Sample records for advanced packaging technology

  1. Participation in the Center for Advanced Processing and Packaging Studies

    DTIC Science & Technology

    2009-11-24

    University, the University ofCalifomia, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...University, the University of California, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...amyloliquefaciens, spore inactivation, FT-IR spectroscopy, infrared 11 spectroscopy 12 13 14 15 16 17 Department of Food Science and Technology

  2. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  3. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  4. Sterile Product Packaging and Delivery Systems.

    PubMed

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  5. NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Kayali, Sammy

    2000-01-01

    NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.

  6. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  7. Multimedia package for LRFD concrete bridge design.

    DOT National Transportation Integrated Search

    2009-02-01

    This Project developed a Load and Resistance Factor Design (LRFD) multimedia package to provide a practical introduction and an in-depth understanding of the technological advances in the design of concrete bridges. This package can be used to train ...

  8. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  9. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  10. Modeling and MBL: Software Tools for Science.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…

  11. Packaging and Embedded Electronics for the Next Generation

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.

  12. Nanotechnology: An Untapped Resource for Food Packaging.

    PubMed

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  13. Nanotechnology: An Untapped Resource for Food Packaging

    PubMed Central

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector. PMID:28955314

  14. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques.

    PubMed

    Mlalila, Nichrous; Kadam, Dattatreya M; Swai, Hulda; Hilonga, Askwar

    2016-09-01

    In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.

  15. (abstract) Electronic Packaging for Microspacecraft Applications

    NASA Technical Reports Server (NTRS)

    Wasler, David

    1993-01-01

    The intent of this presentation is to give a brief look into the future of electronic packaging for microspacecraft applications. Advancements in electronic packaging technology areas have developed to the point where a system engineer's visions, concepts, and requirements for a microspacecraft can now be a reality. These new developments are ideal candidates for microspacecraft applications. These technologies are capable of bringing about major changes in how we design future spacecraft while taking advantage of the benefits due to size, weight, power, performance, reliability , and cost. This presentation will also cover some advantages and limitations of surface mount technology (SMT), multichip modules (MCM), and wafer scale integration (WSI), and what is needed to implement these technologies into microspacecraft.

  16. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  17. Recent trends and future of pharmaceutical packaging technology

    PubMed Central

    Zadbuke, Nityanand; Shahi, Sadhana; Gulecha, Bhushan; Padalkar, Abhay; Thube, Mahesh

    2013-01-01

    The pharmaceutical packaging market is constantly advancing and has experienced annual growth of at least five percent per annum in the past few years. The market is now reckoned to be worth over $20 billion a year. As with most other packaged goods, pharmaceuticals need reliable and speedy packaging solutions that deliver a combination of product protection, quality, tamper evidence, patient comfort and security needs. Constant innovations in the pharmaceuticals themselves such as, blow fill seal (BFS) vials, anti-counterfeit measures, plasma impulse chemical vapor deposition (PICVD) coating technology, snap off ampoules, unit dose vials, two-in-one prefilled vial design, prefilled syringes and child-resistant packs have a direct impact on the packaging. The review details several of the recent pharmaceutical packaging trends that are impacting packaging industry, and offers some predictions for the future. PMID:23833515

  18. Impact of external influences on food packaging.

    PubMed

    Brody, A L

    1977-09-01

    Since the food supply is dependent upon an effective packaging system, threats to packaging represent implied threats to food processing and distribution. Enacted and potential legislation and regulation are retarding technological and commercial progress in food packaging and have already restricted some food packaging/processins systems. The results of these external influences is not simply the sum of the individual acts, but is a cascading self-imposed arresting of food packaging/processing advancement. The technological bases for the enacted and proposed legislation and regulation are presented in the enumeration of the external influences on food packaging. Economic and sociological arguments and facts surrounding the issues are also presented. Among the external influences on food packaging detailed are indirect additives, nutritional labeling, benefit:risk, solid waste and litter, environmental pollution, universal product code, and food industry productivity. The magnitude of the total impact of these external influences upon the food supply is so large that assertive action must be taken to channel these influences into more productive awareness. An objective and comprehensive public communications program supported by the technological community appears mandatory.

  19. A microelectronics approach for the ROSETTA surface science package

    NASA Technical Reports Server (NTRS)

    Sandau, Rainer (Editor); Alkalaj, Leon

    1996-01-01

    In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.

  20. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  1. Performance Stability of Silicone Oxide-Coated Plastic Parenteral Vials.

    PubMed

    Weikart, Christopher M; Pantano, Carlo G; Shallenberger, Jeff R

    2017-01-01

    A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. © PDA, Inc. 2017.

  2. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Astrophysics Data System (ADS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-08-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  3. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Technical Reports Server (NTRS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  4. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  5. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  6. Reliability and quality EEE parts issues

    NASA Technical Reports Server (NTRS)

    Barney, Dan; Feigenbaum, Irwin

    1990-01-01

    NASA policy and procedures are established which govern the selection, testing, and application of electrical, electronic, and electromechanical (EEE) parts. Recent advances in the state-of-the-art of electronic parts and associated technologies can significantly impact the electronic designs and reliability of NASA space transportation avionics. Significant issues that result from these advances are examined, including: recent advances in microelectronics technology (as applied to or considered for use in NASA projects); electron packaging technology advances (concurrent with, and as a result of, the development of the advanced microelectronic devices); availability of parts used in space avionics; and standardization and integration of parts activities between projects, centers, and contractors.

  7. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  8. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  9. Development of multimedia resource and short courses for LRFR rating.

    DOT National Transportation Integrated Search

    2011-09-01

    Multimedia technology is an important instrument in the training of graduate engineers. This multimedia package : provides an exclusive background and an in-depth understanding of recent technological advances in the evaluation : and rating of highwa...

  10. Development of multimedia resource and short courses for LRFD design.

    DOT National Transportation Integrated Search

    2011-03-01

    Multimedia technology is an essential instrument in the development of graduate engineers. This : multimedia package provides an exclusive background and an in-depth understanding of the new : technological advances in the design of concrete, steel a...

  11. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  12. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  13. Technology advancements for the U.S. manned Space Station - An overview

    NASA Technical Reports Server (NTRS)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  14. Apparatus and method for fabricating a microbattery

    DOEpatents

    Shul, Randy J.; Kravitz, Stanley H.; Christenson, Todd R.; Zipperian, Thomas E.; Ingersoll, David

    2002-01-01

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  15. Compact fiber optic gyroscopes for platform stabilization

    NASA Astrophysics Data System (ADS)

    Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.

    2013-09-01

    SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.

  16. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less

  17. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less

  18. Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  19. Project T.E.A.M. (Technical Education Advancement Modules). Final Report.

    ERIC Educational Resources Information Center

    Greenville Technical Coll., SC.

    Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training, created an introductory technical training program and a consumer education package emphasizing the benefits of technical training. The curriculum and training focus of the project began with an assessment of employee needs in…

  20. Bibliography of Technical Publications and Papers, July 1975 - June 1976

    DTIC Science & Technology

    1976-07-01

    MASUOKA, Y., K. R. JOHNSON, and A. R. RAHIMA. Packaged dry imitation vinegar product. US Patent No. 3,898,344, 5 August 1975. 199. RAHIDAN, A. R., and G...242. , and D. STERWBERG. Recent advances in cellulase technology. J. Ferment . Technol., 54(4): 267-286 (1976). 243. , J. NYSTROM, and D. BOLGER. Waste...Enzymatic Utilization of Cellulosic Resources, Annual Meeting, Society of Fermentation Technology, Osaka, Japan, 30 October 1975. 329. Recent advances in

  1. Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer

    2012-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.

  2. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  3. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    NASA Astrophysics Data System (ADS)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  4. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  5. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/Bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  6. Thermoelectric Outer Planets Spacecraft (TOPS) electronic packaging and cabling development summary report

    NASA Technical Reports Server (NTRS)

    Dawe, R. H.; Arnett, J. C.

    1974-01-01

    Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.

  7. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.

    2010-06-30

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less

  8. Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots

    NASA Astrophysics Data System (ADS)

    Saati, Ferina; Arik, Mehmet

    2018-02-01

    Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.

  9. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  10. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    NASA Technical Reports Server (NTRS)

    Willis, Jerry W.

    1993-01-01

    For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not be the most effective or most desirable way to use computer technology in literacy programs. This project is developing a series of instructional packages that are based on a different instructional model - authentic instruction. The instructional development model used to create these packages is also different. Instead of using the traditional five stage linear, sequential model based on behavioral learning theory, the project uses the recursive, reflective design and development model (R2D2) that is based on cognitive learning theory, particularly the social constructivism of Vygotsky, and an epistemology based on critical theory. Using alternative instructional and instructional development theories, the result of the summer faculty fellowship is LiteraCity, a multimedia adult literacy instructional package that is a simulation of finding and applying for a job. The program, which is about 120 megabytes, is distributed on CD-ROM.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiencymore » while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.« less

  12. Evaluation of a Telehealth Training Package to Remotely Train Staff to Conduct a Preference Assessment

    ERIC Educational Resources Information Center

    Higgins, William J.; Luczynski, Kevin C.; Carroll, Regina A.; Fisher, Wayne W.; Mudford, Oliver C.

    2017-01-01

    Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train…

  13. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A multiple rework processes may be implemented with CCGA packaging technology to understand the effect of number of reworks on the reliability of this technology for harsh thermal environments. In general, reliability of the assembled electronic packages reduces as a function of number of reworks and the extent is not known yet. A CCGA rework process has been tried and implemented to design a daisy-chain test board consists of 624 and 717 packages. Reworked CCGA interconnect electronic packages of printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging and optical microscope techniques. The assembled boards after 1st rework and 1st reflow were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space JPL/NASA for moderate to harsh thermal mission environments. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling to determine intermittent failures. This paper provides the experimental reliability test results to failure of assemblies for the first time of reflowed and reworked CCGA packages under extreme harsh thermal environments.

  14. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  15. FOREWORD: Proceedings of the 39th International Microelectronics and Packaging IMAPS Poland Conference

    NASA Astrophysics Data System (ADS)

    Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert

    2016-01-01

    These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.

  16. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  17. Food system advances towards more nutritious and sustainable mantou production in China.

    PubMed

    Hu, Xinzhong; Sheng, Xialu; Liu, Liu; Ma, Zhen; Li, Xiaoping; Zhao, Wuqi

    2015-01-01

    Mantou, a traditional Chinese food, is widely consumed in the North China due to its nutritional value and good mouth-feel. However, its current family-style production is impeded due to short shelf-life caused by mold and starch retrogradation. The current packaging and storage methods are not efficient enough for mantou preservation. Recently, a novel, hot online package technology has attracted attention due to its high processing efficiency and low cost. Most importantly, by using this methodology, secondary contamination by microbes can be avoided and starch retrogradation can be markedly delayed, with mantou shelf-life under room temperature extended from a few to at least 90 days without any additives. In this review, the mechanisms of mantou quality deterioration are explained and the advantages of hot package technology addressed and compared with other packaging methods, such as frozen chain storage. In this way, not only wheat, but also other grains (including whole-grains) and ingredients may be mantou constituents, to enhance nutrition of traditional mantou. There is now a technological opportunity for mantou to become a more nutritious, sustainable and affordable foodstuff in local communities.

  18. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  19. An airline study of advanced technology requirements for advanced high speed commercial engines. 3: Propulsion system requirements

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.

  20. New SOFRADIR 10μm pixel pitch infrared products

    NASA Astrophysics Data System (ADS)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  1. Natural biopolymer-based nanocomposite films for packaging applications.

    PubMed

    Rhim, Jong-Whan; Ng, Perry K W

    2007-01-01

    Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.

  2. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  3. Major advances in fresh milk and milk products: fluid milk products and frozen desserts.

    PubMed

    Goff, H D; Griffiths, M W

    2006-04-01

    Major technological advances in the fluid milk processing industry in the last 25 yr include significant improvements in all the unit operations of separation, standardization, pasteurization, homogenization, and packaging. Many advancements have been directed toward production capacity, automation, and hygienic operation. Extended shelf-life milks are produced by high heat treatment, sometimes coupled with microfiltration or centrifugation. Other nonthermal methods have also been investigated. Flavored milk beverages have increased in popularity, as have milk beverages packaged in single-service, closeable plastic containers. Likewise, the frozen dairy processing industry has seen the development of large-capacity, automated processing equipment for a wide range of products designed to gain market share. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. Incidents of foodborne disease associated with dairy products continue to occur, necessitating even greater diligence in the control of pathogen transmission. Analytical techniques for the rapid detection of specific types of microorganisms have been developed and greatly improved during this time. Despite tremendous technological advancements for processors and a greater diversity of products for consumers, per capita consumption of fluid milk has declined and consumption of frozen dairy desserts has been steady during this 25-yr period.

  4. Laser Looking at Earth

    NASA Technical Reports Server (NTRS)

    1999-01-01

    TerraPoint (TM) LLC is a company that combines the technologies developed at NASA's Goddard Space Flight Center (GSFC) and the Houston Advanced Research Center (HARC) with the concept of topographic real estate imaging. TerraPoint provides its customers with digital, topographical data generated by laser technology rather than commonly used microwave (radar) and photographic technologies. This product's technology merges Goddard's and HARC's laser ranging, global positioning systems, and mapping software into a miniaturized package that can be mounted in a light aircraft.

  5. Methods of fabricating applique circuits

    DOEpatents

    Dimos, Duane B.; Garino, Terry J.

    1999-09-14

    Applique circuits suitable for advanced packaging applications are introduced. These structures are particularly suited for the simple integration of large amounts (many nanoFarads) of capacitance into conventional integrated circuit and multichip packaging technology. In operation, applique circuits are bonded to the integrated circuit or other appropriate structure at the point where the capacitance is required, thereby minimizing the effects of parasitic coupling. An immediate application is to problems of noise reduction and control in modern high-frequency circuitry.

  6. Advanced OTV engine concepts

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1984-01-01

    The results and status of engine technology efforts to date and related company funded activities are presented. Advanced concepts in combustors and injectors, high speed turbomachinery, controls, and high-area-ratio nozzles that package within a short length result is engines with specific impulse values 35 to 46 seconds higher than those now realized by operational systems. The improvement in life, reliability, and maintainability of OTV engines are important.

  7. Thick resist for MEMS processing

    NASA Astrophysics Data System (ADS)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging technology. Uniformity and edge bead control defined the success of process implementation. Today advanced packaging solutions are created with thick photoresist coatings. The techniques and results will be presented.

  8. Enhanced technologies for unattended ground sensor systems

    NASA Astrophysics Data System (ADS)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  9. Non-Volatile Memory Technology Symposium 2000: Proceedings

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh (Editor)

    2000-01-01

    This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2000 that was held on November 15-16, 2000 in Arlington, Virginia. The proceedings contains a wide range of papers that cover the presentations of myriad advances in the nonvolatile memory technology during the recent past including memory cell design, simulations, radiation environment, and emerging memory technologies. The papers presented in the proceedings address the design challenges and applications and deals with newer, emerging memory technologies as well as related issues of radiation environment and die packaging.

  10. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  11. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang

    2001-10-01

    Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.

  12. Hybrid Propulsion Technology Program, phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The study program was contracted to evaluate concepts of hybrid propulsion, select the most optimum, and prepare a conceptual design package. Further, this study required preparation of a technology definition package to identify hybrid propulsion enabling technologies and planning to acquire that technology in Phase 2 and demonstrate that technology in Phase 3. Researchers evaluated two design philosophies for Hybrid Rocket Booster (HRB) selection. The first is an ASRM modified hybrid wherein as many components/designs as possible were used from the present Advanced Solid Rocket Motor (ASRM) design. The second was an entirely new hybrid optimized booster using ASRM criteria as a point of departure, i.e., diameter, thrust time curve, launch facilities, and external tank attach points. Researchers selected the new design based on the logic of optimizing a hybrid booster to provide NASA with a next generation vehicle in lieu of an interim advancement over the ASRM. The enabling technologies for hybrid propulsion are applicable to either and vehicle design may be selected at a downstream point (Phase 3) at NASA's discretion. The completion of these studies resulted in ranking the various concepts of boosters from the RSRM to a turbopump fed (TF) hybrid. The scoring resulting from the Figure of Merit (FOM) scoring system clearly shows a natural growth path where the turbopump fed solid liquid staged combustion hybrid provides maximized payload and the highest safety, reliability, and low life cycle costing.

  13. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  14. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  15. Machinist.

    ERIC Educational Resources Information Center

    Osbon, Michael A.

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as machinists and preparing them for advanced training in the workplace. The package contains an overview of new and emerging technologies likely to affect machinists, a competency/skill and task list, an instructor's guide, and an…

  16. Photonics and nanophotonics and information and communication technologies in modern food packaging.

    PubMed

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-01-01

    The analysis of the problem of conjunction of information and communication technologies (ICT) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown. There were investigated luminescent films with zinc oxide nanoparticles, which change luminescence intensity as nano-ZnO interacts with decay compounds of food products, for active and intelligent packaging. High luminescent transparent films were obtained from colloidal suspension of ZnO and polyvinylpyrrolidone (PVP). The influence of molecular mass, concentration of nano-ZnO, and film thickness on luminescent properties of films was studied in order to optimize the content of the compositions. The possibility of covering the obtained films with polyvinyl alcohol was considered for eliminating water soluble properties of PVP. The luminescent properties of films with different covers were studied. The insoluble in water composition based on ZnO stabilized with colloidal silicon dioxide and PVP in polymethylmethacrylate was developed, and the luminescent properties of films were investigated. The compositions are non-toxic, safe, and suitable for applying to the inner surface of active and intelligent packaging by printing techniques, such as screen printing, flexography, inkjet, and pad printing.

  17. Photonics and Nanophotonics and Information and Communication Technologies in Modern Food Packaging

    NASA Astrophysics Data System (ADS)

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-05-01

    The analysis of the problem of conjunction of information and communication technologies (ICT) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown. There were investigated luminescent films with zinc oxide nanoparticles, which change luminescence intensity as nano-ZnO interacts with decay compounds of food products, for active and intelligent packaging. High luminescent transparent films were obtained from colloidal suspension of ZnO and polyvinylpyrrolidone (PVP). The influence of molecular mass, concentration of nano-ZnO, and film thickness on luminescent properties of films was studied in order to optimize the content of the compositions. The possibility of covering the obtained films with polyvinyl alcohol was considered for eliminating water soluble properties of PVP. The luminescent properties of films with different covers were studied. The insoluble in water composition based on ZnO stabilized with colloidal silicon dioxide and PVP in polymethylmethacrylate was developed, and the luminescent properties of films were investigated. The compositions are non-toxic, safe, and suitable for applying to the inner surface of active and intelligent packaging by printing techniques, such as screen printing, flexography, inkjet, and pad printing.

  18. The Assurance Challenges of Advanced Packaging Technologies for Electronics

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    Advances in microelectronic parts performance are driving towards finer feature sizes, three-dimensional geometries and ever-increasing number of transistor equivalents that are resulting in increased die sizes and interconnection (I/O) counts. The resultant packaging necessary to provide assemble-ability, environmental protection, testability and interconnection to the circuit board for the active die creates major challenges, particularly for space applications, Traditionally, NASA has used hermetically packaged microcircuits whenever available but the new demands make hermetic packaging less and less practical at the same time as more and more expensive, Some part types of great interest to NASA designers are currently only available in non-hermetic packaging. It is a far more complex quality and reliability assurance challenge to gain confidence in the long-term survivability and effectiveness of nonhermetic packages than for hermetic ones. Although they may provide more rugged environmental protection than the familiar Plastic Encapsulated Microcircuits (PEMs), the non-hermetic Ceramic Column Grid Array (CCGA) packages that are the focus of this presentation present a unique combination of challenges to assessing their suitability for spaceflight use. The presentation will discuss the bases for these challenges, some examples of the techniques proposed to mitigate them and a proposed approach to a US MIL specification Class for non-hermetic microcircuits suitable for space application, Class Y, to be incorporated into M. IL-PRF-38535. It has recently emerged that some major packaging suppliers are offering hermetic area array packages that may offer alternatives to the nonhermetic CCGA styles but have also got their own inspectability and testability issues which will be briefly discussed in the presentation,

  19. Advanced uncooled sensor product development

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.

    2015-06-01

    The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.

  20. Advancing automation and robotics technology for the Space Station Freedom and for the US economy: Submitted to the United States Congress

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.

  1. Advanced technology component derating

    NASA Astrophysics Data System (ADS)

    Jennings, Timothy A.

    1992-02-01

    A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.

  2. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  3. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  4. Active and intelligent packaging: The indication of quality and safety.

    PubMed

    Janjarasskul, Theeranun; Suppakul, Panuwat

    2018-03-24

    The food industry has been under growing pressure to feed an exponentially increasing world population and challenged to meet rigorous food safety law and regulation. The plethora of media consumption has provoked consumer demand for safe, sustainable, organic, and wholesome products with "clean" labels. The application of active and intelligent packaging has been commercially adopted by food and pharmaceutical industries as a solution for the future for extending shelf life and simplifying production processes; facilitating complex distribution logistics; reducing, if not eliminating the need for preservatives in food formulations; enabling restricted food packaging applications; providing convenience, improving quality, variety and marketing features; as well as providing essential information to ensure consumer safety. This chapter reviews innovations of active and intelligent packaging which advance packaging technology through both scavenging and releasing systems for shelf life extension, and through diagnostic and identification systems for communicating quality, tracking and brand protection.

  5. Optical interconnection and packaging technologies for advanced avionics systems

    NASA Astrophysics Data System (ADS)

    Schroeder, J. E.; Christian, N. L.; Cotti, B.

    1992-09-01

    An optical backplane developed to demonstrate the advantages of high-performance optical interconnections and supporting technologies and designed to be compatible with standard avionics racks is described. The hardware demonstrates the three basic components of optical interconnects: optical sources, an optical signal distribution network, and optical receivers. Results from characterization and environmental tests, including a demonstration of the reliable transmission of serial data at a 1 Gb/s, are reported.

  6. FY 2017 – Thermal Aging Effects on Advanced Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Natesan, K; Chen, Wei-Ying

    This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  7. A 100-Year Review: Milestones in the development of frozen desserts.

    PubMed

    Hartel, R W; Rankin, S A; Bradley, R L

    2017-12-01

    Ice cream has come a long way since the first snow cone was made. Innovations in a variety of areas over the past century have led to the development of highly sophisticated, automated manufacturing plants that churn out pint after pint of ice cream. Significant advances in fields such as mechanical refrigeration, chilling and freezing technologies, cleaning and sanitation, packaging, and ingredient functionality have shaped the industry. Advances in our understanding of the science of ice cream, particularly related to understanding the complex structures that need to be controlled to create a desirable product, have also enhanced product quality and shelf stability. Although significant advances have been made, there remain numerous opportunities for further advancement both scientifically and technologically. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  9. The Design and Implementation of NASA's Advanced Flight Computing Module

    NASA Technical Reports Server (NTRS)

    Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce

    1995-01-01

    This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.

  10. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  11. Getting small: new 10μm pixel pitch cooled infrared products

    NASA Astrophysics Data System (ADS)

    Reibel, Y.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Decaens, G.; Bourqui, M.-L.; Manissadjian, A.; Billon-Lanfrey, D.; Bisotto, S.; Gravrand, O.; Destefanis, G.; Druart, G.; Guerineau, N.

    2014-06-01

    Recent advances in miniaturization of IR imaging technology have led to a burgeoning market for mini thermalimaging sensors. Seen in this context our development on smaller pixel pitch has opened the door to very compact products. When this competitive advantage is mixed with smaller coolers, thanks to HOT technology, we achieve valuable reductions in size, weight and power of the overall package. In the same time, we are moving towards a global offer based on digital interfaces that provides our customers lower power consumption and simplification on the IR system design process while freeing up more space. Additionally, we are also investigating new wafer level camera solution taking advantage of the progress in micro-optics. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI and ONERA.

  12. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  13. 30-kW class Arcjet Advanced Technology Transition Demonstration (ATTD) flight experiment diagnostic package

    NASA Astrophysics Data System (ADS)

    Kriebel, M. M.; Stevens, N. J.

    1992-07-01

    TRW, Rocket Research Co and Defense Systems Inc are developing a space qualified 30-kW class arcjet flight unit as a part of the Arcjet ATTD program. During space operation the package will measure plume deposition and contamination, electromagnetic interference, thermal radiation, arcjet thruster performance, and plume heating in order to quantify arcjet operational interactions. The Electric Propulsion Space Experiment (ESEX) diagnostic package is described. The goals of ESEX are the demonstration of a high powered arcjet performance and the measurement of potential arcjet-spacecraft interactions which cannot be determined in ground facilities. Arcjet performance, plume characterization, thermal radiation flux and the electromagnetic interference (EMI) experiment as well as experiment operations with a preliminary operations plan are presented.

  14. From "Work-and-Walk-By" to "Sherpa-at-Work"

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2011-01-01

    Nowadays, many technological means are available to support teaching, such as the interactive whiteboard, class sets of laptop or netbook computers, and high speed internet access. For mathematics education there are advanced software packages for geometry, algebra, calculus, and statistics, which in many cases are available on line at no cost.…

  15. Next-generation air monitoring – an overview of EPA research to develop real-time instrumentation packages for stationary and mobile monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...

  16. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna Helene; Ahmad Al Rashdan; Le Blanc, Katya Lee

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, thenmore » two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.« less

  17. High-power lightweight external-cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Day, Timothy; Takeuchi, Eric B.; Weida, Miles; Arnone, David; Pushkarsky, Michael; Boyden, David; Caffey, David

    2009-05-01

    Commercially available quantum cascade gain media has been integrated with advanced coating and die attach technologies, mid-IR micro-optics and telecom-style assembly and packaging to yield cutting edge performance. When combined into Daylight's external-cavity quantum cascade laser (ECqcL) platform, multi-Watt output power has been obtained. Daylight will describe their most recent results obtained from this platform, including high cw power from compact hermetically sealed packages and narrow spectral linewidth devices. Fiber-coupling and direct amplitude modulation from such multi-Watt lasers will also be described. In addition, Daylight will present the most recent results from their compact, portable, battery-operated "thermal laser pointers" that are being used for illumination and aiming applications. When combined with thermal imaging technology, such devices provide significant benefits in contrast and identification.

