Science.gov

Sample records for advanced photovoltaic solar

  1. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  2. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  3. Advances in photovoltaic technology

    NASA Technical Reports Server (NTRS)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  4. Photovoltaic solar concentrator

    SciTech Connect

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  5. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  6. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  7. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  8. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  9. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  10. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  11. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  12. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  13. Photovoltaic solar cell

    SciTech Connect

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  15. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  16. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  17. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  18. Solar Cells and Photovoltaics

    NASA Astrophysics Data System (ADS)

    Irvine, Stuart

    Photovoltaic solar cells are gaining wide acceptance for producing clean, renewable electricity. This has been based on more than 40 years of research that has benefited from the revolution in silicon electronics and compound semiconductors in optoelectronics. This chapter gives an introduction into the basic science of photovoltaic solar cells and the challenge of extracting the maximum amount of electrical energy from the available solar energy. In addition to the constraints of the basic physics of these devices, there are considerable challenges in materials synthesis. The latter has become more prominent with the need to reduce the cost of solar module manufacture as it enters mainstream energy production. The chapter is divided into sections dealing with the fundamentals of solar cells and then considering five very different materials systems, from crystalline silicon through to polycrystalline thin films. These materials have been chosen because they are all in production, although some are only in the early stages of production. Many more materials are being considered in research and some of the more exciting, polymer and dye-sensitised cells are mentioned in the conclusions. However, there is insufficient space to give these very active areas of research the justice they deserve. I hope the reader will feel sufficiently inspired by this topic to read further and explore one of the most exciting areas of semiconductor science. The need for high-volume production at low cost has taken the researcher along paths not normally considered in semiconductor devices and it is this that provides an exciting challenge.

  19. Photovoltaics: solar electric power systems

    SciTech Connect

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  20. Photovoltaics, the solar electric solution

    NASA Astrophysics Data System (ADS)

    Beach, C. D.; Litka, A. H.

    Direct conversion of solar energy to electricity by photovoltaic devices (solar cells) may be the most promising solution to the current energy problem. Photovoltaic energy systems provide a clean, simple method of energy conversion, and are reliable, safe, and flexible with respect to size (modular). The federal government is trying to commercialize photovoltaics by funding research on new materials and manufacturing processes. Earliest commercialization will be in residential systems, where the power grid back-up provides for a reliable electrical system without storage costs. The Florida Solar Energy Center has been operating a 5 kW experimental residential facility since 1980. The facility showed an average solar irradiance in the 62.5 sq m panels of 264 kw-hours/day from December 1980 through February 1981. The overall system efficiency was 7%, and the inverter operated with an ac output/dc input efficiency of 85-90%, depending on input levels.

  1. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  2. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  3. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    PubMed Central

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed. PMID:24459433

  4. Inexpensive Photovoltaic Solar Radiometer.

    ERIC Educational Resources Information Center

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  5. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  6. Decentralized solar photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Krupka, M. C.

    1980-09-01

    Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  7. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  8. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems. Grid Benefits, Deployment Challenges, and Emerging Solutions

    SciTech Connect

    Reiter, Emerson; Ardani, Kristen; Margolis, Robert; Edge, Ryan

    2015-09-01

    To clarify current utility strategies and other considerations related to advanced inverter deployment, we interviewed 20 representatives from 11 leading organizations closely involved with advanced inverter pilot testing, protocols, and implementation. Included were representatives from seven utilities, a regional transmission operator, an inverter manufacturer, a leading solar developer, and a consortium for grid codes and standards. Interview data represent geographically the advanced inverter activities identified in SEPA's prior survey results--most interviewed utilities serve California, Arizona, and Hawaii, though we also interviewed others from the Northeast, Mid-Atlantic, and Southeast.

  9. Final results of the advanced photovoltaic experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1994-01-01

    The Advanced Photovoltaic Experiment (APEX) was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. In addition to the cells, it was equipped with an absolute cavity radiometer to measure solar intensity, a spectroradiometer to measure the spectral content of this radiation, and a sun angle sensor. Data from the solar cells and various sensors was obtained on a daily basis during the first eleven months of the 69 month flight. We compare pre-flight and post-flight laboratory measurements with on-orbit calibration data. Pre-flight and post-flight calibration data for the cavity radiometers as well as on-orbit data demonstrated the accuracy and durability of the Eppley Labs instrument flown on APEX.

  10. Final Results of the Advanced Photovoltaic Experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1994-01-01

    The Advanced Photovoltaic Experiment was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. In addition to the cells, it was equipped with an absolute cavity radiometer to measure solar intensity, a spectroradiometer to measure the spectral content of this radiation and a sun angle sensor. Data from the solar cells and various sensors was obtained on a daily basis during the first eleven months of the 69 month flight. In this paper we compare pre-flight and post-flight laboratory measurements with on-orbit calibration data. Pre-flight and post-flight calibration data of the cavity radiometer as well as on-orbit data demonstrated the accuracy and durability of the Eppley Labs. instrument flown on APEX.

  11. Final results of the advanced photovoltaic experiment

    SciTech Connect

    Brinker, D.J.; Hickey, J.R.

    1994-09-01

    The Advanced Photovoltaic Experiment (APEX) was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. In addition to the cells, it was equipped with an absolute cavity radiometer to measure solar intensity, a spectroradiometer to measure the spectral content of this radiation, and a sun angle sensor. Data from the solar cells and various sensors was obtained on a daily basis during the first eleven months of the 69 month flight. The authors compare pre-flight and post-flight laboratory measurements with on-orbit calibration data. Pre-flight and post-flight calibration data for the cavity radiometers as well as on-orbit data demonstrated the accuracy and durability of the Eppley Labs instrument flown on APEX.

  12. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  13. Photovoltaics: A Solar Technology for Powering Tomorrow.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    1983-01-01

    Photovoltaics, the technology that converts sunlight directly into electricity, may soon be a reliable power source for the world's poor. The one major challenge is cost reduction. Many topics are discussed, including solar powering the Third World, designing the solar building, investing in the sun, and the future of photovoltaics. (NW)

  14. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  15. Solar photovoltaic reflective trough collection structure

    SciTech Connect

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  16. Solar radiation on Mars: Stationary photovoltaic array

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  17. Solar Photovoltaics Technology: The Revolution Begins . . .

    NASA Astrophysics Data System (ADS)

    Kazmerski, Lawrence

    2009-11-01

    The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is at a tipping point in the complex worldwide energy outlook. The emphasis of this presentation is on R&D advances (cell, materials, and module options), with indications of the limitations and strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next- generation PV (organics, nanotechnologies, non-conventional junction approaches) are evaluated. Recent advances in concentrators with efficiencies headed toward 50%, new directions for thin films (20% and beyond), and materials/device technology issues are discussed in terms of technology progress. Insights into technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, solar hydrogen. . . ) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. Issues relating to manufacturing are explored-especially with the requirements for the next-generation technologies. This presentation provides insights into how this technology has developed-and where the R&D investments should be made and we can expect to be by this mid-21st century.

  18. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  19. Preliminary flight test results from the advanced photovoltaic experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  20. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  1. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  2. Solar photovoltaics for development applications

    SciTech Connect

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  3. Solar photovoltaics for development applications

    NASA Astrophysics Data System (ADS)

    Shepperd, L. W.; Richards, E. H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major U.S. photovoltaic system suppliers.

  4. Photovoltaic solar radiometric measurements and evaluation

    SciTech Connect

    Myers, D.R.; Cannon, T.W.

    1996-01-01

    We describe current activities in radiometric measurements by the Photovoltaic (PV) Solar Radiometric Measurements and Evaluation Team as part of the National Renewable Energy Laboratory (NREL) PV Module and System Performance and Engineering Project. Scientific and engineering understanding of incident solar irradiance is provided through radiometric instrumentation and/or measurement methods. Recently, deployed reference broadband radiometric and meteorological instrumentation and spectral instrumentation provide the project with best-practice routine and specialized radiometric data. {copyright} {ital 1996 American Institute of Physics.}

  5. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  6. Siting Solar Photovoltaics at Airports: Preprint

    SciTech Connect

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  7. Preliminary results from the Advanced Photovoltaic Experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Phototovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurements and to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris cratering, and contamination.

  8. Advanced tendencies in development of photovoltaic cells for power engineering

    NASA Astrophysics Data System (ADS)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  9. Advanced photovoltaic-trough development

    SciTech Connect

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  10. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  11. White butterflies as solar photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  12. White butterflies as solar photovoltaic concentrators

    PubMed Central

    Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-01-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  13. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  14. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-01-01

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  15. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Heben, Michael J.

    2016-04-01

    Organo-metal halide perovskite-based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

  16. Solar photovoltaics - An aerospace technology

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. V.

    1977-01-01

    Specific problems affecting the development of low-cost silicon solar array power sources are discussed, taking into account the potential of realizing less than $0.50/per peak watt of silicon solar array technology. A utilization of less expensive processes for the manufacture of pure silicon and more economical procedures of silicon crystal and wafer production appear desirable. Attention is given to a sheet growth process example and a concept of pulsed processing for automated cell production.

  17. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  18. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  19. Photovoltaic and photoelectrochemical conversion of solar energy.

    PubMed

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives. PMID:17272237

  20. Photovoltaic and photoelectrochemical conversion of solar energy.

    PubMed

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  1. Final Results of the Advanced Photovoltaic Experiment Flight Test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1995-01-01

    The Advanced Photovoltaic Experiment was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. In addition to the cells, it was equipped with an absolute cavity radiometer to measure solar intensity, a spectroradiometer to measure the spectral content of this radiation and a sun angle sensor. Data from the solar cells and various sensors was obtained on a daily basis during the first eleven months of the 69 month flight. In this paper pre-flight and post-flight laboratory measurements are compared with on-orbit calibration data. Pre-flight and post-flight calibration data of the cavity radiometer as well as on-orbit data demonstrated the accuracy and durability of the Eppley instrument flown on APEX.

  2. Final results of the Advanced Photovoltaic Experiment flight test

    SciTech Connect

    Brinker, D.J.; Hickey, J.R.

    1995-01-01

    The Advanced Photovoltaic Experiment was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. In addition to the cells, it was equipped with an absolute cavity radiometer to measure solar intensity, a spectroradiometer to measure the spectral content of this radiation and a sun angle sensor. Data from the solar cells and various sensors was obtained on a daily basis during the first eleven months of the 69 month flight. In this paper pre-flight and post-flight laboratory measurements are compared with on-orbit calibration data. Pre-flight and post-flight calibration data of the cavity radiometer as well as on-orbit data demonstrated the accuracy and durability of the Eppley instrument flown on APEX.

  3. You're a What? Solar Photovoltaic Installer

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  4. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  5. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories. PMID:18795026

  6. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  7. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  8. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.

  9. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  10. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  11. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  12. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  13. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  14. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  15. Solar Photovoltaic Residential Project. Project Integration Meeting, Agenda and Abstracts

    NASA Astrophysics Data System (ADS)

    1981-08-01

    Thirty three abstracts are presented covering: residential photovoltaic design, economics and requirements, balance of system components, PV/thermal collectors, PV interfaced with passive solar design, and utilities related aspects.

  16. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  17. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    SciTech Connect

    Matos, Al; Stuby, Rick

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  18. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  19. Evaluation of advanced R and D topics in photovoltaics

    NASA Technical Reports Server (NTRS)

    Surek, T.

    1982-01-01

    An evaluation of advanced research and development topics in photovoltaic that is summarized. The intent was to develop priorities in a list of advanced research and development activities. Thirty-five activities in 10 major categories were evaluated by their contributions to basic scientific advances, potential impact on further technology development by private industry, and priorities for federal advanced research and development funding.

  20. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  1. Advanced photovoltaic experiment, S0014: Preliminary flight results and post-flight findings

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1992-01-01

    The Advanced Photovoltaic Experiment is a Long Duration Exposure Facility (LDEF) experiment originally designed to provide reference solar cell standards for laboratory measurements as well as to investigate the solar spectrum and the effects of long term exposure of space solar cells to the low earth orbit (LEO) environment. The experiment functioned on-orbit as designed, successfully measuring and recording cell performance and solar insolation data over the first 325 days. The objectives and design of the experiment are presented as well as the preliminary flight results and postflight findings.

  2. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    ERIC Educational Resources Information Center

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  3. Modular assembly of a photovoltaic solar energy receiver

    DOEpatents

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  4. Photovoltaic Experiment Using Light from a Solar Simulator Lamp.

    ERIC Educational Resources Information Center

    Chow, R. H.

    1980-01-01

    A photovoltaic cell experiment utilizing the convenience of a solar simulating type lamp is described. Insight into the solid state aspect of a solar cell is gained by the student in studying the characteristics, and deducing from them cell parameters and efficiency. (Author/CS)

  5. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  6. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  7. Alternating polyfluorenes collect solar light in polymer photovoltaics.

    PubMed

    Inganäs, Olle; Zhang, Fengling; Andersson, Mats R

    2009-11-17

    The effort to improve the energy conversion efficiency of polymer solar cells has led to the design of novel donor polymers. To improve open circuit photovoltages (OCVs) and the spectral coverage of the solar spectrum, researchers have looked for materials with high HOMO values, an easily modified electronic structure, and sufficient electronic transport within the polymers. One advance in design from our laboratories has been the development of a class of alternating polyfluorene copolymers (APFOs), which can be combined with fullerenes to make bulk heterojunction materials for photovoltaic conversion. This Account describes copolymers of fluorene that we designed to expand the range the optical absorption of solar cells to include wavelengths out to 1000 nm. In most cases, we combine these polymers with acceptors from the fullerene family, typically the phenyl C(61) butyric acid methyl ester (PCBM) molecule, to generate solar cell materials. The synthesis of alternating copolymers of fluorene with various donor-acceptor-donor elements provides the opportunity to shift both HOMO and LUMO, which we have followed by electrochemical spectroscopy. Moving the LUMO of the APFOs farther from the vacuum level eventually leads to a situation where the driving force for photo-induced charge transfer from polymer donor to fullerene acceptor goes to zero, resulting in inefficient charge generation. Moving the HOMO level closer to the vacuum level reduces the OCV of devices made from bulk heterojunction blends. As we move the bandgap toward lower energies and increase the overlap of optical absorption with the solar spectrum, both these events eventually occur. In devices based on these APFO/fullerene blends, the performance depends on the OCV, the photocurrent under solar illumination, and the fill factor. The fill factor is influenced by electrical transport and charge generation. Optimizing these parameters requires new solutions to the perennial conflict between optically

  8. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  9. Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)

    SciTech Connect

    Speer, B.; Mendelsohn, M.; Cory, K.

