of functional food.

    PubMed

    Naito, Yuji; Yoshikawa, Toshikazu

    2009-01-01

    In lifestyle-related diseases including metabolic syndrome, atherosclerosis, and cancer, oxidative stress is indicated by several markers, among which are lipid peroxides, aldehydes, and nitrotyrosine. We hypothesized that identification of proteins that are posttranslationally modified due to oxidative stress would lead to a greater understanding of some of the potential molecular mechanisms involved in degeneration and inflammation in these disorders. Proteomics is an emerging method for identification of proteins and their modification residues, and its application to food factor science is just beginning. Especially, we can obtain several monoclonal antibodies to detect specifically oxidized proteins, which can be applied to analysis by immunostaining or immunoblot. In this review, we present the use of these monoclonal antibodies in several diseases, from which new insights have emerged into mechanisms of metabolism and inflammation in these disorders that are associated with oxidative stress.

  9. Development of microbial spoilage and lipid and protein oxidation in rabbit meat.

    PubMed

    Nakyinsige, K; Sazili, A Q; Aghwan, Z A; Zulkifli, I; Goh, Y M; Abu Bakar, F; Sarah, S A

    2015-10-01

    This experiment aimed to determine microbial spoilage and lipid and protein oxidation during aerobic refrigerated (4°C) storage of rabbit meat. Forty male New Zealand white rabbits were slaughtered according to the Halal slaughter procedure. The hind limbs were used for microbial analysis while the Longissimus lumborum m. was used for determination of lipid and protein oxidation. Bacterial counts generally increased with aging time and the limit for fresh meat (10(8)cfu/g) was reached at d 7 postmortem. Significant differences in malondialdehyde content were observed after 3d of storage. The thiol concentration significantly decreased with increase in aging time. The band intensities of myosin heavy chain and troponin T significantly reduced with increased refrigerated storage while actin remained relatively stable. This study thus proposes protein oxidation as a potential deteriorative change in refrigerated rabbit meat along with microbial spoilage and lipid oxidation.

  10. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation

    PubMed Central

    Barshishat-Kupper, Michal; McCart, Elizabeth A.; Freedy, James G.; Tipton, Ashlee J.; Nagy, Vitaly; Kim, Sung-Yop; Landauer, Michael R.; Mueller, Gregory P.; Day, Regina M.

    2015-01-01

    Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127–189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure. PMID:28248270

  11. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  12. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs.

  13. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos.

  14. Plant-Derived Phenolics Inhibit the Accrual of Structurally Characterised Protein and Lipid Oxidative Modifications

    PubMed Central

    Naudí, Alba; Romero, Maria-Paz; Cassanyé, Anna; Serrano, José C. E.; Arola, Lluis; Valls, Josep; Bellmunt, Maria Josep; Prat, Joan; Pamplona, Reinald; Portero-Otin, Manuel; Motilva, Maria-José

    2012-01-01

    Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine- protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters). This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake. PMID:22952663

  15. Visualizing and quantifying oxidized protein thiols in tissue sections: a comparison of dystrophic mdx and normal skeletal mouse muscles.

    PubMed

    Iwasaki, Tomohito; Terrill, Jessica; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2013-12-01

    Reactive oxygen species (ROS) are not only a cause of oxidative stress in a range of disease conditions but are also important regulators of physiological pathways in vivo. One mechanism whereby ROS can regulate cell function is by modification of proteins through the reversible oxidation of their thiol groups. An experimental challenge has been the relative lack of techniques to probe the biological significance of protein thiol oxidation in complex multicellular tissues and organs. We have developed a sensitive and quantitative fluorescence labeling technique to detect and localize protein thiol oxidation in histological tissue sections. In our technique, reduced and oxidized protein thiols are visualized and quantified on two consecutive tissue sections and the extent of protein thiol oxidation is expressed as a percentage of total protein thiols (reduced plus oxidized). We tested the application of this new technique using muscles of dystrophic (mdx) and wild-type C57Bl/10Scsn (C57) mice. In mdx myofibers, protein thiols were consistently more oxidized (19 ± 3%) compared with healthy myofibers (10 ± 1%) in C57 mice. A striking observation was the localization of intensive protein thiol oxidation (70 ± 9%) within myofibers associated with necrotic damage. Oxidative stress is an area of active investigation in many fields of research, and this technique provides a useful tool for locating and further understanding protein thiol oxidation in normal, damaged, and diseased tissues.

  16. Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general

    PubMed Central

    Peleh, Valentina; Riemer, Jan; Dancis, Andrew; Herrmann, Johannes M.

    2014-01-01

    In most cellular compartments cysteine residues are predominantly reduced. However, in the bacterial periplasm, the ER and the mitochondrial intermembrane space (IMS), sulfhydryl oxidases catalyze the formation of disulfide bonds. Nevertheless, many IMS proteins contain reduced cysteines that participate in binding metal- or heme-cofactors. In this study, we addressed the substrate specificity of the mitochondrial protein oxidation machinery. Dre2 is a cysteine-rich protein that is located in the cytosol. A large fraction of Dre2 bound to the cytosolic side of the outer membrane of mitochondria. Even when Dre2 is artificially targeted to the IMS, its cysteine residues remain in the reduced state. This indicates that protein oxidation in the IMS of mitochondria is not a consequence of the apparent oxidizing environment in this compartment but rather is substrate-specific and determined by the presence of Mia40-binding sites. PMID:28357226

  17. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    PubMed

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (P<0.01) after 8 days of storage. Sensory evaluation with respect to colour and rancid odour revealed that PE incorporation in meatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation.

  18. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress.

    PubMed

    Klatt, P; Lamas, S

    2000-08-01

    Protein S-glutathiolation, the reversible covalent addition of glutathione to cysteine residues on target proteins, is emerging as a candidate mechanism by which both changes in the intracellular redox state and the generation of reactive oxygen and nitrogen species may be transduced into a functional response. This review will provide an introduction to the concepts of oxidative and nitrosative stress and outline the molecular mechanisms of protein regulation by oxidative and nitrosative thiol-group modifications. Special attention will be paid to recently published work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress. Finally, novel insights into the molecular mechanisms of S-glutathiolation as well as methodological problems related to the interpretation of the biological relevance of this post-translational protein modification will be discussed.

  19. Advanced oxidation degradation kinetics as a function of ultraviolet LED duty cycle.

    PubMed

    Duckworth, Kelsey; Spencer, Michael; Bates, Christopher; Miller, Michael E; Almquist, Catherine; Grimaila, Michael; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Racz, LeeAnn

    2015-01-01

    Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems.

  20. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  1. Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation.

    PubMed

    Nascimento, Ulisses M; Azevedo, Eduardo B

    2013-01-01

    This review assesses microwaves (MW) coupled to advanced oxidation processes (AOPs) for pollutants degradation, as well as the basic theory and mechanisms of MW dielectric heating. We addressed the following couplings: MW/H2O2, MW/UV/H2O2, MW/Fenton, MW/US, and MW/UV/TiO2, as well as few studies that tested alternative oxidants and catalysts. Microwave Discharge Electrodeless Lamps (MDELs) are being extensively used with great advantages over ballasts. In their degradation studies, researchers generally employed domestic ovens with minor adaptations. Non-thermal effects and synergies between UV and MW radiation play an important role in the processes. Published papers so far report degradation enhancements between 30 and 1,300%. Unfortunately, how microwaves enhance pollutants is still obscure and real wastewaters scarcely studied. Based on the results surveyed in the literature, MW/AOPs are promising alternatives for treating/remediating environmental pollutants, whenever one considers high degradation yields, short reaction times, and small costs.

  2. Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes.

    PubMed

    Lin, Heng; Oturan, Nihal; Wu, Jie; Sharma, Virender K; Zhang, Hui; Oturan, Mehmet A

    2017-01-01

    The degradation and mineralization of aspartame (ASP) in aqueous solution were investigated, for the first time, by electrochemical advanced oxidation processes (EAOPs) in which hydroxyl radicals were formed concomitantly in the bulk from Fenton reaction via in situ electrogenerated Fenton's reagent and at the anode surface from the water oxidation. Experiments were performed in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The effect of Fe(2+) concentration and applied current on the degradation and mineralization kinetics of ASP was evaluated. The absolute rate constant for the reaction between ASP and OH was determined as (5.23 ± 0.02) × 10(9) M(-1) s(-1) by using the competition kinetic method. Almost complete mineralization of ASP was achieved with BDD anode at 200 mA constant current electrolysis. The formation and generation of the formed carboxylic acids (as ultimate end products before complete mineralization) and released inorganic ion were monitored by ion-exclusion high performance liquid chromatography (HPLC) and ion chromatography techniques, respectively. The global toxicity of the treated ASP solution during treatment was assessed by the Microtox(®) method using V. fischeri bacteria luminescence inhibition.

  3. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    PubMed

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  4. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-03-07

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.

  5. Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation.