  18. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation: Doppler Aerosol WiNd Lidar (DAWN). Interim Review #1 (6 months)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Trieu, Bo C.; Petros, Mulugeta

    2006-01-01

    A new project, selected in 2005 by NASA's Science Mission Directorate (SMD), under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The state-of-the-art 2-micron coherent DWL breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent DWL system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid DWL solution to the need for global tropospheric wind measurements.

  19. chimeraviz: a tool for visualizing chimeric RNA.

    PubMed

    Lågstad, Stian; Zhao, Sen; Hoff, Andreas M; Johannessen, Bjarne; Lingjærde, Ole Christian; Skotheim, Rolf I

    2017-09-15

    Advances in high-throughput RNA sequencing have enabled more efficient detection of fusion transcripts, but the technology and associated software used for fusion detection from sequencing data often yield a high false discovery rate. Good prioritization of the results is important, and this can be helped by a visualization framework that automatically integrates RNA data with known genomic features. Here we present chimeraviz , a Bioconductor package that automates the creation of chimeric RNA visualizations. The package supports input from nine different fusion-finder tools: deFuse, EricScript, InFusion, JAFFA, FusionCatcher, FusionMap, PRADA, SOAPfuse and STAR-FUSION. chimeraviz is an R package available via Bioconductor ( https://bioconductor.org/packages/release/bioc/html/chimeraviz.html ) under Artistic-2.0. Source code and support is available at GitHub ( https://github.com/stianlagstad/chimeraviz ). rolf.i.skotheim@rr-research.no. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  20. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    NASA Astrophysics Data System (ADS)

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  1. HALT to qualify electronic packages: a proof of concept

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2014-03-01

    A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.

  2. Reliability Assessment of Advanced Flip-clip Interconnect Electronic Package Assemblies under Extreme Cold Temperatures (-190 and -120 C)

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Ghaffarian, Reza; Shapiro, Andrew; Napala, Phil A.; Martin, Patrick A.

    2005-01-01

    Flip-chip interconnect electronic package boards have been assembled, underfilled, non-destructively evaluated and subsequently subjected to extreme temperature thermal cycling to assess the reliability of this advanced packaging interconnect technology for future deep space, long-term, extreme temperature missions. In this very preliminary study, the employed temperature range covers military specifications (-55 C to 100 C), extreme cold Martian (-120 C to 115 C) and asteroid Nereus (-180 C to 25 C) environments. The resistance of daisy-chained, flip-chip interconnects were measured at room temperature and at various intervals as a function of extreme temperature thermal cycling. Electrical resistance measurements are reported and the tests to date have not shown significant change in resistance as a function of extreme temperature thermal cycling. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work has been carried out to understand the reliability of flip-chip interconnect packages under extreme temperature applications (-190 C to 85 C) via continuously monitoring the daisy chain resistance. Adaptation of suitable diagnostic techniques to identify the failure mechanisms is in progress. This presentation will describe the experimental test results of flip-chip testing under extreme temperatures.

  3. TechTuning: Stress Management For 3D Through-Silicon-Via Stacking Technologies

    NASA Astrophysics Data System (ADS)

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    2011-09-01

    The concerns with managing mechanical stress distributions and the consequent effects on device performance and material integrity, for advanced TSV based technologies 3D are outlined. A model and simulation based Design For Manufacturability (DFM) type of a flow for managing the mechanical stresses throughout Si die, stack and package design is proposed. The key attributes of the models and simulators required to fuel the proposed flow are summarized. Finally, some of the essential infrastructure and the Supply Chain support items are described.

  4. Integrated Avionics System (IAS)

    NASA Technical Reports Server (NTRS)

    Hunter, D. J.

    2001-01-01

    As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.

  5. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  6. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  7. An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Okojie, Robert S.; Chen, Liangyu; Spry, D.; Trunek, A.

    2007-01-01

    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned.

  8. Advancements in meat packaging.

    PubMed

    McMillin, Kenneth W

    2017-10-01

    Packaging of meat provides the same or similar benefits for raw chilled and processed meats as other types of food packaging. Although air-permeable packaging is most prevalent for raw chilled red meat, vacuum and modified atmosphere packaging offer longer shelf life. The major advancements in meat packaging have been in the widely used plastic polymers while biobased materials and their integration into composite packaging are receiving much attention for functionality and sustainability. At this time, active and intelligent packaging are not widely used for antioxidant, antimicrobial, and other functions to stabilize and enhance meat properties although many options are being developed and investigated. The advances being made in nanotechnology will be incorporated into food packaging and presumably into meat packaging when appropriate and useful. Intelligent packaging using sensors for transmission of desired information and prompting of subsequent changes in packaging materials, environments or the products to maintain safety and quality are still in developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, theirmore » effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.« less

  10. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebber, I.; Dean, J.; Dominick, J.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft 2 exchangemore » store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).« less

  11. Principles and application of high pressure-based technologies in the food industry.

    PubMed

    Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra

    2015-01-01

    High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.

  12. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization.

    PubMed

    Hazan, Lynn; Zugaro, Michaël; Buzsáki, György

    2006-09-15

    Recent technological advances now allow for simultaneous recording of large populations of anatomically distributed neurons in behaving animals. The free software package described here was designed to help neurophysiologists process and view recorded data in an efficient and user-friendly manner. This package consists of several well-integrated applications, including NeuroScope (http://neuroscope.sourceforce.net), an advanced viewer for electrophysiological and behavioral data with limited editing capabilities, Klusters (http://klusters.sourceforge.net), a graphical cluster cutting application for manual and semi-automatic spike sorting, NDManager (GPL,see http://www.gnu.org/licenses/gpl.html), an experimental parameter and data processing manager. All of these programs are distributed under the GNU General Public License (GPL, see ), which gives its users legal permission to copy, distribute and/or modify the software. Also included are extensive user manuals and sample data, as well as source code and documentation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminatedmore » wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.« less

  14. European MEMS foundries

    NASA Astrophysics Data System (ADS)

    Salomon, Patric R.

    2003-01-01

    According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.

  15. The Challenges of Developing a Food System for a Mars Mission

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2007-01-01

    A viewgraph describing the food system that NASA is developing for Manned Mars Missions is shown. The topics include: 1) The President's Vision for U.S. Space Exploration -January 14, 2004; 2) Introducing Orion (and Ares); 3) Mercury (1961-1963); 4) Gemini (1965-1966); 5) Apollo (1968-1972); 6) Skylab (1973-1974); 7) Shuttle/Mir (1995-1998); 8) Shuttle (1981-present) International Space Station (2000-present); 9) NASA Stored Food System; 10) Advanced Food Technology; 11) Orion Missions; 12) Orion Challenges; 13) Food Packaging; 14) Mars Mission Assumptions; 15) Planetary Food System Selected Crops; 16) Food Processing Equipment Constraints; 17) Crew Involvement Constraints; 18) Advanced Food Technology Integration; 19) Research Highlights Internal; and 20) Research Highlights External.

  16. Opening up Education: The Collective Advancement of Education through Open Technology, Open Content, and Open Knowledge

    ERIC Educational Resources Information Center

    Iiyoshi, Toru, Ed.; Kumar, M. S. Vijay, Ed.

    2008-01-01

    Given the abundance of open education initiatives that aim to make educational assets freely available online, the time seems ripe to explore the potential of open education to transform the economics and ecology of education. Despite the diversity of tools and resources already available--from well-packaged course materials to simple games, for…

  17. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  18. Evolution paths for advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1990-01-01

    As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.

  19. Evaluating Penetration Ability of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) Larvae into Multilayer Polypropylene Packages.

    PubMed

    Scheff, Deanna S; Sehgal, Blossom; Subramanyam, Bhadriraju

    2018-04-18

    The larvae of the Indian meal moth, Plodia interpunctella (Hübner), can invade or penetrate packaging materials and infest food products. Energy bars with three polypropylene packaging types were challenged with eggs (first instars), third instars, and fifth instars of P. interpunctella to determine package resistance at 28 °C and 65% r.h. The packing types were also challenged with two male and two female pupae of P. interpunctella under similar conditions in order to determine which package provided the greatest protection against larval penetration. Samples infested with eggs, third instars, and pupae were evaluated after 21 days and 42 days to count the number of larvae, pupae, and adults found inside the packages. Packages challenged with fifth instars were observed after 21 days to count the number of larvae, pupae, and adults inside each package. The number and diameter of the holes were determined in each package, followed by the amount of damage sustained to the energy bar. Third and fifth instars showed a higher tendency to penetrate all of the packaging types. First instars showed a reduction in package penetration ability compared with third and fifth instars. The increase in exposure time resulted in an increase in the damage sustained to the energy bars. Among packaging types, the thickest package (Test A) was most resilient to penetration by all of the larval stages. In conclusion, energy bar manufacturers need to invest more effort into improving packaging designs, creating thicker gauge films, or advancing odor barrier technology, in order to prevent penetration and infestation by P. interpunctella larvae.

  20. Computational methods for evaluation of cell-based data assessment--Bioconductor.

    PubMed

    Le Meur, Nolwenn

    2013-02-01

    Recent advances in miniaturization and automation of technologies have enabled cell-based assay high-throughput screening, bringing along new challenges in data analysis. Automation, standardization, reproducibility have become requirements for qualitative research. The Bioconductor community has worked in that direction proposing several R packages to handle high-throughput data including flow cytometry (FCM) experiment. Altogether, these packages cover the main steps of a FCM analysis workflow, that is, data management, quality assessment, normalization, outlier detection, automated gating, cluster labeling, and feature extraction. Additionally, the open-source philosophy of R and Bioconductor, which offers room for new development, continuously drives research and improvement of theses analysis methods, especially in the field of clustering and data mining. This review presents the principal FCM packages currently available in R and Bioconductor, their advantages and their limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Evaluation of a telehealth training package to remotely train staff to conduct a preference assessment.

    PubMed

    Higgins, William J; Luczynski, Kevin C; Carroll, Regina A; Fisher, Wayne W; Mudford, Oliver C

    2017-04-01

    Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train direct-care staff to conduct a multiple-stimulus-without-replacement preference assessment. The training package included three components: (a) a multimedia presentation; (b) descriptive feedback from previously recorded baseline sessions; and (c) scripted role-play with immediate feedback. A nonconcurrent, multiple-baseline-across-participants design was used to demonstrate experimental control. Training resulted in robust and immediate improvements, and these effects maintained during 1- to 2-month follow-up observations. In addition, participants expressed high satisfaction with the web-based materials and the overall remote-training experience. © 2017 Society for the Experimental Analysis of Behavior.

  2. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  3. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.

  4. Qualification of Engineering Camera for Long-Duration Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Pourangi, Ali M.; Lee, Steven W.

    2012-01-01

    Qualification and verification of advanced electronic packaging and interconnect technologies, and various other types of hardware elements for the Mars Exploration Rover s Spirit and Opportunity (MER)/Mars Science Laboratory (MSL) flight projects, has been performed to enhance the mission assurance. The qualification of hardware (engineering camera) under extreme cold temperatures has been performed with reference to various Mars-related project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times the total number of expected diurnal temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware, including all relevant manufacturing, ground operations, and mission phases. Qualification has been performed by subjecting above flight-like hardware to the environmental temperature extremes, and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Engineering camera packaging designs, charge-coupled devices (CCDs), and temperature sensors were successfully qualified for MER and MSL per JPL design principles. Package failures were observed during qualification processes and the package redesigns were then made to enhance the reliability and subsequent mission assurance. These results show the technology certainly is promising for MSL, and especially for longterm extreme temperature missions to the extreme temperature conditions. The engineering camera has been completely qualified for the MSL project, with the proven ability to survive on Mars for 2010 sols, or 670 sols times three. Finally, the camera continued to be functional, even after 2010 thermal cycles.

  5. iGC-an integrated analysis package of gene expression and copy number alteration.

    PubMed

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  6. MEMS-based thermoelectric infrared sensors: A review

    NASA Astrophysics Data System (ADS)

    Xu, Dehui; Wang, Yuelin; Xiong, Bin; Li, Tie

    2017-12-01

    In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

  7. Architecture for Survivable Systems Processing (ASSP). Technology benefits for Open System Interconnects

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1992-01-01

    The Architecture for Survivable Systems Processing (ASSP) program is a two phase program whose objective is the derivation, specification, development and validation of an open system architecture capable of supporting advanced processing needs of space, ground, and launch vehicle operations. The output of the first phase is a set of hardware and software standards and specifications defining this architecture at three levels. The second phase will validate these standards and develop the technology necessary to achieve strategic hardness, packaging density, throughput requirements, and interoperability/interchangeability.

  8. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  9. Understanding critical factors for the quality and shelf-life of MAP fresh meat: a review.

    PubMed

    Singh, Preeti; Wani, Ali Abas; Saengerlaub, Sven; Langowski, Horst-Christian

    2011-02-01

    Due to increased demands for greater stringency in relation to hygiene and safety issues associated with fresh food products, coupled with ever-increasing demands by retailers for cost-effective extensions to product shelf-lives and the requirement to meet consumer expectations in relation to convenience and quality, the food packaging industry has rapidly developed to meet and satisfy expectations. One of the areas of research that has shown promise, and had success, is modified atmosphere packaging (MAP). The success of MAP-fresh meat depends on many factors including good initial product quality, good hygiene from the source plants, correct packaging material selection, the appropriate gas mix for the product, reliable packaging equipment, and maintenance of controlled temperatures and humidity levels. Advances in plastic materials and equipment have propelled advances in MAP, but other technological and logistical considerations are needed for successful MAP systems for raw chilled meat. Although several parameters critical for the quality of MA packed meat have been studied and each found to be crucial, understanding of the interactions between the parameters is needed. This review was undertaken to present the most comprehensive and current overview of the widely available, scattered information about the various integrated critical factors responsible for the quality and shelf life of MA packed meat with an interest to stimulate further research to optimize different quality parameters.

  10. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  11. Molding compound trends in a denser packaging world: Qualification tests and reliability concerns

    NASA Astrophysics Data System (ADS)

    Nguyen, L. T.; Lo, R. H. Y.; Chen, A. S.; Belani, J. G.

    1993-12-01

    Molding compound development has traditionally been driven by the memory market, then subsequent applications filter down to other IC technologies such as logic, analog, and ASIC. However, this strategy has changed lately with the introduction of thin packages such as PQFP & TSOP. Rather than targeting a compound for a family of IC such as DRAM or SRAM, compound development efforts are now focused at specific classes of packages. The configurations of these thin packages impose new functional requirements that need to be revisited to provide the optimized combination of properties. The evolution of qualification tests mirrors the advances in epoxy and compounding technologies. From the first standard novolac-based epoxies of the 1970s to the latest 3(sup rd)-generation ultra-low stress materials, longer test times at increasingly harsher environments were achieved. This paper benchmarks the current reliability tests used by the electronic industry, examines those tests that affect and are affected by the molding compounds, discusses the relevance of accelerated testing, and addresses the major reliability issues facing current molding compound development efforts. Six compound-related reliability concerns were selected: moldability, package stresses, package cracking, halogen-induced intermetallic growth at bond pads, moisture-induced corrosion, and interfacial delamination. Causes of each failure type are surveyed and remedies are recommended. Accelerated tests are designed to apply to a limited quantity of devices, bias, or environmental conditions larger than usual ratings, to intensify failure mechanisms that would occur under normal operating conditions. The observed behavior is then extrapolated from the lot to the entire population. Emphasis is on compressing the time necessary to obtain reliability data. This approach has two main drawbacks. With increasingly complex devices, even accelerated tests are expensive. And with new technologies, it becomes difficult to ascertain that the applied stress 1) induces the failure phenomenon linked with usual field conditions, and 2) does not create any new ones. Technology evolution and reliability testing are interdependent. Devices get larger with increasingly smaller features and more complex geometries. Molding compounds have evolved considerably over the past decade to provide ultra-low stress levels and moldability for thin packages.

  12. Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.

    2014-01-01

    NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.

  13. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  14. Manned Mars Mission program concepts

    NASA Technical Reports Server (NTRS)

    Hamilton, E. C.; Johnson, P.; Pearson, J.; Tucker, W.

    1988-01-01

    This paper describes the SRS Manned Mars Mission and Program Analysis study designed to support a manned expedition to Mars contemplated by NASA for the purposes of initiating human exploration and eventual habitation of this planet. The capabilities of the interactive software package being presently developed by the SRS for the mission/program analysis are described, and it is shown that the interactive package can be used to investigate the impact of various mission concepts on the sensitivity of mass required in LEO, schedules, relative costs, and risk. The results, to date, indicate the need for an earth-to-orbit transportation system much larger than the present STS, reliable long-life support systems, and either advanced propulsion or aerobraking technology.

  15. Freight pipelines: Current status and anticipated future use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This report is issued by the Task Committee on Freight Pipelines, Pipeline Division, ASCE. Freight pipelines of various types (including slurry pipeline, pneumatic pipeline, and capsule pipeline) have been used throughout the world for over a century for transporting solid and sometimes even package products. Recent advancements in pipeline technology, aided by advanced computer control systems and trenchless technologies, have greatly facilitated the transportation of solids by pipelines. Today, in many situations, freight pipelines are not only the most economical and practical means for transporting solids, they are also the most reliable, safest and most environmentally friendly transportation mode. Increasedmore » use of underground pipelines to transport freight is anticipated in the future, especially as the technology continues to improve and surface transportation modes such as highways become more congested. This paper describes the state of the art and expected future uses of various types of freight pipelines. Obstacles hindering the development and use of the most advanced freight pipeline systems, such as the pneumatic capsule pipeline for interstate transport of freight, are discussed.« less

  16. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  17. Ceramic ball grid array package stress analysis

    NASA Astrophysics Data System (ADS)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  18. Spooled packaging of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators with mitigated material, power, and packaging costs and compact, customizable form factors. By examining the multi-faceted connections between performance, packaging, and cost, this dissertation builds a knowledge base that goes beyond implementing SMA actuators for particular applications. Rather, it provides a well-developed strategy for realizing the advantages of SMA actuation for a broadened range of applications, thereby enabling opportunities for new functionality and capabilities in industry.

  19. Nanotechnology: current uses and future applications in the food industry.

    PubMed

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  20. Smart packaging systems for food applications: a review.

    PubMed

    Biji, K B; Ravishankar, C N; Mohan, C O; Srinivasa Gopal, T K

    2015-10-01

    Changes in consumer preference for safe food have led to innovations in packaging technologies. This article reviews about different smart packaging systems and their applications in food packaging, packaging research with latest innovations. Active and intelligent packing are such packaging technologies which offer to deliver safer and quality products. Active packaging refers to the incorporation of additives into the package with the aim of maintaining or extending the product quality and shelf life. The intelligent systems are those that monitor the condition of packaged food to give information regarding the quality of the packaged food during transportation and storage. These technologies are designed to the increasing demand for safer foods with better shelf life. The market for active and intelligent packaging systems is expected to have a promising future by their integration into packaging materials or systems.

  1. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    NASA Astrophysics Data System (ADS)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  2. Revolutionize Situational Awareness in Emergencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus Peter

    This report describes an integrated system that provides real-time actionable information to first responders. LANL will integrate three technologies to form an advanced predictive real-time sensor network including compact chemical and wind sensor sin low cost rugged package for outdoor installation; flexible robust communication architecture linking sensors in near-real time to globally accessible servers; and the QUIC code which predicts contamination transport and dispersal in urban environments in near real time.

  3. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  4. Modern Advances to the Modular Fly-Away Kit (MFLAK) to Support Maritime Interdiction Operations

    DTIC Science & Technology

    2007-09-01

    combined Indonesia- Malaysia -Singapore-Thailand-U.S. R&D effort to investigate commercial-off-the- shelf (COTS) Command and Control, Communications...Operations and Applied Science & Technology Studies (COASTS). COASTS is a combined Indonesia- Malaysia -Singapore-Thailand-U.S. R&D effort to investigate...Message Authentication Code MALSINDO Malaysia , Indonesia and Singapore xiii Mbps Megabits per Second MCP Mission Capability Package MCSC Marine

  5. European consumer response to packaging technologies for improved beef safety.

    PubMed

    Van Wezemael, Lynn; Ueland, Øydis; Verbeke, Wim

    2011-09-01

    Beef packaging can influence consumer perceptions of beef. Although consumer perceptions and acceptance are considered to be among the most limiting factors in the application of new technologies, there is a lack of knowledge about the acceptability to consumers of beef packaging systems aimed at improved safety. This paper explores European consumers' acceptance levels of different beef packaging technologies. An online consumer survey was conducted in five European countries (n=2520). Acceptance levels among the sample ranged between 23% for packaging releasing preservative additives up to 73% for vacuum packaging. Factor analysis revealed that familiar packaging technologies were clearly preferred over non-familiar technologies. Four consumer segments were identified: the negative (31% of the sample), cautious (30%), conservative (17%) and enthusiast (22%) consumers, which were profiled based on their attitudes and beef consumption behaviour. Differences between consumer acceptance levels should be taken into account while optimising beef packaging and communicating its benefits. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Deep Space 1: Testing New Technologies for Future Small Bodies Missions

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.

    2001-01-01

    Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.

  7. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2005-01-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  8. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2004-12-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  9. Office of the Secretary of Defense Research, Development Test and Evaluation, Development and Test Evaluation, Defense, Director of Operational Test and Evaluation Defense, FY 1994 Budget Estimates, Justification of Estimates Submitted to Congress April 1993

    DTIC Science & Technology

    1993-04-01

    separation capability. o Demonstrate advanced KKVs in the 6-20 KG weight class. o Test planning for SRAM/LEAP and PATRIOT/LEAP integrated technology...packaging techniques to reduce satellite size, weight , power, and total system costs. Further development of these technologies are absolutely 4...1993 o Developed a master plan with a delivery schedule for each light- weight subassembly in the sensor integration payload. o Finalized a contract for

  10. Volvo drivers' experiences with advanced crash avoidance and related technologies.

    PubMed

    Eichelberger, Angela H; McCartt, Anne T

    2014-01-01

    Crash avoidance technologies can potentially prevent or mitigate many crashes, but their success depends in part on driver acceptance. Owners of 2010-2012 model Volvo vehicles with several technologies were interviewed about their experiences. Interviews were conducted in summer 2012 with 155 owners of vehicles with City Safety as a standard feature; 145 owners with an optional technology package that included adaptive cruise control, distance alert, collision warning with full auto brake (and pedestrian detection on certain models), driver alert control, and lane departure warning; and 172 owners with both City Safety and the technology package. The survey response rates were 21 percent for owners with City Safety, 30 percent for owners with the technology package, and 27 percent for owners with both. Ten percent of owners opted out before the telephone survey began, and 18 percent declined to participate when called. Despite some annoyance, most respondents always leave the systems on, although fewer do so for lane departure warning (59%). For each of the systems, at least 80 percent of respondents with the system would want it on their next vehicle. Many respondents reported safer driving habits with the systems (e.g., following less closely with adaptive cruise control, using turn signals more often with lane departure warning). Fewer respondents reported potentially unsafe behavior, such as allowing the vehicle to brake for them at least some of the time. About one third of respondents experienced autonomous braking when they believed they were at risk of crashing, and about one fifth of respondents thought it had prevented a crash. About one fifth of respondents with the technology package reported that they were confused or misunderstood which safety system had activated in their vehicle. Consistent with the results for early adopters in the previous survey of Volvo and Infiniti owners, the present survey found that driver acceptance of the technologies remains high, although less so for lane departure warning. This study is the first to report drivers' experiences with City Safety, a collision avoidance system provided as standard equipment on certain Volvo 2010-2012 models, and driver acceptance of this system was high, although not to the same extent as the optional forward collision avoidance system. Future research should continue to monitor drivers' experiences with these technologies as they become available in more vehicles.

  11. A fast new cadioptric design for fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.

  12. The FLECS expandable module concept for future space missions and an overall description on the material validation

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Guarrera, Giuseppe; Marchetti, Mario; Ferrari, Giorgio; Nebiolo, Marco; Augello, Gerlando; Bitetti, Grazia; Carnà, Emiliano; Marranzini, Andrea; Mazza, Fabio

    2006-07-01

    The future space exploration missions aim to reduce the costs associated with design, fabrication and launch for ISS, Moon and Mars modules, while simultaneously increasing the useful volume. Flexible and inflatable structures offer many advantages over conventional structures for space applications. Principal among the advantages is the ability to package these structures into small volumes for launch. Design maturation and the development of advanced materials and fabrication processes have made the concept of an inflatable module achievable in the near future. The Multipurpose Expandable Module (FLECS) Project sponsored by ASI (Italian Space Agency) whose prime contractor is Alcatel Alenia Space Italia, links the conventional and traditional technology of modules with the innovative solutions of inflatable technology. This project emphasizes on demonstrating the capability in using inflatable technology on space structures aiming to substitute the conventional modules in future manned missions. FLECS has been designed using advanced textiles and films in order to guarantee the structural reliability necessary for the deployment and packaging configurations. A non-linear structural analysis has been conducted using several numerical codes that simulate the deployed structural characteristics achieving also the damping resistance during the packaging. All the materials used for the flexible parts have been selected through a series of mechanical tests in order to validate the more appropriate ones for the mission. The multi-layer pneumatic retention bladder and the intermediate restraint layer are composed of polymer sheets, ortho-fabrics and elastomers like polyurethanes. The External protection shield is configured using several layers of impact absorption materials and also several layers of space environment (UV, IR, atomic oxygen) protection materials such as Kapton, Mylar and Nextel. The validation of the fabrics, the films and the final prototype assembly are tested in the Space Environment Simulator (SAS), located in the SASLab laboratory of the Aerospace Engineering Department of the “La Sapienza” University of Rome.