    2010-02-01

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

  10. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  11. Recent technological advances in thin film solar cells

    SciTech Connect

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  12. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  13. Advanced Photovoltaic Experiment, S0014: Preliminary Flight Results and Post-Flight Findings

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Brasted, Donald K.

    1991-01-01

    The Advanced Photovoltaic Experiment (APEX) is an LDEF experiment designed to provide reference solar cell standards for laboratory measurements as well as to investigate the solar spectrum and the effects of long term exposure of solar cells to the LEO environment. Silicon and gallium arsenide solar cells were flown with the appropriate instrumentation to periodically measure cell performance and temperature. The experimental objectives, the design employed to realize these objectives and the solar cells and instrumentation selected for the flight are presented. A discussion of the flight data returned are included. Preliminary results from the post flight analysis of the absolute cavity radiometer, the digital solar angle sensor, and the Barr Associates narrow bandpass optical filters are also presented. The initial findings of work to determine the chemical nature of contamination layers on APEX are also presented.

  14. Nanoscience and Nanostructures for Photovoltaics and Solar Fuels

    SciTech Connect

    Nozik, Arthur J.

    2010-07-02

    Quantum confinement of electronic particles (negative electrons and positive holes) in nanocrystals produces unique optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production at lower cost. These approaches and applications are labeled third generation solar photon conversion. Prominent among these unique properties is the efficient formation of more than one electron-hole pair (called excitons in nanocrystals) from a single absorbed photon. In isolated nanocrystals that have three-dimensional confinement of charge carriers (quantum dots) or two-dimensional confinement (quantum wires and rods) this process is termed multiple exciton generation. This Perspective presents a summary of our present understanding of the science of optoelectronic properties of nanocrystals and a prognosis for and review of the technological status of nanocrystals and nanostructures for third generation photovoltaic cells and solar fuels production.

  15. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  16. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  17. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  18. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  19. Solar Photovoltaic Cell/Module Shipments Report

    EIA Publications

    2016-01-01

    Summary data for the photovoltaic industry in the United States. Data includes manufacturing, imports, and exports of modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices. Where possible, imports and exports are listed by country, and shipments to the United States are listed by state.

  20. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1988-01-01

    Advanced photovoltaic/electrochemical (batteries or regenerative fuel cells for storage) power system options for a lunar base are discussed and compared. Estimated system masses are compared with those projected for the SP-100 nuclear system. The results of the comparison are quantified in terms of the mass saved in a scenario which assembles the initial base elements in Low Earth Orbit (LEO) and launches from there to the lunar surface. A brief summary is given of advances in photovoltaic/electrochemical power system technologies currently under development in the NASA/OAST program. A description of the planned focussed technology program for surface power in the new Pathfinder initiative is also provided.

  1. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics.

    PubMed

    Beiley, Zach M; Christoforo, M Greyson; Gratia, Paul; Bowring, Andrea R; Eberspacher, Petra; Margulis, George Y; Cabanetos, Clément; Beaujuge, Pierre M; Salleo, Alberto; McGehee, Michael D

    2013-12-23

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. PMID:24123497

  2. Concentration of solar radiation by white backed photovoltaic panels.

    PubMed

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  3. Photovoltaic and thermal energy conversion for solar powered satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  4. Production of solar photovoltaic cells on the Moon

    NASA Technical Reports Server (NTRS)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  5. Comparison of photovoltaic energy systems for the solar village

    NASA Astrophysics Data System (ADS)

    Piercefrench, Eric C.

    1988-08-01

    Three different solar photovoltaic (PV) energy systems are compared to determine if the electrical needs of a solar village could be supplied more economically by electricity generated by the sun than by existing utility companies. The solar village, a one square mile community of 900 homes and 50 businesses, would be located in a semi-remote area of the Arizona desert. A load survey is conducted and information on the solar PV industry is reviewed for equipment specifications, availability, and cost. Three specific PV designs, designated as Stand-Alone, Stand-Alone with interconnection, and Central Solar Plant, were created and then economically compared through present worth analysis against utility supplied electrical costs. A variety of technical issues, such as array protection, system configuration and operation, and practicability, are discussed for each design. The present worth analysis conclusively shows none of the solar PV designs could supply electricity to the solar village for less cost than utility supplied electricity, all other factors being equal. No construction on a solar village should begin until the cost of solar generated electricity is more competitive with electricity generated by coal, oil, and nuclear energy. However, research on ways to reduce solar PV equipment costs and on ways to complement solar PV energy, such as the use of solar thermal ponds for heating and cooling, should continue.

  6. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  7. Environmental regulations: applicability to advanced photovoltaic concepts

    SciTech Connect

    Schaller, D.A.

    1981-01-01

    Federal environmental, health, and safety programs related to the manufacturing of Cu/sub 2/S/CdS solar cells are discussed. Air quality, occupational health, water quality, solid and hazardous wastes, and occupational safety related to the fabrication of Cu/sub 2/S/CdS solar cells are discussed. (WHK)

  8. Simulated hail impact testing of photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  9. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    PubMed

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm.

  10. Improving the efficiency of solar photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Aribisala, Henry A.

    As the local and national clamor for foreign energy independent United States continues to grow unabated; renewable energy has been receiving increased focus and it's widely believed that it's not only the answer to ever increasing demand for energy in this country, but also the environmentally friendly means of meeting such demand. During the spring of 2010, I was involved with a 5KW solar power system design project; the project involved designing and building solar panels and associated accessories like the solar array mounts and Solar Inverter system. One of the key issues we ran into during the initial stage of the project was how to select efficient solar cells for panel building at a reasonable cost. While we were able to purchase good solar cells within our allocated budget, the issue of design for efficiency was not fully understood , not just in the contest of solar cells performance , but also in the overall system efficiency of the whole solar power system, hence the door was opened for this thesis. My thesis explored and expanded beyond the scope of the aforementioned project to research different avenues for improving the efficiency of solar photo-voltaic power system from the solar cell level to the solar array mounting, array tracking and DC-AC inversion system techniques.

  11. Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.

  12. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  13. Glass for low-cost photovoltaic solar arrays

    SciTech Connect

    Bouquet, F.L.

    1980-02-01

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  14. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  15. Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhandari, Khagendra P.

    Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time. The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners. Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250

  16. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  17. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    SciTech Connect

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  18. Current challenges in organic photovoltaic solar energy conversion.

    PubMed

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  19. Preface: Advances in solar physics

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Nakariakov, Valery M.

    2015-12-01

    The idea for this special issue of Advances in Space Research (ASR) was formulated during the 14th European Solar Physics Meeting (ESPM-14) that took place in Dublin, Ireland in September 2014. Since ASR does not publish conference proceedings, it was decided to extend a general call to the international solar-physics community for manuscripts pertinent to the following thematic areas: New and upcoming heliospheric observational and data assimilation facilities.

  20. Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes.

    PubMed

    Kim, Hyung Do; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2016-02-01

    Perovskite solar cells exhibit improved photovoltaic parameters with increasing perovskite grain size. The larger photocurrent is due to the enhanced absorption efficiency for thicker perovskite layers. The larger open-circuit voltage (VOC ) is ascribed to the reduced trap-assisted recombination for the larger grains. As a result, the power conversion efficiency exceeds 19% at best. Further improvement in VOC would be possible if the trap density were reduced.

  1. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research

  2. Spin-enhanced organic bulk heterojunction photovoltaic solar cells.

    PubMed

    Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy

    2012-01-01

    Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.

  3. Photovoltaics and solar thermal conversion to electricity - Status and prospects

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1979-01-01

    Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.

  4. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Solano, Manuel E.; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.; Lakhtakia, Akhlesh

    2013-11-01

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  5. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  6. About infrared scanning of photovoltaic solar plant

    NASA Astrophysics Data System (ADS)

    Kauppinen, T.; Panouillot, P.-E.; Siikanen, S.; Athanasakou, E.; Baltas, P.; Nikopoulous, B.

    2015-05-01

    The paper is discussing about infrared scanning of PV solar plants. It is important that the performance of each solar panel and cell is verified. One new possibility compared to traditional ground-based scanning (handheld camera) is the utilization of UAV (Unmanned Aerial Vehicle). In this paper results from a PV solar Plant in Western Greece are introduced. The nominal power of the solar plants were 0, 9 MW and 2 MW and they were scanned both by a ground-controlled drone and by handheld equipment. It is essential to know all the factors effecting to results and also the time of scanning is important. The results done from the drone and from ground-based scanning are compared; also results from various altitudes and time of day are discussed. The UAV (Unmanned Aerial Vehicle/RPAS (Remote Piloted Aircraft Systems) will give an excellent opportunity to monitor various targets which are impossible or difficult to access from the ground. Compared to fixed-wing and helicopter-based platforms it will give advantages but also this technology has limitations. One limitation is the weight of the equipment and the short operational range and short flight time. Also valid procedures must be created for different solutions in the future. The most important thing, as in all infrared thermography applications, is the proper interpretation of results.

  7. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  8. Photovoltaics for commercial solar power applications; Proceedings of the Meeting, Cambridge, MA, Sept. 18, 19, 1986

    NASA Astrophysics Data System (ADS)

    Adler, David

    1986-01-01

    Papers are presented on efficient multijunction monolithic cascade solar cells, high efficiency silicon solar cells, point contact silicon cells, and space solar cell research. Also considered are photovoltaic power plants, the reliability of photovoltaic modules, the continuous fabrication of amorphous silicon solar cells on polymer substrates, and the density of states of amorphous silicon. Other topics include breaking the efficiency-stability-production barrier in amorphous photovoltaics, the development of flexible a-SiC/a-Si heterojunction solar cells and stable a-SiC/a-Si tandem cells with blocking barriers, and performance aspects for thin-film-silicon-hydrogen solar cells.

  9. Field trial of rural solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Basu, P.; Mukhopadhyay, K.; Banerjee, T.; Das, S.; Saha, H.

    Experience, costs, and performance of photovoltaic (PV) systems set up in a remote Indian village to power an adult literacy center and an irrigation pump are described. The center was furnished with a 14-module, 200 W array to power a television and three fluorescent lamps. The pumping installation has 20 modules for a 300 W output directly coupled to a 300-W dc pump motor. Data were gathered on the open circuit voltage, short circuit current, specific gravity of the battery fluid, degradation of the cells, nominal operating temperature of the cells, load currents, Amp-hours, water flow rate (pump), and the static head and draw down rate (pump). Monitoring of the array performances in the dusty environment showed that once/week cleaning is necessary. Al-substrates cracked at the center installation and sealant evaporation caused condensation which degraded the light transmissivity and thereby the short-circuit current of the modules. The combination of low-efficiency (5 pct) cells and cheap labor demonstrated economic operation without high-efficiency cells.

  10. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  11. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  12. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  13. Solar-photovoltaic power for broadcasting stations: an economic analysis

    SciTech Connect

    Nichols, B.E.; Katzman, M.T.

    1982-08-01

    An economic analysis of the profitability for broadcasting stations of replacing conventional electricity with on-site solar photovoltaic power systems has been undertaken. Technological characteristics of these power systems are presented along with the economic assumptions necessary for their evaluation. Time of initial profitability, time of optimal investment, optimum system capacity, and impact of tax incentivs on profitability are analyzed for several locations in the country representative of the range of insolation conditions. The analyses indicate that photovoltaic power systems are expected, if cost predictions are met, to prove profitable for the broadcasting market in the Southwest by the early 1980s, in the South by the mid-1980s and in the Northeast by the late 1980s. The study was performed in 1979 and was used o help design an experimental PV power system for a radio station in Ohio, which was installed in that year and has operated successfully ever since.

  14. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  15. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  16. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization.

    PubMed

    Fan, Wenguang; Leung, Michael K H

    2016-02-02

    Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC) and solar photovoltaics (PV) have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR) mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs). Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  17. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  18. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  19. Turning the Moon into a Solar Photovoltaic Paradise

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  20. Advanced Silicon Solar Cell Device Physics and Design

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael Gardner

    A fundamental challenge in the development and deployment of solar photovoltaic technology is a reduction in cost enabling direct competition with fossil-fuel-based energy sources. A key driver in this cost reduction is optimized device efficiency, because increased energy output leverages all photovoltaic system costs, from raw materials and module manufacturing to installation and maintenance. To continue progress toward higher conversion efficiencies, solar cells are being fabricated with increasingly complex designs, including engineered nanostructures, heterojunctions, and novel contacting and passivation schemes. Such advanced designs require a comprehensive and unified understanding of the optical and electrical device physics at the microscopic scale. This thesis focuses on a microscopic understanding of solar cell optoelectronic performance and its impact on cell optimization. We consider this in three solar cell platforms: thin-film crystalline silicon, amorphous/crystalline silicon heterojunctions, and thin-film cells with nanophotonic light trapping. The work described in this thesis represents a powerful design paradigm, based on a detailed physical understanding of the mechanisms governing solar cell performance. Furthermore, we demonstrate the importance of understanding not just the individual mechanisms, but also their interactions. Such an approach to device optimization is critical for the efficiency and competitiveness of future generations of solar cells.