    PubMed

    Luu, Huyen Trang; Lee, Kisay

    2014-01-01

    Advanced oxidation processes (AOPs) composed of O3, H2O2 and ultraviolet (UV) were applied to degrade tetracycline (TC). Degradation efficiency was evaluated in terms of changes in absorbance (ABS) and total organic carbon (TOC). The change in biotoxicity was monitored with Escherichia coli and Vibrio fischeri. The improvement in biodegradability during oxidation was demonstrated through 5-day biochemical oxygen demand/chemical oxygen demand ratio and aerobic biological treatment. The combination of O3/H2O2/UV and O3/UV showed the best performance for the reductions in ABS and TOC. However, mineralization and detoxification were not perfect under the experimental conditions that were used in this study. Therefore, for the ultimate treatment of TC compounds, it is suggested that AOP treatment is followed by biological treatment, utilizing enhanced biodegradability. In this study, aerobic biological treatment by Pseudomonas putida was performed for O3/UV-treated TC. It was confirmed that O3/UV treatment improved TOC reduction and facilitated complete mineralization in biological treatment.

  6. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  7. Decolorization and degradation of reactive yellow HF aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Bedolla-Guzman, A; Feria-Reyes, R; Gutierrez-Granados, S; Peralta-Hernández, Juan M

    2016-07-29

    Textile manufacturing is the one responsible for water bodies' contamination through the discharge of colored wastes. This work presents the study of reactive yellow HF (RYHF) dye degradation under two different electrochemical advanced oxidation processes (EAOP), namely anodic oxidation (AO) and electro-Fenton (EF)/boron-doped diamond (BDD) process. For the AO, 100 and 300 mg/L solutions using Pt and BDD as anodes in a 100 mL stirred tank cell were used, with a supporting electrolyte of 0.05 mol/L of Na2SO4 at pH 3 under 30 and 50 mA/cm(2) current density. The EF/BDD process was carried out in a flow reactor at 4 and 7 L/min to degrade 100, 200, and 300 mg/L RYHF solutions under 50 and 80 mA/cm(2). UV-Vis determinations were used for decolorization evaluation, while high-performance liquid chromatography (HPLC) method provided information on dye degradation rate.

  8. Inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water by advanced oxidation processes.

    PubMed

    Yang, Zhishan; Jiang, Wenju; Zhang, Yi; Lim, T M

    2015-01-01

    Ship-borne ballast water contributes significantly to the transfer of non-indigenous species across aquatic environments. To reduce the risk of bio-invasion, ballast water should be treated before discharge. In this study, the efficiencies of several conventional and advanced oxidation processes were investigated for potential ballast water treatment, using a marine dinoflagellate species, Scripsiella trochoidea, as the indicator organism. A stable and consistent culture was obtained and treated by ultraviolet (UV) light, ozone (O3), hydrogen peroxide (H2O2), and their various combinations. UV apparently inactivated the cells after only 10 s of irradiation, but subsequently photo-reactivation of the cells was observed for all methods involving UV. O3 exhibited 100% inactivation efficiency after 5 min treatment, while H2O2 only achieved maximum 80% inactivation in the same duration. Combined methods, e.g. UV/O3 and UV/H2O2, were found to inhibit photo-reactivation and improve treatment efficiency to some degree, indicating the effectiveness of using combined treatment processes. The total residual oxidant (TRO) levels of the methods were determined, and the results indicated that UV and O3 generated the lowest and highest TRO, respectively. The synergic effect of combined processes on TRO generation was found to be insignificant, and thus UV/O3 was recommended as a potentially suitable treatment process for ballast water.

  9. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    PubMed

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs.

  10. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    PubMed

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity.

  11. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions.

    PubMed

    Lafi, Walid K; Al-Qodah, Z

    2006-09-01

    Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O(3) and O(3)/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O(3) combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O(3)/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O(3)/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O(3)/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated.

  12. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  13. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification.

    PubMed

    Wang, Wendong; Li, Hua; Ding, Zhenzhen; Wang, Xiaochang

    2011-01-01

    Due to the formation of disinfection by-products and high concentrations of Al residue in drinking water purification, humic substances are a major component of organic matter in natural waters and have therefore received a great deal of attention in recent years. We investigated the effects of advanced oxidation pretreatment methods usually applied for removing dissolved organic matters on residual Al control. Results showed that the presence of humic acid increased residual Al concentration notably. With 15 mg/L of humic acid in raw water, the concentrations of soluble aluminum and total aluminum in the treated water were close to the quantity of Al addition. After increasing coagulant dosage from 12 to 120 mg/L, the total-Al in the treated water was controlled to below 0.2 mg/L. Purification systems with ozonation, chlorination, or potassium permanganate oxidation pretreatment units had little effects on residual Al control; while UV radiation decreased Al concentration notably. Combined with ozonation, the effects of UV radiation were enhanced. Optimal dosages were 0.5 mg O3/mg C and 3 hr for raw water with 15 mg/L of humic acid. Under UV light radiation, the combined forces or bonds that existed among humic acid molecules were destroyed; adsorption sites increased positively with radiation time, which promoted adsorption of humic acid onto polymeric aluminum and Al(OH)3(s). This work provides a new solution for humic acid coagulation and residual Al control for raw water with humic acid purification.

  14. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  15. Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs.

    PubMed

    Park, Jin Woo; Kim, Sun Jin; Kwag, Dong Sup; Kim, Sol; Park, Jeyoung; Youn, Yu Seok; Bae, You Han; Lee, Eun Seong

    2015-01-01

    In recent years, advances in biotechnology and protein engineering have enabled the production of large quantities of proteins and peptides as important therapeutic agents. Various researchers have used biocompatible functional polymers to prepare oral dosage forms of proteins and peptides for chronic use and for easier administration to enhance patient compliance. However, there is a need to enhance their safety and effectiveness further. Most macromolecules undergo severe denaturation at low pH and enzymatic degradation in the gastrointestinal tract. The macromolecules' large molecular size and low lipophilicity cause low permeation through the intestinal membrane. The major strategies that have been used to overcome these challenges (in oral drug carrier systems) can be classified as follows: enteric coating or encapsulation with pH-sensitive polymers or mucoadhesive polymers, co-administration of protease inhibitors, incorporation of absorption enhancers, modification of the physicochemical properties of the macromolecules, and site-specific delivery to the colon. This review attempts to summarize the various advanced oral delivery carriers, including nanoparticles, lipid carriers, such as liposomes, nano-aggregates using amphiphilic polymers, complex coacervation of oppositely charged polyelectrolytes, and inorganic porous particles. The particles were formulated and/or surface modified with functional polysaccharides or synthetic polymers to improve oral bioavailability of proteins and peptides. We also discuss formulation strategies to overcome barriers, therapeutic efficacies in vivo, and potential benefits and issues for successful oral dosage forms of the proteins and peptides.

  16. Decoration of proteins with sugar chains: recent advances in glycoprotein synthesis.

    PubMed

    Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro

    2014-10-01

    Chemical or chemoenzymatic synthesis is an emerging approach to produce homogeneous glycoproteins, which are hard to obtain by conventional biotechnology methods. Recent advances in the synthetic methodologies for the decoration of protein molecules with oligosaccharides provide several remarkable syntheses of homogeneous glycoproteins. This short review highlights several of the latest syntheses of glycoproteins including therapeutically important glycoproteins, a highly glycosylated protein, and unnatural glycoproteins in order to illustrate the power of the modern glycoprotein synthesis. Structurally defined glycoproteins are a novel material for understanding the molecular basis of glycoprotein functions and for the development of the next generation of biopharmaceuticals.

  17. BENZENE OXIDE PROTEIN ADDUCTS AS BIOMARKERS OF BENZENE EXPOSURE

    EPA Science Inventory

    Benzene is known to be hematotoxic and carcinogenic in animals and humans. While metabolism is required for toxicity, the identity of the ultimate carcinogen(s) remains unknown. Benzene oxide (BO) is the first and most abundant of the metabolites, but very little is known about...

  18. Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer.

    PubMed

    Bordeau, Brandon M; Ciulla, Daniel A; Callahan, Brian P

    2016-09-20

    Abiraterone, a potent inhibitor of the human enzyme CYP17A1 (cytochrome P450c17), provides a last line of defense against ectopic androgenesis in advanced prostate cancer. Herein we report an unprecedented off-target interaction between abiraterone and oncogenic hedgehog proteins. Our experiments indicate that abiraterone and its structural congener, galeterone, can replace cholesterol as a substrate in a specialized biosynthetic event of hedgehog proteins, known as cholesterolysis. The off-target reaction generates covalent hedgehog-drug conjugates. Cell-based reporter assays indicate that these conjugates activate hedgehog signaling when present in the low nanomolar range. Because hedgehog signaling is implicated in prostate cancer progression, and abiraterone is administered to treat advanced stages of the disease, this off-target interaction may have therapeutic significance.