  13. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  14. PyPathway: Python Package for Biological Network Analysis and Visualization.

    PubMed

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  15. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing.

    PubMed

    Gruber, Bernd; Unmack, Peter J; Berry, Oliver F; Georges, Arthur

    2018-05-01

    Although vast technological advances have been made and genetic software packages are growing in number, it is not a trivial task to analyse SNP data. We announce a new r package, dartr, enabling the analysis of single nucleotide polymorphism data for population genomic and phylogenomic applications. dartr provides user-friendly functions for data quality control and marker selection, and permits rigorous evaluations of conformation to Hardy-Weinberg equilibrium, gametic-phase disequilibrium and neutrality. The package reports standard descriptive statistics, permits exploration of patterns in the data through principal components analysis and conducts standard F-statistics, as well as basic phylogenetic analyses, population assignment, isolation by distance and exports data to a variety of commonly used downstream applications (e.g., newhybrids, faststructure and phylogeny applications) outside of the r environment. The package serves two main purposes: first, a user-friendly approach to lower the hurdle to analyse such data-therefore, the package comes with a detailed tutorial targeted to the r beginner to allow data analysis without requiring deep knowledge of r. Second, we use a single, well-established format-genlight from the adegenet package-as input for all our functions to avoid data reformatting. By strictly using the genlight format, we hope to facilitate this format as the de facto standard of future software developments and hence reduce the format jungle of genetic data sets. The dartr package is available via the r CRAN network and GitHub. © 2017 John Wiley & Sons Ltd.

  16. Analysis of live cell images: Methods, tools and opportunities.

    PubMed

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  17. Users Guide on Scaled CMOS Reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    White, Mark; Cooper, Mark; Johnston, Allan

    2011-01-01

    Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.

  18. Recycling Expensive Medication: Why Not?

    PubMed Central

    Pomerantz, Jay M

    2004-01-01

    New (and proposed) advances in packaging, preserving, labeling, and verifying product integrity of individual tablets and capsules may allow for the recycling of certain expensive medicines. Previously sold, but unused, medication, if brought back to special pharmacies for resale or donation, may provide a low-cost source of patent-protected medicines. Benefits of such a program go beyond simply providing affordable medication to the poor. This article suggests that medicine recycling may be a possibility (especially if manufacturers are mandated to blister-package and bar-code individual tablets and capsules). This early discussion of medication recycling identifies relevant issues, such as: need, rationale, existing programs, available supplies, expiration dates, new technology for ensuring safety and potency, environmental impact, public health benefits, program focus, program structure, and liability. PMID:15266231

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noisemore » coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.« less

  20. Advanced Packaging for VLSI/VHSIC (Very Large Scale Integrated Circuits/Very High Speed Integrated Circuits) Applications: Electrical, Thermal, and Mechanical Considerations - An IR&D Report.

    DTIC Science & Technology

    1987-11-01

    developed that can be used by circuit engineers to extract the maximum performance from the devices on various board technologies including multilayer ceramic...Design guidelines have been developed that can be used by circuit engineers to extract the maxi- mum performance from the devices on various board...25 Attenuation and Dispersion Effects ......................................... 27 Skin Effect

  1. Reliability Analysis/Assessment of Advanced Technologies

    DTIC Science & Technology

    1990-05-01

    34, Reliability Physics 1980 , IEEE, p. 165. 25. RADC-TR-83-244. 26. Towner, Janet M., et. al., "Aluminum Electromigration Under Pulsed D.C. Conditions...Duvvury, Redwine, Kitagawa, Haas, Chuang, Beydler, Hyslop , "Impact of Hot Carriers On DRAM circuits", 1987 IEEE/IRPS. 58. Cahoon, Thornewell, Tsai...et. a]., "Substrate for Large Silicon Chip and Full Wafer Packaging", Semiconductor International, pp. 149-156, April 1980 . 5. T.E. Lewis and D.L

  2. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  3. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUBER, J.H.

    1999-08-17

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation.

  4. European Conference on Advanced Materials and Processes Held in Aachen, Federal Republic of Germany on November 22-24 1989. Abstracts

    DTIC Science & Technology

    1989-11-24

    However, the combination of increasing circuit complexity, customization, size, speed and heat flux is leading to a crisis in packaging technology(1...material properties and tooling restrictions, * production by an economic single-step sintering technique with subsequent heat treatment, * achievement of...programme, page 16. Numerical Mlodelling of Heat Transfer at Interfaces: Finite Element Approaches, Testing and Examples I W. Schafer, MAGM

  5. Single-Case Experimental Designs to Evaluate Novel Technology-Based Health Interventions

    PubMed Central

    Cassidy, Rachel N; Raiff, Bethany R

    2013-01-01

    Technology-based interventions to promote health are expanding rapidly. Assessing the preliminary efficacy of these interventions can be achieved by employing single-case experiments (sometimes referred to as n-of-1 studies). Although single-case experiments are often misunderstood, they offer excellent solutions to address the challenges associated with testing new technology-based interventions. This paper provides an introduction to single-case techniques and highlights advances in developing and evaluating single-case experiments, which help ensure that treatment outcomes are reliable, replicable, and generalizable. These advances include quality control standards, heuristics to guide visual analysis of time-series data, effect size calculations, and statistical analyses. They also include experimental designs to isolate the active elements in a treatment package and to assess the mechanisms of behavior change. The paper concludes with a discussion of issues related to the generality of findings derived from single-case research and how generality can be established through replication and through analysis of behavioral mechanisms. PMID:23399668

  6. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.; Gonzales, J.

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factorsmore » to consider when pursuing a conversion, retrofit, or repower option.« less

  9. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    Kemp, F. S.

    1985-01-01

    A 30-cell stack was tested for 7200 hours. At 6000 hours the stack was successfully refilled with acid with no loss of performance. A second stack containing the advanced Configuration B cell package was fabricated and assembled for testing in 1985. A 200-kW brassboard inverter was successfully evaluated, verifying the design of the two-bridge ASCR circuit design. A fuel processing catalyst train was tested for 2000 hours verifying the catalyst for use in a 200-kW development reformer. The development reformer was fabricated for evaluation in 1985. The initial test plan was prepared for a 200-kW verification test article.

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. New Developments in Nickel-Hydrogen Dependent Pressure Vessel (DPV) Cell and Battery Design

    NASA Technical Reports Server (NTRS)

    Caldwell, Dwight B.; Fox, Chris L.; Miller, Lee E.

    1997-01-01

    THe Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2) design is being developed as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced part count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risk.

  12. Non-Flow Through Fuel Cell Power Module Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Guzik, Monica; Bennett, William R.; Edwards, Lawrence

    2017-01-01

    NASA demonstrated the Advanced Product Water Removal (APWR) Non-Flow-Through (NFT) PEM fuel cell technology by powering the Scarab rover over three-(3) days of field operations. The latest generation APWR NFT fuel cell stackwas packaged by the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) team into a nominallyrated 1-kW fuel cell power module. This power module was functionally verified in a laboratory prior to field operations on the Scarab rover, which concluded on 2 September 2015. During this demonstration, the power module satisfied all required success criteria by supporting all electrical loads as the Scarab navigated the NASA Glenn Research Center.

  13. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology. And benefits analysis of all LRR technologies have been updated with the latest test and analysis results.

  14. An examination of automation and robotics in the context of Space Station operations

    NASA Technical Reports Server (NTRS)

    Criswell, David R.; Lee, Douglas S.; Ragusa, James; Starks, Scott A.; Woodruff, John; Paules, Granville

    1988-01-01

    A NASA-sponsored review of Space Station automation and robotics (A&R) applications from an operations and utilization perspective is presented. The goals of the A&R panel and this report are to identify major suggestions for advanced A&R operations application in Space Station as well as key technologies that have emerged or gained prominence since the completion of previous reports; to review and incorporate the range of possible Space Station A&R applications into a framework for evaluation of A&R opportunities; and to propose incentives for the government, work packages, and subcontractors to more aggressively identify, evaluate, and incorporate advanced A&R in Space Station Operations. The suggestions for A&R focused on narrow objectives using a conservative approach tuned to Space Station at IOC and limiting the Station's growth capabilities. A more aggressive stance is to identify functional needs over the Program's life, exploit and leverage available technology, and develop the key advanced technologies permitting effective use of A&R. The challenge is to systematically identify candidate functions to be automated, provide ways to create solutions resulting in savings or increased capabilities, and offer incentives that will promote the automation.

  15. Advance Directives and Do Not Resuscitate Orders

    MedlinePlus

    ... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...

  16. Managing Advanced HIV Disease in a Public Health Approach

    PubMed Central

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg; Asero, Patricia; Bologna, Rosa; Chakroun, Mohamed; Chambal, Lucia; Chiller, Tom; Conradie, Francesca; Eholie, Serge; Frigati, Lisa; Gibb, Diana; Goemaere, Eric; Govender, Nelesh; Grant, Alison; Kumarasamy, Nagalingeswaran; Lalloo, David; Le, Thuy; Letang, Emilio; Mbori-Ngacha, Dorothy; Mfinanga, Sayoki; Nacher, Mathieu; Ribakare, Muhayimpundu; Siegfried, Nandi; Sikwese, Kenly; Tun, Nini; Vidal, Jose E

    2018-01-01

    Abstract In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease. PMID:29514232

  17. Managing Advanced HIV Disease in a Public Health Approach.

    PubMed

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg

    2018-03-04

    In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease.

  18. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  19. Reliability and Qualification of Hardware to Enhance the Mission Assurance of JPL/NASA Projects

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    Packaging Qualification and Verification (PQV) and life testing of advanced electronic packaging, mechanical assemblies (motors/actuators), and interconnect technologies (flip-chip), platinum temperature thermometer attachment processes, and various other types of hardware for Mars Exploration Rover (MER)/Mars Science Laboratory (MSL), and JUNO flight projects was performed to enhance the mission assurance. The qualification of hardware under extreme cold to hot temperatures was performed with reference to various project requirements. The flight like packages, assemblies, test coupons, and subassemblies were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases. Qualification/life testing was performed by subjecting flight-like qualification hardware to the environmental temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experimental flight qualification test results will be described in this presentation.

  20. Silicon microelectronic field-emissive devices for advanced display technology

    NASA Astrophysics Data System (ADS)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  1. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  2. Advanced Technology Multiple Criteria Decision Model.

    DTIC Science & Technology

    1981-11-01

    ratings of the sys- tem parameters; and (3), HEADER which contains information on the structure of the problem and titles. Two supporting programs develop...in these files are given in Section V.2. 2. DATA STRUCTURE TABLES This section describes the data files used in the system selection model program ...the supporting program PPP and an input file to UPPP and SSMP. Figure 13 shows the structure of this file. b. User’s preference package (UPP) UPP is

  3. 1998 Technology Showcase. JOAP International Condition Monitoring Conference.

    DTIC Science & Technology

    1998-04-01

    Systems using Automated SEM/ EDX and New Diagnostic Routines 276 N. W Farrant & T. Luckhurst ADVANCED DIAGNOSTIC SYSTEMS Model-Based Diagnostics of Gas...Microscopy with Energy Dispersive X-Ray (SEM/ EDX ) micro analysis packages and Energy Dispersive X-Ray Fluorescence (EDXRF) analytical equipment. Therqfore...wear particles separated by ferrogram method. a- I WEAR PARTICLE A SLAS 97 (HOME PAGE) Fig I Home Page NONFE;RROUS MATERIAL A wW~ a48 -1, rV fr , ý b

  4. Single-Event Effect (SEE) Survey of Advanced Reconfigurable Field Programmable Gate Arrays: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Allen, Gregory

    2011-01-01

    The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).

  5. Development of Unique Advanced Medical Research and Development Initiatives in the Western United States and Pacific Rim

    DTIC Science & Technology

    2012-11-01

    funding). Funding from the TATRC/Qualcomm innovation challenge allowed the vLC to expand its TAP (Technology Acceleration Program) model to the...innovative research challenges and pilot projects. Relevance: This research effort to build partnerships and collaborations has significant benefit to...the proposal was Specific research under task 2 of this award has been the following: 1) “Grand Challenge ” in Military Medicine Research, 2) Packaging

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Natesan, K.; Chen, Wei-Ying

    This report provides an update on the understanding of the effect of sodium exposures on microstructure and tensile properties of Grade 91 (G91) steel in support of the design and operation of G91 components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602018), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  7. Desirable attributes of vaccines for deployment in low-resource settings.

    PubMed

    Chen, Dexiang; Zehrung, Darin

    2013-01-01

    A number of product development partnerships are actively developing new vaccines to combat infectious diseases in developing countries. To be effective, the products under development should not only be safe, efficacious, and affordable, but they should also have additional desirable technical attributes, including enhanced stability, efficient packaging, and improved ease of delivery. New technologies are now available to achieve these attributes; however, many of the technologies have yet to be adopted by the vaccine industry. This commentary discusses the opportunities and challenges associated with advancing such attributes, especially vaccine thermostability and dose sparing strategies, and the critical issues that must be addressed to bridge the gap between technology development and product development. Copyright © 2012 Wiley Periodicals, Inc.

  8. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  9. Progress in composite structure and space construction systems technology

    NASA Technical Reports Server (NTRS)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  10. FY 2017-Influence of Sodium Environment on the Tensile Properties of Advanced Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, Meimei; Chen, Wei-Ying

    This report provides an update on the understanding of the effects of sodium exposures on tensile properties of advanced alloy 709 in support of the design and operation of structural components in sodium-cooled fast reactors (SFRs). The report is a Level 3 deliverable in FY17 (M3AT-17AN1602093), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of Advanced Reactor Technologies Program. Three laboratory-size heats of Alloy 709 austenitic steel were investigated in liquid sodium environments at 550-650°C to understand its corrosion behaviour, microstructural evolution, and tensile properties. In addition, a commercial scale heat has beenmore » produced and hot-rolled into plates.« less

  11. Technology needs of advanced Earth observation spacecraft

    NASA Technical Reports Server (NTRS)

    Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.

    1984-01-01

    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.

  12. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  13. Evaluation of High-Power Solar Electric Propulsion using Advanced Ion, Hall, MPD, and PIT Thrusters for Lunar and Mars Cargo Missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    This paper presents the results of mission analyses that expose the advantages and disadvantages of high-power (MWe-class) Solar Electric Propulsion (SEP) for Lunar and Mars Cargo missions that would support human exploration of the Moon and Mars. In these analyses, we consider SEP systems using advanced Ion thrusters (the Xenon [Xe] propellant Herakles), Hall thrusters (the Bismuth [Bi] propellant Very High Isp Thruster with Anode Layer [VHITAL], magnetoplasmadynamic (MPD) thrusters (the Lithium [Li] propellant Advanced Lithium-Fed, Applied-field Lorentz Force Accelerator (ALFA2), and pulsed inductive thruster (PIT) (the Ammonia [NH3] propellant Nuclear-PIT [NuPIT]). The analyses include comparison of the advanced-technology propulsion systems (VHITAL, ALFA2, and NuPIT) relative to state-of-theart Ion (Herakles) propulsion systems and quantify the unique benefits of the various technology options such as high power-per-thruster (and/or high power-per-thruster packaging volume), high specific impulse (Isp), high-efficiency, and tankage mass (e.g., low tankage mass due to the high density of bismuth propellant). This work is based on similar analyses for Nuclear Electric Propulsion (NEP) systems.

  14. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants.

  15. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal cycles. Corner columns have started showing significant fatigue per optical inspection results.

  16. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.

  17. Recent Advances in High-Resolution MEMS DM Fabrication and Integration

    NASA Astrophysics Data System (ADS)

    Bifano, T.; Cornelissen, S.; Bierden, P.

    2010-09-01

    Deformable mirrors fabricated using microelectromechanical systems technology (MEMS-DMs) have been studied at Boston University (BU) and developed/commercialized by Boston Micromachines Corporation (BMC) over the past decade. Recent advances that might have an impact on surveillance telescopes include demonstration of 4092 actuator DMs with continuous mirror face-sheets, and segmented DMs capable of frame rates of greater than 20kHz for devices with up to 1020 independent segments. The 4092 actuator DM, developed by BMC for the Gemini Planet Imaging GPI instrument, was recently delivered to the GPI instrument development team. Its packaging and platform development are described, and the performance results for the latest prototype devices are presented.

  18. Advanced Distributed Simulation Technology II (ADST-II) LAM Task Force DO #14 CDRL ABO3 After Action Report

    DTIC Science & Technology

    1997-01-17

    SHOWDirect Control Systems (6) Betacam SP Players (Video Backup) (6) Betacam SP Recorders (Show Record) (2) CRV Laser Disc Rec/Players (GoTo) (14) Multi...IK Scoops (3)lKDP’s (1) Schedule 40 Light Pole (Flown) Control Console Dimming Cables & Distribution PRODUCTION HARDWARE (1) Sony Betacam SP...Shooters Package (1) Folsom Hi-Res Video Scan Converter (20) Betacam SP VideoTapes STAGING HARDWARE (1) Custom Screen Divider / Support 44 This

  19. Microsensors and Microinstruments for Space Science and Exploration

    NASA Technical Reports Server (NTRS)

    Kukkonen, C. A.; Venneri, S.

    1997-01-01

    Most future NASA spacecraft will be small, low cost, highly integrated vehicles using advanced technology. This will also be true of planetary rovers. In order to maintain a high scientific value to these missions, the instruments, sensors and subsystems must be dramatically miniaturized without compromising their measurement capabilities. A rover must be designed to deliver its science package. In fact, the rover should be considered as the arms, legs and/or wheels that are needed to enable a mobile integrated scientific payload.

  20. ANTARES: Spacecraft Simulation for Multiple User Communities and Facilities

    NASA Technical Reports Server (NTRS)

    Acevedo, Amanda; Berndt, Jon; Othon, William; Arnold, Jason; Gay, Robet

    2007-01-01

    The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is the primary tool being used for requirements assessment of the NASA Orion spacecraft by the Guidance Navigation and Control (GN&C) teams at Johnson Space Center (JSC). ANTARES is a collection of packages and model libraries that are assembled and executed by the Trick simulation environment. Currently, ANTARES is being used for spacecraft design assessment, performance analysis, requirements validation, Hardware In the Loop (HWIL) and Human In the Loop (HIL) testing.

  1. Application of Advanced Multi-Core Processor Technologies to Oceanographic Research

    DTIC Science & Technology

    2014-09-30

    Jordan Stanway are taking on the work of analyzing their code, and we are working on the Robot Operating System (ROS) and MOOS-DB systems to evaluate...Linux/GNU operating system that should reduce the time required to build the kernel and userspace significantly. This part of the work is vital to...the platform to be used not only as a service, but also as a private deployable package. As much as possible, this system was built using operating

  2. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A New NASA Instrument Incubator Program Project

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Amzajerdian, Farzin; Wang, Jinxue; Petros, Mulugeta

    2005-01-01

    A new project, selected in 2005 by NASA s Science Mission Directorate (SMD) under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The packaged DWL will utilize the numerous advances in pulsed, solid-state, 2-micron laser technology at NASA s Langley Research Center (LaRC) in such areas as crystal composition, architecture, efficiency, cooling techniques, pulse energy, and beam quality. The extensive experience of Raytheon Space and Airborne Systems (RSAS) in coherent lidar systems, in spacebased sensors, and in packaging rugged lidar systems will be applied to this project. The packaged transceiver will be as close to an envisioned space-based DWL system as the resources and technology readiness allow. We will attempt to facilitate a future upgrade to a coherent lidar system capable of simultaneous wind and CO2 concentration profile measurements. Since aerosol and dust concentration is also available from the lidar signal, the potential for a triple measurement lidar system is attractive for both Earth and Mars remote sensing. A key follow on step after the IIP will be to add a telescope, scanner, and software for aircraft validation. This IIP should also put us in a position to begin a parallel formulation study in the 2006-2007 timeframe for a space-based DWL demonstration mission early next decade.

  3. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  4. ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery

    NASA Astrophysics Data System (ADS)

    1988-06-01

    The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.

  5. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  6. Data Analysis for the LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2009-01-01

    The LTP (LISA Technology Package) is the core part of the Laser Interferometer Space Antenna (LISA) Pathfinder mission. The main goal of the mission is to study the sources of any disturbances that perturb the motion of the freely-falling test masses from their geodesic trajectories as well as 10 test various technologies needed for LISA. The LTP experiment is designed as a sequence of experimental runs in which the performance of the instrument is studied and characterized under different operating conditions. In order to best optimize subsequent experimental runs, each run must be promptly analysed to ensure that the following ones make best use of the available knowledge of the instrument ' In order to do this, all analyses must be designed and tested in advance of the mission and have sufficient built-in flexibility to account for unexpected results or behaviour. To support this activity, a robust and flexible data analysis software package is also required. This poster presents two of the main components that make up the data analysis effort: the data analysis software and the mock-data challenges used to validate analysis procedures and experiment designs.

  7. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  8. A Spacelab Expert System for Remote Engineering and Science

    NASA Technical Reports Server (NTRS)

    Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)

    1994-01-01

    NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.

  9. Integrated Approach to Industrial Packaging Design

    NASA Astrophysics Data System (ADS)

    Vorobeva, O.

    2017-11-01

    The article reviews studies in the field of industrial packaging design. The major factors which influence technological, ergonomic, economic and ecological features of packaging are established. The main modern trends in packaging design are defined, the principles of marketing communications and their influence on consumers’ consciousness are indicated, and the function of packaging as a transmitter of brand values is specified. Peculiarities of packaging technology and printing techniques in modern printing industry are considered. The role of designers in the stage-by-stage development of the construction, form and graphic design concept of packaging is defined. The examples of authentic packaging are given and the mention of the tetrahedron packaging history is made. At the end of the article, conclusions on the key research aspects are made.

  10. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  11. Laser-boosted lightcraft technology demonstrator

    NASA Technical Reports Server (NTRS)

    Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.

    1990-01-01

    The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.

  12. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  13. PACKAGE PLANTS FOR SMALL SYSTEMS: A FIELD STUDY

    EPA Science Inventory

    A joint field study was conducted by AWWA and the Drinking Water Research Division of USEPA to evaluate existing small community systems that use package plant technology. Forty-eight package plant systems representing a geographic and technological cross section were evaluated t...

  14. Raytheon advanced pulse-tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Conrad, Ted; Yates, Ryan; Kuo, Daniel; Schaefer, Brian; Arnoult, Matt

    2016-05-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Recently, Raytheon has developed an advanced regenerator technology capable of operating efficiently at high frequencies and outperforming traditional screen regenerators. The Raytheon Advanced Miniature (RAM-100) cryocooler, a flight packaged, high frequency, single stage pulse tube cooler with an integrated surge volume and inertance tube, has been designed for use with this regenerator. Design details and experimentally measured performance of two iterations of the RAM cryocooler are presented in this paper.

  15. Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)

    NASA Technical Reports Server (NTRS)

    Ghaffaroam. Reza

    2014-01-01

    Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.

  16. Types, production and assessment of biobased food packaging materials

    USDA-ARS?s Scientific Manuscript database

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  17. Evaluation of Five Microcomputer CAD Packages.

    ERIC Educational Resources Information Center

    Leach, James A.

    1987-01-01

    Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the…

  18. Hypermedia and visual technology

    NASA Technical Reports Server (NTRS)

    Walker, Lloyd

    1990-01-01

    Applications of a codified professional practice that uses visual representations of the thoughts and ideas of a working group are reported in order to improve productivity, problem solving, and innovation. This visual technology process was developed under the auspices of General Foods as part of a multi-year study. The study resulted in the validation of this professional service as a way to use art and design to facilitate productivity and innovation and to define new opportunities. It was also used by NASA for planning Lunar/Mars exploration and by other companies for general business and advanced strategic planning, developing new product concepts, and litigation support. General Foods has continued to use the service for packaging innovation studies.

  19. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  20. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, James; Lueck, Steve

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. willmore » leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background« less

  1. Novel Ruggedized Packaging Technology for VCSELs

    DTIC Science & Technology

    2017-03-01

    Novel Ruggedized Packaging Technology for VCSELs Charlie Kuznia ckuznia@ultracomm-inc.com Ultra Communications, Inc. Vista, CA, USA, 92081...n ac hieve l ow-power, E MI-immune links within hi gh-performance m ilitary computing an d sensor systems. Figure 1. Chip-scale-packaging of

  2. JP-8+100: The development of high-thermal-stability jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.

    1996-09-01

    Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less

  3. The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong

    2018-03-01

    It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.

  4. A QR code identification technology in package auto-sorting system

    NASA Astrophysics Data System (ADS)

    di, Yi-Juan; Shi, Jian-Ping; Mao, Guo-Yong

    2017-07-01

    Traditional manual sorting operation is not suitable for the development of Chinese logistics. For better sorting packages, a QR code recognition technology is proposed to identify the QR code label on the packages in package auto-sorting system. The experimental results compared with other algorithms in literatures demonstrate that the proposed method is valid and its performance is superior to other algorithms.

  5. Wafer-level vacuum/hermetic packaging technologies for MEMS

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  6. Technological and organizational diversity and technical advance in the early history of the American semiconductor industry

    NASA Astrophysics Data System (ADS)

    Cohen, W.; Holbrook, D.; Klepper, S.

    1994-06-01

    This study examines the early years of the semiconductor industry and focuses on the roles played by different size firms in technologically innovative processes. A large and diverse pool of firms participated in the growth of the industry. Three related technological areas were chosen for in-depth analysis: integrated circuits, materials technology, and device packaging. Large business producing vacuum tubes dominated the early production of semiconductor devices. As the market for new devices grew during the 1950's, new firms were founded and existing firms from other industries, e.g. aircraft builders and instrument makers, began to pursue semiconductor electronics. Small firms began to cater to the emerging industry by supplying materials and equipment. These firms contributed to the development of certain aspects of one thousand firms that were playing some part in the semiconductor industry.