  1. Advanced materials development for multi-junction monolithic photovoltaic devices

    SciTech Connect

    Dawson, L.R.; Reno, J.L.

    1996-07-01

    We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

  2. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  3. A solar photovoltaic power system for use in Antarctica

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.; Merolla, Anthony; Colozza, Anthony

    1993-12-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  4. A solar photovoltaic power system for use in Antarctica

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Colozza, A. J.; Merolla, A.

    1994-01-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys and provided a six-person field team with the power to run personal computers and printers, lab equipment, lightning, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering 1.5 kW peak power, three lead-acid gel battery modules supplying 2.4 kWh, and electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for each of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both and environmental and cost standpoint is interested in the use of alternate forms of energy, such as solar power. Such a power system will also provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  5. A solar photovoltaic power system for use in Antarctica

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.; Colozza, A. J.; Merolla, A.

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys and provided a six-person field team with the power to run personal computers and printers, lab equipment, lightning, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering 1.5 kW peak power, three lead-acid gel battery modules supplying 2.4 kWh, and electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for each of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both and environmental and cost standpoint is interested in the use of alternate forms of energy, such as solar power. Such a power system will also provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  6. A solar photovoltaic power system for use in Antarctica

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Merolla, Anthony; Colozza, Anthony

    1993-01-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  7. Multifunctional solar facades -- A new challenge for photovoltaic

    SciTech Connect

    Benemann, J.

    1994-12-31

    During the last decades glass has become a very attractive material for sophisticated design on large buildings such as office or public buildings, hotels, shopping malls or manufacturing buildings. To protect employees in those buildings from light, heat or noise the glass industry has developed a number of multifunctional glass systems for windows, facades and roofs. As a logical step, the glass industry got the idea of including photovoltaics into facade elements to generate electricity in addition to the above mentioned functions. Flachglas Solartechnik GmbH, Germany, developed this new type of photovoltaic facade elements into a building owned by a city utility. In May 1991, the facade was inaugurated and this system received the trade name OPTISOL{reg_sign}. In the specially designed production line for OPTISOL facade elements the solar cells are embedded with a special clear cast UV-resistant resin between two glass panes. OPTISOL elements can be produced in sizes up to 2.1 m x 3.2 m. The light permeability can also be adjusted to the respective requests by arranging the solar cells in different ways.

  8. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  9. Advances in Solar Power Forecasting

    NASA Astrophysics Data System (ADS)

    Haupt, S. E.; Kosovic, B.; Drobot, S.

    2014-12-01

    The National Center for Atmospheric Research and partners are building a blended SunCast Solar Power Forecasting system. This system includes several short-range nowcasting models and improves upon longer range numerical weather prediction (NWP) models as part of the "Public-Private-Academic Partnership to Advance Solar Power Forecasting." The nowcasting models being built include statistical learning models that include cloud regime prediction, multiple sky imager-based advection models, satellite image-based advection models, and rapid update NWP models with cloud assimilation. The team has also integrated new modules into the Weather Research and Forecasting Model (WRF) to better predict clouds, aerosols, and irradiance. The modules include a new shallow convection scheme; upgraded physics parameterizations of clouds; new radiative transfer modules that specify GHI, DNI, and DIF prediction; better satellite assimilation methods; and new aerosol estimation methods. These new physical models are incorporated into WRF-Solar, which is then integrated with publically available NWP models via the Dynamic Integrated Forecast (DICast) system as well as the Nowcast Blender to provide seamless forecasts at partner utility and balancing authority commercial solar farms. The improvements will be described and results to date discussed.

  10. Advanced Multi-Junction Photovoltaic Device Optimization For High Temperature Space Applications

    NASA Astrophysics Data System (ADS)

    Sherif, Michael

    2011-10-01

    Almost all solar cells available today for space or terrestrial applications are optimized for low temperature or "room temperature" operations, where cell performances demonstrate favourable efficiency figures. The fact is in many space applications, as well as when using solar concentrators, operating cell temperature are typically highly elevated, where cells outputs are severely depreciated. In this paper, a novel approach for the optimization of multi-junction photovoltaic devices at such high expected operating temperature is presented. The device optimization is carried out on the novel cell physical model previously developed at the Naval Postgraduate School using the SILVACO software tools [1]. Taking into account the high cost of research and experimentation involved with the development of advanced cells, this successful modelling technique was introduced and detailed results were previously presented by the author [2]. The flexibility of the proposed methodology is demonstrated and example results are shown throughout the whole process. The research demonstrated the capability of developing a realistic model of any type of solar cell, as well as thermo-photovoltaic devices. Details of an example model of an InGaP/GaAs/Ge multi-junction cell was prepared and fully simulated. The major stages of the process are explained and the simulation results are compared to published experimental data. An example of cell parameters optimization for high operating temperature is also presented. Individual junction layer optimization was accomplished through the use of a genetic search algorithm implemented in Matlab.

  11. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  12. Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast

    SciTech Connect

    Lofaro R.; Villaran, M; Colli, A.

    2012-06-03

    As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

  13. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  14. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  15. Advanced thermal management materials for concentrator photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2010-08-01

    Thermal management is a critical issue for photovoltaics (PVs), especially concentrator photovoltaic systems. Thermal management problems are similar for all semiconductors, including those used in microelectronics and other optoelectronic applications, such as lasers, light-emitting diodes (LEDs), detectors and displays. We divide the thermal management problem into two parts: heat dissipation and thermal stresses. Heat dissipation affects efficiency and lifetime. Thermal stresses affect manufacturing yield and lifetime. Traditional thermal management materials all have serious deficiencies. Copper and aluminum have high coefficients of thermal expansion (CTEs), which can cause severe thermal stresses during manufacturing and in service. Compliant attach materials, used to minimize thermal stresses, all have major drawbacks. Traditional low-CTE thermal management materials have relatively low thermal conductivities and are hard to machine. In response to these deficiencies, new thermal management materials have been, and are continuing to be developed, which have low CTEs and thermal conductivities up to four times that of copper. Some are reportedly are cheaper than copper. In this paper, we survey the six categories of advanced thermal materials, including properties, state of maturity and cost. We also review a CPV application in which an advanced metal matrix composite with a tailored CTE eliminated solder joint failure and provided other benefits.

  16. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  17. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  18. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Astrophysics Data System (ADS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-10-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100

  19. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100

  20. Impacts of Photovoltaic Power Plant Sitings and Distributed Solar Panels on Meteorology and Air Quality in Central California

    NASA Astrophysics Data System (ADS)

    Bastien, L. A.; Jin, L.; Brown, N. J.

    2012-12-01

    California's electric utility companies are required to use renewable energy to produce 20% of their power by 2010 and 33% by 2020. A main source of the power will be solar energy because photovoltaic technologies have advanced so much that large scale installations are being built and will be built in the future with even greater capacity. Rather than being a large emission source, these plants affect the ambient environment through albedo changes and by emission reductions associated with not burning fossil fuels to generate the same amount of electricity. Like conventional power plants, their impact on local meteorology and air quality depends on the specific technology, ambient atmospheric conditions, and the spatial location of the plant. Also, as solar panels on commercial and residential rooftops become even more common, the effect of distributed photovoltaic panels on meteorology and air quality is likely to become significant. In this study, we use the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model at high resolution of 4 km x 4 km over several 5-day high-ozone episodes of the summer 2000 to assess the impact of photovoltaic panels on meteorology and air quality in Central California. We investigate the effect of locating a 1.0 Giga watt solar plant in different locations and the effect of distributed rooftop photovoltaic panels in major Californian cities, with a focus on peak and 8-hour average ozone and 24-hour average PM2.5.

  1. Photovoltaic solar panels of crystalline silicon: Characterization and separation.

    PubMed

    Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo

    2016-03-01

    Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C.

  2. Photovoltaic solar panels of crystalline silicon: Characterization and separation.

    PubMed

    Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo

    2016-03-01

    Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C. PMID:26787682

  3. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    NASA Astrophysics Data System (ADS)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  4. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect

    White, D.L.; Howell, B.

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  5. Magnetic Studies of Photovoltaic Processes in Organic Solar Cells

    SciTech Connect

    Zang, Huidong; Ivanov, Ilia N; Hu, Bin

    2010-01-01

    In this paper, we use magnetic field effects of photocurrent (MFEPC ) to study the photovoltaic processes in pristine conjugated polymer, bulk heterojunction, and double-layer solar cells, respectively, based on poly(3-alkylthiophene) (P3HT). The MFEPC reveals that the photocurrent generation undergoes the dissociation in polaron pair states and the charge reaction in excitonic states in pristine conjugated polymers. As for the bulk-heterojunction solar cells consisting of electron donor P3HT and electron acceptor [6,6]-phenyl C61-butyric acid methyl ester (PCBM), the MFEPC indicates that the dissociated electrons and holes inevitably form the intermolecular charge-transfer (CT) complexes at donor and acceptor interfaces. Essentially, the photocurrent generation relies on the further dissociation of intermolecular CT complexes. Moreover, we use double-layer solar cell to further study the intermolecular CT complexes with well-controlled donor acceptor interfaces based on double-layer P3HT/TiOx design. We find that the increase in free energies can significantly reduce the density of CT complexes upon thermal annealing.

  6. Solar cells design for low and medium concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Baig, Hasan; Heasman, Keith C.; Sarmah, Nabin; Mallick, Tapas

    2012-10-01

    The solar cell is the key element of any CPV system, and its design plays an important role in enhancing the performance of the entire system. Special types of cells are required in the CPV systems capable of operating at high concentrations and elevated temperatures. These Concentrator solar cells differ significantly from the usual solar cells in the method of manufacture, the overall cell design and their performance. Systematic design and manufacture of the cell ensures better performance in a given CPV system. A number of factors come into play while designing the solar cell for a specific system these include concentration, cell material properties, expected operating temperature, shape, bus bar configuration and finger spacing. Most of these variables are decided on based on some rules of thumb and PC1D calculations. However, there is scope for design improvement and cell optimization by performing a detailed analysis based on the illumination profile incident on the cell. Recent studies demonstrated the use of Finite element method to analyze the electrical behavior of PV cell under the influence of arbitrarily chosen illumination flux profiles. This study outlines a methodology and analysis procedure while performing a case study of a CPV system under development having a non-uniform illumination profile towards the exit of the concentrator. The LCPV system chosen is the Photovoltaic Facades of Reduced Costs Incorporating Devices with Optically Concentrating Elements (PRIDE) concentrator made of dielectric material. A coupled optical, thermal and electrical analysis is performed on the system to demonstrate the method useful in designing solar cells for low and medium concentrations.

  7. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    PubMed Central

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664

  8. Experience with a grid-interactive solar photovoltaic electric system

    NASA Astrophysics Data System (ADS)

    Kaplan, S. I.; Benson, C. M.

    A water/glycol-cooled solar photovoltaic array used at Mississippi County (Arkansas) Community College is described, and preliminary results from systems checkout are given. The system has a rated output of 240 kW in summer (with 845 W/sq m insolation at 30 C), and delivers 11.5 million BTU of heat output in winter. Excess power is diverted into the local utility power grid. Preliminary tests indicate that single row output is 3300 W with 904 W/sq m insolation, whereas 5.33 kW/row is expected. However, by realigning position sensors for the tracking drives, readjusting the focal position of the receivers, and cleaning reflectors and cell faces, a 60% increase in output should occur.

  9. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  10. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  11. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  12. System tradeoffs in siting a solar photovoltaic material recovery infrastructure.

    PubMed

    Goe, Michele; Gaustad, Gabrielle; Tomaszewski, Brian

    2015-09-01

    , imposes a minimum collection rate, and implements higher tip fees would encourage exhaustive material recovery for solar photovoltaic modules at end-of-life, beyond New York State. These results have important implications for policy makers and waste managers especially in locations where there is rapid adoption of renewable energy technologies. PMID:26144560

  13. System tradeoffs in siting a solar photovoltaic material recovery infrastructure.

    PubMed

    Goe, Michele; Gaustad, Gabrielle; Tomaszewski, Brian

    2015-09-01

    , imposes a minimum collection rate, and implements higher tip fees would encourage exhaustive material recovery for solar photovoltaic modules at end-of-life, beyond New York State. These results have important implications for policy makers and waste managers especially in locations where there is rapid adoption of renewable energy technologies.

  14. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    PubMed

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. PMID:25530506

  15. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  16. Advances in Solar Radiometry and Metrology

    SciTech Connect

    Myers, D.; Andreas, A.; Reda, I.; Gotseff, P.; Wilcox, S.; Stoffel, T.; Anderberg, M.

    2005-01-01

    The Solar Radiometry and Metrology task at the National Renewable Energy Laboratory (NREL) provides traceable optical radiometric calibrations and measurements to photovoltaic (PV) researchers and the PV industry. Traceability of NREL solar radiometer calibrations to the World Radiometric Reference (WRR) was accomplished during the NREL Pyrheliometer Comparison in October 2003. The task has calibrated 10 spectral and more than 180 broadband radiometers for solar measurements. Other accomplishments include characterization of pyranometer thermal offset errors with laboratory and spectral modeling tools; developing a simple scheme to correct pyranometer data for known responsivity variations; and measuring detailed spectral distributions of the NREL High Intensity Pulsed Solar Simulator (HIPSS) as a function of lamp voltage and time. The optical metrology functions support the NREL Measurement and Characterization Task effort for ISO 17025 accreditation of NREL Solar Reference Cell Calibrations. Optical metrology functions have been integrated into the NREL quality system and audited for ISO17025 compliance.

  17. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  18. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  19. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  20. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... SECURITY U.S. Customs and Border Protection Notice of Issuance of Final Determination Concerning Solar... Protection (``CBP'') has issued a final determination concerning the country of origin of certain solar... country of origin of the solar photovoltaic systems for purposes of U.S. Government procurement....