  19. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation.

    PubMed

    Gelain, Daniel Pens; de Bittencourt Pasquali, Matheus Augusto; Caregnato, Fernanda Freitas; Moreira, José Claudio Fonseca

    2011-10-28

    Retinol (vitamin A) is believed to exert preventive/protective effects against malignant, neurodegenerative and cardiovascular diseases by acting as an antioxidant. However, later clinical and experimental data show a pro-oxidant action of retinol and other retinoids at specific conditions. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor, being activated by different ligands such as S100 proteins, HMGB1 (amphoterin), β-amyloid peptide and advanced glycation endproducts (AGE). RAGE activation influences a wide range of pathological conditions such as diabetes, pro-inflammatory states and neurodegenerative processes. Here, we investigated the involvement of different mitogen-activated protein kinases (MAPK: ERK1/2, p38 and JNK), PKC, PKA and Akt in the up-regulation of RAGE by retinol. As previously reported, we observed that the increase in RAGE immunocontent by retinol is reversed by antioxidant co-treatment, indicating the involvement of oxidative stress in this process. Furthermore, the p38 inhibitor SB203580 and the Akt inhibitor LY294002 also decreased the effect of retinol on RAGE levels, suggesting the involvement of these protein kinases in such effect. Both p38 and Akt phosphorylation were increased by treatment with pro-oxidant concentrations of retinol, and the antioxidant co-treatment blocked this effect, indicating that activation of p38 and Akt during retinol treatment is dependent on reactive species production. The 2',7'-dichlorohydrofluorescein diacetate (DCFH) assay also indicated that retinol treatment enhances cellular reactive species production. Altogether, these data indicate that RAGE up-regulation by retinol is mediated by the free radical-dependent activation of p38 and Akt.

  20. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.

    PubMed

    Wang, Kunping; Guo, Jinsong; Yang, Min; Junji, Hirotsuji; Deng, Rongsen

    2009-03-15

    The decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), from water was studied by means of single oxidants: ozone, UV radiation; and by the advanced oxidation processes (AOPs) constituted by combinations of O(3)/UV radiation, H(2)O(2)/UV radiation, O(3)/H(2)O(2), O(3)/H(2)O(2)/UV radiation. The concentrations of HAAs were analyzed at specified time intervals to elucidate the decomposition of HAAs. Single O(3) or UV did not result in perceptible decomposition of HAAs within the applied reaction time. O(3)/UV showed to be more suitable for the decomposition of DCAA and TCAA in water among the six methods of oxidation. Decomposition of DCAA was easier than TCAA by AOPs. For O(3)/UV in the semi-continuous mode, the effective utilization rate of ozone for HAA decomposition decreased with ozone addition. The kinetics of HAAs decomposition by O(3)/UV and the influence of coexistent humic acids and HCO(3)(-) on the decomposition process were investigated. The decomposition of the HAAs by the O(3)/UV accorded with the pseudo-first-order mode under the constant initial dissolved O(3) concentration and fixed UV radiation. The pseudo-first-order rate constant for the decomposition of DCAA was more than four times that for TCAA. Humic acids can cause the H(2)O(2) accumulation and the decrease in rate constants of HAAs decomposition in the O(3)/UV process. The rate constants for the decomposition of DCAA and TCAA decreased by 41.1% and 23.8%, respectively, when humic acids were added at a concentration of 1.2mgTOC/L. The rate constants decreased by 43.5% and 25.9%, respectively, at an HCO(3)(-) concentration of 1.0mmol/L.

  1. Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes.

    PubMed

    Soares, Petrick A; Silva, Tânia F C V; Manenti, Diego R; Souza, Selene M A G U; Boaventura, Rui A R; Vilar, Vítor J P

    2014-01-01

    Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH = 8.2), moderate organic content (DOC = 152 mg C L(-1), COD = 684 mg O2 L(-1)) and low-moderate biodegradability (40 % after 28 days in Zahn-Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 98.5% decolorization and 85.5% mineralization after less than 0.1 and 5.8 kJUV L(-1), respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L(-1) (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L(-1), consuming 7.5 mM hydrogen peroxide, resulting in 58.4% of mineralization [Formula: see text].

  2. Analysis of the oxido-redox status of plasma proteins. Technology advances for clinical applications.

    PubMed

    Bruschi, Maurizio; Candiano, Giovanni; Della Ciana, Leopoldo; Petretto, Andrea; Santucci, Laura; Prunotto, Marco; Camilla, Roberta; Coppo, Rosanna; Ghiggeri, Gian Marco

    2011-05-15

    Reactive oxygen species (ROS) are potentially implicated in renal pathology. Direct evidence is available for animal models of glomerulonephritis but the demonstration of ROS implication in human diseases is only circumstantial and requires further experimental support. One problem limiting any evolution is the brief life of ROS (in terms of milliseconds) that makes it difficult their direct detection 'in vivo'. An alternative is to look at the products of oxidation of proteins that remain in blood as a signature of ROS activity. Recent data have shown the presence of oxidation products of albumin (sulfonic (34)Cys albumin) in serum of patients with focal-glomerulosclerosis, that is a primary glomerular diseases causing nephrotic syndrome. Structural studies based on spectroscopy and calorimetry strengthened the relevance of oxidation of the unique free SH groups of (34)Cys for conformation of albumin, in analogy with what already reported for other proteins. In this review, we present new developments on technologies for the detection of the oxido-redox potential of proteins that are based on the concept that oxidation is inversely correlated with their free content of sulphydryl groups. We describe, in particular, two new iodoacetamide-substituted cyanines that have been developed for labelling sulphydryl groups and can be utilized as stable dyes prior mono- and bi-dimensional electrophoresis. Proteins with low binding with iodoacetamide-cyanines may be considered as surrogate biomarkers of ROS activity. Standardization of these techniques and their acquisition in more laboratories would enable clinicians to plan screening studies on ROS in human diseases.

  3. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  4. Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria

    SciTech Connect

    Lee, Minjung; Shin, Jaekyoon

    2011-09-16

    Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described. In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.

  5. Increased oxidative-modifications of cytosolic proteins in 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)-exposed rat liver.

    PubMed

    Upreti, Vijay V; Moon, Kwan-Hoon; Yu, Li-Rong; Lee, Insong J; Eddington, Natalie D; Ye, Xiaoying; Veenstra, Timothy D; Song, Byoung-Joon

    2011-01-01

    It is well established that 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) causes acute liver damage in animals and humans. The aim of this study was to identify and characterize oxidative modification and inactivation of cytosolic proteins in MDMA-exposed rats. Markedly increased levels of oxidized and nitrated cytosolic proteins were detected 12 h after the second administration of two consecutive MDMA doses (10 mg/kg each). Comparative 2-DE analysis showed markedly increased levels of biotin-N-methylimide-labeled oxidized cytosolic proteins in MDMA-exposed rats compared to vehicle-treated rats. Proteins in the 22 gel spots of strong intensities were identified using MS/MS. The oxidatively modified proteins identified include anti-oxidant defensive enzymes, a calcium-binding protein, and proteins involved in metabolism of lipids, nitrogen, and carbohydrates (glycolysis). Cytosolic superoxide dismutase was oxidized and its activity significantly inhibited following MDMA exposure. Consistent with the oxidative inactivation of peroxiredoxin, MDMA activated c-Jun N-terminal protein kinase and p38 kinase. Since these protein kinases phosphorylate anti-apoptotic Bcl-2 protein, their activation may promote apoptosis in MDMA-exposed tissues. Our results show for the first time that MDMA induces oxidative-modification of many cytosolic proteins accompanied with increased oxidative stress and apoptosis, contributing to hepatic damage.

  6. Advanced H2O2 oxidation for diethyl phthalate degradation in treated effluents: effect of nitrate on oxidation and a pilot-scale AOP operation.

    PubMed

    Ko, K B; Park, C G; Moon, T H; Ahn, Y H; Lee, J K; Ahn, K H; Park, J H; Yeom, I T

    2008-01-01

    One of the objectives of this study was to delineate the effect of nitrate on diethyl phthalate (DEP) oxidation by conducting a bench-scale ultraviolet (UV)/H2O2 and O3/H2O2 operations as suggested in a previous study. We also aim to investigate DEP oxidation at various UV doses and H2O2 concentrations by performing a pilot-scale advanced oxidation processes (AOP) system, into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. In the bench-scale AOP operation, the O3 oxidation alone as well as the UV irradiation without H2O2 addition could be among the desirable alternatives for the efficient removal of DEP dissolved in aqueous solutions at a low DEP concentration range of 85+/-15 microg/L. The adverse effect in the UV/H2O2 process was significantly greater than that in the UV oxidation alone, and its oxidation was almost halved by the nitrate. However, the nitrate clearly enhanced the DEP oxidation in the O3 oxidation and O3/H2O2 process. Especially, the addition of nitrate almost doubled the DEP oxidation efficiency in the O3/H2O2 process. The series of pilot-scale AOP operations confirmed that about 30-50% of DEP dissolved in the treated MBR effluent streams was, at least, oxidized by the O3 oxidation alone as well as the UV irradiation without H2O2 addition. The UV photolysis of H2O2 was most effective for DEP degradation with an H2O2 concentration of 40 mg/L at a UV dose of 500 mJ/cm2.