  7. Lithium-Ion Technology for Aerospace Applications- Advancing Battery Management Electronics

    NASA Astrophysics Data System (ADS)

    Gitzendanner, R.; Jones, E.; Deory, C.; Carmen, D.

    2005-05-01

    Lithium-ion technology offers a unique, weight and volume saving, solution to the power storage needs of space applications. With higher energy and power densities than conventional technologies, such as Nickel-Hydrogen (Ni-H) and Nickel/Cadmium (Ni- Cd), and comparable cycle life and reliability, Lithium-ion technology is gaining interest in many space applications. As the demand for Lithium-ion batteries with high reliability and long life increases, the need for battery management electronics, including individual cell balancing and monitoring, becomes apparent. With onboard electronics, the cells are monitored individually, and are protected from over charge or over discharge by way of integral protection circuitry. State of Charge, State of Health and other useful telemetry can also be calculated by the integrated electronics and reported to the application. Lab-based, and real-life, testing and use of these battery systems has shown the advantages of an integrated electronics package.

  8. Laser applications in advanced chip packaging

    NASA Astrophysics Data System (ADS)

    Müller, Dirk; Held, Andrew; Pätzel, Rainer; Clark, Dave; van Nunen, Joris

    2016-03-01

    While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry's push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.

  9. Qualification Testing of Engineering Camera and Platinum Resistance Thermometer (PRT) Sensors for Mars Science Laboratory (MSL) Project under Extreme Temperatures to Assess Reliability and to Enhance Mission Assurance

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.

    2008-01-01

    Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.

  10. MEMS packaging: state of the art and future trends

    NASA Astrophysics Data System (ADS)

    Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.

    1998-07-01

    Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.

  11. Status of the Direct Data Distribution (D(exp 3)) Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence

    2001-01-01

    NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.

  12. An evaluation of the effectiveness of FreshCase technology to extend the storage life of whole-muscle pork and ground pork sausage.

    PubMed

    Yang, X; Woerner, D R; McCullough, K R; Hasty, J D; Geornaras, I; Smith, G C; Sofos, J N; Belk, K E

    2016-11-01

    The objective of this study was to identify the maximum time of refrigerated storage before aerobic psychrotrophic bacteria grew to a level indicative of spoilage (7 log cfu/g) or other indicators of spoilage were observed for whole-muscle pork and ground pork sausage packaged using FreshCase technology. Pork chops and pork sausage were packaged using conventional vacuum packaging without nitrite in film (Control) or using FreshCase technology and were compared with respect to microbial counts, pH, instrumental color measurements, lipid oxidation level, and sensory properties. The storage life was 45 d for pork chops stored in FreshCase packages at 1°C and 19 d for ground pork sausage stored under the same condition. Results indicated that both pork chops and sausage stored in FreshCase packages retained redder color ( < 0.05) than those stored in Control packages. No differences ( > 0.05) existed between Control and FreshCase packaged samples for any off-odor detection for either pork chops or sausage. Moreover, levels of oxidative rancidity in all packages had low thiobarbituric acid reactive substances values. The results indicated that FreshCase technology can be used to extend storage life of pork products without having adverse effects on pork quality.

  13. New technology for food systems and security.

    PubMed

    Yau, N J Newton

    2009-01-01

    In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.

  14. Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2015-01-01

    The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.

  15. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kay L.; Gonzales, John

    2017-10-17

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factorsmore » to consider when pursuing a conversion, retrofit, or repower option.« less

  16. Technologies and Trends to Improve Table Olive Quality and Safety

    PubMed Central

    Campus, Marco; Değirmencioğlu, Nurcan; Comunian, Roberta

    2018-01-01

    Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed. PMID:29670593

  17. WDM package enabling high-bandwidth optical intrasystem interconnects for high-performance computer systems

    NASA Astrophysics Data System (ADS)

    Schrage, J.; Soenmez, Y.; Happel, T.; Gubler, U.; Lukowicz, P.; Mrozynski, G.

    2006-02-01

    From long haul, metro access and intersystem links the trend goes to applying optical interconnection technology at increasingly shorter distances. Intrasystem interconnects such as data busses between microprocessors and memory blocks are still based on copper interconnects today. This causes a bottleneck in computer systems since the achievable bandwidth of electrical interconnects is limited through the underlying physical properties. Approaches to solve this problem by embedding optical multimode polymer waveguides into the board (electro-optical circuit board technology, EOCB) have been reported earlier. The principle feasibility of optical interconnection technology in chip-to-chip applications has been validated in a number of projects. For reasons of cost considerations waveguides with large cross sections are used in order to relax alignment requirements and to allow automatic placement and assembly without any active alignment of components necessary. On the other hand the bandwidth of these highly multimodal waveguides is restricted due to mode dispersion. The advance of WDM technology towards intrasystem applications will provide sufficiently high bandwidth which is required for future high-performance computer systems: Assuming that, for example, 8 wavelength-channels with 12Gbps (SDR1) each are given, then optical on-board interconnects with data rates a magnitude higher than the data rates of electrical interconnects for distances typically found at today's computer boards and backplanes can be realized. The data rate will be twice as much, if DDR2 technology is considered towards the optical signals as well. In this paper we discuss an approach for a hybrid integrated optoelectronic WDM package which might enable the application of WDM technology to EOCB.

  18. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less

  19. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  20. Emerging Chitosan-Based Films for Food Packaging Applications.

    PubMed

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  1. Interventions to improve the use of antimalarials in south-east Asia: an overview.

    PubMed Central

    Gomes, M.; Wayling, S.; Pang, L.

    1998-01-01

    There are few drugs for malaria, and those which are available for use are subject to rapid development of resistance. Curiously, little effort has been made to improve drug use in malaria-endemic countries and to assess the benefits of such improvements. Advances can be made in public understanding of the value of ingesting a full regimen of antimalarials, in order to achieve complete cure, and in improving simple technologies (blister packaging) to achieve the same result. Better efforts can be made to reduce the availability of fake or substandard drugs in the marketplace. In this article, we describe the outcome of a concerted effort to improve drug compliance and drug quality in an area of multidrug resistance for malaria. These research efforts, guided by the Task Force for Improved Use of Antimalarials, characterized the problems in drug compliance in South-East Asia, and developed interventions to improve drug use in the various countries. Interventions involved drug packaging, public information campaigns, and assessments of drug quality. Results show that blister packaging worked best to improve drug compliance and that the increased cost of packaged medication did not limit its use. Drug quality was a major problem in unregulated countries and should be improved. PMID:9763718

  2. Interventions to improve the use of antimalarials in south-east Asia: an overview.

    PubMed

    Gomes, M; Wayling, S; Pang, L

    1998-01-01

    There are few drugs for malaria, and those which are available for use are subject to rapid development of resistance. Curiously, little effort has been made to improve drug use in malaria-endemic countries and to assess the benefits of such improvements. Advances can be made in public understanding of the value of ingesting a full regimen of antimalarials, in order to achieve complete cure, and in improving simple technologies (blister packaging) to achieve the same result. Better efforts can be made to reduce the availability of fake or substandard drugs in the marketplace. In this article, we describe the outcome of a concerted effort to improve drug compliance and drug quality in an area of multidrug resistance for malaria. These research efforts, guided by the Task Force for Improved Use of Antimalarials, characterized the problems in drug compliance in South-East Asia, and developed interventions to improve drug use in the various countries. Interventions involved drug packaging, public information campaigns, and assessments of drug quality. Results show that blister packaging worked best to improve drug compliance and that the increased cost of packaged medication did not limit its use. Drug quality was a major problem in unregulated countries and should be improved.

  3. Packaging of silicon photonic devices: from prototypes to production

    NASA Astrophysics Data System (ADS)

    Morrissey, Padraic E.; Gradkowski, Kamil; Carroll, Lee; O'Brien, Peter

    2018-02-01

    The challenges associated with the photonic packaging of silicon devices is often underestimated and remains technically challenging. In this paper, we review some key enabling technologies that will allow us to overcome the current bottleneck in silicon photonic packaging; while also describing the recent developments in standardisation, including the establishment of PIXAPP as the worlds first open-access PIC packaging and assembly Pilot Line. These developments will allow the community to move from low volume prototype photonic packaged devices to large scale volume manufacturing, where the full commercialisation of PIC technology can be realised.

  4. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  5. Radiometric packaging of uncooled bolometric infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Pope, Timothy; Côté, Patrice; Leclerc, Mélanie; Ngo Phong, Linh; Châteauneuf, François

    2017-11-01

    INO has a wide experience in the design and fabrication of different kinds of microbolometer focal plane arrays (FPAs). In particular, a 512x3 pixel microbolometer FPA has been selected as the sensor for the New Infrared Sensor Technology (NIRST) instrument, one of the payloads of the SACD/Aquarius mission. In order to make the absolute temperature measurements necessary for many infrared Earth observation applications, the microbolometer FPA must be integrated into a package offering a very stable thermal environment. The radiometric packaging technology developed at INO presents an innovative approach since it was conceived to be modular and adaptable for the packaging of different microbolometer FPAs and for different sets of assembly requirements without need for requalification of the assembly process. The development of the radiometric packaging technology has broadened the position of INO as a supplier of radiometric detector modules integrating FPAs of microbolometers inside a radiometric package capable of achieving the requirements of different space missions. This paper gives an overview of the design of INO's radiometric package. Key performance parameters are also discussed and the test campaign conducted with the radiometric package is presented.

  6. Mapping Environmental Contaminants at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    McCubbin, Ian; Lang, Harold

    2000-01-01

    Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS) data was collected over Ray Mine as part of a demonstration project for the Environmental Protection Agency (EPA) through the Advanced Measurement Initiative (AMI). The overall goal of AMI is to accelerate adoption and application of advanced measurement technologies for cost effective environmental monitoring. The site was selected to demonstrate the benefit to EPA in using advanced remote sensing technologies for the detection of environmental contaminants due to the mineral extraction industry. The role of the Jet Propulsion Laboratory in this pilot study is to provide data as well as performing calibration, data analysis, and validation of the AVIRIS results. EPA is also interested in developing protocols that use commercial software to perform such work on other high priority EPA sites. Reflectance retrieval was performed using outputs generated by the MODTRAN radiative transfer model and field spectra collected for the purpose of calibration. We are presenting advanced applications of the ENVI software package using n-Dimensional Partial Unmixing to identify image-derived endmembers that best match target materials reference spectra from multiple spectral libraries. Upon identification of the image endmembers the Mixture Tuned Match Filter algorithm was applied to map the endmembers within each scene. Using this technique it was possible to map four different mineral classes that are associated with mine generated acid waste.

  7. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  8. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  9. Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster

    NASA Astrophysics Data System (ADS)

    Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady

    2015-04-01

    Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.

  10. Automated Work Package: Initial Wireless Communication Platform Design, Development, and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Rashdan, Ahmad Yahya Mohammad; Agarwal, Vivek

    The Department of Energy’s Light Water Reactor Sustainability Program is developing the scientific basis to ensure long-term reliability, productivity, safety, and security of the nuclear power industry in the United States. The Instrumentation, Information, and Control (II&C) pathway of the program aims to increase the role of advanced II&C technologies to achieve this objective. One of the pathway efforts at Idaho National Laboratory (INL) is to improve the work packages execution process by replacing the expensive, inefficient, bulky, complex, and error-prone paper-based work orders with automated work packages (AWPs). An AWP is an automated and dynamic presentation of the workmore » package designed to guide the user through the work process. It is loaded on a mobile device, such as a tablet, and is capable of communicating with plant equipment and systems to acquire plant and procedure states. The AWP replaces those functions where a computer is more efficient and reliable than a human. To enable the automatic acquisition of plant data, it is necessary to design and develop a prototype platform for data exchange between the field instruments and the AWP mobile devices. The development of the platform aims to reveal issues and solutions generalizable to large-scale implementation of a similar system. Topics such as bandwidth, robustness, response time, interference, and security are usually associated with wireless communication. These concerns, along with other requirements, are listed in an earlier INL report. Specifically, the targeted issues and performance aspects in this work are relevant to the communication infrastructure from the perspective of promptness, robustness, expandability, and interoperability with different technologies.« less

  11. Use of optical technique for inspection of warpage of IC packages

    NASA Astrophysics Data System (ADS)

    Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng

    2001-06-01

    The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.

  12. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    PubMed

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  13. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    PubMed

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  14. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  15. IFT Scientific Status Summary 2008: Innovative Food Packaging Solutions

    USDA-ARS?s Scientific Manuscript database

    Food and beverage packaging comprises 55-65% of the $110 billion value of packaging in the United States. This review provides a summary of innovative technology developments in food packaging. The expanded role of food and beverage packaging is reviewed. Active and intelligent food packaging, ba...

  16. Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Mandal, R. P.

    1976-01-01

    Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.

  17. The applications of nanotechnology in food industry.

    PubMed

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  18. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  19. Engineering intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Warren, Kimberly C.; Goodman, Bradley A.

    1993-01-01

    We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

  20. How to Quickly Import CAD Geometry into Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Wright, Shonte; Beltran, Emilio

    2002-01-01

    There are several groups at JPL (Jet Propulsion Laboratory) that are committed to concurrent design efforts, two are featured here. Center for Space Mission Architecture and Design (CSMAD) enables the practical application of advanced process technologies in JPL's mission architecture process. Team I functions as an incubator for projects that are in the Discovery, and even pre-Discovery proposal stages. JPL's concurrent design environment is to a large extent centered on the CAD (Computer Aided Design) file. During concurrent design sessions CAD geometry is ported to other more specialized engineering design packages.

  1. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  2. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  3. Human Factors Model

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Jack is an advanced human factors software package that provides a three dimensional model for predicting how a human will interact with a given system or environment. It can be used for a broad range of computer-aided design applications. Jack was developed by the computer Graphics Research Laboratory of the University of Pennsylvania with assistance from NASA's Johnson Space Center, Ames Research Center and the Army. It is the University's first commercial product. Jack is still used for academic purposes at the University of Pennsylvania. Commercial rights were given to Transom Technologies, Inc.

  4. Micro-Scale Avionics Thermal Management

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  5. Used fuel disposition in crystalline rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Hadgu, Teklu; Kalinina, Elena Arkadievna

    The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  6. JTEC Panel report on electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.

  7. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  8. Flexible Packaging by Film-Assisted Molding for Microintegration of Inertia Sensors

    PubMed Central

    Hera, Daniel; Berndt, Armin; Günther, Thomas; Schmiel, Stephan; Harendt, Christine; Zimmermann, André

    2017-01-01

    Packaging represents an important part in the microintegration of sensors based on microelectromechanical system (MEMS). Besides miniaturization and integration density, functionality and reliability in combination with flexibility in packaging design at moderate costs and consequently high-mix, low-volume production are the main requirements for future solutions in packaging. This study investigates possibilities employing printed circuit board (PCB-)based assemblies to provide high flexibility for circuit designs together with film-assisted transfer molding (FAM) to package sensors. The feasibility of FAM in combination with PCB and MEMS as a packaging technology for highly sensitive inertia sensors is being demonstrated. The results prove the technology to be a viable method for damage-free packaging of stress- and pressure-sensitive MEMS. PMID:28653992

  9. Performance assessment of small-package-class nonintrusive inspection systems

    NASA Astrophysics Data System (ADS)

    Spradling, Michael L.; Hyatt, Roger

    1997-02-01

    The DoD Counterdrug Technology Development Program has addressed the development and demonstration of technology to enhance nonintrusive inspection of small packages such as passenger baggage, commercially delivered parcels, and breakbulk cargo items. Within the past year they have supported several small package-class nonintrusive inspection system performance assessment activities. All performance assessment programs involved the use of a red/blue team concept and were conducted in accordance with approved assessment protocols. This paper presents a discussion related to the systematic performance assessment of small package-class nonintrusive inspection technologies, including transmission, backscatter and computed tomography x-ray imaging, and protocol-related considerations for the assessment of these systems.

  10. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  11. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  12. Defect printability for high-exposure dose advanced packaging applications

    NASA Astrophysics Data System (ADS)

    Mikles, Max; Flack, Warren; Nguyen, Ha-Ai; Schurz, Dan

    2003-12-01

    Pellicles are used in semiconductor lithography to minimize printable defects and reduce reticle cleaning frequency. However, there are a growing number of microlithography applications, such as advanced packaging and nanotechnology, where it is not clear that pellicles always offer a significant benefit. These applications have relatively large critical dimensions and require ultra thick photoresists with extremely high exposure doses. Given that the lithography is performed in Class 100 cleanroom conditions, it is possible that the risk of defects from contamination is sufficiently low that pellicles would not be required on certain process layer reticles. The elimination of the pellicle requirement would provide a cost reduction by saving the original pellicle cost and eliminating future pellicle replacement and repair costs. This study examines the imaging potential of defects with reticle patterns and processes typical for gold-bump and solder-bump advanced packaging lithography. The test reticle consists of 30 to 90 μm octagonal contact patterns representative of advanced packaging reticles. Programmed defects are added that represent the range of particle sizes (3 to 30 μm) normally protected by the pellicle and that are typical of advanced packaging lithography cleanrooms. The reticle is exposed using an Ultratech Saturn Spectrum 300e2 1X stepper on wafers coated with a variety of ultra thick (30 to 100 μm) positive and negative-acting photoresists commonly used in advanced packaging. The experimental results show that in many cases smaller particles continue to be yield issues for the feature size and density typical of advanced packaging processes. For the two negative photoresists studied it appears that a pellicle is not required for protection from defects smaller than 10 to 15 μm depending on the photoresist thickness. Thus the decision on pellicle usage for these materials would need to be made based on the device fabrication process and the cleanliness of a fabrication facility. For the two positive photoresists studied it appears that a pellicle is required to protect from defects down to 3 μm defects depending on the photoresist thickness. This suggests that a pellicle should always be used for these materials. Since a typical fabrication facility would use both positive and negative photoresists it may be advantageous to use pellicles on all reticles simply to avoid confusion. The cost savings of not using a pellicle could easily be outweighed by the yield benefits of using one.

  13. Report of the sensor readout electronics panel

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.

    1991-01-01

    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.

  14. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less

  15. Practical applications of nondestructive materials characterization

    NASA Astrophysics Data System (ADS)

    Green, Robert E., Jr.

    1992-10-01

    Nondestructive evaluation (NDE) techniques are reviewed for applications to the industrial production of materials including microstructural, physical, and chemical analyses. NDE techniques addressed include: (1) double-pulse holographic interferometry for sealed-package leak testing; (2) process controls for noncontact metals fabrication; (3) ultrasonic detections of oxygen contamination in titanium welds; and (4) scanning acoustic microscopy for the evaluation of solder bonds. The use of embedded sensors and emerging NDE concepts provides the means for controlling the manufacturing and quality of quartz crystal resonators, nickel single-crystal turbine blades, and integrated circuits. Advances in sensor technology and artificial intelligence algorithms and the use of embedded sensors combine to make NDE technology highly effective in controlling industrial materials manufacturing and the quality of the products.

  16. Low-dielectric constant insulators for future integrated circuits and packages.

    PubMed

    Kohl, Paul A

    2011-01-01

    Future integrated circuits and packages will require extraordinary dielectric materials for interconnects to allow transistor advances to be translated into system-level advances. Exceedingly low-permittivity and low-loss materials are required at every level of the electronic system, from chip-level insulators to packages and printed wiring boards. In this review, the requirements and goals for future insulators are discussed followed by a summary of current state-of-the-art materials and technical approaches. Much work needs to be done for insulating materials and structures to meet future needs.

  17. Training on women and renewable sources of energy.

    PubMed

    Duenas Loza, M

    1997-01-01

    The training package developed by the International Research and Training Institute for the Advancement of Women in 1989 focuses on women and energy. The Institute conducts training activities using collected, analyzed and disseminated information and documentation, as well as identification of critical research and training activities and promotion of integrated issues on women and energy policies, programs and projects. Previous training experiences identified the inefficient quality of training offered to community members, technical staff and technical agencies, with more emphasis on the technical skills instead on the managerial, socio-organizational and environmental aspects. The creation of a multimedia modular training material provides an association between the issues of women, New and Renewable Sources of Energy (NRSE) and environmental aspects necessary for the strengthening of national institutions, promotion of socioeconomical and technically feasible renewable technologies, and awareness building, information and communication enhancement. The package covers 1) overview of the UN activities on NRSE; 2) Women's Position in the Energy Sector; 3) NRSE Project and Program design and implementation; 4) relevant NRSE characteristics and technology systems; 5) education and training activities in NRSE projects. This training package is designed to contribute a new approach in the organization and management of NRSE through integration of women's needs and increase awareness and capabilities of planners, officials and experts. In addition, several training seminars were conducted during 1989-91, which focused on the relationship between women and renewable energy sources through the application of participatory and self-reliant techniques.

  18. Technology Assessment Software Package: Final Report.

    ERIC Educational Resources Information Center

    Hutinger, Patricia L.

    This final report describes the Technology Assessment Software Package (TASP) Project, which produced developmentally appropriate technology assessment software for children from 18 months through 8 years of age who have moderate to severe disabilities that interfere with their interaction with people, objects, tasks, and events in their…

  19. Technological challenges of addressing new and more complex migrating products from novel food packaging materials.

    PubMed

    Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad

    2009-12-01

    The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may play a critical role in the risk assessment of new food packaging technologies in the future.

  20. Laser-boosted lightcraft technology demonstrator

    NASA Technical Reports Server (NTRS)

    Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.

    1989-01-01

    The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.

  1. Benefits of Integration of Aerojet Rocketdyne and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Vijay; Denton, David; SHarma, Pradeep

    The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less

  2. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  3. Near-surface, SH-wave surveys in unconsolidated, alluvial sediments

    USGS Publications Warehouse

    Young, Roger A.; Hoyos, Jorge

    2001-01-01

    The past decade of hydrocarbon exploration has been marked by sweeping technological innovations that have greatly advanced methods for exploration and development of oil and gas reserves. An example of major importance is the use of shear waves in marine oil and gas exploration to image reflectors beneath gas chimneys. This technology grew from infancy to maturity in the 1990s, is now incorporated into commercial processing packages, and is being used with success in a number of situations. Recent SEG Annual Meetings and the Special Section of this issue of TLE have had many documented case histories about the use of converted (P-SV) waves.The SH-wave (another type of shear wave), however, has been of less interest to the energy industry during the past decade. Near-surface applications of SH-waves, in contrast, have received increasing attention. The present article briefly reviews shear-wave technology advances made in the energy industry over the past decade that prepared the way for the present near-surface application of SH-waves. The article concludes with a near-surface case study using combined P- and SH-wave interpretation in an unconsolidated, alluvial setting.

  4. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  5. Recent developments in intelligent packaging for enhancing food quality and safety.

    PubMed

    Sohail, Muhammad; Sun, Da-Wen; Zhu, Zhiwei

    2018-03-07

    The role of packaging cannot be denied in the life cycle of any food product. Intelligent packaging is an emerging technology in the food packaging sector. Although it still needs its full emergence in the market, its importance has been proved for the maintenance of food quality and safety. The present review describes several aspects of intelligent packaging. It first highlights different tools used in intelligent packaging and elucidates the role of these packaging devices for maintaining the quality of different food items in terms of controlling microbial growth and gas concentration, and for providing convenience and easiness to its users in the form of time temperature indication. This review also discusses other intelligent packaging solutions in supply chain management of food products to control theft and counterfeiting conducts and broaden the image of the food companies in terms of branding and marketing. Overall, intelligent packaging can ensure food quality and safety in the food industry, however there are still some concerns over this emerging technology including high cost and legal aspects, and thus future work should be performed to overcome these problems for further promoting its applications in the food industry. Moreover, work should also be carried out to combine several single intelligent packaging devices into a single one, so that most of the benefits from this emerging technology can be achieved.

  6. Advances in food packaging films from milk proteins

    USDA-ARS?s Scientific Manuscript database

    Most commercial petroleum-based food packaging films are poor oxygen barriers, do not biodegrade, and some are suspected to even leach compounds into the food product. For instance, three-perfluorinated coatings were banned from convenience food packaging earlier this year. These shortcomings are a ...

  7. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  9. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.

  10. Fiber optic sensors IV; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 13, 14, 1990

    NASA Technical Reports Server (NTRS)

    Kersten, Ralf T. (Editor)

    1990-01-01

    Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.

  11. Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.

    2011-01-01

    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.

  12. Advanced Dependent Pressure Vessel (DPV) nickel-hydrogen spacecraft cell and battery design

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Wright, Doug; Repplinger, Ron

    1995-01-01

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH2) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. Individual pressure vessel (IPV) NiH2 batteries are currently flying on more than 70 Earth orbital satellites and have accumulated more than 140,000,000 cell-hours in actual spacecraft operation. The limitations of standard NiH2 IPV flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher specific energy and reduced cost, while retaining the established IPV NiH2 technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The internal electrode stack is a prismatic flat-plate arrangement. The flat individual cell pressure vessel provides a maximum direct thermal path for removing heat from the electrode stack. The cell geometry also minimizes multiple-cell battery packaging constraints by using an established end-plateltie-rod battery design. A major design advantage is that the battery support structure is efficiently required to restrain only the force applied to a portion of the end cell. As the cells are stacked in series to achieve the desired system voltage, this increment of the total battery weight becomes small. The geometry of the DPV cell promotes compact, minimum volume packaging and places all cell terminals along the length of the battery. The resulting ability to minimize intercell wiring offers additional design simplicity and significant weight savings. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks. Cell and battery level design issues will be addressed including mechanical, electrical and thermal design aspects. A design performance analysis will be presented at both the cell and battery level. The DPV is capable of delivering up to 76 Watt-hours per kilogram (Wh/kg) at the cell level and 70 Wh/kg at the full battery level. This represents a 40 percent increase in specific energy at the cell level and a 60 percent increase in specific energy at the battery level compared to current IPV NiH2 technology.