  1. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  2. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  3. Performance of a hybrid photovoltaic thermal solar collector

    SciTech Connect

    Sopian, K.; Liu, H.T.; Kakac, S.; Veziroglu, T.N.

    1996-12-31

    Closed form solutions have been obtained for both a single-pass and a double-pass collectors and, for a passively cooled photovoltaic panel. The mean plate temperature, photovoltaic cell, thermal, and combined efficiencies have been obtained. The results show that the double-pass photovoltaic thermal collector has a more productive cooling effect compared to the single-pass photovoltaic thermal collector, and thus has better photovoltaic cells performance. The effect of the mass flow rate, duct depth, and packing factor on the photovoltaic cell performance are also discussed.

  4. Advanced Solar Cell Testing and Characterization

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Curtis, Henry; Piszczor, Michael

    2005-01-01

    The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

  5. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  6. Voltage-current-power meter for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G. (Inventor)

    1979-01-01

    A meter is disclosed for measuring the voltage, current, and power (VIP) parameters of a photovoltaic solar array, or array module, under sunlight operating conditions utilizing a variable load connected across the array and controlled by a voltage regulator which responds to the difference between the output voltage of the array and a programmed test voltage from a source which generates a single ramp voltage for measuring and recording current as a function of voltage, repeated ramp voltages at a high rate for peak output measurements or a DC voltage for VIP measurements at selected points on the I-V characteristic curve of the array. The voltage signal from a current sensing element, such as a shunt resistor in series with the variable load, is compared with the output current of a reference solar cell to provide a normalizing signal to be added to the signal from the current-sensing element in order to provide a record of array current as a function of array voltage, i.e., for all load conditions from short circuit to open circuit. As the normalized current is thus measured, an analog multiplier multiplies the array voltage and normalized current to provide a measurement of power. Switches are provided to selectively connect the power, P, current, I, or voltage, V, to a meter, directly or through a peak detector. At the same time any one of the parameters V, I and P may be recorded as a function of any other parameter.

  7. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  8. Plasmonics for improved photovoltaic devices.

    PubMed

    Atwater, Harry A; Polman, Albert

    2010-03-01

    The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

  9. Nonstationary Effects at Photovoltaic Module Characterization Using Pulsed Solar Simulator

    NASA Astrophysics Data System (ADS)

    Silsirivanich, N.; Chenvidhya, D.; Kirtikara, K.; Sriprapha, K.; Sritharathikhun, J.; Songprakorp, R.; Jivacate, C.

    2015-05-01

    This paper presents the dynamic characteristic of a tandem silicon/amorphous silicon (a-Si:H/a-Si:H) photovoltaic (PV) module measured in the nonstationary regime. The current-voltage (I-V) characteristics of the PV module are generally measured by using a pulsed solar simulator. Distortions of the I-V curves can often be observed when measurements are done under the solar simulator with different pulse durations or different sweeping rates of the curve tracing, a direction of the curve tracing from short circuit to open circuit (SCOC), or from open circuit to short circuit (OCSC). In this paper, the measurements were made on the a-Si:H/a-Si:H tandem PV module consisting of 40 cells in series connection. The PV module area is 0.78 m2. Dissimilarities of the I-V curves of the PV modules can be observed by the deviation of power at maximum point (Pm) and fill factor (FF). From the experimental results, it is found that the largest deviation of Pm is 6.12% for 1 ms sweeping duration with OCSC direction of the curve tracing. Dissimilarities of the I-V curves can be explained by charging and discharging capacitive currents due to a voltage dependence of solar cell parameters. Moreover, the capacitance effects can be described by a dynamic impedance measurement of the PV module in the dark with forward and reverse biasing. The voltage and time-dependent parameters are the diffusion capacitance (CD), transient or junction capacitance (CT), series resistance (Rs), and shunt resistance (Rsh),which can be revealed by an impedance plot.

  10. Meteorologic/atmospheric effects on the performance of solar photovoltaic energy conversion devices

    SciTech Connect

    Hulstrom, R L

    1983-07-01

    The purpose of this paper is to highlight and summarize those meteorologic/atmospheric effects on the performance of solar photovoltaic energy conversion devices (and systems). Areas of performance considered will include the production of electricity, cost, reliability, and predictably. All of these areas, as discussed above, impact the ability of photovoltaic devices, systems, and power plants to eventually become a significant source of electricity for the United States. In addition, this paper will identify the pertinent meteorologic, atmospheric, and solar radiation data required to ensure the proper research, development, design, application, and operation of photovoltaic devices, systems, and power plants.

  11. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-01-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  12. Advances in solar radio astronomy

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.

  13. Economic and financial analysis of residential photovoltaic systems. The impact of solar photovoltaics on utilities

    NASA Astrophysics Data System (ADS)

    Katzman, M. T.; Katzman, A. C.

    1982-02-01

    Hourly load data from El Paso Electric and Boston Edison are subjected to preliminary examination by comparison with simulated photovoltaic array output. Three utility production costing and reliability models are compared: SYSGEN, SIMSTOR, and GENCOST. All simulations suggest that photovoltaic penetration will: (1) result in economically significant fuel savings; (2) result in small reductions in capacity requirements; (3) result in total savings that are likely to exceed the costs of photovoltaic systems by the late 1980s. The value of savings per MW of photovoltaics diminishes with increased penetration.

  14. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  15. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  16. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    PubMed

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  17. Catalyzing Mass Production of Solar Photovoltaic Cells Using University Driven Green Purchasing

    ERIC Educational Resources Information Center

    Pearce, Joshua M.

    2006-01-01

    Purpose: The purpose of this paper is to explore the use of the purchase power of the higher education system to catalyze the economy of scale necessary to ensure market competitiveness for solar photovoltaic electricity. Design/methodology/approach: The approach used here was to first determine the demand necessary to construct "Solar City…

  18. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  19. BMDO photovoltaics program overview

    NASA Technical Reports Server (NTRS)

    Caveny, Leonard H.; Allen, Douglas M.

    1994-01-01

    This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.

  20. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  1. Advances in polycrystalline thin-film photovoltaics for space applications

    SciTech Connect

    Lanning, B.R.; Armstrong, J.H.; Misra, M.S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 eV and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not `reactor-specific` and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a `substrate configuration` by physical vapor deposition techniques and CdTe cells/modules are fabricated in a `superstrate configuration` by wet chemical methods.

  2. Recent advances in the EPRI high-concentration photovoltaic program

    SciTech Connect

    McNaughton, W.P.; Richman, R.H. )

    1992-02-01

    During the 1970s and early 1980s a promising solar cell technology evolved in the laboratory at Stanford University. The work produced a point-contact photovoltaic cell that has established a number of world record achievements. Since 1984, the Electric Power Research Institute has moved the laboratory concept forward commercial application. The design and processing of the cell has progressed from laboratory device research toward a mass-produced commodity, with concurrent reduction in cost and improvement in uniformity. An extension test program to determine module and array performance and reliability has been put in place. More than 1500 high concentration cells have been produced in the evolutionary process. Approximately 700 of those cells have been or are presently being installed in fully operational modules for field tests. Over 130 modules have been constructed and are in field testing for electrical, thermal or weathering tests. Two full-sized array structures (each containing 60 instrumented thermal'' modules) have been constructed and continue to undergo field testing for alignment, performance, and reliability. This two volume report reviews the activities that have occurred in this technology since the issue of the early conceptual design study. The intent is to inform interested readers -- utilities, commercializers, researchers -- as to the primary developments and test results that have been achieved. A considerable body of of raw data'' has been included so that interested researchers can draw their own conclusions. Volume 1 discusses design and fabrication of the cell; performance of the cell; design, construction and testing of the cell package and the design, fabrication and testing of the optical system. Volume 2 reviews the module and array programs, discusses other system issues and presents a short review of the technology's open issues.

  3. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  4. Quantum Dot Sensitized Nanotubes for Full Solar Spectrum Photovoltaic Cell

    NASA Astrophysics Data System (ADS)

    Khanal, Sohana

    The demand for energy with limited non-renewable sources of energy has called researchers to find clean renewable energy sources. Solar light is considered good choice of the alternate energy. Our effort in this work was to investigate efficient photovoltaic (PV) systems by designing a hybrid photoelectrode with good absorption as well as charge transport properties. A coupled semiconductor material, one-dimensional TiO2 nanotubes (1D TiO2-NTs), filled with low band semiconductor quantum dots (QDs), PbS QDs, for better charge carrier transport was prepared and investigated. The vertically standing self assembled nanotubular array was attained by anodizing the Ti metal in two different solutions: (1) Ethylene Glycol with 0.5 wt% NH4F and 3 vol percent water and (2) 0.5M H3PO4 with 0.5 wt% NH4F. The anodized samples were annealed and then filled with the nanoparticles of other low band gap semiconductor materials. The CdS nanoparticles were used for the better understanding of the sensitizing process. The material was then switched to the PbS. As in the hypothesis, if PbS quantum dots are uniformly distributed in the 1D TiO2 Multiple Charge Carrier Generation can be created since PbS has a small band gap. A chemical bath deposition process in the presence of ultrasonic waves was adopted for the deposition of the QDs. Saturated lead sulfide solution was used as the lead source and the 0.2 M Na2S solution for the sulfur source. The process resulted in the successful uniform deposition of the PbS QDs onto the 1D TiO2 NTs. The deposited compound obeyed the stoichiometric ratio of 1:1 as desired. Photocurrent densities of 4.5 mA/cm2 was obtained, which is higher than the TiO2 alone in a polysulfide solution. PbS-TiO2 can be a suitable candidate for harvesting a broad solar spectrum as the UV-vis study proved that they absorb the light in the UV range.

  5. Combined solar thermal and photovoltaic power plants - An approach to 24h solar electricity?

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.

    2016-05-01

    Solar thermal power plants have the advantage of being able to provide dispatchable renewable electricity even when the sun is not shining. Using thermal energy strorage (TES) they may increase the capacity factor (CF) considerably. However in order to increase the operating hours one has to increase both, thermal storage capacity and solar field size, because the additional solar field is needed to charge the storage. This increases investment cost, although levelised electricity cost (LEC) may decrease due to the higher generation. Photovoltaics as a fluctuating source on the other side has arrived at very low generation costs well below 10 ct/kWh even for Central Europe. Aiming at a capacity factor above 70% and at producing dispatchable power it is shown that by a suitable combination of CSP and PV we can arrive at lower costs than by increasing storage and solar field size in CSP plants alone. Although a complete baseload power plant with more than 90% full load hours may not be the most economic choice, power plants approaching a full 24h service in most days of the year seem to be possible at reasonably low tariffs.

  6. A summary of recent advances in the EPRI high-concentration photovoltaic program

    SciTech Connect

    McNaughton, W.P.; Richman, R.H. )

    1992-03-01

    During the 1970s and early 1980s a promising solar cell technology evolved in the laboratory at Stanford University under contract with the Electric Power Research Institute (EPRI). The work produced a point-contact photovoltaic cell that has established a number of world record achievements. In 1984 a conceptual design was proposed for a cell package, module, and array system for use in utility-scale commercial power production. Since 1984, EPRI has moved the laboratory concept forward toward commercial application. The design and processing of the cell has progressed from laboratory device research toward a mass-produced commodity, with concurrent reduction in cost and improvement in uniformity. A number of inadequacies have been confronted and eliminated. A progressive design philosophy for the production of cell packages, modules and arrays has been invoked and executed. An extensive test program to determine module and array performance and reliability has been put in place. More than 1500 high concentration cells have been produced in the evolutionary process. Approximately 700 of those cells have been or are presently being installed in fully operational modules for field tests. Over 130 modules have been constructed and are in field testing for electrical, thermal or weathering tests. Two-full sized array structures (each containing 60 instrumented thermal'' modules) have been constructed and continue to undergo field testing for alignment, performance, and reliability. The purpose of this summary document is to provide an overview of the activities that have occurred since the issue of the early conceptual design study. This summary has a companion two-volume report, Recent Advances in The EPRI High-Concentration Photovoltaic Program (1), that provides considerable detail about the advances that are summarized in this volume.

  7. A summary of recent advances in the EPRI high-concentration photovoltaic program

    SciTech Connect

    McNaughton, W.P.; Richman, R.H.

    1992-03-01

    During the 1970s and early 1980s a promising solar cell technology evolved in the laboratory at Stanford University under contract with the Electric Power Research Institute (EPRI). The work produced a point-contact photovoltaic cell that has established a number of world record achievements. In 1984 a conceptual design was proposed for a cell package, module, and array system for use in utility-scale commercial power production. Since 1984, EPRI has moved the laboratory concept forward toward commercial application. The design and processing of the cell has progressed from laboratory device research toward a mass-produced commodity, with concurrent reduction in cost and improvement in uniformity. A number of inadequacies have been confronted and eliminated. A progressive design philosophy for the production of cell packages, modules and arrays has been invoked and executed. An extensive test program to determine module and array performance and reliability has been put in place. More than 1500 high concentration cells have been produced in the evolutionary process. Approximately 700 of those cells have been or are presently being installed in fully operational modules for field tests. Over 130 modules have been constructed and are in field testing for electrical, thermal or weathering tests. Two-full sized array structures (each containing 60 instrumented ``thermal`` modules) have been constructed and continue to undergo field testing for alignment, performance, and reliability. The purpose of this summary document is to provide an overview of the activities that have occurred since the issue of the early conceptual design study. This summary has a companion two-volume report, Recent Advances in The EPRI High-Concentration Photovoltaic Program (1), that provides considerable detail about the advances that are summarized in this volume.

  8. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    PubMed

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-01

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  9. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  10. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  11. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  12. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  13. Advanced solar concentrator: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary design of a point-focusing solar concentrator, consisting of a steerable space frame structure supporting a paraboloidal mirror glass reflector, is described. A mass production, operation, and maintenance cost assessment is presented. A conceptual evaluation of a modified concentrator design is included. The detailed design of one of the lightweight, structurally efficient reflective elements comprising the paraboloidal reflective surface is given.