  7. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    PubMed

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl(-) system of leukocytes. At low molar ratio of oxidant to target protein N(ε)-lysine moiety, 2-AAA is formed via an initial N(ε)-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N(ε)-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N(ε)-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  8. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    PubMed

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing.

  9. The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients

    PubMed Central

    Palacio, J R; Iborra, A; Ulcova-Gallova, Z; Badia, R; Martínez, P

    2006-01-01

    Polycystic ovary syndrome (PCOS) affects 5–10% of women of reproductive age. Free radicals, as a product of oxidative stress, impair cells and tissue properties related to human fertility. These free radicals, together with the oxidized molecules, may have a cytotoxic or deleterious effects on sperm and oocytes, on early embryo development or on the endometrium. Aldehyde-modified proteins are highly immunogenic and circulating autoantibodies to new epitopes, such as malondialdehyde (MDA), may affect the reproductive system. Autoantibodies or elevated reactive oxygen species (ROS) in serum are often associated with inflammatory response. The purpose of this work is to investigate whether PCOS women show increased levels of oxidized proteins (protein–MDA) and anti-endometrial antibodies (AEA) in their sera, compared with control patients, and to determine whether AEA specificity is related to oxidized protein derivatives. Sera from 31 women [10 patients with PCOS (PCOS group) and 21 women with male factor of infertility (control group)] were chosen from patients attending for infertility. Anti-endometrial antibodies were determined by enzyme-linked immunosorbent assay (ELISA) with an endometrial cell line (RL-95). Antibodies against MDA modified human serum albumin (HSA–MDA) were also determined by ELISA. Oxidized proteins (protein–MDA) in serum were determined by a colorimetric assay. Patients with PCOS have significantly higher levels of AEA and anti-HSA–MDA, as well as oxidized proteins (protein–MDA) in serum than control patients. For the first time, we describe an autoimmune response in PCOS patients, in terms of AEA. The evidence of protein–MDA in the serum of these patients, together with the increased antibody reactivity to MDA-modified proteins (HSA–MDA) in vitro, supports the conclusion that oxidative stress may be one of the important causes for abnormal endometrial environment with poor embryo receptivity in PCOS patients. PMID:16634794

  10. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste

    PubMed Central

    Lemes, Ailton Cesar; Sala, Luisa; Ores, Joana da Costa; Braga, Anna Rafaela Cavalcante; Egea, Mariana Buranelo; Fernandes, Kátia Flávia

    2016-01-01

    Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i) new strategies for transforming bioactive peptides from residual waste into added-value products; (ii) nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii) use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries. PMID:27322241

  11. Effect Of Inorganic, Synthetic And Naturally Occurring Chelating Agents On Fe(II) Mediated Advanced Oxidation Of Chlorophenols

    EPA Science Inventory

    This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...

  12. ADVANCED OXIDATION PROCESSES (AOPS) FOR DESTRUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE -AN UNREGULATED CONTAMINANT) IN DRINKING WATER

    EPA Science Inventory

    Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...

  13. Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes

    PubMed Central

    Duran-Jimenez, Beatriz; Dobler, Darin; Moffatt, Sarah; Rabbani, Naila; Streuli, Charles H.; Thornalley, Paul J.; Tomlinson, David R.; Gardiner, Natalie J.

    2009-01-01

    OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3–24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation Nε-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and Nε-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy. PMID:19720799

  14. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    SciTech Connect

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), and (3) Y2O3 + HfO2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al2O3 and yttrium–aluminum garnet (YAG) phases (Y3Al5O12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al2O3 phases, Hf(C,N), Y2Hf2O7, and HfO2 precipitates were also found. The presence of HfO2 was mainly due to the incomplete incorporation of HfO2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y2O3 + ZrO2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.

  15. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    SciTech Connect

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  16. Digesting pythons quickly oxidize the proteins in their meals and save the lipids for later.

    PubMed

    McCue, Marshall D; Guzman, R Marena; Passement, Celeste A

    2015-07-01

    Pythons digesting rodent meals exhibit up to 10-fold increases in their resting metabolic rate (RMR); this increase in RMR is termed specific dynamic action (SDA). Studies have shown that SDA is partially fueled by oxidizing dietary nutrients, yet it remains unclear whether the proteins and the lipids in their meals contribute equally to this energy demand. We raised two populations of mice on diets labeled with either [(13)C]leucine or [(13)C]palmitic acid to intrinsically enrich the proteins and lipids in their bodies, respectively. Ball pythons (Python regius) were fed whole mice (and pureed mice 3 weeks later), after which we measured their metabolic rates and the δ(13)C in the breath. The δ(13)C values in the whole bodies of the protein- and lipid-labeled mice were generally similar (i.e. 5.7±4.7‰ and 2.8±5.4‰, respectively) but the oxidative kinetics of these two macronutrient pools were quite different. We found that the snakes oxidized 5% of the protein and only 0.24% of the lipids in their meals within 14 days. Oxidation of the dietary proteins peaked 24 h after ingestion, at which point these proteins provided ∼90% of the metabolic requirement of the snakes, and by 14 days the oxidation of these proteins decreased to nearly zero. The oxidation of the dietary lipids peaked 1 day later, at which point these lipids supplied ∼25% of the energy demand. Fourteen days after ingestion, these lipids were still being oxidized and continued to account for ∼25% of the metabolic rate. Pureeing the mice reduced the cost of gastric digestion and decreased SDA by 24%. Pureeing also reduced the oxidation of dietary proteins by 43%, but it had no effect on the rates of dietary lipid oxidation. Collectively, these results demonstrate that pythons are able to effectively partition the two primary metabolic fuels in their meals. This approach of uniquely labeling the different components of the diet will allow researchers to examine new questions about

  17. Reversible and irreversible modifications of skeletal muscle proteins in a rat model of acute oxidative stress.

    PubMed

    Fedorova, Maria; Kuleva, Nadezhda; Hoffmann, Ralf

    2009-12-01

    Oxidative stress caused by an imbalance of the production of "reactive oxygen species" (ROS) and cellular scavenging systems is known to a play a key role in the development of various diseases and aging processes. Such elevated ROS levels can damage all components of cells, including proteins, lipids and DNA. Here, we study the influence of highly reactive ROS species on skeletal muscle proteins in a rat model of acute oxidative stress caused by X-ray irradiation at different time points. Protein preparations depleted for functional actin by polymerization were separated by gel electrophoresis in two dimensions by applying first non-reductive and then reductive conditions in SDS-PAGE. This diagonal redox SDS-PAGE revealed significant alterations to intra- and inter-molecular disulfide bridges for several proteins, but especially actin, creatine kinase and different isoforms of the myosin light chain. Though the levels of these reversible modifications were increased by oxidative stress, all proteins followed different kinetics. Moreover, a significant degree of protein was irreversibly oxidized (carbonylated), as revealed by western blot analyses performed at different time points.

  18. Potential role of oxidative protein modification in energy metabolism in exercise.

    PubMed

    Aoi, Wataru; Naito, Yuji; Yoshikawa, Toshikazu

    2014-01-01

    Exercise leads to the production of reactive oxygen species (ROS) via several sources in the skeletal muscle. In particular, the mitochondrial electron transport chain in the muscle cells produces ROS along with an elevation in the oxygen consumption during exercise. Such ROS generated during exercise can cause oxidative modification of proteins and affect their functionality. Many evidences have been suggested that some muscle proteins, i.e., myofiber proteins, metabolic signaling proteins, and sarcoplasmic reticulum proteins can be a targets modified by ROS generated due to exercise. We detected the modification of carnitine palmitoyltransferase I (CPT I) by Nε-(hexanoyl)lysine (HEL), one of the lipid peroxides, in exercised muscles, while the antioxidant astaxanthin reduced this oxidative stress-induced modification. Exercise-induced ROS may diminish CPT I activity caused by HEL modification, leading to a partly limited lipid utilization in the mitochondria. This oxidative protein modification may be useful as a potential biomarker to examine the oxidative stress levels, antioxidant compounds, and their possible benefits in exercise.