  13. ddPCRclust - An R package and Shiny app for automated analysis of multiplexed ddPCR data.

    PubMed

    Brink, Benedikt G; Meskas, Justin; Brinkman, Ryan R

    2018-03-09

    Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By partitioning the target DNA into ∼20000 droplets, each serving as its own PCR reaction compartment, a very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning from low-throughput to high- throughput. ddPCRclust is an R package for automated analysis of data from Bio-Rad's droplet digital PCR systems (QX100 and QX200). It can automatically analyse and visualise multiplexed ddPCR experiments with up to four targets per reaction. Results are on par with manual analysis, but only take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy access to the functionalities of ddPCRclust through a web-browser based GUI. R package: https://github.com/bgbrink/ddPCRclust; Interface: https://github.com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/. bbrink@cebitec.uni-bielefeld.de.

  14. Innovative on-chip packaging applied to uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, Geoffroy; Arnaud, Agnès; Impérinetti, Pierre; Vialle, Claire; Rabaud, Wilfried; Goudon, Valérie; Yon, Jean-Jacques

    2008-04-01

    The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI is developing an on-chip packaging technology dedicated to microbolometers. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This monolithic packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.

  15. Joint Communications Support Element: The Voice Heard Round the World

    DTIC Science & Technology

    2013-01-01

    Initial Entry Package ( IEP ), Early Entry Package (EEP), and Joint Mobil- ity Package provide secure and nonsecure voice, video, and data to small mobile...teams operating worldwide. The IEP and EEP can be rapidly scaled to meet force surge require- ments from small dismounted teams up to an advance

  16. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

  17. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Burgess; M. Noakes; P. Spampinato

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilitiesmore » planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.« less

  18. Trends in Food Packaging.

    ERIC Educational Resources Information Center

    Ott, Dana B.

    1988-01-01

    This article discusses developments in food packaging, processing, and preservation techniques in terms of packaging materials, technologies, consumer benefits, and current and potential food product applications. Covers implications due to consumer life-style changes, cost-effectiveness of packaging materials, and the ecological impact of…

  19. FFTF Passive Safety Test Data for Benchmarks for New LMR Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.

    Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less

  20. SMALL DRINKING WATER SYSTEMS HANDBOOK A GUIDE TO "PACKAGED" FILTRATION AND DISINFECTION TECHNOLOGIES WITH REMOTE MONITORING AND CONTROL TOOLS

    EPA Science Inventory

    The intent of this handbook is to highlight information appropriate to small systems with an emphasis on filtration and disinfection technologies and how they can be "packaged" with remote monitoring and control technologies to provide a healthy and affordable solution for small ...

  1. Design Brief--Packaging: More than Just a Box! Communications: Getting the Message across with Advertising. Technology Learning Activities.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Each technology learning activity in this article includes content description, objectives, required materials, challenge, and evaluation questions. Subjects are designing product packages and communication through advertising. (SK)

  2. Literacity: A multimedia adult literacy package combining NASA technology, recursive ID theory, and authentic instruction theory

    NASA Technical Reports Server (NTRS)

    Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob

    1994-01-01

    An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'

  3. Advanced packaging for Integrated Micro-Instruments

    NASA Technical Reports Server (NTRS)

    Lyke, James L.

    1995-01-01

    The relationship between packaging, microelectronics, and micro-electrical-mechanical systems (MEMS) is an important one, particularly when the edges of performance boundaries are pressed, as in the case of miniaturized systems. Packaging is a sort of physical backbone that enables the maximum performance of these systems to be realized, and the penalties imposed by conventional packing approaches is particularly limiting for MEMS devices. As such, advanced packaging approaches, such as multi-chip modules (MCM's) have been touted as a true means of electronic 'enablement' for a variety of application domains. Realizing an optimum system of packaging, however, in not as simple as replacing a set of single chip packages with a substrate of interconnections. Research at Phillips Laboratory has turned up a number of integrating options in the two- and three-dimensional rending of miniature systems with physical interconnection structures with intrinsically high performance. Not only do these structures motivate the redesign of integrated circuits (IC's) for lower power, but they possess interesting features that provide a framework for the direct integration of MEMS devices. Cost remains a barrier to the application of MEMS devices, even in space systems. Several innovations are suggested that will result in lower cost and more rapid cycle time. First, the novelty of a 'constant floor plan' MCM which encapsulates a variety of commonly used components into a stockable, easily customized assembly is discussed. Next, the use of low-cost substrates is examined. The anticipated advent of ultra-high density interconnect (UHDI) is suggested as the limit argument of advanced packaging. Finally, the concept of a heterogeneous 3-D MCM system is outlined that allows for the combination of different compatible packaging approaches into a uniformly dense structure that could also include MEMS-based sensors.

  4. Deep silicon etching: current capabilities and future directions

    NASA Astrophysics Data System (ADS)

    Westerman, Russ; Martinez, Linnell; Pays-Volard, David; Mackenzie, Ken; Lazerand, Thierry

    2014-03-01

    Deep Reactive Ion Etching (DRIE) has revolutionized a wide variety of MEMS applications since its inception nearly two decades ago. The DRIE technology has been largely responsible for allowing lab scale technology demonstrations to become manufacturable and profitable consumer products. As applications which utilize DRIE technologies continue to expand and evolve, they continue to spawn a range of new requirements and open up exciting opportunities for advancement of DRIE. This paper will examine a number of current and emerging DRIE applications including nanotechnology, and DRIE related packaging technologies such as Through Silicon Via (TSV) and plasma dicing. The paper will discuss a number of technical challenges and solutions associated with these applications including: feature profile control at high aspect ratios, causes and elimination of feature tilt/skew, process options for fragile device structures, and problems associated with through substrate etching. The paper will close with a short discussion around the challenges of implementing DRIE in production environments as well as looking at potentially disruptive enhancements / substitutions for DRIE.

  5. On sampling biases arising from insufficient bottle flushing

    NASA Astrophysics Data System (ADS)

    Codispoti, L. A.; Paver, C. R.

    2016-02-01

    Collection of representative water samples using carousel bottles is important for accurately determining biological and chemical gradients. The development of more technologically advanced instrumentation and sampling apparatus causes sampling packages to increase and "soak times" to decrease, increasing the probability that insufficient bottle flushing will produce biased results. Qualitative evidence from various expeditions suggest that insufficient flushing may be a problem. Here we report on multiple field experiments that were conducted to better quantify the errors that can arise from insufficient bottle flushing. Our experiments suggest that soak times of more than 2 minutes are sometimes required to collect a representative sample.

  6. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  7. Evolution of a standard microprocessor-based space computer

    NASA Technical Reports Server (NTRS)

    Fernandez, M.

    1980-01-01

    An existing in inventory computer hardware/software package (B-1 RFS/ECM) was repackaged and applied to multiple missile/space programs. Concurrent with the application efforts, low risk modifications were made to the computer from program to program to take advantage of newer, advanced technology and to meet increasingly more demanding requirements (computational and memory capabilities, longer life, and fault tolerant autonomy). It is concluded that microprocessors hold promise in a number of critical areas for future space computer applications. However, the benefits of the DoD VHSIC Program are required and the old proliferation problem must be revised.

  8. Modelling, simulation and computer-aided design (CAD) of gyrotrons for novel applications in the high-power terahertz science and technologies

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.

    2018-03-01

    Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.

  9. 3D interconnect metrology in CMS/ITRI

    NASA Astrophysics Data System (ADS)

    Ku, Y. S.; Shyu, D. M.; Hsu, W. T.; Chang, P. Y.; Chen, Y. C.; Pang, H. L.

    2011-05-01

    Semiconductor device packaging technology is rapidly advancing, in response to the demand for thinner and smaller electronic devices. Three-dimensional chip/wafer stacking that uses through-silicon vias (TSV) is a key technical focus area, and the continuous development of this novel technology has created a need for non-contact characterization. Many of these challenges are novel to the industry due to the relatively large variety of via sizes and density, and new processes such as wafer thinning and stacked wafer bonding. This paper summarizes the developing metrology that has been used during via-middle & via-last TSV process development at EOL/ITRI. While there is a variety of metrology and inspection applications for 3D interconnect processing, the main topics covered here are via CD/depth measurement, thinned wafer inspection and wafer warpage measurement.

  10. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.

    PubMed

    Jenness, Samuel M; Goodreau, Steven M; Morris, Martina

    2018-04-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.

  11. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks

    PubMed Central

    Jenness, Samuel M.; Goodreau, Steven M.; Morris, Martina

    2018-01-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel, designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel, designed to facilitate the exploration of novel research questions for advanced modelers. PMID:29731699

  12. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  13. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  14. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  15. Automated Work Package: Conceptual Design and Data Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Rashdan, Ahmad; Oxstrand, Johanna; Agarwal, Vivek

    The automated work package (AWP) is one of the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability Program efforts to enhance the safety and economics of the nuclear power industry. An AWP is an adaptive and interactive work package that intelligently drives the work process according to the plant condition, resources status, and users progress. The AWP aims to automate several manual tasks of the work process to enhance human performance and reduce human errors. Electronic work packages (eWPs), studied by the Electric Power Research Institute (EPRI), are work packages that rely to various extent on electronic data processingmore » and presentation. AWPs are the future of eWPs. They are envisioned to incorporate the advanced technologies of the future, and thus address the unresolved deficiencies associated with the eWPs in a nuclear power plant. In order to define the AWP, it is necessary to develop an ideal envisioned scenario of the future work process without any current technology restriction. The approach followed to develop this scenario is specific to every stage of the work process execution. The scenario development resulted in fifty advanced functionalities that can be part of the AWP. To rank the importance of these functionalities, a survey was conducted involving several U.S. nuclear utilities. The survey aimed at determining the current need of the nuclear industry with respect to the current work process, i.e. what the industry is satisfied with, and where the industry envisions potential for improvement. The survey evaluated the most promising functionalities resulting from the scenario development. The results demonstrated a significant desire to adopt the majority of these functionalities. The results of the survey are expected to drive the Idaho National Laboratory (INL) AWP research and development (R&D). In order to facilitate this mission, a prototype AWP is needed. Since the vast majority of earlier efforts focused on the frontend aspects of the AWP, the backend data architecture was researched and developed in this effort. The backend design involved data architecture aspects. It was realized through this effort that the key aspects of this design are hierarchy, data configuration and live information, data templates and instances, the flow of work package execution, the introduction of properties, and the means to interface the backend to the frontend. After the backend design was developed, a data structure was built to reflect the developed data architecture. The data structure was developed to accommodate the fifty functionalities identified by the envisioned scenario development. The data structure was evaluated by incorporating an example work order from the nuclear power industry. The implementation resulted in several optimization iterations of the data structure. In addition, the rearrangement of the work order information to fit the data structure highlighted several possibilities for improvement in the current work order design, and significantly reduced the size of the work order.« less

  16. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web, they can easily share this information with colleagues or friends via an email that includes URLs (links to web resources) and attachments (inline data). In the case of geospatial information, a user would like to share a map created from different OGC sources, which may include for example, WMS and WFS links, and GML and KML annotations. The emerging OGC file format is called the OGC Web Services Context Document (OWS Context), which allows clients to reproduce a map previously created by someone else. Context sharing is important in a variety of domains, from emergency response, where fire, police and emergency medical personnel need to work off a common map, to multi-national military operations, where coalition forces need to share common data sources, but have cartographic displays in different languages and symbology sets. OWS Contexts can be written in XML (building upon the Atom Syndication Format) or JSON. This presentation will provide an introduction of GeoPackage and OWS Context and how they can be used to advance sharing of Earth and Space Science information.

  17. Field deployable microcantilever based chemical sensing: discrimination between H2O, DMMP and Toluene

    NASA Astrophysics Data System (ADS)

    Thoreson, E. J.; Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A.

    2008-10-01

    Low cost passive detection of Chemical Warfare Agents (CWA) and being able to distinguish them from interferents is of great interest in the protection of human capital. If CWA sensors could be made cheaply enough, they could be deployed profusely throughout the environment intended for protection. NRL (Naval Research Labs) has demonstrated a small sensor with potentially very low unit cost and compatible with high volume production which has the ability to distinguish between H2O, DMMP, and Toluene. Additionally, they have measured concentrations as low as 17 ppb passively in a package the size of a quarter. Using the latest MEMS technology coupled with advanced chemical identification algorithms we propose a development path for a low cost, highly integrated chemical sensor capable of detecting CWA's, Explosives, VOC's (Volatile Organic Chemicals), and TIC's (Toxic Industrial Chemicals). ITT AES (Advanced Engineering & Sciences) has partnered with NRL (Naval Research Labs) to develop this ``microharp'' technology into a field deployable sensor that will be capable of remote communication with a central server.

  18. The NASA Electronic Parts and Packaging (NEPP) Program: Insertion of New Electronics Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2007-01-01

    This viewgraph presentation gives an overview of NASA Electronic Parts and Packaging (NEPP) Program's new electronics technology trends. The topics include: 1) The Changing World of Radiation Testing of Memories; 2) Even Application-Specific Tests are Costly!; 3) Hypothetical New Technology Part Qualification Cost; 4) Where we are; 5) Approaching FPGAs as a More Than a "Part" for Reliability; 6) FPGAs Beget Novel Radiation Test Setups; 7) Understanding the Complex Radiation Data; 8) Tracking Packaging Complexity and Reliability for FPGAs; 9) Devices Supporting the FPGA Need to be Considered; 10) Summary of the New Electronic Technologies and Insertion into Flight Programs Workshop; and 11) Highlights of Panel Notes and Comments

  19. Adoption of Aquaculture Technology by Fish Farmers in Imo State of Nigeria

    ERIC Educational Resources Information Center

    Ike, Nwachukwu; Roseline, Onuegbu

    2007-01-01

    This paper evaluated the level of adoption of aquaculture technology extended to farmers in Imo State, Nigeria. To improve aquaculture practice in Nigeria, a technology package was developed and disseminated to farmers in the state. This package included ten practices that the farmers were supposed to adopt. Eighty-two respondents were randomly…

  20. The Integration of an API619 Screw Compressor Package into the Industrial Internet of Things

    NASA Astrophysics Data System (ADS)

    Milligan, W. J.; Poli, G.; Harrison, D. K.

    2017-08-01

    The Industrial Internet of Things (IIoT) is the industrial subset of the Internet of Things (IoT). IIoT incorporates big data technology, harnessing the instrumentation data, machine to machine communication and automation technologies that have existed in industrial settings for years. As industry in general trends towards the IIoT and as the screw compressor packages developed by Howden Compressors are designed with a minimum design life of 25 years, it is imperative this technology is embedded immediately. This paper provides the reader with a description on the Industrial Internet of Things before moving onto describing the scope of the problem for an organisation like Howden Compressors who deploy multiple compressor technologies across multiple locations and focuses on the critical measurements particular to high specification screw compressor packages. A brief analysis of how this differs from high volume package manufacturers deploying similar systems is offered. Then follows a description on how the measured information gets from the tip of the instrument in the process pipework or drive train through the different layers, with a description of each layer, into the final presentation layer. The functions available within the presentation layer are taken in turn and the benefits analysed with specific focus on efficiency and availability. The paper concludes with how packagers adopting the IIoT can not only optimise their package but by utilising the machine learning technology and pattern detection applications can adopt completely new business models.

  1. Technological substitution: the potential of plastic as primary packaging material in the US brewing industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeleveld, J.J.

    1985-01-01

    This dissertation develops a general model of technological substitution that could be of help to planners and decision makers in industry who are faced with the problems created by continual technological change. The model as presented differs from existing models in the theoretical literature because of its emphasis on analyzing current and potential technologies in an attempt to understand the underlying factors contributing to technological substitution. The general model and the cost model that is part of it belong to that step in the interactive planning cycle called the formulation of the mess. The methodology underlying the cost model ismore » a combination of life-cycle analysis (i.e., from raw materials in nature, through all intermediate products, to waste returned to the environment) and resoumetrics, which is an engineering approach to measuring all physical inputs required to produce a certain level of output. The models are illustrated with a specific field of interest: substitution of primary packaging technologies in the US brewing industry. The physical costs of packaging beer in different containers are compared. Strategic considerations for a brewery deciding to adopt plastic packaging technology are discussed. Attention is given to another potential fruitful application of the model in the field of technology transfer to developing countries.« less

  2. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments.

    PubMed

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-08-18

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  3. Ka-Band MMIC Subarray Technology Program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottinger, W.

    1995-01-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  4. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication & navigation packages, remote sensing, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals.

  5. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  6. White LED sources for vehicle forward lighting

    NASA Astrophysics Data System (ADS)

    Van Derlofske, John F.; McColgan, Michele W.

    2002-11-01

    Considerations for the use of white light emitting diode (LED) sources to produce illumination for automotive forward lighting is presented. Due to their reliability, small size, lower consumption, and lower heat generation LEDs are a natural choice for automotive lighting systems. Currently, LEDs are being sucessfully employed in most vehicle lighting applications. In these applications the light levels, distributions, and colors needed are achievable by present LED technologies. However, for vehicle white light illumination applications LEDs are now only being considered for low light level applications, such as back-up lamps. This is due to the relatively low lumen output that has been available up to now in white LEDs. With the advent of new higher lumen packages, and with the promise of even higher light output in the near future, the use of white LEDs sources for all vehicle forward lighting applications is beginning to be considered. Through computer modeling and photometric evaluation this paper examines the possibilities of using currently available white LED technology for vehicle headlamps. It is apparent that optimal LED sources for vehicle forward lighting applications will be constructed with hereto undeveloped technology and packaging configurations. However, the intent here in exploring currently available products is to begin the discussion on the design possibilities and significant issues surrounding LEDs in order to aid in the design and development of future LED sources and systems. Considerations such as total light output, physical size, optical control, power consumption, color appearance, and the effects of white LED spectra on glare and peripheral vision are explored. Finally, conclusions of the feasibility of current LED technology being used in these applications and recommendations of technology advancements that may need to occur are made.

  7. Sensible heat receiver for solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  8. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  9. Recent Advances of VCSEL Photonics

    NASA Astrophysics Data System (ADS)

    Koyama, Fumio

    2006-12-01

    A vertical-cavity surface emitting laser (VCSEL) was invented 30 years ago. A lot of unique features can be expected, such as low-power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been growing up rapidly in recent years, and they are now key devices in local area networks using multimode optical fibers. Also, long wavelength VCSELs are currently attracting much interest for use in single-mode fiber metropolitan area and wide area network applications. In addition, a VCSEL-based disruptive technology enables various consumer applications such as a laser mouse and laser printers. In this paper, the recent advance of VCSEL photonics will be reviewed, which include the wavelength extension of single-mode VCSELs and their wavelength integration/control. Also, this paper explores the potential and challenges for new functions of VCSELs toward optical signal processing.

  10. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  11. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  12. GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package

    PubMed Central

    Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-01-01

    The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538

  13. GneimoSim: a modular internal coordinates molecular dynamics simulation package.

    PubMed

    Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-12-05

    The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.

  14. The MAMMOTH project

    NASA Technical Reports Server (NTRS)

    Gerchar, Tim

    1994-01-01

    On the surface MAMMOTH is a high performance 5.25-inch half-high 8mm helical scan tape drive that records a native 20 Gigabytes of data on Advanced Metal Evaporated media at a sustained throughput of 3 Megabyte per second over a high speed SCSI interface, that is scheduled for production in the second half of 1995. But it's much more than that. Inside its custom designed sheet metal enclosure lies one of the greatest technical achievements of its kind. Exabyte's strategic direction is to increase throughput and capacity while continuing to improve drive, data and media reliability to its products. MAMMOTH adheres to that direction and the description of its technical advances is described in this paper. MAMMOTH can be broken down into four main functional assemblies: high-performance integrated digital electronics, high-reliability tape transport mechanism, high-performance scanner, and advanced metal evaporated media. All this technology is packaged into a standard 5.25-inch half-high form factor that dissipates only 15 watts.

  15. High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham.

    PubMed

    Marcos, Begonya; Aymerich, Teresa; Monfort, Josep M; Garriga, Margarita

    2008-02-01

    The efficiency of combining high-pressure processing (HPP) and active packaging technologies to control Listeria monocytogenes growth during the shelf life of artificially inoculated cooked ham was assessed. Three lots of cooked ham were prepared: control, packaging with alginate films, and packaging with antimicrobial alginate films containing enterocins. After packaging, half of the samples were pressurized. Sliced cooked ham stored at 6 degrees C experienced a quick growth of L. monocytogenes. Both antimicrobial packaging and pressurization delayed the growth of the pathogen. However, at 6 degrees C the combination of antimicrobial packaging and HPP was necessary to achieve a reduction of inoculated levels without recovery during 60 days of storage. Further storage at 6 degrees C of pressurized antimicrobial packed cooked ham resulted in L. monocytogenes levels below the detection limit (day 90). On the other hand, storage at 1 degrees C controlled the growth of the pathogen until day 39 in non-pressurized ham, while antimicrobial packaging and storage at 1 degrees C exerted a bacteriostatic effect for 60 days. All HPP lots stored at 1 degrees C led to counts <100CFU/g at day 60. Similar results were observed when combining both technologies. After a cold chain break no growth of L. monocytogenes was observed in pressurized ham packed with antimicrobial films, showing the efficiency of combining both technologies.

  16. spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

    NASA Astrophysics Data System (ADS)

    Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo

    2016-09-01

    The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.

  17. Introducing Current Technologies

    NASA Technical Reports Server (NTRS)

    Mitchell, Tiffany

    1995-01-01

    The objective of the study was a continuation of the 'technology push' activities that the Technology Transfer Team conducts at this time. It was my responsibility to research current technologies at Langley Research Center and find a commercial market for these technologies in the private industry. After locating a market for the technologies, a mailing package was put together which informed the companies of the benefits of NASA Langley's technologies. The mailing package included articles written about the technology, patent material, abstracts from technical papers, and one-pagers which were used at the Technology Opportunities Showcase (TOPS) exhibitions. The companies were encouraged to consult key team members for further information on the technologies.

  18. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  19. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging

    USDA-ARS?s Scientific Manuscript database

    The red flour beetle, Tribolium castaneum (Herbst), and the confused flour beetle, Tribolium confusum Jacquelin du Val, are packaging invaders and will exploit any rip, tear, or defect in packaged food and infest the contents. Impregnating packaging materials with insecticides is a novel technologic...

  20. Japan's electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  1. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, Charles E., Jr.; Spence, Rodney L.

    1988-01-01

    The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector.

  2. PsychoPy--Psychophysics software in Python.

    PubMed

    Peirce, Jonathan W

    2007-05-15

    The vast majority of studies into visual processing are conducted using computer display technology. The current paper describes a new free suite of software tools designed to make this task easier, using the latest advances in hardware and software. PsychoPy is a platform-independent experimental control system written in the Python interpreted language using entirely free libraries. PsychoPy scripts are designed to be extremely easy to read and write, while retaining complete power for the user to customize the stimuli and environment. Tools are provided within the package to allow everything from stimulus presentation and response collection (from a wide range of devices) to simple data analysis such as psychometric function fitting. Most importantly, PsychoPy is highly extensible and the whole system can evolve via user contributions. If a user wants to add support for a particular stimulus, analysis or hardware device they can look at the code for existing examples, modify them and submit the modifications back into the package so that the whole community benefits.

  3. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application

    PubMed Central

    Kwon, Ki Yong; Lee, Hyung-Min; Ghovanloo, Maysam; Weber, Arthur; Li, Wen

    2015-01-01

    The recent development of optogenetics has created an increased demand for advancing engineering tools for optical modulation of neural circuitry. This paper details the design, fabrication, integration, and packaging procedures of a wirelessly-powered, light emitting diode (LED) coupled optrode neural interface for optogenetic studies. The LED-coupled optrode array employs microscale LED (μLED) chips and polymer-based microwaveguides to deliver light into multi-level cortical networks, coupled with microelectrodes to record spontaneous changes in neural activity. An integrated, implantable, switched-capacitor based stimulator (SCS) system provides high instantaneous power to the μLEDs through an inductive link to emit sufficient light and evoke neural activities. The presented system is mechanically flexible, biocompatible, miniaturized, and lightweight, suitable for chronic implantation in small freely behaving animals. The design of this system is scalable and its manufacturing is cost effective through batch fabrication using microelectromechanical systems (MEMS) technology. It can be adopted by other groups and customized for specific needs of individual experiments. PMID:25999823

  4. Merging photonics with nanoelectronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liehr, Michael

    2016-02-01

    The recently established American Institute for Manufacturing Photonics (AIM Photonics) is a manufacturing consortium headquartered in New York, with funding from the US Department of Defense (DoD), New York State, and industrial partners to advance the state of the art in the design, manufacture, testing, assembly, and packaging of integrated photonic devices. Dr. Michael Liehr, CEO of AIM Photonics, will describe the technical goals, operational framework, near-term milestones, and opportunities for the broader photonics community. The Institute intends to organize a currently fragmented domestic capability in integrated photonics. AIM Photonics will develop and demonstrate innovative manufacturing technologies for a number of key application sectors for integrated photonics devices. The Institute will furthermore specifically focus on establishing and building out an infrastructure in key areas required to accelerate the further adoption of integrated photonics. Specifically, we will enhance the available hardware development capability to include Si-based Multi-Project Wafer runs, InP-based Photonic Integrated Circuits, first and second level packaging, test and assembly.

  5. Fabrication and analysis of microfiber array platform for optogenetics with cellular resolution

    PubMed Central

    Chen, Jian-Hong; Chou, Ming-Yi; Pan, Chien-Yuan; Wang, Lon A.

    2016-01-01

    Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications. PMID:27895984

  6. Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

  7. PsychoPy—Psychophysics software in Python

    PubMed Central

    Peirce, Jonathan W.