  14. Residential solar photovoltaic systems: Final report for the Northeast Residential Experiment Station

    SciTech Connect

    Kern, E.C. Jr.

    1986-06-01

    This report covers research and development work conducted by the MIT Energy Lab. from July 1982 through June 1986. This Energy Lab. work in the field of solar photovoltaic systems followed six years of similar work at the MIT Lincoln Lab. under the same contract with the US DOE. The final report from the Lincoln Lab. period was published by Lincoln Lab. in 1983. During the period of Energy Lab. involvement, the project focused on the refinement of residential scale, roof-mounted photovoltaic systems for application in the northeastern US. Concurrent with the conclusion of MIT`s involvement, the New England Electric Co. is building a major field test of residential photovoltaics in Gardner, Massachusetts to determine experimentally the effects of photovoltaics on electric power company operations. Using systems designs and technology developed at MIT, the long-term performance of these thirty residential systems in Gardner will provide a measure of our success.

  15. Advances in Single and Multijunction III-V Photovoltaics on Silicon for Space Power

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fitzgerald, Eugene A.; Ringel, Steven A.

    2005-01-01

    A collaborative research effort at MIT, Ohio State University and NASA has resulted in the demonstration of record quality gallium arsenide (GaAs) based single junction photovoltaic devices on silicon (Si) substrates. The ability to integrate highly efficient, radiation hard III-V based devices on silicon offers the potential for dramatic reductions in cell mass (approx.2x) and increases in cell area. Both of these improvements offer the potential for dramatic reductions in the cost of on-orbit electrical power. Recently, lattice matched InGaP/GaAs and metamorphic InGaP/InGaAs dual junction solar cells were demonstrated by MBE and OMVPE, respectively. Single junction GaAs on Si devices have been integrated into a space flight experiment (MISSES), scheduled to be launched to the International Space Station in March of 2005. I-V performance data from the GaAs/Si will be collected on-orbit and telemetered to ground stations daily. Microcracks in the GaAs epitaxial material, generated because of differences in the thermal expansion coefficient between GaAs and Si, are of concern in the widely varying thermal environment encountered in low Earth orbit. Ground based thermal life cycling (-80 C to + 80 C) equivalent to 1 year in LEO has been conducted on GaAs/Si devices with no discernable degradation in device performance, suggesting that microcracks may not limit the ability to field GaAs/Si in harsh thermal environments. Recent advances in the development and testing of III-V photovoltaic devices on Si will be presented.

  16. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  17. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  18. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range. PMID:27136889

  19. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

  20. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  1. Phase II experiment test plan: solar photovoltaic/thermal residential experiment

    SciTech Connect

    Sheldon, D. B.

    1980-01-23

    The Solar Photovoltaic/Thermal Energy Project being carried out by the Massachusetts Institute of Technology Lincoln Laboratory under US Department of Energy funding requires a Phase II test plan for its Solar Energy Research Facility (SERF) located at the University of Texas at Arlington. This Phase II test plan is provided. The purpose of the research being conducted at the SERF is reviewed, and references describing Phase I work are listed.

  2. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  3. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    PubMed

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

  4. Material structure-composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells.

    PubMed

    Troshin, Pavel A; Mukhacheva, Olga A; Goryachev, Andrey E; Dremova, Nadezhda N; Voylov, Dmitry; Ulbricht, Christoph; Egbe, Daniel A M; Sariciftci, Niyazi Serdar; Razumov, Vladimir F

    2012-10-01

    Conjugated PPV-PPE copolymer has been investigated in organic solar cells in combination with twelve different fullerene derivatives. It was shown that the length of solubilizing alkyl chains in the fullerene derivative structures correlates well with the performance of photovoltaic cells.

  5. Comment on Kirk's “Analysis of quantum coherent solar photovoltaic cells”

    NASA Astrophysics Data System (ADS)

    Chapin, K. R.; Cohen, D.; Das, S.; Dorfman, K.; Jha, P. K.; Kim, M.; Svidzinsky, A.; Vetter, P.; Voronine, D. V.

    2013-05-01

    We present our scientific and philosophical analysis of the comments made in the recent paper of A.P. Kirk, “An Analysis of Quantum Coherent Solar Photovoltaic Cells” Physica B 407 (2012) 544. We highlight the key role of quantum coherence in the enhancement of the photocell power without violating the laws of thermodynamics.

  6. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  7. A New Approach to Design of an optimized Grid Tied Smart Solar Photovoltaic (PV) System

    NASA Astrophysics Data System (ADS)

    Farhad, M. Mehedi; Ali, M. Mohammad; Iqbal, M. Asif; Islam, N. Nahar; Ashraf, N.

    2012-11-01

    Energy is the key element for the economical development of a country. With the increasing concern about the global demand for Renewable Energy (RE) energy, it is very much important to reduce the cost of the whole solar photovoltaic (PV) system. Still now most of the solar photovoltaic (PV) system is highly expensive. In this paper we have shown that grid tied solar system can be developed by omitting the energy storage device like large capacity battery bank. It will not only reduce the internallosses for charging and discharging of battery bank but also at the same time a large amount of cost of the battery will be reduced. So, the system maintenance cost will be reduced also. We have proposed a new approach to design a photovoltaic (PV) solar power system which can be operated by feeding the solar power to the national grid along with the residential load. Again if there is an extra power demand for residential load along with the solar power then this system can also provide an opportunity to consume the power from the national grid. The total system is controlled with the help of some the sensors and a microcontroller. As a whole a significant reduction in the system costs and efficient system performance can be realized.

  8. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  9. Advanced Solar Observatory (ASO) accommodations requirements study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results of an accommodations analysis for the Advanced Solar Observatory on Space Station Freedom are reported. Concepts for the High Resolution Telescope Cluster, Pinhole/Occulter Facility, and High Energy Cluster were developed which can be accommodated on Space Station Freedom. It is shown that workable accommodations concepts are possible. Areas of emphasis for the next stage of engineering development are identified.

  10. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  11. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  12. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  13. Recent advances in sensitized mesoscopic solar cells.

    PubMed

    Grätzel, Michael

    2009-11-17

    Perhaps the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources and, at the same time, avoid negative effects from the current energy system on climate, environment, and health. The quality of human life to a large degree depends upon the availability of clean energy sources. The worldwide power consumption is expected to double in the next 3 decades because of the increase in world population and the rising demand of energy in the developing countries. This implies enhanced depletion of fossil fuel reserves, leading to further aggravation of the environmental pollution. As a consequence of dwindling resources, a huge power supply gap of 14 terawatts is expected to open up by year 2050 equaling today's entire consumption, thus threatening to create a planetary emergency of gigantic dimensions. Solar energy is expected to play a crucial role as a future energy source. The sun provides about 120,000 terawatts to the earth's surface, which amounts to 6000 times the present rate of the world's energy consumption. However, capturing solar energy and converting it to electricity or chemical fuels, such as hydrogen, at low cost and using abundantly available raw materials remains a huge challenge. Chemistry is expected to make pivotal contributions to identify environmentally friendly solutions to this energy problem. One area of great promise is that of solar converters generally referred to as "organic photovoltaic cells" (OPV) that employ organic constituents for light harvesting or charge carrier transport. While this field is still in its infancy, it is receiving enormous research attention, with the number of publications growing exponentially over the past decade. The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially less than 1 U.S. $/peak watt. Some but not all OPV embodiments can avoid the expensive and energy

  14. Advances in Mismatch Identification and Power Loss Evaluation of Concentrating Photovoltaic Multijunction Module

    NASA Astrophysics Data System (ADS)

    Minuto, A.; Timò, G.; Groppelli, P.

    2011-12-01

    The outdoor I-V curve of a concentrating photovoltaic (CPV) Multi-junction (MJ) module is affected by temperature, series resistance, electro-optical mismatches among receivers mainly due to soiling effects, tracker misalignment and a particular spectral solar content. Starting from the previous works [1] and [2] and considering CPV MJ modules of only-one string with series-connected receivers, an original algorithm is developed to identify the photovoltaic current and the operating junction temperature of each receiver. Power losses due to the temperature, the series resistance and the electro-optical mismatches can be separately identified as well.

  15. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  16. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  17. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  18. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  19. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    NASA Astrophysics Data System (ADS)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  20. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells.

    PubMed

    Kinoshita, Takumi; Nonomura, Kazuteru; Jeon, Nam Joong; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-01-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  1. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    PubMed Central

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-01-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm−2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting. PMID:26538097

  2. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family.

    PubMed

    Wang, Baohua; Xiao, Xudong; Chen, Tao

    2014-11-01

    Organometal trihalide perovskite-based light absorbers have attracted great attention due to their excellent photovoltaic properties. The swift developments in the device fabrication techniques have led to the power conversion efficiencies exceeding 17%. In this minireview, we will present the typical characteristics of the materials and device structures, followed by analysing updated understandings on the operational principles of the devices. We will also point out the outstanding issues regarding the materials and devices. Finally, as a high-efficiency newcomer to the solar cell family, the potential impact on the relevant photovoltaics will be discussed.

  3. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family

    NASA Astrophysics Data System (ADS)

    Wang, Baohua; Xiao, Xudong; Chen, Tao

    2014-10-01

    Organometal trihalide perovskite-based light absorbers have attracted great attention due to their excellent photovoltaic properties. The swift developments in the device fabrication techniques have led to the power conversion efficiencies exceeding 17%. In this minireview, we will present the typical characteristics of the materials and device structures, followed by analysing updated understandings on the operational principles of the devices. We will also point out the outstanding issues regarding the materials and devices. Finally, as a high-efficiency newcomer to the solar cell family, the potential impact on the relevant photovoltaics will be discussed.

  4. Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options

    SciTech Connect

    Speer, B.

    2012-10-01

    This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

  5. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGES

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  6. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  7. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  8. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  9. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    NASA Astrophysics Data System (ADS)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  10. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  11. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  12. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables

  13. The Solar Array Photovoltaic Assembly for the INSAT 4CR Spacecraft Design, Development and In-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.

    2008-09-01

    The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.

  14. Increasing the solar photovoltaic energy capture on sunny and cloudy days

    SciTech Connect

    Kelly, Nelson A.; Gibson, Thomas L.

    2011-01-15

    photovoltaic system is small. These results are consistent with the solar tracking algorithm optimized for cloudy conditions that we proposed in an earlier report and that was based on a much smaller data set. Improving the harvesting of solar energy on cloudy days deserves wider attention due to increasing efforts to utilize renewable solar energy. In particular, increasing the output of distributed solar power systems on cloudy days is important to developing solar-powered home fueling and charging systems for hydrogen-powered fuel-cell electric and battery-powered vehicles, respectively, because it reduces the system size and cost for solar power systems that are designed to have sufficient energy output on the worst (cloudy) days. (author)

  15. Basic photovoltaic principles and methods

    SciTech Connect

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  16. A solar photovoltaic system with ideal efficiency close to the theoretical limit.

    PubMed

    Zhao, Yuan; Sheng, Ming-Yu; Zhou, Wei-Xi; Shen, Yan; Hu, Er-Tao; Chen, Jian-Bo; Xu, Min; Zheng, Yu-Xiang; Lee, Young-Pak; Lynch, David W; Chen, Liang-Yao

    2012-01-01

    In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.

  17. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  18. Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  19. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    SciTech Connect

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  20. Advanced Technology Solar Telescope Construction: Progress Report

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas R.; McMullin, J.; Keil, S.; Goode, P.; Knoelker, M.; Kuhn, J.; Rosner, R.; ATST Team

    2012-05-01

    The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the world’s leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun’s output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in April 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility. The National Science Foundation (NSF) through the National Solar Observatory (NSO) funds the ATST Project. The NSO is operated under a cooperative agreement between the Association of Universities for Research in Astronomy, Inc. (AURA) and NSF.

  1. Advanced CdTe Photovoltaic Technology: September 2007 - March 2009

    SciTech Connect

    Barth, K.

    2011-05-01

    During the last eighteen months, Abound Solar (formerly AVA Solar) has enjoyed significant success under the SAI program. During this time, a fully automated manufacturing line has been developed, fabricated and commissioned in Longmont, Colorado. The facility is fully integrated, converting glass and semiconductor materials into complete modules beneath its roof. At capacity, a glass panel will enter the factory every 10 seconds and emerge as a completed module two hours later. This facility is currently undergoing trials in preparation for large volume production of 120 x 60 cm thin film CdTe modules. Preceding the development of the large volume manufacturing capability, Abound Solar demonstrated long duration processing with excellent materials utilization for the manufacture of high efficiency 42 cm square modules. Abound Solar prototype modules have been measured with over 9% aperture area efficiency by NREL. Abound Solar demonstrated the ability to produce modules at industry leading low costs to NREL representatives. Costing models show manufacturing costs below $1/Watt and capital equipment costs below $1.50 per watt of annual manufacturing capacity. Under this SAI program, Abound Solar supported a significant research and development program at Colorado State University. The CSU team continues to make progress on device and materials analysis. Modeling for increased device performance and the effects of processing conditions on properties of CdTe PV were investigated.