  19. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Turcheniuk, Kostiantyn; Tarasevych, Arkadii V.; Kukhar, Valeriy P.; Boukherroub, Rabah; Szunerits, Sabine

    2013-10-01

    The synthesis of superparamagnetic nanostructures, especially iron-oxide based nanoparticles (IONPs), with appropriate surface functional groups has been intensively researched for many high-technological applications, including high density data storage, biosensing and biomedicine. In medicine, IONPs are nowadays widely used as contrast agents for magnetic resonance imaging (MRI), in hyperthermia therapy, but are also exploited for drug and gene delivery, detoxification of biological fluids or immunoassays, as they are relatively non-toxic. The use of magnetic particles in vivo requires IONPs to have high magnetization values, diameters below 100 nm with overall narrow size distribution and long time stability in biological fluids. Due to the high surface energies of IONPs agglomeration over time is often encountered. It is thus of prime importance to modify their surface to prevent aggregation and to limit non-specific adsorption of biomolecules onto their surface. Such chemical modifications result in IONPs being well-dispersed and biocompatible, and allow for targeted delivery and specific interactions. The chemical nature of IONPs thus determines not only the overall size of the colloid, but also plays a significant role for in vivo and in vitro applications. This review discusses the different concepts currently used for the surface functionalization and coating of iron oxide nanoparticles. The diverse strategies for the covalent linking of drugs, proteins, enzymes, antibodies, and nucleotides will be discussed and the chemically relevant steps will be explained in detail.

  20. Oxidative modification of native protein residues using cerium(IV) ammonium nitrate.

    PubMed

    Seim, Kristen L; Obermeyer, Allie C; Francis, Matthew B

    2011-10-26

    A new protein modification strategy has been developed that is based on an oxidative coupling reaction that targets electron-rich amino acids. This strategy relies on cerium(IV) ammonium nitrate (CAN) as an oxidation reagent and results in the coupling of tyrosine and tryptophan residues to phenylene diamine and anisidine derivatives. The methodology was first identified and characterized on peptides and small molecules, and was subsequently adapted for protein modification by determining appropriate buffer conditions. Using the optimized procedure, native and introduced solvent-accessible residues on proteins were selectively modified with polyethylene glycol (PEG) and small peptides. This unprecedented bioconjugation strategy targets these under-utilized amino acids with excellent chemoselectivity and affords good-to-high yields using low concentrations of the oxidant and coupling partners, short reaction times, and mild conditions.

  1. Redox Proteomics in Human Biofluids: Sample Preparation, Separation and Immunochemical Tagging for Analysis of Protein Oxidation.

    PubMed

    Di Domenico, Fabio; Perluigi, Marzia; Butterfield, D Allan

    2016-01-01

    Proteomics offers the simultaneous detection of a large number of proteins in a single experiment and can provide important information regarding crucial aspects of specific proteins, particularly post-translational modifications (PTMs). Investigations of oxidative PTMs are currently performed using focused redox proteomics techniques, which rely on gel electrophoresis separations of intact proteins with the final detection of oxidative PTMs being performed by mass spectrometry (MS) analysis. The application of this technique to human biofluids is being subject of increasing investigation and is expected to provide new insights on the oxidative status of the peripheral proteome in neurological diseases such as Alzheimer's disease, towards purposes of early diagnosis and prognosis. This chapter describes all the experimental steps to perform redox proteomics analysis of cerebrospinal fluid and plasma/serum samples.

  2. Evidence of peptide oxidation from major myofibrillar proteins in dry-cured ham.

    PubMed

    Gallego, Marta; Mora, Leticia; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-15

    In this study, a peptidomic approach has been used in the identification of naturally generated peptides during a dry-curing process, showing methionine (Met) oxidation in their sequence. A total of 656 peptides derived from major myofibrillar proteins in Protected Designation of Origin (PDO) Teruel dry-cured ham have been identified by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS), including 120 peptides showing methionine oxidation. The percentage of oxidised peptides in the studied proteins ranged from 6% to 35%, being peptides derived from nebulin, titin, myosin heavy chains, and troponin I proteins, those showing the highest number of oxidised methionine. The identification of the peptide sequence incorporating the oxidised amino acid provides valuable information of neighbouring amino acids, degree of hydrolysis of the sample, and characteristics of the peptide, which might be very useful for a future better understanding of the oxidation mechanisms occurring in dry-curing processing.

  3. Inhibition of a protein tyrosine phosphatase using mesoporous oxides.

    PubMed

    Kapoor, S; Girish, T S; Mandal, S S; Gopal, B; Bhattacharyya, A J

    2010-03-11

    The feasibility of utilizing mesoporous matrices of alumina and silica for the inhibition of enzymatic activity is presented here. These studies were performed on a protein tyrosine phosphatase by the name chick retinal tyrosine phosphotase-2 (CRYP-2), a protein that is identical in sequence to the human glomerular epithelial protein-1 and involved in hepatic carcinoma. The inhibition of CRYP-2 is of tremendous therapeutic importance. Inhibition of catalytic activity was examined using the sustained delivery of p-nitrocatechol sulfate (pNCS) from bare and amine functionalized mesoporous silica (MCM-48) and mesoporous alumina (Al(2)O(3)). Among the various mesoporous matrices employed, amine functionalized MCM-48 exhibited the best release of pNCS and also inhibition of CRYP-2. The maximum speed of reaction v(max) (=160 +/- 10 micromol/mnt/mg) and inhibition constant K(i) (=85.0 +/- 5.0 micromol) estimated using a competitive inhibition model were found to be very similar to inhibition activities of protein tyrosine phosphatases using other methods.

  4. Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems

    NASA Astrophysics Data System (ADS)

    Rinas, Aimee; Jones, Lisa M.

    2015-04-01

    Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.

  5. Purification and Characterization of the Manganese(II) Oxidizing Protein from Erythrobacter sp. SD-21

    NASA Astrophysics Data System (ADS)

    Nakama, K. R.; Lien, A.; Johnson, H. A.

    2013-12-01

    The manganese(II) oxidizing protein (Mop) found in the alpha-proteobacterium Erythrobacter sp. SD-21 catalyzes the formation of insoluble Mn(III/IV) oxides from soluble Mn(II). These Mn(III/IV) oxides formed are one of the strongest naturally occurring oxides, next to oxygen, and can be used to adsorb and oxidize toxic chemicals from the surrounding environment. Because of the beneficial use in the treatment of contaminated sources, the mechanism and biochemical properties of this novel enzyme are being studied. Due to low expression levels in the native host strain, purification of Mop has been problematic. To overcome this problem the gene encoding Mop, mopA, was cloned from the native host into a C-terminal histidine tag vector and expressed in Escherichia coli cells. Affinity chromatography under denaturing conditions have been applied in attempts to purify an active Mop. Western blots have confirmed that the protein is being expressed and is at the expected size of 250 kDa. Preliminary characterization on crude extract containing Mop has shown a Km and vmax value of 2453 uM and 0.025 uM min-1, respectively. Heme and pyrroloquinoline quinone can stimulate Mn(II) oxidizing activity, but hydrogen peroxide does not affect activity, despite the sequence similarity to animal heme peroxidase proteins. Research has been shown that calcium is essential for Mop activity. Purifying an active Mn(II) oxidizing protein will allow for a better understanding behind the enigmatic process of Mn(II) oxidation.

  6. Vitamin D Levels Decline with Rising Number of Cardiometabolic Risk Factors in Healthy Adults: Association with Adipokines, Inflammation, Oxidative Stress and Advanced Glycation Markers

    PubMed Central

    Krivošíková, Zora; Gajdoš, Martin; Šebeková, Katarína

    2015-01-01

    Introduction Hypovitaminosis D associates with obesity, insulin resistance, hypertension, and dyslipoproteinemia. We asked whether the presence of multiple cardiometabolic risk factors, and which particular combination, exerts additive negative effects on 25(OH)D3 levels; and whether 25(OH)D3 levels associate with markers of inflammation and oxidative stress. Subjects and Methods In non-diabetic medication-free adults central obesity (waist-to-height ratio > 0.5); elevated blood pressure (systolic BP≥130 mm Hg and/or diastolic BP ≥85 mm Hg); increased atherogenic risk (log(TAG/HDL) ≥ 0.11); and insulin resistance (QUICKI < 0.322) were considered as cardiometabolic risk factors. 25(OH)D3 status was classified as deficiency (25(OH)D3 ≤20 ng/ml); insufficiency (levels between 20-to-30 ng/ml), or as satisfactory (>30 ng/ml). Plasma adipokines, inflammatory and oxidative stress markers, advanced glycation end-products, and their soluble receptor were determined. Results 162 subjects were cardiometabolic risk factors-free, 162 presented increased (i.e. 1 or 2), and 87 high number (i.e. 3 or 4) of cardiometabolic risk factors. Mean 25(OH)D3 decreased with rising number of manifested risk factors (36 ± 14 ng/ml, 33 ± 14 ng/ml, and 31 ± 15 ng/ml, respectively; pANOVA: 0.010), while prevalence of hypovitaminosis D did not differ significantly. Elevated blood pressure and insulin resistance appeared as significant determinants of hypovitaminosis D. Subjects presenting these risk factors concurrently displayed the lowest 25(OH)D3 levels (29 ± 15 ng/ml). Plasma adipokines, inflammatory and oxidative stress markers, advanced glycation end-products, and their soluble receptor generally differed significantly between the groups, but only advanced oxidation protein products and advanced glycation end-products associated fluorescence of plasma showed significant independent association with 25(OH)D3 levels. Conclusion In apparently healthy adults increasing number of

  7. Endogenous alpha-oxoaldehydes and formation of protein and nucleotide advanced glycation endproducts in tissue damage.