    2007-01-01

    The vast majority of studies into visual processing are conducted using computer display technology. The current paper describes a new free suite of software tools designed to make this task easier, using the latest advances in hardware and software. PsychoPy is a platform-independent experimental control system written in the Python interpreted language using entirely free libraries. PsychoPy scripts are designed to be extremely easy to read and write, while retaining complete power for the user to customize the stimuli and environment. Tools are provided within the package to allow everything from stimulus presentation and response collection (from a wide range of devices) to simple data analysis such as psychometric function fitting. Most importantly, PsychoPy is highly extensible and the whole system can evolve via user contributions. If a user wants to add support for a particular stimulus, analysis or hardware device they can look at the code for existing examples, modify them and submit the modifications back into the package so that the whole community benefits. PMID:17254636

  8. CFD analyses for advanced pump design

    NASA Technical Reports Server (NTRS)

    Dejong, F. J.; Choi, S.-K.; Govindan, T. R.

    1994-01-01

    As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.

  9. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    NASA Astrophysics Data System (ADS)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  10. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James Lee, Jr.

    2013-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  11. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  12. Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)

    NASA Astrophysics Data System (ADS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2015-06-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  13. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    NASA Technical Reports Server (NTRS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  14. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L.

    2012-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  15. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Tsai, H.; Liu, Y. Y.

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclearmore » materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field demonstration of the RFID system was recently conducted to assess its performance. The preliminary results of the demonstration are reported in this paper.« less

  17. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; hide

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies

  18. Exploring new packaging and delivery options for the immunization supply chain.

    PubMed

    Zehrung, Darin; Jarrahian, Courtney; Giersing, Birgitte; Kristensen, Debra

    2017-04-19

    A variety of vaccine packaging and delivery technologies may benefit the immunization supply chain. These include alternative primary packaging, such as blow-fill-seal polymer containers, and novel delivery technologies, such intradermal delivery devices, microarray patches, and sublingual formulations of vaccines, and others in development. The potential timeline to availability of these technologies varies and depends on their stage of development and the type of data necessary to achieve licensure. Some new delivery devices are anticipated to be introduced in 2017, such as intradermal devices for delivery of inactivated poliovirus vaccine to stretch vaccine supplies due to a supply limitation. Other new technologies requiring vaccine reformulation, such as microarray patches and sublingual vaccines, may become available in the long term (2021 and beyond). Development of many new technologies requires partnership between vaccine and technology manufacturers and identification of the applicable regulatory pathway. Interaction with public-sector stakeholders early on (through engagement with forums such as the World Health Organization's Immunization Practices Advisory Committee Delivery Technologies Working Group) is important to ensure suitability for immunization program use. Key considerations for programmatic suitability of a new vaccine, packaging, and delivery device include cold chain volume, costs, and health impact. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  20. PICSiP: new system-in-package technology using a high bandwidth photonic interconnection layer for converged microsystems

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Töpper, Michael; Reichl, Herbert

    2009-05-01

    Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.

  1. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  2. A mission operations architecture for the 21st century

    NASA Technical Reports Server (NTRS)

    Tai, W.; Sweetnam, D.

    1996-01-01

    An operations architecture is proposed for low cost missions beyond the year 2000. The architecture consists of three elements: a service based architecture; a demand access automata; and distributed science hubs. The service based architecture is based on a set of standard multimission services that are defined, packaged and formalized by the deep space network and the advanced multi-mission operations system. The demand access automata is a suite of technologies which reduces the need to be in contact with the spacecraft, and thus reduces operating costs. The beacon signaling, the virtual emergency room, and the high efficiency tracking automata technologies are described. The distributed science hubs provide information system capabilities to the small science oriented flight teams: individual access to all traditional mission functions and services; multimedia intra-team communications, and automated direct transparent communications between the scientists and the instrument.

  3. Technology for Space Station Evolution. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the technology discipline presentations. The Executive Summary and Overview contains an executive summary for the workshop, the technology discipline summary packages, and the keynote address. The executive summary provides a synopsis of the events and results of the workshop and the technology discipline summary packages.

  4. Transmitter experiment package for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Farber, B.; Goldin, D. S.; Marcus, B.; Mock, P.

    1977-01-01

    The operating requirements, system design characteristics, high voltage packaging considerations, nonstandard components development, and test results for the transmitter experiment package (TEP) are described. The TEP is used for broadcasting power transmission from the Communications Technology Satellite. The TEP consists of a 12 GHz, 200-watt output stage tube (OST), a high voltage processing system that converts the unregulated spacecraft solar array power to the regulated voltages required for OST operation, and a variable conductance heat pipe system that is used to cool the OST body.

  5. Advanced Flip Chips in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    The use of underfill materials is necessary with flip-chip interconnect technology to redistribute stresses due to mismatching coefficients of thermal expansion (CTEs) between dissimilar materials in the overall assembly. Underfills are formulated using organic polymers and possibly inorganic filler materials. There are a few ways to apply the underfills with flip-chip technology. Traditional capillary-flow underfill materials now possess high flow speed and reduced time to cure, but they still require additional processing steps beyond the typical surface-mount technology (SMT) assembly process. Studies were conducted using underfills in a temperature range of -190 to 85 C, which resulted in an increase of reliability by one to two orders of magnitude. Thermal shock of the flip-chip test articles was designed to induce failures at the interconnect sites (-40 to 100 C). The study on the reliability of flip chips using underfills in the extreme temperature region is of significant value for space applications. This technology is considered as an enabling technology for future space missions. Flip-chip interconnect technology is an advanced electrical interconnection approach where the silicon die or chip is electrically connected, face down, to the substrate by reflowing solder bumps on area-array metallized terminals on the die to matching footprints of solder-wettable pads on the chosen substrate. This advanced flip-chip interconnect technology will significantly improve the performance of high-speed systems, productivity enhancement over manual wire bonding, self-alignment during die joining, low lead inductances, and reduced need for attachment of precious metals. The use of commercially developed no-flow fluxing underfills provides a means of reducing the processing steps employed in the traditional capillary flow methods to enhance SMT compatibility. Reliability of flip chips may be significantly increased by matching/tailoring the CTEs of the substrate material and the silicon die or chip, and also the underfill materials. Advanced packaging interconnects technology such as flip-chip interconnect test boards have been subjected to various extreme temperature ranges that cover military specifications and extreme Mars and asteroid environments. The eventual goal of each process step and the entire process is to produce components with 100 percent interconnect and satisfy the reliability requirements. Underfill materials, in general, may possibly meet demanding end use requirements such as low warpage, low stress, fine pitch, high reliability, and high adhesion.

  6. Integrated microsystems packaging approach with LCP

    NASA Astrophysics Data System (ADS)

    Jaynes, Paul; Shacklette, Lawrence W.

    2006-05-01

    Within the government communication market there is an increasing push to further miniaturize systems with the use of chip-scale packages, flip-chip bonding, and other advances over traditional packaging techniques. Harris' approach to miniaturization includes these traditional packaging advances, but goes beyond this level of miniaturization by combining the functional and structural elements of a system, thus creating a Multi-Functional Structural Circuit (MFSC). An emerging high-frequency, near hermetic, thermoplastic electronic substrate material, Liquid Crystal Polymer (LCP), is the material that will enable the combination of the electronic circuit and the physical structure of the system. The first embodiment of this vision for Harris is the development of a battlefield acoustic sensor module. This paper will introduce LCP and its advantages for MFSC, present an example of the work that Harris has performed, and speak to LCP MFSCs' potential benefits to miniature communications modules and sensor platforms.

  7. Visual and x-ray inspection characteristics of eutectic and lead free assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2003-01-01

    For high reliability applications, visual inspection has been the key technique for most conventional electronic package assemblies. Now, the use of x-ray technique has become an additional inspection requirement for quality control and detection of unique defects due to manufacturing of advanced electronic array packages such as ball grid array (BGAs) and chip scale packages (CSPs).

  8. Active and intelligent packaging systems for a modern society.

    PubMed

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Saga, A Small Advanced Geochemistry Assembly With Micro-rover For The Exploration Of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Brueckner, J.; Saga Team

    During future lander missions on Mars, Moon, or Mercury, it is highly advisable to extend the reach of instruments and to bring them to the actual sites of interest to measure in-situ selected surface samples (rocks, soils, or regolith). Particularly, geo- chemical measurements (determination of chemistry, mineralogy, and surface texture) are of utmost importance, because they provide key data on the nature of the sur- face samples. The obtained data will contribute to the classification of these samples. On Mars, weathering processes can also be studied provided some grinding tools are available. Also, the existence of ancient water activities, if any, can be searched for (e.g. sediments, hydroxides, hydrated minerals, or evaporates). The combined geo- chemical data sets of several samples and one/or several landing sites provide an im- portant base for the understanding of planetary surface processes and, hence, plan- etary evolution. A light-weight integrated instrument package and a micro-rover is proposed for future geochemical investigations. SAGA (Small Advanced Geochem- istry Assembly) will consist of several small geochemistry instruments and a tool that are packaged in a compact payload cab: the chemical Alpha Particle X-Ray Spec- trometer (APXS), the mineralogical Mössbauer Spectrometer (MIMOS), the textural close-up camera (MIROCAM), and a blower/grinder tool. These instruments have or will get flight heritage on upcoming ESA and NASA missions. The modularity of the concept permits to attach SAGA to any deployment device, specially, to the pro- posed small, lightweight micro-rover (dubbed SAGA?XT). Micro-rover technology has been developed for many years in Europe. One of the most advanced concepts is the tracked micro-rover SNanokhodT, developed recently in the frame of ESASs & cedil; Technology Research Programme (TRP). It has a total mass of about 3.5 kg (includ- ing payload and parts on the lander). This micro-rover is designed to drive to different target sites in the vicinity of a (small) lander. In the framework of the upcoming ESA Aurora programme, the further development of surface-mobile robots will be an im- portant technology area to improve control, navigation, and guidance of a micro-rover and the accurate docking of its instruments on selected targets.

  10. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  11. Simulating x-ray telescopes with McXtrace: a case study of ATHENA's optics

    NASA Astrophysics Data System (ADS)

    Ferreira, Desiree D. M.; Knudsen, Erik B.; Westergaard, Niels J.; Christensen, Finn E.; Massahi, Sonny; Shortt, Brian; Spiga, Daniele; Solstad, Mathias; Lefmann, Kim

    2016-07-01

    We use the X-ray ray-tracing package McXtrace to simulate the performance of X-ray telescopes based on Silicon Pore Optics (SPO) technologies. We use as reference the design of the optics of the planned X-ray mission Advanced Telescope for High ENergy Astrophysics (ATHENA) which is designed as a single X-ray telescope populated with stacked SPO substrates forming mirror modules to focus X-ray photons. We show that is possible to simulate in detail the SPO pores and qualify the use of McXtrace for in-depth analysis of in-orbit performance and laboratory X-ray test results.

  12. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 1

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    A small, portable, relatively inexpensive computer system was developed for on-line use in clinical or laboratory situations. The system features an integrated hardware-software package that permits use of all peripherals, such as analog-to-digital converter, oscilloscope, plotter, digital bus, with an interpreter constructed around the BASIC programming language. The system is conceptually similar to the LINC system developed in 1962, but is more compact and powerful due to intervening advances in integrated circuit technology. A description of the hardware of the system was given. A reference manual, user manual, and programming guides were also presented. Finally, a stereo display system for vectorcardiograms was described.

  13. HEMT Amplifiers and Equipment for their On-Wafer Testing

    NASA Technical Reports Server (NTRS)

    Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard

    2008-01-01

    Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    The status of the development of a Design-for-Stress simulation flow that captures the stress effects in packaged 3D-stacked Si products like integrated circuits (ICs) using advanced via-middle Through Si Via technology is outlined. The next set of challenges required to proliferate the methodology and to deploy it for making and dispositioning real Si product decisions are described here. These include the adoption and support of a Process Design Kit (PDK) that includes the relevant material properties, the development of stress simulation methodologies that operate at higher levels of abstraction in a design flow, and the development and adoption of suitablemore » models required to make real product reliability decisions.« less

  15. Apollo food technology

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Heidelbaugh, N. D.; Rambaut, P. C.; Rapp, R. M.; Wheeler, H. O.; Huber, C. S.; Bourland, C. T.

    1975-01-01

    Large improvements and advances in space food systems achieved during the Apollo food program are discussed. Modifications of the Apollo food system were directed primarily toward improving delivery of adequate nutrition to the astronaut. Individual food items and flight menus were modified as nutritional countermeasures to the effects of weightlessness. Unique food items were developed, including some that provided nutritional completeness, high acceptability, and ready-to-eat, shelf-stable convenience. Specialized food packages were also developed. The Apollo program experience clearly showed that future space food systems will require well-directed efforts to achieve the optimum potential of food systems in support of the physiological and psychological well-being of astronauts and crews.

  16. Advances in vaccine stability monitoring technology.

    PubMed

    Zweig, Stephen E

    2006-08-14

    Electronic time-temperature indicator (eTTI) monitors can be programmed to exactly follow the stability characteristics of vaccines with a high degree of realism. The monitors have a visual output, enabling vaccine status to be assessed at a glance, and can also output more detailed statistical data. When packaged with vaccine vials in groups of about 10 vials per box, the eTTI can remain with a vaccine throughout most of the vaccine's lifetime. The monitors can detect essentially all cold-chain breaks, and can detect issues, such as inadvertent freezing, that are presently not detected by other vaccine stability monitors such as Vaccine Vial Monitors (VVM).

  17. Novel approaches to increasing the brightness of broad area lasers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Winterfeldt, M.; Decker, J.; Ekterai, M.; Fricke, J.; Knigge, S.; Maaßdorf, A.; Erbert, G.

    2016-03-01

    Progress in studies to increase the lateral brightness Blat of broad area lasers is reviewed. Blat=Pout/BPPlat is maximized by developing designs and technology for lowest lateral beam parameter product, BPPlat, at highest optical output power Pout. This can be achieved by limiting the number of guided lateral modes and by improving the beam quality of low-order lateral modes. Important effects to address include process and packaging induced wave-guiding, lateral carrier accumulation and the thermal lens profile. A careful selection of vertical design is also shown to be important, as are advanced techniques to filter out higher order modes.

  18. Web-Altairis: An Internet-Enabled Ground System

    NASA Technical Reports Server (NTRS)

    Miller, Phil; Coleman, Jason; Gemoets, Darren; Hughes, Kevin

    2000-01-01

    This paper describes Web-Altairis, an Internet-enabled ground system software package funded by the Advanced Automation and Architectures Branch (Code 588) of NASA's Goddard Space Flight Center. Web-Altairis supports the trend towards "lights out" ground systems, where the control center is unattended and problems are resolved by remote operators. This client/server software runs on most popular platforms and provides for remote data visualization using the rich functionality of the VisAGE toolkit. Web-Altairis also supports satellite commanding over the Internet. This paper describes the structure of Web-Altairis and VisAGE, the underlying technologies, the provisions for security, and our experiences in developing and testing the software.

  19. A 100-Year Review: A century of dairy processing advancements-Pasteurization, cleaning and sanitation, and sanitary equipment design.

    PubMed

    Rankin, S A; Bradley, R L; Miller, G; Mildenhall, K B

    2017-12-01

    Over the past century, advancements within the mainstream dairy foods processing industry have acted in complement with other dairy-affiliated industries to produce a human food that has few rivals with regard to safety, nutrition, and sustainability. These advancements, such as milk pasteurization, may appear commonplace in the context of a modern dairy processing plant, but some consideration of how these advancements came into being serve as a basis for considering what advancements will come to bear on the next century of processing advancements. In the year 1917, depending on where one resided, most milk was presented to the consumer through privately owned dairy animals, small local or regional dairy farms, or small urban commercial dairies with minimal, or at best nascent, processing capabilities. In 1917, much of the retail milk in the United States was packaged and sold in returnable quart-sized clear glass bottles fitted with caps of various design and composition. Some reports suggest that the cost of that quart of milk was approximately 9 cents-an estimated $2.00 in 2017 US dollars. Comparing that 1917 quart of milk to a quart of milk in 2017 suggests several differences in microbiological, compositional, and nutritional value as well as flavor characteristics. Although a more comprehensive timeline of significant processing advancements is noted in the AppendixTable A1 to this paper, we have selected 3 advancements to highlight; namely, the development of milk pasteurization, cleaning and sanitizing technologies, and sanitary specifications for processing equipment. Finally, we provide some insights into the future of milk processing and suggest areas where technological advancements may need continued or strengthened attention and development as a means of securing milk as a food of high safety and value for the next century to come. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Language games: Advanced R & R packages: Book Review

    DOE PAGES

    Hraber, Peter Thomas

    2016-03-23

    Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.

  1. Language games: Advanced R & R packages: Book Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter Thomas

    Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.

  2. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  3. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.

  4. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

    PubMed Central

    Morgan, Martin; Anders, Simon; Lawrence, Michael; Aboyoun, Patrick; Pagès, Hervé; Gentleman, Robert

    2009-01-01

    Summary: ShortRead is a package for input, quality assessment, manipulation and output of high-throughput sequencing data. ShortRead is provided in the R and Bioconductor environments, allowing ready access to additional facilities for advanced statistical analysis, data transformation, visualization and integration with diverse genomic resources. Availability and Implementation: This package is implemented in R and available at the Bioconductor web site; the package contains a ‘vignette’ outlining typical work flows. Contact: mtmorgan@fhcrc.org PMID:19654119

  5. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  6. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it; Gorla, Leopoldo; Nessi, Simone

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determinemore » a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.« less

  7. Financing the package of services during the first decade of the national health insurance law in Israel: trends and issues.

    PubMed

    Shmueli, Amir; Achdut, Leah; Sabag-Endeweld, Miri

    2008-09-01

    In 1995, a National Health Insurance Law (NHIL) was enacted in Israel. It specified a mandatory package of services to be provided by the four competing private non-profit sickness funds, and secured the financing of that provision. This review discusses the main issues associated with financing of--and the sickness funds' expenditure on--the package of services and analyzes the trends during the first decade of the implementation of the NHIL. The main findings indicate that between 1995 and 2005 the "real value" of the budget of the package of services has eroded by more than a third, most of it being due to the under-updating with regard to technological advances. The steep rise in the co-payment paid by users of health services and in voluntary supplementary health insurance ownership which is offered by the sickness funds partially financed that erosion. The growth of private spending on health, including on voluntary supplementary insurance, took place in all population groups and in the lowest income-quintile in particular. Indices of the progressivity of the financing of the package of services indicate that the burden of financing has been slightly regressive. In spite of the increase in the share of the regressive private expenditure between 1997 and 2003, overall, the finance became less regressive due to the health tax becoming less regressive. In conclusion, the introduction of the Israeli NHIL was a promising social achievement, but, during its first decade and facing tight national budgets and receiving lower national priority, subsequent regulation eroded the real value of its benefits, and its principles of solidarity and equity in finance. After 10 years of experience, the system might need refreshment and policy amendments that will correspond to its original aspirations.

  8. Noise Reduction Potential of Large, Over-the-Wing Mounted, Advanced Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2000-01-01

    As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Indeed, the noise goal for NASA's Aeronautics Enterprise calls for technologies that will help to provide a 20 EPNdB reduction relative to today's levels by the year 2022. Further, the large fan diameters of modem, increasingly higher bypass ratio engines pose a significant packaging and aircraft installation challenge. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large, ultra high bypass ratio cycles to continue, this over-the-wing design is believed to offer noise shielding benefits to observers on the ground. This paper describes the analytical certification noise predictions of a notional, long haul, commercial quadjet transport with advanced, high bypass engines mounted above the wing.

  9. Development of a Coaxial Pulse Tube Cryocooler for 77 K Cooling

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Moore, M.; Evtimov, B.; Jensen, J.; Nast, T. C.

    2006-04-01

    Lockheed Martin's Advanced Technology Center has developed a compact coaxial pulse tube cryocooler for avionics applications. The cooler was designed to deliver in excess of 1W cooling at 77K with a heat rejection temperature of 70°C, and to cool down from ambient temperature in a very short period of time. The cryocooler utilizes our MINI compressor, developed for NASA-GSFC, coupled with a newly-designed coaxial pulse tube designed to approximate the Standard Advanced Dewar Assembly (SADA II) packaging envelope. The cryocooler mass is 1.25 kg. Test data show excellent performance, with cooldown times of less than 6 minutes (coldhead only, with no additional thermal mass attached to the coldhead). Performance data will be shown for a variety of operating conditions. A discussion of low cost pulse tube cryocoolers will also be presented. This cryocooler was developed and tested with Lockheed Martin IRAD funding.

  10. Continuing professional development of dentists through distant learning: an Indira Gandhi National Open University-Dental Council of India experiment a report.

    PubMed

    Kuba, Ruchika; Kohli, Anil

    2014-01-01

    To keep themselves updated with all the advancements in the field of dentistry, dentists should involve themselves in some kind of professional development. Distance learning is the most appropriate way to serve the growing demand due to technological advancements. Indira Gandhi National Open University in collaboration with Dental Council of India (DCI) developed and launched two continuing professional development programs in Endodontics (postgraduate certificate in endodontics) and postgraduate certificate in oral implantology and has trained over 400 and 280 BDS dentists respectively till date. The program package consists of self-instructional material, assignments, videos and practical training. The training is conducted in premiere dental colleges and institutions recognized by DCI. The certificate is awarded after a term end examination, both in theory and practical. The pass percentages of the theory courses ranged from around 63% to 98%, and 90% of the candidates cleared the practical exam.

  11. Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    NASA Astrophysics Data System (ADS)

    Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu

    2016-12-01

    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.

  12. Computer Managed Instruction: An Application in Teaching Introductory Statistics.

    ERIC Educational Resources Information Center

    Hudson, Walter W.

    1985-01-01

    This paper describes a computer managed instruction package for teaching introductory or advanced statistics. The instructional package is described and anecdotal information concerning its performance and student responses to its use over two semesters are given. (Author/BL)

  13. Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy

    2004-01-01

    This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.

  14. Millimeter-wave MMIC technology for smart weapons

    NASA Astrophysics Data System (ADS)

    Seashore, Charles R.

    1994-12-01

    Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.

  15. Combining an Analytic Hierarchy Process and TOPSIS for Selecting Postharvest Technology Method for Selayar Citrus in Indonesia

    NASA Astrophysics Data System (ADS)

    Dirpan, Andi

    2018-05-01

    This research was intended to select the best handling methods or postharvest technologies that can be used to maintain the quality of citrus fruit in Selayar, South Sulawesi, Indonesia among (1) modified atmosphere packaging (MAP (2) Controlled atmosphere storage (CAS) (3) coatings (4) hot water treatment (5) Hot Calcium Dip (HCD) by using combination between an analytic hierarchy process (AHP) and TOPSIS. Improving quality, applicability, increasing shelf life and reducing cost are used as the criteria to determine the best postharvest technologies. The results show that the most important criteria for selecting postharvest technology is improving quality followed by increasing shelf life, reducing cost and applicability. Furthermore, by using TOPSIS, it is clear that the postharvest technology that had the lowest rangking is modified atmosphere packaging (MAP), followed by controlled atmosphere storage (CAS), coatings, hot calcium dip (HCD) and hot water treatment (HWT). Therefore, it can be concluded that the best postharvest technology method for Selayar citrus is modified atmosphere packaging (MAP).

  16. Cradle-to-Grave Logistic Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L.; Ewert, Michael K.; Shull, Sarah

    2013-01-01

    Human exploration missions under study are very limited by the launch mass capacity of exiting and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA is Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing four logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion supply gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description, benefits, and challenges of the four technologies under development and a status of progress at the mid ]point of the three year AES project.

  17. Diversity and Control of Spoilage Fungi in Dairy Products: An Update

    PubMed Central

    Valence, Florence; Mounier, Jérôme

    2017-01-01

    Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods. PMID:28788096

  18. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    NASA Astrophysics Data System (ADS)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  19. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  20. Use of Dual Electromagnetic Radiation Technology to Reduce Salmonella and Listeria monocytogenes Risk on Cooked and Packaged Meat Products

    USDA-ARS?s Scientific Manuscript database

    Pathogenic bacteria including Salmonella and Listeria can potentially contaminate ready-to-eat meats. These bacteria compromise the safety of our food supply. The objective of this research was to develop and test new low temperature pasteurization technology for packaged or thermally sensitive food...

  1. Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2001-01-01

    High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high (greater than 0.4 GW) at 500 C in air. The attached SiC diode demonstrated low (less than 3.8 W/mm2) and relatively consistent dynamic resistance from room temperature to 500 C. These results indicate that the prototype package and the compatible die-attach scheme meet the initial design standards for high-temperature, low-power, and long-term operation. This technology will be further developed and evaluated, especially with more mechanical tests of each packaging element for operation at higher temperatures and longer lifetimes.

  2. Sleep technologists educational needs assessment: a survey of polysomnography, electroneurodiagnostic technology, and respiratory therapy education program directors.

    PubMed

    Wells, Mary Ellen; Vaughn, Bradley V

    2013-10-15

    In this study, we assessed the community and educational needs for sleep technologists by surveying program directors of nationally accredited polysomnography, electroneurodiagnostic technology, and respiratory care educational programs. Currently, little is known about our educational capacity and the need for advanced degrees for sleep medicine technical support. A questionnaire was developed about current and future community and educational needs for sleep technologists. The questionnaire was sent to directors of CAAHEP-accredited polysomnography and electroneurodiagnostic technology programs (associate degree and certificate programs), and directors of CoARC-accredited respiratory therapy associate degree and bachelor degree programs (n = 358). Qualitative and quantitative data were collected via an internet survey tool. Data analysis was conducted with the IBM SPSS statistical package and included calculating means and standard deviations of the frequency of responses. Qualitative data was analyzed and classified based on emerging themes. One hundred seven of 408 program directors completed the survey. Seventy-four percent agreed that demand for qualified sleep technologists will increase, yet 50% of those surveyed believe there are not enough educational programs to meet the demand. Seventy-eight percent of those surveyed agreed that the educational requirements for sleep technologists will soon increase; 79% of those surveyed believe sleep centers have a need for technologists with advanced training or specialization. Our study shows educators of associate and certificate degree programs believe there is a need for a bachelor's degree in sleep science and technology.