  2. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  3. Simple Photovoltaic Cells for Exploring Solar Energy Concepts

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2006-01-01

    Low-efficiency solar cells for educational purposes can be simply made in school or home environments using wet-chemistry techniques and readily available chemicals of generally low toxicity. Instructions are given for making solar cells based on the heterojunctions Cu/Cu[subscript 2]O, Cu[subscript 2]O/ZnO and Cu[subscript 2]S/ZnO, together with…

  4. Low cost silicon-on-ceramic photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  5. Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Junxia; Li, Jingling; Xu, Xueqing; Xu, Gang; Shen, Honglie

    2016-10-01

    In an attempt to further enhance the photovoltaic performance of perovskite solar cells (PSCs) fabricated by spray deposition under ambient conditions, carbon nanotubes (CNTs) are introduced for incorporation into hole transport materials (HTM). The effect of CNT category and length on the efficiency of the perovskite solar cell for incorporation into HTM is investigated. The enhanced photovoltaic performance is achieved in multi-walled carbon nanotubes (MWCNTs) with the shortest length. The efficiency of acid-treated MWCNT-based cells is improved compared to that of purified MWCNTs due to the better dispersibility and the π-π interaction between the -COOH group and spiro-OMeTAD. As the volume ratio of the spiro-OMeTAD and spiro/MWCNTs mixture is 2:2 or 3:1, the highest power conversion efficiency (PCE) of PSCs containing MWCNTs reaches 8.7% with the enhanced short-circuit current density ( J sc) and open-circuit voltage ( V oc).

  6. Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Junxia; Li, Jingling; Xu, Xueqing; Xu, Gang; Shen, Honglie

    2016-06-01

    In an attempt to further enhance the photovoltaic performance of perovskite solar cells (PSCs) fabricated by spray deposition under ambient conditions, carbon nanotubes (CNTs) are introduced for incorporation into hole transport materials (HTM). The effect of CNT category and length on the efficiency of the perovskite solar cell for incorporation into HTM is investigated. The enhanced photovoltaic performance is achieved in multi-walled carbon nanotubes (MWCNTs) with the shortest length. The efficiency of acid-treated MWCNT-based cells is improved compared to that of purified MWCNTs due to the better dispersibility and the π-π interaction between the -COOH group and spiro-OMeTAD. As the volume ratio of the spiro-OMeTAD and spiro/MWCNTs mixture is 2:2 or 3:1, the highest power conversion efficiency (PCE) of PSCs containing MWCNTs reaches 8.7% with the enhanced short-circuit current density (J sc) and open-circuit voltage (V oc).

  7. Structures and photovoltaic properties of copper oxides/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Motoyoshi, Ryosuke; Fujimoto, Kazuya; Akiyama, Tsuyoshi; Jeyadevan, Balachandran; Cuya, John

    2011-11-01

    Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.

  8. Chapter 1.03: Solar Photovoltaics Technology: No Longer an Outlier

    SciTech Connect

    Kazmerski, L. L.

    2012-01-01

    The status and future technology, market, and industry opportunities for solar photovoltaics are examined and discussed. The co-importance of both policy and technology investments for the future markets and competitiveness of this solar approach is emphasized. This paper underscores the technology side, with a comprehensive overview and insights to technical, policy, market, industry and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy economy. The requirement to venture from near-term and evolutionary approaches into disruptive and revolutionary technology pathways is argued for our needs in the mid-term (the next 10-15 years) and the long-term (beyond the first quarter of this century).

  9. Evaluation of photovoltaic power generation system using spherical silicon solar cells and SiC-FET inverter

    NASA Astrophysics Data System (ADS)

    Matsumoto, Taisuke; Oku, Takeo; Hiramatsu, Koichi; Yasuda, Masashi; Shirahata, Yasuhiro; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2016-02-01

    A photovoltaic power generation system using spherical silicon (Si) solar cells and silicon carbide (SiC) field effect transistor (FET) inverter for photovoltaic applications was constructed and evaluated. The spherical Si solar cells were connected to the SiC-FET inverter and were used as a power source. Comparing the photovoltaic power generation system using an ordinary Si-FET inverter, direct current-alternating current conversion efficiencies of the SiC-FET inverter were improved due to reduction of power loss in the SiC-FET inverter.

  10. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect

    Hansen, Clifford

    2015-12-01

    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  11. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  12. Molecular Engineering Combined with Cosensitization Leads to Record Photovoltaic Efficiency for Non-ruthenium Solar Cells.

    PubMed

    Hill, Jonathan P

    2016-02-24

    Here comes the sun: By using a combined strategy of molecular engineering and cosensitization, impressively high Jsc and Voc values were achieved for porphyrin dyes, resulting in high photovoltaic efficiencies up to 11.5 %, a record for non-ruthenium dye-sensitized solar cells (DSSCs) with the I(-) /I3 (-) electrolyte. The results provide insight into furthering the development of efficient DSSCs through synergistically enhanced photovoltage and photocurrent.

  13. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  14. Photovoltaic concentrator optical system design: Solar energy engineering from physics to field

    NASA Astrophysics Data System (ADS)

    Coughenour, Blake Michael

    This dissertation describes the design, development, and field validation of a concentrator photovoltaic (CPV) solar energy system. The challenges of creating a highly efficient yet low-cost system architecture come from many sources. The solid-state physics of photovoltaic devices present fundamental limits to photoelectron conversion efficiency, while the electrical and thermal characteristics of widely available materials limit the design arena. Furthermore, the need for high solar spectral throughput, evenly concentrated sunlight, and tolerance to off-axis pointing places strict illumination requirements on the optical design. To be commercially viable, the cost associated with all components must be minimized so that when taken together, the absolute installed cost of the system in kWh is lower than any other solar energy method, and competitive with fossil fuel power generation. The work detailed herein focuses specifically on unique optical design and illumination concepts discovered when developing a viable commercial CPV system. By designing from the ground up with the fundamental physics of photovoltaic devices and the required system tolerances in mind, a select range of optical designs are determined and modeled. Component cost analysis, assembly effort, and development time frame further influence design choices to arrive at a final optical system design. When coupled with the collecting mirror, the final optical hardware unit placed at the focus generates more than 800W, yet is small and lightweight enough to hold in your hand. After fabrication and installation, the completed system's illumination, spectral, and thermal performance is validated with on-sun operational testing.

  15. Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.

  16. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  17. Solar photovoltaic powered refrigerators/freezers for medical use in remote geographic locations

    NASA Technical Reports Server (NTRS)

    Darkazalli, G.; Hein, G. F.

    1983-01-01

    One of the obstacles preventing widespread immunication against disease is the virtual absence of reliable, low maintenance refrigeration systems for storage of vaccines in remote geographic locations. A system which consists of a solar photovoltaic cell array and an integrated refrigerator/freezer-energy storage unit is discussed herein. The array converts solar radiation into direct current (DC) electricity with no moving parts and no intermediate steps. A detailed description of the refrigeration system, its design and an analysis thereof, performance test procedures, and test results are presented. A system schematic is also provided.

  18. The heat recovery with heat transfer methods from solar photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-04-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc.

  19. Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D

    SciTech Connect

    Tuffner, Francis K.; Hammerstrom, Janelle L.; Singh, Ruchi

    2012-10-19

    This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software.

  20. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  1. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  2. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  3. Intergration of LiDAR Data with Aerial Imagery for Estimating Rooftop Solar Photovoltaic Potentials in City of Cape Town

    NASA Astrophysics Data System (ADS)

    Adeleke, A. K.; Smit, J. L.

    2016-06-01

    Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1) automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its' outline and areal coverage; and (2) estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  4. Photovoltaic Power Plants

    NASA Astrophysics Data System (ADS)

    Berman, Elliot

    1986-11-01

    To demonstrate technical viability of photovoltaic modules in central, grid connected energy systems, ARCO Solar, Inc. has designed, installed and is operating two photovoltaic power plants on the megawatt scale. These systems use two-axis tracking. The first generation plant in Lugo (Hesperia), California, with a nominal rating of one MWpk (DC)" was installed in 1982 in the Southern California Edison Company grid. The second system, rated at 6.4 MWDk (DC), is located in the Carrisa Plain in California and connected to the Pacific Gas and Electric Company grid. Based on the cost and performance data from these installations, an assessment of the current status and future needs of large scale photovoltaic energy systems is made. With each new system, improved techniques of design, installation and system integration have been developed. Expectations have been confirmed as to the performance and adaptability of solar cells, especially the ease of incremental increases in capacity when needed. Modular photovoltaic systems have been found to be easy to build and operate, and to be highly reliable. Prologue: Technological advancement usually requires good science and logical engineering. In the main, faith, persistence and feel are also required. Rule: The balance-of-system costs for photovoltaic energy systems equal photovoltaic module costs. Photovoltaic systems have progressed to their current stage of high promise because of faith, persistence, feel and belief in this rule.

  5. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  6. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-04-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  7. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  8. Letting the Sun Shine on Solar Costs: An Empirical Investigation of Photovoltaic Cost Trends in California

    SciTech Connect

    Wiser, R.; Bolinger, M.; Cappers, P.; Margolis, R.

    2006-01-01

    This report provides a comprehensive analysis of grid-connected solar photovoltaic (PV) cost trends in California, which is by far the largest PV market in the United States. The findings of this work may help stakeholders to understand important trends in the California PV market, and policymakers to design more effective solar incentive programs--a particularly important objective given the recent announcement from the California Public Utilities Commission (CPUC) to establish an 11-year, $3.2 billion incentive program for customer-sited solar. The study statistically analyzes the installed cost of grid-connected PV systems funded by the state's two largest solar rebate programs, overseen by the California Energy Commission (CEC) [operating since 1998] and the CPUC [operating since 2001].

  9. Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology, and Policy

    SciTech Connect

    Gillingham, Kenneth; Deng, Hao; Wiser, Ryan; Darghouth, Naim; Nemet, Gregory; Barbose, Galen; Rai, Varun; Dong, C. G.

    2014-12-15

    Solar photovoltaic (PV) system prices in the United States display considerable heterogeneity both across geographic locations and within a given location. Such heterogeneity may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on equilibrium solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. As expected, we find that PV system prices differ based on characteristics of the systems. More interestingly, we find evidence suggesting that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.

  10. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  11. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  12. Prospects for integrating utility-scale solar photovoltaics and industrial agriculture in the U.S

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Anderegg, W.; Hernandez, R. R.; Hiza, N.; Johnson, J. E.; Maltais-landry, G.; Wolf, A.; Zimmerman, N. B.

    2011-12-01

    One of the key challenges to many alternative energy options is land use competition, such as conflict with food production (e.g., corn or sugar cane ethanol) or natural resource protection (e.g., solar panels in desert habitat). Wind power has largely avoided these conflicts by leasing land from farmers and maintaining a small footprint on the landscape. Here, we ask whether similar opportunities exist for solar photovoltaics in agricultural settings. Our test case consists of a soybean field in Ames, Iowa (USA), with south-facing solar panels in rows spaced 16 m apart (~3 times further than typical), a center pole height of 3 m (3 times higher than in a typical ground-mounted system), and a fixed tilt of 25 degrees. Using a geometric shade model coupled to a common crop model (DSSAT) and driven by 14 years of weather data, we find that the average annual soybean yield is not significantly reduced (< 3% or < 0.1 t ha-1 yr-1) by the shade cast by the solar panels. Furthermore, shading appears to slightly improve yields during dry years. These results are consistent across five soybean cultivars spanning the three maturity groups commonly grown in Iowa, suggesting that incorporation of solar photovoltaics into agricultural fields may provide renewable energy with little or no reduction in yields. Using the National Renewable Energy Laboratory (NREL) System Advisor Model and assuming 18 to 20% efficient panels, we estimate that this configuration at this location will produce 295 MWh ha-1 in the first year of operation. With this configuration the United States' current (2007) electricity production could be met by incorporating photovoltaic panels into as little as 11% of currently cropped land. We are currently developing an independent model that will complement our DSSAT analyses by simulating the effects of solar photovoltaics on available light, albedo and temperature on a range of different crops. We also review some of the major challenges to and potential

  13. Solar Photovoltaic Financing: Deployment by Federal Government Agencies

    SciTech Connect

    Cory, K.; Coggeshall, C.; Coughlin, J.; Kreycik, C.

    2009-07-01

    The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

  14. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  15. Design of nonimaging static solar concentrator for window integrated photovoltaic

    NASA Astrophysics Data System (ADS)

    Sellami, Nazmi; Mallick, Tapas K.

    2012-10-01

    The focus of this research is to develop a solar concentrator for the purpose of building integration which is compact, static and, at the same time, able to collect maximum solar energy. The novel concentrator is designed to be used in Window Integrated Concentrated PV (WICPV). The window provides natural light transmission as well as electricity production. The concentrator is optically optimised for different incident angles of the incoming light rays. Evaluating the best combination of the optical efficiency and the acceptance angle, the 4x concentrator built from dielectric material, working with total internal reflection is optimised. It is found to have a constant optical efficiency of 40% for an acceptance angle equal to 120° (-60°, +60°) and an optical concentration ratio (OCR) of 1.6x. This enables capture of the sun rays all day long from both direct and diffuse light. Higher OCR's are obtained for different dimensions of the solar concentrator; however, the acceptance angles are relatively low. Three prototypes with different heights (10mm, 15mm and 20 mm) of the optimised concentrators have been manufactured and tested in indoor conditions. The experimental results validate the results obtained from the optical model with a variation of less than 5%.

  16. Optimization of a Solar Photovoltaic Applied to Greenhouses

    NASA Astrophysics Data System (ADS)

    Nakoul, Z.; Bibi-Triki, N.; Kherrous, A.; Bessenouci, M. Z.; Khelladi, S.

    The global energy consumption and in our country is increasing. The bulk of world energy comes from fossil fuels, whose reserves are doomed to exhaustion and are the leading cause of pollution and global warming through the greenhouse effect. This is not the case of renewable energy that are inexhaustible and from natural phenomena. For years, unanimously, solar energy is in the first rank of renewable energies .The study of energetic aspect of a solar power plant is the best way to find the optimum of its performances. The study on land with real dimensions requires a long time and therefore is very costly, and more results are not always generalizable. To avoid these drawbacks we opted for a planned study on computer only, using the software 'Matlab' by modeling different components for a better sizing and simulating all energies to optimize profitability taking into account the cost. The result of our work applied to sites of Tlemcen and Bouzareah led us to conclude that the energy required is a determining factor in the choice of components of a PV solar power plant.