    PubMed

    Thornalley, Paul J

    2007-01-01

    Human and other biological tissues face a continual threat of damage by alpha-oxoaldehydes formed endogenously. Glyoxal, methylglyoxal and 3-deoxyglucosone are formed by the degradation of glycolytic intermediates, glycated proteins and lipid peroxidation. They are potent glycating agents of protein and nucleotides leading to the formation of advanced glycation endproducts (AGEs). With proteins, they are arginine residue-directed glycating agents forming mainly hydroimidazolones, found at 0.1-1% of total arginine residues in tissues (2-20% of proteins modified). With nucleotides, imidazopurinone- and N2-carboxyalkyl- derivatives of deoxyguanosine are formed, found at 0.1-0.8 per 10(6) nucleotides in DNA. Glycation occurs in all tissues and body fluids. Cellular proteolysis of AGE-modified proteins and DNA releases glycated amino acids and nucleosides. Glycated amino acids and nucleosides are released into plasma, undergo glomerular filtration and are excreted in urine. The damage to tissue protein and nucleotides by alpha-oxoaldehydes is suppressed by the metabolism of alpha-oxoaldehyde glycating agents by the glutathione-dependent enzyme, glyoxalase I, and aldo-keto reductases. These enzymatic activities are part of the enzymatic defence against glycation. Tissue damage by alpha-oxoaldehyde glycation is implicated in diabetic and non-diabetic vascular disease, renal failure, cirrhosis, Alzheimer's disease, arthritis and ageing.

  8. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    PubMed Central

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  9. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    PubMed

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  10. Serum protein layers on parylene-C and silicon oxide: effect on cell adhesion.

    PubMed

    Delivopoulos, Evangelos; Ouberai, Myriam M; Coffey, Paul D; Swann, Marcus J; Shakesheff, Kevin M; Welland, Mark E

    2015-02-01

    Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning.

  11. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.

    PubMed

    Rinalducci, Sara; Murgiano, Leonardo; Zolla, Lello

    2008-01-01

    The production and scavenging of chemically reactive species, such as ROS/RNS, are central to a broad range of biotic and abiotic stress and physiological responses in plants. Among the techniques developed for the identification of oxidative stress-induced modifications on proteins, the so-called 'redox proteome', proteomics appears to be the best-suited approach. Oxidative or nitrosative stress leaves different footprints in the cell in the form of different oxidatively modified components and, using the redox proteome, it will be possible to decipher the potential roles played by ROS/RNS-induced modifications in stressed cells. The purpose of this review is to present an overview of the latest research endeavours in the field of plant redox proteomics to identify the role of post-translational modifications of proteins in developmental cell stress. All the strategies set up to analyse the different oxidized/nitrosated amino acids, as well as the different reactivities of ROS and RNS for different amino acids are revised and discussed. A growing body of evidence indicates that ROS/RNS-induced protein modifications may be of physiological significance, and that in some cellular stresses they may act causatively and not arise as a secondary consequence of cell damage. Thus, although previously the oxidative modification of proteins was thought to represent a detrimental process in which the modified proteins were irreversibly inactivated, it is now clear that, in plants, oxidatively/nitrosatively modified proteins can be specific and reversible, playing a key role in normal cell physiology. In this sense, redox proteomics will have a central role in the definition of redox molecular mechanisms associated with cellular stresses.

  12. Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa

    PubMed Central

    2012-01-01

    Background Leptospires lack many of the homologs for oxidative defense present in other bacteria, but do encode homologs of the Bacteriodes aerotolerance (Bat) proteins, which have been proposed to fulfill this function. Bat homologs have been identified in all families of the phylum Spirochaetes, yet a specific function for these proteins has not been experimentally demonstrated. Results We investigated the contribution of the Bat proteins in the model organism Leptospira biflexa for their potential contributions to growth rate, morphology and protection against oxidative challenges. A genetically engineered mutant strain in which all bat ORFs were deleted did not exhibit altered growth rate or morphology, relative to the wild-type strain. Nor could we demonstrate a protective role for the Bat proteins in coping with various oxidative stresses. Further, pre-exposing L. biflexa to sublethal levels of reactive oxygen species did not appear to induce a general oxidative stress response, in contrast to what has been shown in other bacterial species. Differential proteomic analysis of the wild-type and mutant strains detected changes in the abundance of a single protein only – HtpG, which is encoded by the gene immediately downstream of the bat loci. Conclusion The data presented here do not support a protective role for the Leptospira Bat proteins in directly coping with oxidative stress as previously proposed. L. biflexa is relatively sensitive to reactive oxygen species such as superoxide and H2O2, suggesting that this spirochete lacks a strong, protective defense against oxidative damage despite being a strict aerobe. PMID:23234440

  13. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    SciTech Connect

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2013-06-15

    Highlights: ► Ozone and persulfate reagent (O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH{sub 3}–N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O{sub 3}/kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH{sub 3}–N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m{sup 3} ozone, 1 g/1 g COD{sub 0}/S{sub 2}O{sub 8}{sup 2-} ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH{sub 3}–N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O{sub 3}/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S{sub 2}O{sub 8}{sup 2-} only, to evaluate its effectiveness. The combined method (i.e., O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) achieved higher removal efficiencies for COD, color, and NH{sub 3}–N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.

  14. Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process.

    PubMed

    Cheibub, Ana F; Campos, Juacyara C; da Fonseca, Fabiana V

    2014-01-01

    This work investigated the effectiveness of a physicochemical and oxidative process for the removal of chemical oxygen demand (COD) from stabilized landfill leachates. The application of these technologies for landfill leachate treatment greatly depends on the optimal operating conditions for a specific leachate. Coagulation-flocculation followed by H2O2, Fenton and photo-Fenton processes was evaluated. Advanced oxidation processes were evaluated in the raw leachate and the leachate pretreated by coagulation-flocculation. Via the coagulation process, at 30 sec and a stirring speed of 150 rpm followed by flocculation and settling steps, 53% COD was removed at an optimal dose of 1400 mg L(-1) and pH 4.0. Moreover, from the POA evaluated, the Fenton process was determined to be the most effective process for removing COD from the leachate pretreated by coagulation-flocculation, reaching 83.3% COD removal with 1330 mg L(-1) of H2O2 and 266 mg L(-1) of Fe(2+). The photo-Fenton process applied directly to the raw effluent was effective for the removal of COD; a 75% reduction in COD was observed in tests using 2720 mg L(-1) of H2O2 and 544 mg L(-1) of Fe(2+). Due to the variability in the composition of the Gramacho landfill leachate, the combination of coagulation-flocculation and the Fenton process is an effective technology for reducing the COD in samples of this leachate.

  15. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    PubMed

    Kıdak, Rana; Doğan, Şifa

    2017-01-28

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min(-1) at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min(-1) (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal.

  16. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation.

    PubMed

    Zheng, Tianlong; Wang, Qunhui; Shi, Zhining; Fang, Yue; Shi, Shanshan; Wang, Juan; Wu, Chuanfu

    2016-12-01

    A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m(2), circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.

  17. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs.

  18. Formation of nitroaromatic compounds in advanced oxidation processes: Photolysis versus photocatalysis

    SciTech Connect

    Dzengel, J.; Theurich, J.; Bahnemann, D.W.

    1999-01-15

    There is a growing demand for efficient treatment of organic polluted wastewaters by advanced oxidation processes (AOPs). Besides optimization of the processes, the detailed understanding of degradation mechanisms and interactions of organic pollutants with inorganic substrates is important for technical applications of AOPs. Therefore, the aim of the present study was to investigate the influence of nitrate ions on the photooxidation of phenol for various AOPs at different pH values. Three different oxidation processes were compared in these studies: direct photolysis, TiO{sub 2}/UV, and H{sub 2}O{sub 2}/UV. Special emphasis has been laid on the analysis of byproducts especially on the formation of nitroaromatic compounds. The formation of intermediates as well as the depletion of phenol were monitored by HPLC technique. The total organic carbon content, TOC, was measured to monitor the mineralization. Highest degradation rates and lowest concentrations of intermediates were observed with TiO{sub 2}/UV being the AOP. Formation of highly toxic nitrophenols was only observed when homogeneous AOPs were employed. For the TiO{sub 2}/UV process no formation of Nitroaromatic byproducts occurred. At pH 5 formation of nitrophenols was observed employing direct photolysis in the presence of NO{sub 2}{sup {minus}}, while with H{sub 2}O{sub 2}/UV nitrophenols were detected only when the concentration of NO{sub 2}{sup {minus}} was higher than that of H{sub 2}O{sub 2}. At pH 11 no nitroaromatic intermediates were found for any AOPs compared in this study.