  3. Deep Space Network, Cryogenic HEMT LNAs

    NASA Technical Reports Server (NTRS)

    Bautista, J. Javier

    2006-01-01

    Exploration of the Solar System with automated spacecraft that are more than ten astronomical units (1 AU = 149,597,870.691 km) from earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operatio nal noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs) which addres s the need to maintain Top as low as technology permits. Historicall y, the extra-ordinarily sensitive receive systems operated by the DSN have required ctyogenically cooled, ruby masers, operating at a physi cal temperature near the boiling point of helium, as the LNA. Althoug h masers continue to be used today, they are hand crafted at JPL and expensive to manufacture and maintain. Recent advances in the developm ent of indium phosphide (InP) based high electron mobility transistor s (HEMTs) combined with cryogenic cooling near the boiling point of h ydrogen have made this alternate technology comparable with and a fraction of the cost of maser technology. InP HEMT LNA modules are demons trating noise temperatures less than ten times the quantum noise limi t (10hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of 3.5 K and 8.5 K at 8.5 K at 32 GHz, respectively. Front-end receiver packages employing these modules have demonstrated operating system noise temperatures of 17 K at 8.4 GHz (on a 70m antenna at zenith) and 39 K at 3 2 GHz (on a 34m antenna at zenith). The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requir es accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to 12 K. The characterizati on and modeling begins with the HEMT chip, proceeds to the multi-stag e HEMT LNA module, and culminates with the complete front-end cryogenic receiver package for the antenna. This presentation will provide a n overview of this development process. Examples will be shown for de vices, LNA modules, front-end receiver packages, antennae employing these packages and the improvements to the down-link capacity.

  4. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  5. Polymer dispensing and embossing technology for the lens type LED packaging

    NASA Astrophysics Data System (ADS)

    Chien, Chien-Lin Chang; Huang, Yu-Che; Hu, Syue-Fong; Chang, Chung-Min; Yip, Ming-Chuen; Fang, Weileun

    2013-06-01

    This study presents a ring-type micro-structure design on the substrate and its corresponding micro fabrication processes for a lens-type light-emitting diode (LED) package. The dome-type or crater-type silicone lenses are achieved by a dispensing and embossing process rather than a molding process. Silicone with a high viscosity and thixotropy index is used as the encapsulant material. The ring-type micro structure is adopted to confine the dispensed silicone encapsulant so as to form the packaged lens. With the architecture and process described, this LED package technology herein has three merits: (1) the flexibility of lens-type LED package designs is enhanced; (2) a dome-type package design is used to enhance the intensity; (3) a crater-type package design is used to enhance the view angle. Measurement results show the ratio between the lens height and lens radius can vary from 0.4 to 1 by changing the volume of dispensed silicone. The view angles of dome-type and crater-type packages can reach 155° ± 5° and 175° ± 5°, respectively. As compared with the commercial plastic leaded chip carrier-type package, the luminous flux of a monochromatic blue light LED is improved by 15% by the dome-type package (improved by 7% by the crater-type package) and the luminous flux of a white light LED is improved by 25% by the dome-type package (improved by 13% by the crater-type package). The luminous flux of monochromatic blue light LED and white light LED are respectively improved by 8% and 12% by the dome-type package as compare with the crater-type package.

  6. Packaging for Food Service

    NASA Technical Reports Server (NTRS)

    Stilwell, E. J.

    1985-01-01

    Most of the key areas of concern in packaging the three principle food forms for the space station were covered. It can be generally concluded that there are no significant voids in packaging materials availability or in current packaging technology. However, it must also be concluded that the process by which packaging decisions are made for the space station feeding program will be very synergistic. Packaging selection will depend heavily on the preparation mechanics, the preferred presentation and the achievable disposal systems. It will be important that packaging be considered as an integral part of each decision as these systems are developed.

  7. Japan's technology and manufacturing infrastructure

    NASA Astrophysics Data System (ADS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  8. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  9. NASA and Education

    NASA Technical Reports Server (NTRS)

    1990-01-01

    President Bush endorsed a package of six goals developed by the governors of the 50 states, among them making the United States first in the world in mathematics and science achievement. The crux of the technical manpower problem is that too few people in the workforce today have the skills required to function in a technologically advanced society. All over the U.S., government, industry and academic organizations, individually and in concert, at the national, state and local levels, are accelerating efforts to find remedies for the educational and training maladies that threaten America's scientific and technological future. NASA is among the leading education promoting organizations and the agency is expanding its effort. In May 1990, NASA and the Department of Energy concluded an agreement for a cooperative program directed at encouraging more U.S. students to pursue careers in science, engineering and mathematics, and at improving the instructional process in those areas at the precollege and university levels.

  10. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health.

    PubMed

    Smolkova, Bozena; El Yamani, Naouale; Collins, Andrew R; Gutleb, Arno C; Dusinska, Maria

    2015-03-01

    Disturbed epigenetic mechanisms, which developmentally regulate gene expression via modifications to DNA, histone proteins, and chromatin, have been hypothesized to play a key role in many human diseases. Recently it was shown that engineered nanoparticles (NPs), that already have a wide range of applications in various fields including food production, could dramatically affect epigenetic processes, while their ability to induce diseases remains poorly understood. Besides the obvious benefits of the new technologies, it is critical to assess their health effects before proceeding with industrial production. In this article, after surveying the applications of NPs in food technology, we review recent advances in the understanding of epigenetic pathological effects of NPs, and discuss their possible health impact with the aim of avoiding potential health risks posed by the use of nanomaterials in foods and food-packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Solving PDEs with Intrepid

    DOE PAGES

    Bochev, P.; Edwards, H. C.; Kirby, R. C.; ...

    2012-01-01

    Intrepid is a Trilinos package for advanced discretizations of Partial Differential Equations (PDEs). The package provides a comprehensive set of tools for local, cell-based construction of a wide range of numerical methods for PDEs. This paper describes the mathematical ideas and software design principles incorporated in the package. We also provide representative examples showcasing the use of Intrepid both in the context of numerical PDEs and the more general context of data analysis.

  12. Drug packaging in 2015: risky industry choices and lax regulation.

    PubMed

    2016-06-01

    Prescrire examined the packaging quality of 240 drugs in 2015. No new advances were identified, but drug packaging continues to expose patients to a variety of dangers. Some past advances persist: for example, INNs are often more legible, and recent patient leaflets tend to be clearer and more informative. But these measures are not applied to all drugs, and are rarely applied retroactively to older drugs. The overall picture in 2015 is that many drugs are difficult to identify, risky or downright dangerous to prepare, or supplied with patient leaflets that fail to correctly inform patients about their medication. And measures to prevent drug poisoning in children need to be completely rethought. It is high time for regulators and policy makers to take the issue of drug packaging seriously, so blatant are the signs of their failure to do so: the increasing use of bulk bottles for new drugs; failure to implement guidelines on safe drug packaging (unit-dose presentations, appropriate dosing devices, etc.); and expanding umbrella brands which, given the dangers they pose to patients, should be banned instead. All things considered, healthcare professionals and patients must remain vigilant and report any dangers they identify. A major European initiative on drug packaging is becoming increasingly necessary.

  13. Nimbus D RMP program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an advanced long life rate measuring package, designed for a five year useful life as a meteorological satellite control sensor is discussed. The primary function of the rate mesuring package is to provide rate information for the reaction wheel and gas jet torquing devices that are used to damp spacecraft oscillations and to constrain the spacecraft to the required attitude with respect to the orbital plane. The specifications for the rate measuring package sensor are described. Application of the rate measuring package to the Nimbus D satellite is proposed.

  14. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S; Kim, S; Biswas, D

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use ofmore » the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.« less

  15. Comparison of TAPS Packages for Engineering

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit

    2008-01-01

    Purpose: This paper aims to present the development of technology-assisted problem solving (TAPS) packages at University Tenaga Nasional (UNITEN). The project is the further work of the development of interactive multimedia based packages targeted for students having problems in understanding the subject of engineering mechanics dynamics.…

  16. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measurement. Commercial package air-conditioning and heating equipment means air-cooled, water-cooled... Conditioner means a basic model of commercial package air-conditioning and heating equipment (packaged or split) that is: Used in computer rooms, data processing rooms, or other information technology cooling...

  17. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    NASA Technical Reports Server (NTRS)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  18. Technology Instructional Package Mediated Instruction and Senior Secondary School Students' Academic Performance in Biology Concepts

    ERIC Educational Resources Information Center

    Yaki, Akawo Angwal; Babagana, Mohammed

    2016-01-01

    The paper examined the effects of a Technological Instructional Package (TIP) on secondary school students' performance in biology. The study adopted a pre-test, post-test experimental control group design. The sample size of the study was 80 students from Minna metropolis, Niger state, Nigeria; the samples were randomly assigned into treatment…

  19. Using a Computerised Graphics Package to Achieve a Technology-Oriented Classroom

    ERIC Educational Resources Information Center

    Aladejana, Francisca; Idowu, Lanre

    2009-01-01

    The present situation in Nigeria involves students of fine arts, a practical-oriented subject, being exposed to poor methods of teaching with consequent poor performances. This study examined the extent to which the use of a computerised graphics package could make the classroom technology-oriented and affect the performance of learners. This is…

  20. Technology transfer package on seismic base isolation - Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Shortmore » Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.« less

  1. Innovative on-chip packaging applied to uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, Geoffroy; Arnaud, Agnès; Imperinetti, Pierre; Mottin, Eric; Simoens, François; Vialle, Claire; Rabaud, Wilfried; Grand, Gilles; Baclet, Nathalie

    2008-03-01

    The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI develops an onchip packaging technology dedicated to microbolometers. The efficiency of a micropackaging technology for microbolometers relies on two major technical specifications. First, it must include an optical window with a high transmittance for the IR band, so as to maximize the detector absorption. Secondly, in order to preserve the thermal insulation of the detector, the micropackaging must be hermetically closed to maintain a vacuum level lower than 10 -3mbar. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This zero level packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.

  2. Canputer Science and Technology: Introduction to Software Packages

    DTIC Science & Technology

    1984-04-01

    Table 5 Sources of Software Packages.20 Table 6 Reference Services Matrix . 33 Table 7 Reference Matrix.40 LIST OF FIGURES Figure 1 Document...consideration should be given to the acquisition of appropriate software packages to replace or upgrade existing services and to provide services not...Consequently, there are many companies that produce only software packages, and are committed to providing training, service , and support. These vendors

  3. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  4. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  5. Short communication: Effect of active food packaging materials on fluid milk quality and shelf life.

    PubMed

    Wong, Dana E; Goddard, Julie M

    2014-01-01

    Active packaging, in which active agents are embedded into or on the surface of food packaging materials, can enhance the nutritive value, economics, and stability of food, as well as enable in-package processing. In one embodiment of active food packaging, lactase was covalently immobilized onto packaging films for in-package lactose hydrolysis. In prior work, lactase was covalently bound to low-density polyethylene using polyethyleneimine and glutaraldehyde cross-linkers to form the packaging film. Because of the potential contaminants of proteases, lipases, and spoilage organisms in typical enzyme preparations, the goal of the current work was to determine the effect of immobilized-lactase active packaging technology on unanticipated side effects, such as shortened shelf-life and reduced product quality. Results suggested no evidence of lipase or protease activity on the active packaging films, indicating that such active packaging films could enable in-package lactose hydrolysis without adversely affecting product quality in terms of dairy protein or lipid stability. Storage stability studies indicated that lactase did not migrate from the film over a 49-d period, and that dry storage resulted in 13.41% retained activity, whereas wet storage conditions enabled retention of 62.52% activity. Results of a standard plate count indicated that the film modification reagents introduced minor microbial contamination; however, the microbial population remained under the 20,000 cfu/mL limit through the manufacturer's suggested 14-d storage period for all film samples. This suggests that commercially produced immobilized lactase active packaging should use purified cross-linkers and enzymes. Characterization of unanticipated effects of active packaging on food quality reported here is important in demonstrating the commercial potential of such technologies. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  7. RTU Comparison Calculator Enhancement Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy andmore » cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.« less

  8. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  9. Multipurpose electric furnace system. [for use in Apollo-Soyuz Test Program

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Mchugh, J. P.; Foust, H. C.; Piotrowski, P. A.

    1974-01-01

    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown.

  10. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  11. An evaluation of the effectiveness of FreshCase technology to extend the storage life of whole muscle beef and ground beef.

    PubMed

    Yang, X; Woerner, D R; Hasty, J D; McCullough, K R; Geornaras, I; Sofos, J N; Belk, K E

    2016-11-01

    The objective of this study was to identify the maximum time of refrigerated storage before aerobic psychrotrophic bacteria (APB) grew to a level indicative of spoilage (7 log cfu/g) or other indicators of spoilage were observed for whole muscle beef and ground beef packaged using FreshCase technology. Storage life for beef steaks stored in FreshCase packages at 4°C was 36 d, with ground beef stored in FreshCase packages at 4°C lasting 10 d. Additionally, greater ( < 0.05) a* (redness) values were detected in FreshCase packaged samples of both beef steaks and ground beef over storage time. At the point of spoilage, off-odors were detected at very low levels in all samples along with low thiobarbituric acid values (< 2 mg malonaldehyde/kg). Therefore, use of FreshCase technology in whole muscle beef and ground beef is a viable option to extend storage life.

  12. Packaging and testing of multi-wavelength DFB laser array using REC technology

    NASA Astrophysics Data System (ADS)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  13. Neural Implants, Packaging for Biocompatible Implants, and Improving Fabricated Capacitors

    NASA Astrophysics Data System (ADS)

    Agger, Elizabeth Rose

    We have completed the circuit design and packaging procedure for an NIH-funded neural implant, called a MOTE (Microscale Optoelectronically Transduced Electrode). Neural recording implants for mice have greatly advanced neuroscience, but they are often damaging and limited in their recording location. This project will result in free-floating implants that cause less damage, provide rapid electronic recording, and increase range of recording across the cortex. A low-power silicon IC containing amplification and digitization sub-circuits is powered by a dual-function gallium arsenide photovoltaic and LED. Through thin film deposition, photolithography, and chemical and physical etching, the Molnar Group and the McEuen Group (Applied and Engineering Physics department) will package the IC and LED into a biocompatible implant approximately 100microm3. The IC and LED are complete and we have begun refining this packaging procedure in the Cornell NanoScale Science & Technology Facility. ICs with 3D time-resolved imaging capabilities can image microorganisms and other biological samples given proper packaging. A portable, flat, easily manufactured package would enable scientists to place biological samples on slides directly above the Molnar group's imaging chip. We have developed a packaging procedure using laser cutting, photolithography, epoxies, and metal deposition. Using a flip-chip method, we verified the process by aligning and adhering a sample chip to a holder wafer. In the CNF, we have worked on a long-term metal-insulator-metal (MIM) capacitor characterization project. Former Fellow and continuing CNF user Kwame Amponsah developed the original procedure for the capacitor fabrication, and another former fellow, Jonilyn Longenecker, revised the procedure and began the arduous process of characterization. MIM caps are useful to clean room users as testing devices to verify electronic characteristics of their active circuitry. This project's objective is to determine differences in current-voltage (IV) and capacitor-voltage (CV) relationships across variations in capacitor size and dielectric type. This effort requires an approximately 20-step process repeated for two-to-six varieties (dependent on temperature and thermal versus plasma options) of the following dielectrics: HfO2, SiO2, Al2O3, TaOx, and TiO2.

  14. 7 CFR 54.1016 - Advance information concerning service rendered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... applicant under the regulations, or other notification concerning the determination of compliance of...

  15. Logistics Reduction and Repurposing Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L., Jr.

    2012-01-01

    All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Logistics contributions to total mission architecture mass can be minimized by considering potential reuse using systems engineering analysis. In NASA's Advanced Exploration Systems "Logistics Reduction and Repurposing Project," various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisance aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistical items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistics systems to support multiple exploration missions much more efficiently.

  16. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  17. Big Data Bioinformatics

    PubMed Central

    GREENE, CASEY S.; TAN, JIE; UNG, MATTHEW; MOORE, JASON H.; CHENG, CHAO

    2017-01-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the “big data” era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both “machine learning” algorithms as well as “unsupervised” and “supervised” examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. PMID:27908398

  18. Big Data Bioinformatics

    PubMed Central

    GREENE, CASEY S.; TAN, JIE; UNG, MATTHEW; MOORE, JASON H.; CHENG, CHAO

    2017-01-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the “big data” era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both “machine learning” algorithms as well as “unsupervised” and “supervised” examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. PMID:24799088

  19. Report on Understanding and Predicting Effects of Thermal Aging on Microstructure and Tensile Properties of Grade 91 Steel for Structural Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Natesan, K.; Chen, Weiying

    This report provides an update on understanding and predicting the effects of long-term thermal aging on microstructure and tensile properties of G91 to corroborate the ASME Code rules in strength reduction due to elevated temperature service. The research is to support the design and long-term operation of G91 structural components in sodium-cooled fast reactors (SFRs). The report is a Level 2 deliverable in FY17 (M2AT-17AN1602017), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  20. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.

    PubMed

    Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz

    2013-01-01

    Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp. © 2013.

  1. Architecture, Design and Implementation of RC64, a Many-Core High-Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Dobkin, Reuven; Goldberg, Michael

    2013-08-01

    RC64, a novel 64-core many-core signal processing chip targets DSP performance of 12.8 GIPS, 100 GOPS and 12.8 single precision GFLOS while dissipating only 3 Watts. RC64 employs advanced DSP cores, a multi-bank shared memory and a hardware scheduler, supports DDR2 memory and communicates over five proprietary 6.4 Gbps channels. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 200 MHz ASIC on Tower 130nm CMOS technology, assembled in hermetically sealed ceramic QFP package and qualified to the highest space standards.

  2. Big data bioinformatics.

    PubMed

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. © 2014 Wiley Periodicals, Inc.

  3. Technology transfer initiatives

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Ziemke, M. Carl

    1994-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer activities with the Marshall Space Flight Center (MSFC) for the period of April 1993 through December 1993. Early in 1993, the MSFC/TUO and UAH conceived of the concept of developing stand-alone, integrated data packages on MSFC technology that would serve industrial needs previously determined to be critical. Furthermore, after reviewing over 500 problem statements received by MSFC, it became obvious that many of these requests could be satisfied by a standard type of response. As a result, UAH has developed two critical area response (CAR) packages: CFC (chlorofluorocarbon) replacements and modular manufacturing and simulation. Publicity included news releases, seminars, articles and conference papers. The Huntsville Chamber of Commerce established the Technology Transfer Subcommittee with the charge to identify approaches for the Chamber to assist its members, as well as non-members, access to the technologies at the federal laboratories in North Alabama. The Birmingham Chamber of Commerce has expressed interest in establishing a similar technology transfer program. This report concludes with a section containing a tabulation of the problem statements, including CAR packages, submitted to MSFC from January 1992 through December 1993.

  4. Fresh meat packaging: consumer acceptance of modified atmosphere packaging including carbon monoxide.

    PubMed

    Grebitus, Carola; Jensen, Helen H; Roosen, Jutta; Sebranek, Joseph G

    2013-01-01

    Consumers' perceptions and evaluations of meat quality attributes such as color and shelf life influence purchasing decisions, and these product attributes can be affected by the type of fresh meat packaging system. Modified atmosphere packaging (MAP) extends the shelf life of fresh meat and, with the inclusion of carbon monoxide (CO-MAP), achieves significant color stabilization. The objective of this study was to assess whether consumers would accept specific packaging technologies and what value consumers place on ground beef packaged under various atmospheres when their choices involved the attributes of color and shelf life. The study used nonhypothetical consumer choice experiments to determine the premiums that consumers are willing to pay for extended shelf life resulting from MAP and for the "cherry red" color in meat resulting from CO-MAP. The experimental design allowed determination of whether consumers would discount foods with MAP or CO-MAP when (i) they are given more detailed information about the technologies and (ii) they have different levels of individual knowledge and media exposure. The empirical analysis was conducted using multinomial logit models. Results indicate that consumers prefer an extension of shelf life as long as the applied technology is known and understood. Consumers had clear preferences for brighter (aerobic and CO) red color and were willing to pay $0.16/lb ($0.35/kg) for each level of change to the preferred color. More information on MAP for extending the shelf life and on CO-MAP for stabilizing color decreased consumers' willingness to pay. An increase in personal knowledge and media exposure influenced acceptance of CO-MAP negatively. The results provide quantitative measures of how packaging affects consumers' acceptance and willingness to pay for products. Such information can benefit food producers and retailers who make decisions about investing in new packaging methods.

  5. Merging parallel optics packaging and surface mount technologies

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Volpert, Marion; Routin, Julien; Bernabé, Stéphane; Rossat, Cyrille; Tournaire, Myriam; Hamelin, Régis

    2008-02-01

    Optical links are well known to present significant advantages over electrical links for very high-speed data rate at 10Gpbs and above per channel. However, the transition towards optical interconnects solutions for short and very short reach applications requires the development of innovative packaging solutions that would deal with very high volume production capability and very low cost per unit. Moreover, the optoelectronic transceiver components must be able to move from the edge to anywhere on the printed circuit board, for instance close to integrated circuits with high speed IO. In this paper, we present an original packaging design to manufacture parallel optic transceivers that are surface mount devices. The package combines highly integrated Multi-Chip-Module on glass and usual IC ceramics packaging. The use of ceramic and the development of sealing technologies achieve hermetic requirements. Moreover, thanks to a chip scale package approach the final device exhibits a much minimized footprint. One of the main advantages of the package is its flexibility to be soldered or plugged anywhere on the printed circuit board as any other electronic device. As a demonstrator we present a 2 by 4 10Gbps transceiver operating at 850nm.

  6. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  7. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  8. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering

    PubMed Central

    2015-01-01

    Summary: dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R's rich ecosystem of packages for performing hierarchical clustering of items. Availability and implementation: The dendextend R package (including detailed introductory vignettes) is available under the GPL-2 Open Source license and is freely available to download from CRAN at: (http://cran.r-project.org/package=dendextend) Contact: Tal.Galili@math.tau.ac.il PMID:26209431

  9. Selection of human consumables for future space missions

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Smith, M. C.

    1991-01-01

    Consumables for human spaceflight include oxygen, water, food and food packaging, personal hygiene items, and clothing. This paper deals with the requirements for food and water, and their impact on waste product generation. Just as urbanization of society has been made possible by improved food processing and packaging, manned spaceflight has benefitted from this technology. The downside of this technology is increased food package waste product. Since consumables make up a major portion of the vehicle onboard stowage and generate most of the waste products, selection of consumables is a very critical process. Food and package waste comprise the majority of the trash generated on the current shuttle orbiter missions. Plans for future missions must include accurate assessment of the waste products to be generated, and the methods for processing and disposing of these wastes.

  10. Design Approaches and Comparison of TAPS Packages for Engineering

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit

    2007-01-01

    Purpose: The paper's purpose is to promote the use of modern technologies such as multimedia packages to engineering students. The aim is to help them to learning in their learning, visualization, problem solving and understanding engineering concepts such as in mechanics dynamics. Design/methodology/approach: TAPS packages are developed to help…

  11. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  12. 21 CFR 801.40 - Form of a unique device identifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Automatic identification and data capture (AIDC) technology. (b) The UDI must include a device identifier... evident upon visual examination of the label or device package, the label or device package must disclose... label and device packages is deemed to meet all requirements of subpart B of this part. The UPC will...

  13. Packaging & Other Structures. Stuff That Works! A Technology Curriculum for the Elementary Grades.

    ERIC Educational Resources Information Center

    Benenson, Gary

    This book explores all kinds of packaging materials including bags, boxes, etc. and how they are used to protect and display products. Contents are divided into six chapters: (1) "Appetizers" includes activities that can be done individually to become familiar with the topic of packaging and structures; (2) "Concepts" provides…

  14. A Wireless, Passive Sensor for Quantifying Packaged Food Quality

    PubMed Central

    Tan, Ee Lim; Ng, Wen Ni; Shao, Ranyuan; Pereles, Brandon D.; Ong, Keat Ghee

    2007-01-01

    This paper describes the fabrication of a wireless, passive sensor based on an inductive-capacitive resonant circuit, and its application for in situ monitoring of the quality of dry, packaged food such as cereals, and fried and baked snacks. The sensor is made of a planar inductor and capacitor printed on a paper substrate. To monitor food quality, the sensor is embedded inside the food package by adhering it to the package's inner wall; its response is remotely detected through a coil connected to a sensor reader. As food quality degrades due to increasing humidity inside the package, the paper substrate absorbs water vapor, changing the capacitor's capacitance and the sensor's resonant frequency. Therefore, the taste quality of the packaged food can be indirectly determined by measuring the change in the sensor's resonant frequency. The novelty of this sensor technology is its wireless and passive nature, which allows in situ determination of food quality. In addition, the simple fabrication process and inexpensive sensor material ensure a low sensor cost, thus making this technology economically viable. PMID:28903195

  15. A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments.

    PubMed

    Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T

    2012-08-01

    InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package.

  16. NMRbox: A Resource for Biomolecular NMR Computation.

    PubMed

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  17. Spinoff 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.

  18. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  19. EO/IR scene generation open source initiative for real-time hardware-in-the-loop and all-digital simulation

    NASA Astrophysics Data System (ADS)

    Morris, Joseph W.; Lowry, Mac; Boren, Brett; Towers, James B.; Trimble, Darian E.; Bunfield, Dennis H.