  17. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  18. Recent advances in the EPRI high-concentration photovoltaic program

    SciTech Connect

    McNaughton, W.P.; Richman, R.H.

    1992-02-01

    By the early 1980s, Stanford University under contract with the Electric Power Research Institute (EPRI) produced a point-contact photovoltaic cell that has established a number of world record achievements. In 1984 a conceptual design was proposed for a cell package, module, and array system for use in utility-scale commercial power production. Since 1984, EPRI has moved the laboratory concept forward toward commercial application. More than 1500 high concentration cells have been produced in the evolutionary process. Approximately 700 of those cells have been or are presently being installed in fully operational modules for field tests. Over 130 modules have been constructed and are in field testing for electrical, thermal or weathering tests. Two full-sized array structures (each containing 60 instrumented thermal'' modules) have been constructed and continue to undergo field testing for alignment, performance, and reliability. This two volume report reviews the key challenges that have confronted the development of a commercial system and describes the program response to those challenges. The intent is to inform interested readers -- utilities, commercializers, researchers -- as to the primary developments and test results that have been achieved. A considerable body of raw data'' has been included so that interested researchers can draw their own conclusions without needing to refer to the source documents. Volume 1 discusses design fabrication and performance of the cell; design, construction and testing of the cell package and the design, fabrication and testing of the optical system. Volume 2 reviews the module and array programs, discusses other system issues and presents a short review of the technology's open issues.

  19. Portable, X-Y translating, infrared microscope for remote inspection of photovoltaic solar arrays

    SciTech Connect

    Forman, S.E.; Caunt, J.W.

    1980-01-01

    The prevalent physical defect found in terrestrial photovoltaic modules during manufacture and field exposure has been the cracked solar cell. Cells can become cracked during handling, because of thermal mismatch in their encapsulation packages, or due to environmental phenomena such as hail. A device is described which can be used remotely to locate cracked silicon solar cells in photovoltaic modules. This solar-cell inspection device can be used either in the laboratory for quality assurance and failure analysis evaluation or at array fields to monitor cracked-cell occurrence. It consists of: (a) an infrared microscope that operates at 1.0 micron, uses darkfield illumination, has a relatively large field of view (3.0 in.), has low system magnification (5X to 15X), and has a video display output; (b) a portable X-Y translator that is capable of moving the microscope over an 8 ft. x 8 ft. area; and (c) a console that allows remote instrument control and visual inspection of modules or arrays (up to 500 ft). This system presently is undergoing laboratory and field testing as part of the DOE-sponsored MIT Lincoln Laboratory Solar Photovoltiac Residential Project.

  20. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  1. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  2. Maximally concentrating optics for photovoltaic solar energy conversion

    SciTech Connect

    Winston, R.; O'Gallagher, J.; Ning, X.

    1986-02-27

    The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

  3. Solar photovoltaic energy and electric vehicles: natural synergism of two technologies

    SciTech Connect

    Stirewalt, E.N.

    1982-06-01

    Because of acid rain and CO/sub 2/ emission problems, electric vehicle technology must be advanced. The photovoltaic cell used to ''fuel'' electric cars is a possibility. The PV cell converts light directly into electricity. Automated PV manufacturing techniques are being developed. PV already is used in stand-alone systems and residential systems. Improved battery technology will benefit both PV and electric car technology. Another means of energy storage, the flywheel, is also applicable to both technologies.

  4. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    NASA Astrophysics Data System (ADS)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  5. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  6. Non-Solar Photovoltaics for Small Space Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Clark, Eric B.; Myers, Matthew G.; Piszazor, Michael F.; Murbach, Marcus S.

    2012-01-01

    NASA has missions planned to targets in the solar system ranging from the permanently shadowed craters of Mercury to the icy reaches of the Kuiper belt and beyond. In 2011, the NASA Office of the Chief Technologist (OCT) requested the NASA Ames and Glenn Research Centers to assess the potential of small power supplies based on direct conversion of energy from radioisotope sources for future NASA missions; and in particular to assess whether alphavoltaic and betavoltaic power sources could be of potential benefit in small missions, as well as examining the use of miniaturized thermophotovoltaic power supplies. This paper summarizes the results of that assessment.

  7. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects

    NASA Astrophysics Data System (ADS)

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-01

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that

  8. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  9. Review of combined photovoltaic/thermal collector: solar assisted heat pump system options

    SciTech Connect

    Sheldon, D. B.; Russell, M. C.

    1980-01-01

    The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

  10. The social costs of solar energy: A study of photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Neff, T. L.

    An extensive analysis of the social costs of photovoltaic energy systems shows that there are potentially significant hazards associated with the manufacture and use of such technologies as large-crystal silicon, cadmium sulfide, and gallium arsenide solar cell arrays. The categories of applications considered were (1) decentralized residential installations, (2) decentralized neighborhood, commercial or industrial installations, and (3) central station plants. Summary and conclusion statements are presented for occupational health, public health, environmental impacts, labor, materials and energy impacts, and implications for technological development. It is thought in overview that there are reasons for optimism about the ability of photovoltaics to improve the balance of social costs and benefits in the energy sector.

  11. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  12. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.

    PubMed

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V; Ryu, Jae Ha; Johnson, Harley T; Nuzzo, Ralph G; Rogers, John A

    2011-06-14

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics.

  13. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  14. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  15. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  16. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  17. Solar energy and job creation benefits of photovoltaics in times of high unemployment

    SciTech Connect

    Hohmeyer, O.H.

    1994-12-31

    Solar energy is normally discussed under the aspects of its medium to long term contribution to the global energy supply and its present cost. The situation is characterized by the benefits of an abundant renewable energy supply option o the one side and comparatively high internal energy production costs of solar energy on the other. Besides the environmental and health benefits of renewables not taken into account in cost comparisons, solar energy has a significantly higher job creation potential as conventional energy supply options. The paper gives an introduction into the basic methodological aspects of comparing job creation effects of different energy technologies and reports on the latest results of ongoing research on the specific effects of photovoltaics as compared to conventional electricity generation.

  18. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.

    PubMed

    Hu, Binxin; Li, Buyin; Zhao, Rixin; Yang, Tiechen

    2011-06-01

    Photovoltaic module measurements are predominantly taken by using pulsed solar simulators. However, significant errors can be generated when the existing simulators are applied to current high-efficiency crystalline silicon photovoltaic modules. This paper presents the design and implementation of a novel solar simulator featuring reflection-type light source and single long-pulse flash. The analysis and experimental study of the capacitance effect and the technical details of the simulator including reflection-type lamp house, xenon flash lamp power supply, and source-measure unit are introduced. The results show that the complete system achieves Class AAA performance in accordance with the international standard. The proposed simulator outperforms other similar products on the market and has been adopted by some well-known photovoltaic module manufacturers. The practical application demonstrates that this high-performance and cost-effective simulator is quite suitable for photovoltaic module production line.

  19. Advanced photovoltaic concentrator system low-cost prototype module

    SciTech Connect

    Kaminar, N.R.; McEntee, J.; Curchod, D. )

    1991-09-01

    This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted in a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.

  20. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  1. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  2. A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    NASA Astrophysics Data System (ADS)

    Shou, Chun-Hui; Luo, Zhong-Yang; Wang, Tao; Shen, Wei-Dong; Rosengarten, Gary; Wang, Cheng; Ni, Ming-Jiang; Cen, Ke-Fa

    2011-12-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.

  3. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  4. Light trapping for silicon photovoltaic cells illuminated by solar-pumped lasersemitting at 1064 nm

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuhiko; Ito, Tadashi

    2015-08-01

    We have demonstrated a significant light-trapping effect for a silicon photovoltaic cell using a bandpass filter on the front surface and a diffuse reflector on the back surface, which is coupled with a solar-pumped laser emitting at 1064 nm, as a new approach to highly efficient solar photovoltaics. We carried out Monte-Carlo simulation of the light-trapping process to consider the effects of realistic optical properties of the surface treatments, and clarified the requisites to remarkably improve the absorbance of the cell. A multilayer bandpass filter consisting of TiO2 and SiO2 was employed, in which the thickness of each layer was optimized. A Si surface roughened by acid etching and covered with a Ag layer realized sufficient diffuse reflection properties. The prototype for optical evaluations using a 45-µm-thick Si wafer, which is extremely thin compared with conventional silicon solar cells, almost perfectly absorbed the monochromatic incident light even though the wavelength was very close to the absorption edge.

  5. Photovoltaic, gravitationally-stabilized solid-state, satellite solar power station /GSS4PS/

    NASA Technical Reports Server (NTRS)

    Cantafio, L. J.; Chobotov, V. A.; Wolfe, M. G.

    1977-01-01

    The salient feature of a gravitationally-stabilized satellite solar power system (SSPS) for a photovoltaic system is that the large solar array is separated into smaller segments or subunits, joined together in a linear array oriented along the local vertical. Applicability of gravitational stabilization to the design of photovoltaic SSPS is demonstrated. Both actively controlled systems using multiple solar panels oriented to the sun and passively controlled systems requiring no sun orientation are considered and determined to be feasible. Expressions for gravity-gradient induced tension and restoring torques about the local vertical are assessed. Particular attention is directed to the applicability of solid-state approaches to the design of SSPS. It is shown that an all solid-state SSPS utilizing the LITOMIC (light-to-microwave conversion) concept is feasible but that a hybrid system employing a combination of both solid-state and cryogenic cooled low-voltage techniques to the design of the power management and distribution subsystem may also provide a solution.

  6. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Chihhui; Neuner, Burton, III; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve; Shvets, Gennady

    2012-02-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley-Queisser limit for emitter temperatures above Te = 1200 K, and achieves an efficiency as high as 41% for Te = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented.

  7. Enhancing photovoltaic efficiency through radiative cooling of solar cells below ambient temperature

    NASA Astrophysics Data System (ADS)

    Safi, Taqiyyah; Munday, Jeremy

    Sunlight heats up solar cells and the resulting elevated solar cell temperature adversely effects the photovoltaic efficiency and the reliability of the cell. Currently, a variety of active and passive cooling strategies are used to lower the operating temperature of the solar cell. Passive radiative cooling requires no energy input, and is ideal for solar cells; however, previously demonstrated devices still operate above the ambient, leading to a lower efficiency as compared to the ideal Shockley-Queisser limit, which is defined for a cell in contact with an ideal heat sink at ambient temperature (300 K). In this talk, we will describe the use of radiative cooling techniques to lower the cell temperature below the ambient temperature. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that these structures yield an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for cells in an extraterrestrial environment in near-earth orbit.

  8. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  9. Identifying solar energy potentials and intensifying the climate-friendly use of photovoltaics within urban areas.

    NASA Astrophysics Data System (ADS)

    de Lange, N.

    2016-04-01

    Limited non-renewable fossil energy reserves and the essential ideas of sustainability have caused an increase in the demand for solar energy. The intensified use of renewable energy in Germany is primarily encouraged by the German renewable-energy-law. Solar panels mounted on roofs generate electricity using the energy radiated from the sun by taking advantage of the photovoltaic effect. However, not every roof is usable for power generation through solar energy. Therefore, web-based solar energy registers for multiple regions in Germany have been developed that provide detailed information on roofs suitable for carrying solar panels. The analyses are based on a digital object model derived from airborne laser scanning data of high accuracy and a fully automated technology to classify the points. First, roof points are separated according to their single roof sides and are converted into polygons. Then, exposure, slope, size of the roof, and particularly shading effects are computed to calculate the solar potential of each roof side. The web-GIS provides detailed information about the roof's suitability, such as the installable capacity and the expected generation of electricity. Thus, it helps house owners to calculate their investment and later revenues.

  10. Statistical Characterization of Solar Photovoltaic Power Variability at Small Timescales: Preprint

    SciTech Connect

    Shedd, S.; Hodge, B.-M.; Florita, A.; Orwig, K.

    2012-08-01

    Integrating large amounts of variable and uncertain solar photovoltaic power into the electricity grid is a growing concern for power system operators in a number of different regions. Power system operators typically accommodate variability, whether from load, wind, or solar, by carrying reserves that can quickly change their output to match the changes in the solar resource. At timescales in the seconds-to-minutes range, this is known as regulation reserve. Previous studies have shown that increasing the geographic diversity of solar resources can reduce the short term-variability of the power output. As the price of solar has decreased, the emergence of very large PV plants (greater than 10 MW) has become more common. These plants present an interesting case because they are large enough to exhibit some spatial smoothing by themselves. This work examines the variability of solar PV output among different arrays in a large ({approx}50 MW) PV plant in the western United States, including the correlation in power output changes between different arrays, as well as the aggregated plant output, at timescales ranging from one second to five minutes.

  11. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  12. The Advanced Technology Solar Telescope enclosure

    NASA Astrophysics Data System (ADS)

    Phelps, L.; Barr, J.; Dalrymple, N.; Fraser, M.; Hubbard, R.; Wagner, J.; Warner, M.

    2006-06-01

    Telescope enclosure design is based on an increasingly standard set of criteria. Enclosures must provide failsafe protection in a harsh environment for an irreplaceable piece of equipment; must allow effective air flushing to minimize local seeing while still attenuating wind-induced vibration of the telescope; must reliably operate so that the dome is never the reason for observatory down time; must provide access to utilities, lifting devices and support facilities; and they must be affordable within the overall project budget. The enclosure for the Advanced Technology Solar Telescope (ATST) has to satisfy all these challenging requirements plus one more. To eliminate so-called external dome seeing, the exterior surfaces of the enclosure must be maintained at or just below ambient air temperature while being subjected to the full solar loading of an observing day. Further complicating the design of the ATST enclosure and support facilities are the environmental sensitivities and high construction costs at the selected site - the summit of Haleakala on the island of Maui, Hawaii. Previous development work has determined an appropriate enclosure shape to minimize solar exposure while allowing effective interior flushing, and has demonstrated the feasibility of controlling the exterior skin temperature with an active cooling system. This paper presents the evolution of the design since site selection and how the enclosure and associated thermal systems have been tailored to the particular climatic and terrain conditions of the site. Also discussed are load-reduction strategies that have been identified through thermal modeling, CFD modeling, and other analyses to refine and economize the thermal control systems.