  19. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology.

    PubMed

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-10-02

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  20. Erythropoietin, Forkhead Proteins, and Oxidative Injury: Biomarkers and Biology

    PubMed Central

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:19802503

  1. [Effects of organic pollutants in drinking water on the removal of dimethyl phthalate by advanced oxidation processes].

    PubMed

    Rui, Min; Gao, Nai-yun; Xu, Bin; Li, Fu-sheng; Zhao, Jian-fu; Le, Lin-sheng

    2006-12-01

    Humic acids were used to simulate natural organic compounds in water for the investigation of DMP oxidation by three different AOPs (advanced oxidation processes) of UV-H2O2, O3 and UV-O3. The results showed that pseudo-first-order reaction equation could describe the oxidation of DMP by UV-H2O2 perfectly, which was strongly affected humic acids in water. The relationship between pseudo-first-order reaction rate and TOC value could be expressed as K = 0. 162 0 [TOC]-0.8171. It was also found that humic acids in the water exhibited obvious influence on the oxidation of DMP by UV-O3. However, effect of humic acids on the oxidation of DMP by ozone was not obvious. It was also analyzed that oxidation of DMP was dominated by ozone oxidation both in ozonation process and UV-O3 process; the importance of "OH in the oxidation of DMP was enhanced as the concentration of DMP decreased in UV-O3 process. The degree of impact form humic acids towards different AOPs could be ranked in a decreasing order as UV-H2O3, UV-O3, 03.

  2. Nitrogenase of Azotobacter chroococcum. Kinetics of the reduction of oxidized iron-protein by sodium dithionite.

    PubMed Central

    Thorneley, R N; Yates, M G; Lowe, D J

    1976-01-01

    The kinetics of the reduction of oxidized Fe-protein of nitrogenase from Azotobacter chroococcum by sodium dithionite were studied by stopped-flow and rapid-freezing e.p.r. (electron-paramagnetic-resonance) spectroscopy. The appearance of the gav. = 1.94 e.p.r. signal (0.24 electron integrated intensity/mol) was associated with a one-electron reduction by SO2--with k greater than 10(8)M-1-S-1 at 23 degrees C. A value of k = 1.75s-1 was obtained for the rate of dissociation of S2O42- into 2SO2-- at 23 degrees C. Further reductions by SO2-- occurred in three slower phases with rate constants in the range 10(4) -10(6)M-1-S-1. These latter phases have no corresponding e.p.r. signal changes and are probably associated with enzymically inactive protein. The high rate of reduction by SO2-- of the Fe-protein alone (k greater than 10(8)M-1-S-1) relative to the rate of oxidation of the Fe-protein in the catalytically active Fe:Mo-Fe protein complex (k = 2.2 X 1O(2)s-1) and the observation that in the steady state the Fe-protein is substantially oxidized means that at normal assay concentrations another reaction must limit the rate of reduction of Fe-protein during turnover. Images Fig. 1. Fig. 4. PMID:180978

  3. Dynamics of LPO products and oxidative modification of proteins in human brain during postnatal development.

    PubMed

    Volchegorskii, I A; Malinovskaya, N V; Shumelyova, O V; Shiemyakov, S E

    2007-08-01

    Opposite changes in the content of LPO products and products of oxidative modification of proteins were detected in human brain structures in the course of postnatal development. A clear-cut ontogenetic reduction of LPO products was observed in field 17 of the cortex, archicortex structures, and in the hypothalamus. Age-specific increase in the levels of products of oxidative modification of proteins was recorded in all compartments of the brain; it peaked by the age of 12-21 years and was most pronounced (4-6-fold) in the visual cortex, hippocampus, diencephalic and pontobulbar compartments of the brain.

  4. Two-component magnetic structure of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Klem, Michael T.; Russek, Stephen E.; Young, Mark; Douglas, Trevor; Goldfarb, Ron B.

    2010-06-01

    Magnetometry was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within Listeria innocua protein cage. The electron magnetic resonance spectrum shows the presence of at least two magnetization components. The magnetization curves are explained by a sum of two Langevin functions in which each filled protein cage contains both a large magnetic iron oxide core plus an amorphous surface consisting of small noncoupled iron oxide spin clusters. This model qualitatively explains the observed decrease in the temperature dependent saturation moment and removes an unrealistic temperature dependent increase in the particle moment often observed in nanoparticle magnetization measurements.

  5. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications.

    PubMed

    Gupta, Ajay Kumar; Naregalkar, Rohan R; Vaidya, Vikas Deep; Gupta, Mona

    2007-02-01

    Magnetic nanoparticles with appropriate surface coatings are increasingly being used clinically for various biomedical applications, such as magnetic resonance imaging, hyperthermia, drug delivery, tissue repair, cell and tissue targeting and transfection. This is because of the nontoxicity and biocompatibility demand that mainly iron oxide-based materials are predominantly used, despite some attempts to develop 'more magnetic nanomaterials' based on cobalt, nickel, gadolinium and other compounds. For all these applications, the material used for surface coating of the magnetic particles must not only be nontoxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. Magnetic nanoparticles can bind to drugs and an external magnetic field can be applied to trap them in the target site. By attaching the targeting molecules, such as proteins or antibodies, at particles surfaces, the latter may be directed to any cell, tissue or tumor in the body. In this review, different polymers/molecules that can be used for nanoparticle coating to stabilize the suspensions of magnetic nanoparticles under in vitro and in vivo situations are discussed. Some selected proteins/targeting ligands that could be used for derivatizing magnetic nanoparticles are also explored. We have reviewed the various biomedical applications with some of the most recent uses of magnetic nanoparticles for early detection of cancer, diabetes and atherosclerosis.

  6. Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple Nanoemulsion Containing Fish Oil.

    PubMed

    Hwang, Jae-Young; Ha, Ho-Kyung; Lee, Mee-Ryung; Kim, Jin Wook; Kim, Hyun-Jin; Lee, Won-Jae

    2017-02-01

    The objectives of this research were to produce whey protein concentrate (WPC) multiple nanoemulsion (MNE) and to study how whey protein concentration level and antioxidant type affected the physicochemical properties and oxidative stability of fish oil in MNE. The morphological and physicochemical characteristics of MNE were investigated by using transmission electron microscopy and particle size analyzer, respectively. The oxidative stability of fish oil in MNEs was assessed by measuring peroxide value (PV), p-anisidine value, and volatile compounds. The spherical forms of emulsions with size ranging from 190 to 210 nm were observed indicating the successful production of MNE. Compared with free fish oil, fish oil in MNE exhibited lower PV, p-anisidine value, and formation of maker of oxidation of fish oil indicating the oxidative stability of fish oil in MNE was enhanced. PV, p-anisidine value, and makers of oxidation of fish oil were decreased with increased WPC concentration level. The combined use of Vitamin C and E in MNE resulted in a reduction in PV and p-anisidine value, and development of maker of oxidation. In conclusion, WPC concentration level and antioxidant type are key factors affecting the droplet size of MNE and oxidative stability of fish oil.

  7. Oxidative stress status accompanying diabetic bladder cystopathy results in the activation of protein degradation pathways

    PubMed Central

    Kanika, Nirmala; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J.; Melman, Arnold; Davies, Kelvin

    2010-01-01

    Objectives To investigate the role that oxidative stress plays in the development of diabetic cystopathy. Materials and methods Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month-old diabetic rats was carried out using microarray analysis. Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. The activity of protein degradation pathways was assessed using western blot analysis. Results Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10−10). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. Conclusions Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. PMID:21518418

  8. Proteomic Profiling of Nitrosative Stress: Protein S-Oxidation Accompanies S-Nitrosylation

    PubMed Central

    2015-01-01

    Reversible chemical modifications of protein cysteine residues by S-nitrosylation and S-oxidation are increasingly recognized as important regulatory mechanisms for many protein classes associated with cellular signaling and stress response. Both modifications may theoretically occur under cellular nitrosative or nitroxidative stress. Therefore, a proteomic isotope-coded approach to parallel, quantitative analysis of cysteome S-nitrosylation and S-oxidation was developed. Modifications of cysteine residues of (i) human glutathione-S-transferase P1-1 (GSTP1) and (ii) the schistosomiasis drug target thioredoxin glutathione reductase (TGR) were studied. Both S-nitrosylation (SNO) and S-oxidation to disulfide (SS) were observed for reactive cysteines, dependent on concentration of added S-nitrosocysteine (CysNO) and independent of oxygen. SNO and SS modifications of GSTP1 were quantified and compared for therapeutically relevant NO and HNO donors from different chemical classes, revealing oxidative modification for all donors. Observations on GSTP1 were extended to cell cultures, analyzed after lysis and in-gel digestion. Treatment of living neuronal cells with CysNO, to induce nitrosative stress, caused levels of S-nitrosylation and S-oxidation of GSTP1 comparable to those of cell-free studies. Cysteine modifications of PARK7/DJ-1, peroxiredoxin-2, and other proteins were identified, quantified, and compared to overall levels of protein S-nitrosylation. The new methodology has allowed identification and quantitation of specific cysteome modifications, demonstrating that nitroxidation to protein disulfides occurs concurrently with S-nitrosylation to protein-SNO in recombinant proteins and living cells under nitrosative stress. PMID:24397869

  9. Protein oxidative damage and heme oxygenase in sunlight-exposed human skin: roles of MAPK responses to oxidative stress.