    2011-06-01

    The US Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) and the Redstone Test Center (RTC) has formed the Scene Generation Development Center (SGDC) to support the Department of Defense (DoD) open source EO/IR Scene Generation initiative for real-time hardware-in-the-loop and all-digital simulation. Various branches of the DoD have invested significant resources in the development of advanced scene and target signature generation codes. The SGDC goal is to maintain unlimited government rights and controlled access to government open source scene generation and signature codes. In addition, the SGDC provides development support to a multi-service community of test and evaluation (T&E) users, developers, and integrators in a collaborative environment. The SGDC has leveraged the DoD Defense Information Systems Agency (DISA) ProjectForge (https://Project.Forge.mil) which provides a collaborative development and distribution environment for the DoD community. The SGDC will develop and maintain several codes for tactical and strategic simulation, such as the Joint Signature Image Generator (JSIG), the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC), and Office of the Secretary of Defense (OSD) Test and Evaluation Science and Technology (T&E/S&T) thermal modeling and atmospherics packages, such as EOView, CHARM, and STAR. Other utility packages included are the ContinuumCore for real-time messaging and data management and IGStudio for run-time visualization and scenario generation.

  20. Photonomics: automation approaches yield economic aikido for photonics device manufacture

    NASA Astrophysics Data System (ADS)

    Jordan, Scott

    2002-09-01

    In the glory days of photonics, with exponentiating demand for photonics devices came exponentiating competition, with new ventures commencing deliveries seemingly weekly. Suddenly the industry was faced with a commodity marketplace well before a commodity cost structure was in place. Economic issues like cost, scalability, yield-call it all "Photonomics" -now drive the industry. Automation and throughput-optimization are obvious answers, but until now, suitable modular tools had not been introduced. Available solutions were barely compatible with typical transverse alignment tolerances and could not automate angular alignments of collimated devices and arrays. And settling physics served as the insoluble bottleneck to throughput and resolution advancement in packaging, characterization and fabrication processes. The industry has addressed these needs in several ways, ranging from special configurations of catalog motion devices to integrated microrobots based on a novel mini-hexapod configuration. This intriguing approach allows tip/tilt alignments to be automated about any point in space, such as a beam waist, a focal point, the cleaved face of a fiber, or the optical axis of a waveguide- ideal for MEMS packaging automation and array alignment. Meanwhile, patented new low-cost settling-enhancement technology has been applied in applications ranging from air-bearing long-travel stages to subnanometer-resolution piezo positioners to advance resolution and process cycle-times in sensitive applications such as optical coupling characterization and fiber Bragg grating generation. Background, examples and metrics are discussed, providing an up-to-date industry overview of available solutions.

  1. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  2. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid- structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  3. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid-structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  4. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Nathan C; Younkin, James R; Pickett, Chris A

    Radio-Frequency (RF) devices have revolutionized many aspects of modern industrial processes. RF technology can enable wireless communication for tag identification, sensor communication, and asset tracking. Radio-frequency identification (RFID) is a technology that utilizes wireless communication to interrogate and identify an electronic tag attached to an item in order to identify the item. The technology can come in many forms: passive or active tags, low to ultra-wideband frequencies, small paper-thin tags to brick-sized units, and simple tags or highly integrated sensor packages. RF technology, and specifically RFID, has been applied widely in commercial markets for inventory, supply chain management, and assetmore » tracking. Several recent studies have demonstrated the safeguards benefits of utilizing RFID versus conventional inventory tagging methods for tracking nuclear material. These studies have indicated that the RF requirements for safeguards functions are more stringent than the RF requirements for other inventory tracking and accounting applications. Additionally, other requirements must be addressed, including environmental and operating conditions, authentication, and tag location and attachment. Facility restrictions on radio spectrum, method of tag attachment, and sensitivity of the data collected impact the tag selection and system design. More important, the intended use of the system must be considered. The requirements for using RF to simply replace or supplement container identifiers such as bar codes that facilitate the inventory function will differ greatly from the requirements for deploying RF for unattended monitoring applications. Several studies have investigated these considerations to advance commercial RF devices for safeguards use, and a number of system concepts have been developed. This paper will provide an overview of past studies and current technologies, and will investigate the requirements, existing gaps, and several potential next steps for advancing RF techniques for safeguards use.« less

  6. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    NASA Astrophysics Data System (ADS)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  7. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light source technology are discussed.

  8. Nanotechnology research and development for military and industrial applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Brantley, Christina L.; Edwards, Eugene; Roberts, J. Keith; Chew, William; Warren, Larry C.; Ashley, Paul R.; Everitt, Henry O.; Webster, Eric; Foreman, John V.; Sanghadasa, Mohan; Crutcher, Sihon H.; Temmen, Mark G.; Varadan, Vijay; Hayduke, Devlin; Wu, Pae C.; Khoury, Christopher G.; Yang, Yang; Kim, Tong-Ho; Vo-Dinh, Tuan; Brown, April S.; Callahan, John

    2011-04-01

    Researchers at the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) have initiated multidiscipline efforts to develop nano-based structures and components for insertion into advanced missile, aviation, and autonomous air and ground systems. The objective of the research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weapons. The key technology areas that the authors are exploring include nano-based microsensors, nano-energetics, nano-batteries, nano-composites, and nano-plasmonics. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) missile systems by significantly reducing the size, weight and cost. The major research thrust areas include the development of chemical sensors to detect rocket motor off-gassing and toxic industrial chemicals; the development of highly sensitive/selective, self-powered miniaturized acoustic sensors for battlefield surveillance and reconnaissance; the development of a minimum signature solid propellant with increased ballistic and physical properties that meet insensitive munitions requirements; the development of nano-structured material for higher voltage thermal batteries and higher energy density storage; the development of advanced composite materials that provide high frequency damping for inertial measurement units' packaging; and the development of metallic nanostructures for ultraviolet surface enhanced Raman spectroscopy. The current status of the overall AMRDEC Nanotechnology research efforts is disclosed in this paper. Critical technical challenges, for the various technologies, are presented. The authors' approach for overcoming technical barriers and achieving required performance is also discussed. Finally, the roadmap for each technology, as well as the overall program, is presented.

  9. The Role of Tribology in the Development of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1997-01-01

    Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.

  10. Micro- and nano-NDE systems for aircraft: great things in small packages

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  11. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, Anand R.; Karali, Nihan; Sharpe, Ben

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO 2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data andmore » vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the scenarios range from 10% to 34%, and at the end of 2050, these reductions grow to 13% and 41%. If we constrain the analysis to select the most efficient technology package that provides the fleets with payback times of 3 years or less, there are annual fleet-wide savings of roughly 11 MTOE of diesel and 34 MMT of CO 2 in 2030, and this grows to 31 MTOE and 97 MMT by 2050.« less

  12. Automated work packages architecture: An initial set of human factors and instrumentation and controls requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Oxstrand, Johanna H.; Le Blanc, Katya L.

    The work management process in current fleets of national nuclear power plants is so highly dependent on large technical staffs and quality of work instruction, i.e., paper-based, that this puts nuclear energy at somewhat of a long-term economic disadvantage and increase the possibility of human errors. Technologies like mobile portable devices and computer-based procedures can play a key role in improving the plant work management process, thereby increasing productivity and decreasing cost. Automated work packages are a fundamentally an enabling technology for improving worker productivity and human performance in nuclear power plants work activities because virtually every plant work activitymore » is accomplished using some form of a work package. As part of this year’s research effort, automated work packages architecture is identified and an initial set of requirements identified, that are essential and necessary for implementation of automated work packages in nuclear power plants.« less

  13. Comparison of Traditional and Innovative Techniques to Solve Technical Challenges

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2011-01-01

    This slide presentation reviews the use of traditional and innovative techniques to solve technical challenges in food storage technology. The planning for a mission to Mars is underway, and the food storage technology improvements requires that improvements be made. This new technology is required, because current food storage technology is inadequate,refrigerators or freezers are not available for food preservation, and that a shelf life of 5 years is expected. A 10 year effort to improve food packaging technology has not enhanced significantly food packaging capabilities. Two innovation techniques were attempted InnoCentive and Yet2.com and have provided good results, and are still under due diligence for solver verification.

  14. Introduction to Human Services, Chapter III. Video Script Package, Text, and Audio Script Package.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL.

    Video, textual, and audio components of the third module of a multi-media, introductory course on Human Services are presented. The module packages, developed at Miami-Dade Community College, deal with technology, social change, and problem dependencies. A video cassette script is first provided that explores the "traditional,""inner," and "other…

  15. Developing the NASA food system for long-duration missions.

    PubMed

    Cooper, Maya; Douglas, Grace; Perchonok, Michele

    2011-03-01

    Even though significant development has transformed the space food system over the last 5 decades to attain more appealing dietary fare for low-orbit space crews, the advances do not meet the need for crews that might travel to Mars and beyond. It is estimated that a food system for a long-duration mission must maintain organoleptic acceptability, nutritional efficacy, and safety for a 3- to 5-y period to be viable. In addition, the current mass and subsequent waste of the food system must decrease significantly to accord with the allowable volume and payload limits of the proposed future space vehicles. Failure to provide the appropriate food or to optimize resource utilization introduces the risk that an inadequate food system will hamper mission success and/or threaten crew performance. Investigators for the National Aeronautics and Space Administration (NASA) Advanced Food Technology (AFT) consider identified concerns and work to mitigate the risks to ensure that any new food system is adequate for the mission. Yet, even with carefully planned research, some technological gaps remain. NASA needs research advances to develop food that is nutrient-dense and long-lasting at ambient conditions, partial gravity cooking processes, methods to deliver prescribed nutrients over time, and food packaging that meets the mass, barrier, and processing requirements of NASA. This article provides a brief review of research in each area, details the past AFT research efforts, and describes the remaining gaps that present barriers to achieving a food system for long exploration missions.

  16. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing of the Gen4 SWME is underway.

  17. Recent advances in the science and technology for solid state lighting

    NASA Astrophysics Data System (ADS)

    Munkholm, Anneli

    2003-03-01

    Recent development of high power light emitting diodes (LEDs) has enabled fabrication of solid state devices with efficiencies that surpass that of incandescent light, as well as providing a total light output significantly exceeding that of conventional indicator LEDs. This breakthrough in high flux is opening up new applications for use of high power LEDs, such as liquid crystal display backlighting and automotive headlights. Some of the key elements to this technological breakthrough are the flip-chip device design, power packaging and phosphor coating technology, which will be discussed. In addition to device design improvements, our fundamental knowledge of the III-nitride material system is improving and has resulted in higher internal quantum efficiencies. Strain plays a significant role in complex AlInGaN heterostructures used in current devices. Using a multi-beam optical strain sensor (MOSS) system to measure the wafer curvature in situ, we have characterized the strain during metal-organic chemical vapor deposition of III-nitrides. Strain measurements of InGaN, AlGaN and Si-doped GaN films on GaN will be presented.

  18. Imaging with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.

    2007-08-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  19. An Integrated Software Package to Enable Predictive Simulation Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang

    The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less

  20. CSP Manufacturing Challenges and Assembly Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    Although the expression of CSP is widely used by industry from suppliers to users, its implied definition had evolved as the technology has matured. There are "expert definition"- package that is up to 1.5 time die- or "interim definition". CSPs are miniature new packages that industry is starting to implement and there are many unresolved technical issues associated with their implementation. For example, in early 1997, packages with 1 mm pitch and lower were the dominant CSPs, whereas in early 1998 packages with 0.8 mm and lower became the norm for CSPs. Other changes included the use of flip chip die rather than wire bond in CSP. Nonetheless the emerging CSPs are competing with bare die assemblies and are becoming the package of choice for size reduction applications. These packages provide the benefits of small size and performance of the bare die or flip chip, with the advantage of standard die packages. The JPL-led MicrotypeBGA Consortium of enterprises representing government agencies and private companies have jointed together to pool in-kind resources for developing the quality and reliability of chip scale packages (CSPs) for a variety of projects. This talk will cover specifically the experience of our consortium on technology implementation challenges, including design and build of both standard and microvia boards, assembly of two types of test vehicles, and the most current environmental thermal cycling test results.

  1. Comparison of Traditional and Innovative Techniques to Solve Technical Challenges

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2010-01-01

    Although NASA has an adequate food system for current missions, research is required to accommodate new requirements for future NASA exploration missions. The Inadequate Food System risk reflects the need to develop requirements and technologies that will enable NASA to provide the crew with a safe, nutritious and acceptable food system while effectively balancing appropriate resources such as mass, volume, and crew time in exploratory missions. As we go deeper into space or spend more time on the International Space Station (ISS), there will be requirements for packaged food to be stored for 3 5 years. New food packaging technologies are needed that have adequate oxygen and water barrier properties to maintain the foods' quality over this extended shelf life. NASA has been unsuccessful in identify packaging materials that meet the necessary requirements when using several traditional routes including literature reviews, workshops, and internal shelf life studies on foods packaged in various packaging materials. Small Business Innovative Research grants were used for accelerating food packaging materials research with limited success. In order to accelerate the process, a theoretical challenge was submitted to InnoCentive resulting in a partial award. A similar food packaging challenge was submitted to Yet2.com and several potential commercial packaging material suppliers were identified that, at least partially, met the requirements. Comparisons and results of these challenges will be discussed.

  2. Efficacy of Antimicrobial Agents for Food Contact Applications: Biological Activity, Incorporation into Packaging, and Assessment Methods: A Review.

    PubMed

    Mousavi Khaneghah, Amin; Hashemi, Seyed Mohammad Bagher; Eş, Ismail; Fracassetti, Daniela; Limbo, Sara

    2018-07-01

    Interest in the utilization of antimicrobial active packaging for food products has increased in recent years. Antimicrobial active packaging involves the incorporation of antimicrobial compounds into packaging materials, with the aim of maintaining or extending food quality and shelf life. Plant extracts, essential oils, organic acids, bacteriocins, inorganic substances, enzymes, and proteins are used as antimicrobial agents in active packaging. Evaluation of the antimicrobial activity of packaging materials using different methods has become a critical issue for both food safety and the commercial utilization of such packaging technology. This article reviews the different types of antimicrobial agents used for active food packaging materials, the main incorporation techniques, and the assessment methods used to examine the antimicrobial activity of packaging materials, taking into account their safety as food contact materials.

  3. Control Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Boeing Commercial Airplane Company's Flight Control Department engineers relied on Langley developed software package known as ORACLS to develop an advanced control synthesis package for both continuous and discrete control system. Package was used by Boeing for computerized analysis of new system designs. Resulting applications include a multiple input/output control system for the terrain-following navigation equipment of the Air Forces B-1 Bomber, and another for controlling in flight changes of wing camber on an experimental airplane. ORACLS is one of 1,300 computer programs available from COSMIC.

  4. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  5. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    ERIC Educational Resources Information Center

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  6. Chip-on-Board Technology 1996 Year-end Report (Design, Manufacturing, and Reliability Study)

    NASA Technical Reports Server (NTRS)

    Le, Binh Q.; Nhan, Elbert; Maurer, Richard H.; Lew, Ark L.; Lander, Juan R.

    1996-01-01

    The major impetus for flight qualifying Chip-On-Board (COB) packaging technology is the shift in emphasis for space missions to smaller, better, and cheaper spacecraft and satellites resulting from the NASA New Millenium initiative and similar requirements in DoD-sponsored programs. The most important benefit that can potentially be derived from miniaturizing spacecraft and satellites is the significant cost saving realizable if a smaller launch vehicle may be employed. Besides the program cost saving, there are several other advantages to building COB-based space hardware. First, once a well-controlled process is established, COB can be low cost compared to standard Multi-Chip Module (MCM) technology. This cost competitiveness is regarded as a result of the generally greater availability and lower cost of Known Good Die (KGD). Coupled with the elimination of the first level of packaging (chip package), compact, high-density circuit boards can be realized with Printed Wiring Boards (PWB) that can now be made with ever-decreasing feature size in line width and via hole. Since the COB packaging technique in this study is based mainly on populating bare dice on a suitable multi-layer laminate substrate which is not hermetically sealed, die coating for protection from the environment is required. In recent years, significant improvements have been made in die coating materials which further enhance the appeal of COB. Hysol epoxies, silicone, parylene and silicon nitride are desirable because of their compatible Thermal Coefficient of Expansion (TCE) and good moisture resistant capability. These die coating materials have all been used in the space and other industries with varying degrees of success. COB technology, specifically siliconnitride coated hardware, has been flown by Lockheed on the Polar satellite. In addition, DARPA has invested a substantial amount of resources on MCM and COB-related activities recently. With COB on the verge of becoming a dominant player in DoD programs, DARPA is increasing its support of the availability of KGDs which will help decrease their cost. Aside from the various major developments and trends in the space and defense industries that are favorable to the acceptance and widespread use of'COB packaging technology, implementing COB can be appealing in other aspects. Since the interconnection interface is usually the weak link in a system, the overall circuit or system reliability may actually be improved because of the elimination of a level of interconnect/packaging at the chip. With COB, mixing packaging technologies is possible. Because some devices are only available in commercial plastic packages, populating a multi-layer laminate substrate with both bare dice and plastic-package parts is inevitable. Another attractive feature of COB is that re-workability is possible if die coating is applied only on the die top. This method allows local replacement of individual dice that were found to be defective instead of replacing an entire board. In terms of thermal management, unpackaged devices offer a shorter thermal resistance path than their packaged counterparts thereby improving thermal sinking and heat removal from the parts.

  7. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  8. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  9. Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    NASA Technical Reports Server (NTRS)

    Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.

    1989-01-01

    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.

  10. TSPmap, a tool making use of traveling salesperson problem solvers in the efficient and accurate construction of high-density genetic linkage maps.

    PubMed

    Monroe, J Grey; Allen, Zachariah A; Tanger, Paul; Mullen, Jack L; Lovell, John T; Moyers, Brook T; Whitley, Darrell; McKay, John K

    2017-01-01

    Recent advances in nucleic acid sequencing technologies have led to a dramatic increase in the number of markers available to generate genetic linkage maps. This increased marker density can be used to improve genome assemblies as well as add much needed resolution for loci controlling variation in ecologically and agriculturally important traits. However, traditional genetic map construction methods from these large marker datasets can be computationally prohibitive and highly error prone. We present TSPmap , a method which implements both approximate and exact Traveling Salesperson Problem solvers to generate linkage maps. We demonstrate that for datasets with large numbers of genomic markers (e.g. 10,000) and in multiple population types generated from inbred parents, TSPmap can rapidly produce high quality linkage maps with low sensitivity to missing and erroneous genotyping data compared to two other benchmark methods, JoinMap and MSTmap . TSPmap is open source and freely available as an R package. With the advancement of low cost sequencing technologies, the number of markers used in the generation of genetic maps is expected to continue to rise. TSPmap will be a useful tool to handle such large datasets into the future, quickly producing high quality maps using a large number of genomic markers.

  11. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  12. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  13. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  14. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  15. Industrial packaging and assembly infrastructure for MOEMS

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne

    2004-01-01

    In a mature industry all elements of the supply chain are available and are more or less in balance. Mainstream technologies are defined and well supported by a chain of specialist companies. Those specialist companies, offering services ranging from consultancy to manufacturing subcontracting, are an essential element in the industrialization. There specialization and dedication to one or a few elements in the technology increases professionalism and efficiency. The MOEMS industry however, is still in its infancy. After the birth and growth of many companies aiming at development of products, the appearance of companies aiming at the production of components and systems, we see know the first companies concentrating on the delivering of services to this industry. We can divide them in the like : * Design and Engineering companies * Foundries * Assembly and Packaging providers * Design and simulation software providers For manufacturing suppliers and customers the lack of industry standards and mainstream technologies is a serious drawback. Insight in availability and trends in technology is important to make the right choices in the field of industrialization and production. This awareness was the reason to perform a detailed study to the companies supplying commercial services in this field. This article focuses on one important part of this study: packaging and assembly. This tends to remain a bottleneck at the end of the design cycle, often delaying and sometimes preventing industrialization and commercialization. For nearly all MEMS/MST products literally everything comes together in the packaging and assembly. This is the area of full integration: electrical, mechanical, optical fluidic, magnetic etc. functionalities come together. The problems associated with the concentration of functionalities forms a big headache for the designer. Conflicting demands, of which functionality versus economics is only one, and technical hurdles have to overcome. Besides that, packaging and assembly is from nature application specific and solutions found are not always transferable from one product to another. But designers can often benefit from experience from other and general available technologies. A number of companies offer packaging and assembly services for MEMS/MST and this report give typical examples of those commercial services. The companies range from small start-ups, offering very specialized services, to large semiconductor packaging companies, having production lines for microsystem based products. Selecting the proper packaging method may tip the scales towards a product success or towards a product failure, while it nearly always present s a substantial part of the cost of the product. This is therefore is not a marginal concern, but a crucial part of the product design. The presentation will also address mayor trends and technologies. Finally, the article provides sufficient levels of classification and categorisation for various aspects for the technologies, in specific, and the industry, in general, to provide particularly useful insights into the activities and the developments in this market. With over 50 companies studied and assessed, it provides an up to date account of the state of this business and its future potential.

  16. Reliability assessment of Multichip Module technologies via the Triservice/NASA RELTECH program

    NASA Astrophysics Data System (ADS)

    Fayette, Daniel F.

    1994-10-01

    Multichip Module (MCM) packaging/interconnect technologies have seen increased emphasis from both the commercial and military communities as a means of increasing capability and performance while providing a vehicle for reducing cost, power and weight of the end item electronic application. This is accomplished through three basic Multichip module technologies, MCM-L that are laminates, MCM-C that are ceramic type substrates and MCM-D that are deposited substrates (e.g., polymer dielectric with thin film metals). Three types of interconnect structures are also used with these substrates and include, wire bond, Tape Automated Bonds (TAB) and flip chip ball bonds. Application, cost, producibility and reliability are the drivers that will determine which MCM technology will best fit a respective need or requirement. With all the benefits and technologies cited, it would be expected that the use of, or the planned use of, MCM's would be more extensive in both military and commercial applications. However, two significant roadblocks exist to implementation of these new technologies: the absence of reliability data and a single national standard for the procurement of reliable/quality MCM's. To address the preceding issues, the Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program has been established. This program, which began in May 1992, has endeavored to evaluate a cross section of MCM technologies covering all classes of MCM's previously cited. NASA and the Tri-Services (Air Force Rome Laboratory, Naval Surface Warfare Center, Crane IN and Army Research Laboratory) have teamed together with sponsorship from ARPA to evaluate the performance, reliability and producibility of MCM's for both military and commercial usage. This is done in close cooperation with our industry partners whose support is critical to the goals of the program. Several tasks are being performed by the RELTECH program and data from this effort, in conjunction with information from our industry partners as well as discussions with industry organizations (IPC, EIA, ISHM, etc.) are being used to develop the qualification and screening requirements for MCM's. Specific tasks being performed by the RELTECH program include technical assessments, product evaluations, reliability modeling, environmental testing, and failure analysis. This paper will describe the various tasks associated with the RELTECH program, status, progress and a description of the national dual use specification being developed for MCM technologies.

  17. Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems

    NASA Technical Reports Server (NTRS)

    Holda, Julie

    2004-01-01

    The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.

  18. Needs and emerging trends of remote sensing

    NASA Astrophysics Data System (ADS)

    McNair, Michael

    2014-06-01

    From the earliest need to be able to see an enemy over a hill to sending semi-autonomous platforms with advanced sensor packages out into space, humans have wanted to know more about what is around them. Issues of distance are being minimized through advances in technology to the point where remote control of a sensor is useful but sensing by way of a non-collocated sensor is better. We are not content to just sense what is physically nearby. However, it is not always practical or possible to move sensors to an area of interest; we must be able to sense at a distance. This requires not only new technologies but new approaches; our need to sense at a distance is ever changing with newer challenges. As a result, remote sensing is not limited to relocating a sensor but is expanded into possibly deducing or inferring from available information. Sensing at a distance is the heart of remote sensing. Much of the sensing technology today is focused on analysis of electromagnetic radiation and sound. While these are important and the most mature areas of sensing, this paper seeks to identify future sensing possibilities by looking beyond light and sound. By drawing a parallel to the five human senses, we can then identify the existing and some of the future possibilities. A further narrowing of the field of sensing causes us to look specifically at robotic sensing. It is here that this paper will be directed.

  19. Progress in magnetic sensor technology for sea mine detection

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.

    1997-07-01

    A superconducting magnetic-field gradiometer developed in the 1980's has been demonstrated infusion with acoustic sensors to enhance shallow water sea mine detection and classification, especially for buried mine detection and the reduction of acoustic false alarm rates. This sensor incorporated niobium bulk and wire superconducting components cooled by liquid helium to a temperature of 4 degrees K. An advanced superconducting gradiometer prototype is being developed to increase sensitivity and detection range. This sensor features all thin film niobium superconducting components and a new liquid helium cooling concept. In the late 1980's, a new class of 'high Tc' superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen. The use of liquid nitrogen refrigeration offers new opportunities for this sensor technology, providing significant reduction in the size of sensor packages and in the requirements for cryogenic support and logistics. As a result of this breakthrough, a high Tc sensor concept using liquid nitrogen refrigeration has been developed for mine reconnaissance applications and a test article of that concept is being fabricated and evaluated. In addition to these developments in sensor technology, new signal processing approaches and recent experimental results have ben obtained to demonstrate an enhanced D/C capability. In this paper, these recent advances in sensor development and new results for an enhanced D/C capability will be reviewed and a current perspective on the role of magnetic sensors for mine detection and classification will be addressed.

  20. Delidding and resealing hybrid microelectronic packages

    NASA Astrophysics Data System (ADS)

    Luce, W. F.

    1982-05-01

    The objective of this single phase MM and T contract was to develop the manufacturing technology necessary for the precision removal (delidding) and replacement (resealing) of covers on hermetically sealed hybrid microelectronic packages. The equipment and processes developed provide a rework technique which does not degrade the reliability of the package of the enclosed circuitry. A qualification test was conducted on 88 functional hybrid packages, with excellent results. A petition will be filed, accompanied by this report, requesting Mil-M-38510 be amended to allow this rework method.

Top