    PubMed

    Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira

    2010-12-20

    Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.

  10. Dechlorination of chlorophenols found in pulp bleach plant E-1 effluents by advanced oxidation processes.

    PubMed

    Wang, Rui; Chen, Chen-Loung; Gratzl, Josef S

    2005-05-01

    Studies were conducted on the response of 2,4,6-trichlorophenol (1), 2,3,4,5-tetrachloro-phenol (2) and 4,5-dichloroguaiacol (3) toward advanced oxidation processes, such as UV-, O2/UV-, H2O2/UV-, O3/UV- and O3-H2O2/UV-photolyses with irradiation of 254 nm photons. The compounds 1-3 are among the chlorophenols found in the Kraft-pulp bleach plant E-1 effluents. The studies were extended to treatment of these compounds with ozonation and O3-H2O2 oxidation systems in alkaline aqueous solution. Except for the O2/UV-photolysis of 1 and H2O2/UV-photolysis of 2, the dechlorination of 1-3 by O2/UV- and H2O2/UV-potolyses were less effective than the corresponding N2UV-potolysis of 1-3. Guaiacol-type chlorophenols were more readily able to undergo dechlorination than non-guaiacol type chlorophenols by N2/UV-, O2/UV- and H2O2/UV-potolyses. In addition, the efficiency for the dechlorination of 1-3 by N2/UV-, O2/UV- and H2O2/UV-potolyses appeared to be dependent upon the inductive and resonance effects of substituents as well as number and position of chlorine substituent in the aromatic ring of the compounds. The dechlorination of 2 by treatment with O3 alone is slightly more effective than the corresponding the O3/UV-photlysis, whereas the dechlorination of 2 by treatment with the combination of O3 and H2O2 was slightly less effective than the corresponding O3-H2O2/UV-photolysis. In contrast, the dechlorination of 3 on treatment with O3 alone was slightly less effective than the corresponding the O3/UV-photolysis, whereas the dechlorination of 3 on treatment with the combination of O3 and H2O2 was slightly more effective than the corresponding the O3-H2O2/UV-photolysis. In the dechlorination of 2 and 3, chemical species derived from ozone and hydrogen peroxide in alkaline solution were dominant reactions in the O3/UV- and O3-H2O2/UV-photolysis systems as in the O3 and O3-H2O2 oxidation systems. Possible dechlorination mechanisms involved were discussed on the basis of

  11. Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals.

    PubMed

    Zhou, Feibai; Zhao, Mouming; Zhao, Haifeng; Sun, Weizheng; Cui, Chun

    2014-04-01

    AAPH-derived (2,2'-azobis (2-amidinopropane) dihydrochloride) peroxyl radicals were selected as representative free radicals of lipid peroxidation to investigate the effects of oxidative modifications on isolated porcine myofibrillar protein structures as well as their rheological and gelling properties. Incubation of myofibrillar protein with increasing concentrations of AAPH resulted in a gradual increase (p<0.05) in carbonyl content and SH→S-S conversion. Results from SDS-PAGE indicated that medium (~1 mM) and relatively high (>3 mM) concentrations of AAPH induced aggregation of myosin and denaturation of myosin, troponin and tropomyosin, respectively. These structural changes resulted in changes on gelation of myofibrillar protein. Low level protein oxidation (AAPH≤0.5 mM) had no remarkable effect (p>0.05) on the viscoelastic pattern of myofibrillar protein gelation. Moderate oxidative modification (AAPH~1mM) enhanced the water-holding capacity (WHC) and texture properties of gels, while further oxidation (AAPH>3mM) significantly reduced the gel quality.

  12. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  13. Major vault protein regulates cell growth/survival signaling through oxidative modifications.

    PubMed

    Das, Dividutta; Wang, Yi-Hsuan; Hsieh, Cheng-Ying; Suzuki, Yuichiro J

    2016-01-01

    Major vault protein forms a hollow, barrel-like structure in the cell called the vault, whose functions and regulation are not well understood. The present study reports that major vault protein regulates growth/survival signaling in human airway smooth muscle cells through oxidative modifications. The promotion of protein S-glutathionylation by asthma mediators such as interleukin-22 and platelet-derived growth factor or by knocking down glutaredoxin-1 or thioredoxin activated cell growth signaling. Mass spectrometry identified that major vault protein is glutathionylated. Major vault protein knockdown enhanced cell death and inhibited STAT3 and Akt signaling. We identified a protein partner of major vault protein that is regulated by glutaredoxin-1, namely myosin-9, which was found to serve as a cell death factor. Knocking down myosin-9 or promoting protein S-glutathionylation by knocking down glutaredoxin-1 inhibited the death of airway smooth muscle cells by heating to simulate bronchial thermoplasty, a clinically successful procedure for the treatment of severe asthma. These results establish a novel signaling pathway in which ligand/receptor-mediated oxidation promotes the S-glutathionylation of major vault protein, which in turn binds to myosin-9 to suppress the heating-induced death of airway smooth muscle cells.

  14. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements.

    PubMed

    Kirchner, Liselotte; Weitzdoerfer, Rachel; Hoeger, Harald; Url, Angelika; Schmidt, Peter; Engelmann, Mario; Villar, Santiago Rosell; Fountoulakis, Michael; Lubec, Gert; Lubec, Barbara

    2004-12-01

    Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.

  15. Nuclear Cytoplasmic Trafficking of Proteins is a Major Response of Human Fibroblasts to Oxidative Stress

    PubMed Central

    Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka

    2014-01-01

    We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973

  16. Fast Photochemical Oxidation of Proteins (FPOP) for Comparing Structures of Protein/Ligand Complexes: The Calmodulin-peptide Model System

    PubMed Central

    Zhang, Hao; Gau, Brian C.; Jones, Lisa M.; Vidavsky, Ilan; Gross, Michael L.

    2010-01-01

    Fast Photochemical Oxidation of Proteins (FPOP) is a mass-spectrometry-based protein footprinting method that modifies proteins on the microsecond time scale. Highly reactive •OH, produced by laser photolysis of hydrogen peroxide, oxidatively modifies the side chains of approximately one half the common amino acids on this time scale. Owing to the short labeling exposure, only solvent-accessible residues are sampled. Quantification of the modification extent for the apo and holo states of a protein-ligand complex should provide structurally sensitive information at the amino-acid level to compare the structures of unknown protein complexes with known ones. We report here the use of FPOP to monitor the structural changes of calmodulin in its established binding to M13 of the skeletal muscle myosin light chain kinase. We use the outcome to establish the unknown structures resulting from binding with melittin and mastoparan. The structural comparison follows from a comprehensive examination of the extent of FPOP modifications as measured by proteolysis and LC-MS/MS for each protein-ligand equilibrium. The results not only show that the three calmodulin-peptide complexes have similar structures but also reveal those regions of the protein that became more or less solvent-accessible upon binding. This approach has the potential for relatively high throughput, information-dense characterization of a series of protein-ligand complexes in biochemistry and drug discovery when the structure of one reference complex is known, as is the case for calmodulin and M13 of the skeletal muscle myosin light chain kinase, and the structures of related complexes are not,. PMID:21142124

  17. Pre-freezing raw hams affects quality traits in cooked hams: potential influence of protein oxidation.

    PubMed

    Utrera, M; Armenteros, M; Ventanas, S; Solano, F; Estévez, M

    2012-12-01

    The influence of protein carbonylation and lipid oxidation on colour and texture changes in cooked hams from fresh and pre-frozen (frozen/thawed) raw material was studied. Samples from three muscles, biceps femoris (BF) quadriceps femoris (QF) and semimembranosus (SM) were analysed for the gain of specific protein carbonyls, α-aminoadipic and γ-glutamic semialdehydes, the gain of TBA-RS and their colour and texture properties by instrumental and sensory techniques. The formation of protein carbonyls occurred concomitantly with an intense loss of redness and increase of hardness. Both phenomena were found to be more intense in QF and SM muscles in cooked hams elaborated from frozen material. Lipid oxidation played a negligible role on the impaired quality traits observed in cooked hams as a result of pre-freezing. Plausible mechanisms by which protein carbonylation may be implicated in the loss of quality in cooked hams produced from pre-frozen material are discussed.

  18. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions.

    PubMed

    Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno

    2015-11-11

    Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.

  19. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil

    2014-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.

  20. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2016-08-12

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.