  13. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Yuchang; Asryan, Levon V.

    2016-08-01

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  14. Nature of photovoltaic action in dye-sensitized solar cells

    SciTech Connect

    Cahen, D.; Hodes, G.; Graetzel, M.; Guillemoles, J.F.; Riess, I.

    2000-03-09

    The authors explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, the basic cause for the photovoltage was confirmed as the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor-contact interface. The mesoporosity and nanocrystallinity of the semiconductor are important not only because of the large amount of dye that can be adsorbed on the system's very large surface, but also for two additional reasons: (1) it allows the semiconductor small particles to become almost totally depleted upon immersion in the electrolyte (allowing for large photovoltages), and (2) the proximity of the electrolyte to all particles modes screening of injected electrons, and thus their transport, possible.

  15. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia

    SciTech Connect

    Lisell, L.; Mosey, G.

    2010-08-01

    The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

  17. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  18. Technical and Economic Assessment of Solar Photovoltaic for Groundwater Extraction on the Hanford Site

    SciTech Connect

    Mackley, Rob D.; Anderson, David M.; Thomle, Jonathan N.; Strickland, Christopher E.

    2015-09-01

    The overall goal of environmental remediation is to protect human health and the environment. Implementing renewable energy sources such as solar photovoltaic (PV) in groundwater extraction and pump-and-treat (P&T) systems may help minimize the environmental footprint of remediation efforts. The first step in considering solar PV for powering Hanford groundwater extraction is assessing the technical and economic feasibility and identifying potential target locations where implementation would be most successful. Accordingly, a techno-economic assessment of solar PV for Hanford groundwater extraction was completed in FY15. Multiple solar PV alternatives ranging in size from 1.2 to 22.4 kWp DC were evaluated and compared against traditional grid-powered systems. Results indicate that the degree to which solar PV alternatives are feasible is primarily a function of the distance of avoided power cable costs and the inclusion of an energy storage component. Standalone solar PV systems provide an energy source at the well and avoid the costs and logistics associated with running long lengths of expensive power cable to the well-head. When solar PV systems include a battery storage component, groundwater can be pumped continuously day and night in a year-round schedule. However, due to the high cost premium of the energy storage component, a fully solar-powered solution could not provide an economic direct replacement for line-powered pumping systems. As a result, the most ideal target locations for successful implementation of solar PV on the Hanford Site are remote or distant extraction wells where the primary remedial objective is contaminant mass removal (as opposed to hydraulic containment) and three-season (March through October) intermittent pumping is acceptable (e.g. remediation of hexavalent chromium in 200-UP-1).

  19. Industrialization study, phase 2. [assessment of advanced photovoltaic technologies for commerical development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The potentials and requirements of advanced photovoltaic technologies still in their early developmental stages were evaluated and compared to the present day single crystal silicon wafer technology and to each other. The major areas of consideration include polycrystalline and amorphous silicon, single crystal and polycrystalline gallium arsenide, and single crystal and polycrystalline cadmium sulfide. A rank ordering of the advanced technologies is provided. The various ranking schemes were based upon present-day efficiency levels, their stability and long-term reliability prospects, material availability, capital investments both at the laboratory and production level, and associated variable costs. An estimate of the timing of the possible readiness of these advanced technologies for technology development programs and industrialization is presented along with a set of recommended government actions concerning the various advanced technologies.

  20. Porous Silicon Modified Photovoltaic Junctions: An Approach to High-Efficiency Solar Cells

    NASA Astrophysics Data System (ADS)

    Badawy, Waheed A.

    2007-02-01

    The solution of the energy problems of our universe is based on the use of the ultimate source of energy, THE SUN, as the main source of useable energy. The trials to obtain solar cells of appropriate efficiency and suitable price represent one of the main tasks of different research groups over the whole world. In this respect silicon represent the main absorber of sun light that could be converted to electricity, photovoltaic cells, or to high energy chemical products, photoelectrochemical cells. Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H2O/C2H5OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide. The oxide films were prepared by the spray/pyrolysis technique which enables the incorporation of foreign atoms like In, Ru or Sb in the oxide film matrix during the spray process/. The incorporation of foreign atoms improves the surface characteristics of the oxide film which leads to the improvement of the fill factor and higher solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (Isc) compared to our improved silicon single crystal solar cells /6/, due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (Voc) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of

  1. The Influence of Substituent Orientation on the Photovoltaic Performance of Phthalocyanine-Sensitized Solar Cells.

    PubMed

    Tejerina, Lara; Martínez-Díaz, M Victoria; Nazeeruddin, Mohammad Khaja; Torres, Tomas

    2016-03-18

    Phthalocyanines (Pcs) are used as sensitizers in dye-sensitized solar cells (DSSCs) because of their stability and intense absorption in the red and near-IR regions. Impressive progress has been made in photovoltaic efficiencies by introduction of bulky peripheral substituents to help suppress macrocycle aggregation. To reach benchmark efficiencies reported for other related dyes, new designs need to be explored. Single carboxy-ZnPc regioisomers substituted at the non-peripheral positions by rigid aryl groups have now been studied, which has shed light on the influence of steric hindrance and/or orientation of the substituent around the anchoring group on the photovoltaic response. The regioisomer bearing the aryl group far away from the anchoring group produces a more effective sensitization of the TiO2 films and higher short-circuit photocurrent density (Jsc). Taking advantage of the good photovoltaic performance in the near-IR region of this ZnPc, it was combined with another appropriate dye for panchromatic sensitization of the mesoporous photoelectrode and an increase of the overall device efficiency.

  2. Photovoltaic Subcontract Program

    SciTech Connect

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  3. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    DOE PAGES

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; Nykypanchuk, Dmytro; Nam, Chang -Yong

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from themore » OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.« less

  4. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    PubMed

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  5. Introducing a computer program devoted to renewable integration assessment of multi-field solar photovoltaic power plants

    SciTech Connect

    Gil, M.A.C.; Arroba, J.P.; Ibanez, J.C.; Criado, J.A.R.

    1996-11-01

    The objectives of this paper are to present a computer program devoted to the simulation of solar photovoltaic power plants, namely the assessment of their power generation technical potential. The most general configuration of a former program devoted to single-field photovoltaic generators has been extended and updated to multi-field systems. This program is also intended to provide capabilities in order to assess the integration of renewable energy resources. Mainly solar and wind energy systems will be considered, as well as pumped-storage stations, of which an example is included.

  6. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    SciTech Connect

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar

  7. Motivating California organic farmers to go solar: Economics may trump philosophy in deciding to adopt photovoltaics

    NASA Astrophysics Data System (ADS)

    Fata, Johnathon A.

    Organic farmers who have adopted solar photovoltaic (PV) systems to generate electricity are leaders in agricultural energy sustainability, yet research on their culture and motivations is largely incomplete. These farmers share economic and logistical constraints, but they may differ in their underlying worldviews. To better understand what motivates San Francisco Bay Area organic farmers to install solar PV systems, 14 in-depth interviews and short surveys were conducted and included a "frontier mentality" rubric. Additionally, nine online surveys were administered. In this study's sample, financial concerns turned out to provide the greatest motivation for farmers to adopt solar PV. Concern for the environment followed closely. Among farms that did not have solar, the overwhelming prohibiting factor was upfront cost. Climate change was not cited directly as a driving force for adoption of solar PV by any of the participants. A wide range of differences among organic farmers existed in environmental attitudes. This reflected the diversity of views held by organic farmers in California today. For example, certified organic farmers had less strongly held environmental values than did those that eschew third-party certification in favor of a trust-based connection to the consumer. Understanding this group of highly involved environmental players provides insight into environmental behavior of other farmers as well as broader categories of consumers and businesses.

  8. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors

  9. Alignment and Initial Operation of an Advanced Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jefferies, Kent S.; Mason, Lee S.

    1996-01-01

    A solar simulator utilizing nine 30-kW xenon arc lamps was built to provide radiant power for testing a solar dynamic space power system in a thermal vacuum environment. The advanced solar simulator achieved the following values specific to the solar dynamic system: (1) a subtense angle of 1 deg; (2) the ability to vary solar simulator intensity up to 1.7 kW/sq m; (3) a beam diameter of 4.8 m; and (4) uniformity of illumination on the order of +/-10%. The flexibility of the solar simulator design allows for other potential uses of the facility.

  10. Photovoltaic properties of sintered CdS/CdTe solar cells doped with Cu

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Ahn, B. T.; Im, H. B.; Kim, C. S.

    1992-11-01

    The effect of Cu doping before sintering on the photovoltaic properties of sintered CdS/CdTe solar cells were investigated by putting various amounts of CuCl2 either into the CdTe layer or into the back contact carbon layer. It was found that, as the amount of CuCl2 in the CdTe layers increased up to 25 ppm, the cell parameters of the sintered CdS/CdTe solar cells remained at about the same values, and then decreased sharply with further increase of CuCl2. The decreases in cell parameters are caused mainly by the increase in the resistivity of CdS and CdTe layer and the decrease in the optical transmission of CdS due to Cu doping from the CdTe.

  11. High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers.

    PubMed

    O'Connor, Brendan; Nothern, Denis; Pipe, Kevin P; Shtein, Max

    2010-09-13

    We propose a novel solar cell architecture consisting of multiple fiber-based photovoltaic (PV) cells. Each PV fiber element is designed to maximize the power conversion efficiency within a narrow band of the incident solar spectrum, while reflecting other spectral components through the use of optical microcavity effects and distributed Bragg reflector (DBR) coatings. Combining PV fibers with complementary absorption and reflection characteristics into volume-filling arrays enables spectrally tuned modules having an effective dispersion element intrinsic to the architecture, resulting in high external quantum efficiency over the incident spectrum. While this new reflective tandem architecture is not limited to one particular material system, here we apply the concept to organic PV (OPV) cells that use a metal-organic-metal-dielectric layer structure, and calculate the expected performance of such arrays. Using realistic material properties for organic absorbers, transport layers, metallic electrodes, and DBR coatings, 17% power conversion efficiency can be reached.

  12. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  13. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    SciTech Connect

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul; Margolis, Robert

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  14. Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells.

    PubMed

    Zarazua, Isaac; Bisquert, Juan; Garcia-Belmonte, Germà

    2016-02-01

    We fabricated formamidinium lead iodide perovskite solar cell for analysis of the photovoltaic mechanism based on the interpretation of the capacitance variation under illumination. It was shown that the low-frequency capacitance increases proportional to incident light intensity, and in addition it increases proportional to absorber thickness. Furthermore, the voltage dependence of capacitance is exponential with slope 1/2 (thermal energy). We conclude that the large photovoltage and capacitance are associated with electronic accumulation zone at the interface with the metal oxide contact. While this type of accumulation capacitance is common in many devices as transistors, the perovskite solar cell shows a singular behavior in that under light the electronic carrier accumulation grows unlimited by another series capacitance, reaching values as large as 10 mF cm(-2) at one sun illumination.

  15. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  16. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    SciTech Connect

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin E-mail: lxxiao@pku.edu.cn; Chen, Zhijian E-mail: lxxiao@pku.edu.cn

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  17. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    NASA Astrophysics Data System (ADS)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian

    2015-05-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  18. Power conditioning subsystems for photovoltaic central-station power plants - State-of-the-art and advanced technology

    NASA Technical Reports Server (NTRS)

    Bulawka, A.; Krauthamer, S.; Das, R.

    1986-01-01

    An overview is given of the technical and near-term cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for large-scale, central photovoltaic power stations. Various commercially available PCS hardware suitable for use in today's central photovoltaic power stations are also surveyed. Federal and industrial activities in the research and development of advanced PCSs that will contribute to the attainment of fully competitive, large-scale photovoltaic power stations are reviewed. The status of the DOE central station PCS program is discussed.

  19. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  20. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    PubMed

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  1. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  2. An innovative system for heating and cooling a gymnasium using integrated photovoltaic-thermal solar collectors

    SciTech Connect

    Fanchiotti, A.; Herkel, S.; Laukamp, H.; Priolo, C.

    1996-11-01

    The paper describes a new solar energy based system to heat and cool a gymnasium and to generate electricity in the city of Palermo, Italy. The gymnasium will be built in 1996 as part of the structures that will host the Universiadi Games in 1997. Main objectives of the project are: (a) to grant better environmental conditions in the area occupied by the public, with limited use of fossil energy; (b) to reduce the temperature of the photovoltaic elements, thus increasing their efficiency. The system consists of an array of 203 m{sup 2} integrated photovoltaic-thermal solar air collectors. In the winter mode of operation, the heated air is passed through the concrete benches where the public is seated. In the summer mode of operation outside air is evaporatively cooled, passed through the benches, then exhausted to the outside after passing through the collectors. The paper presents some of the results obtained by simulating the system at the design stage for winter conditions.

  3. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  4. Effect of annealing on photovoltaic performance of fabricated planar organic-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Baltakesmez, Ali; Biber, Mehmet; Tüzemen, Sebahattin

    2016-04-01

    We fabricated planar perovskite solar cells used CH3NH3PbI3-xClx for light harvesting to investigate effect of annealing on photovoltaic performance of fabricated device. The devices have an architecture of Glass/ITO/Pedot:PSS/Perovskite/PC61BM/Al. Layers of hole transport (Pedot:PSS), active and electron transport (PC61BM) were prepared from solution based one step deposition method by a spin coater and standard annealing procedure. The current‑voltage curves of devices were measured inside the glovebox using a Keithley 2400 sourcemeter. The cells were illuminated by a solar simulator have optical intensity value of 300 mW/cm2. For the best cells, while PCE value of 5.78% before the annealing, photovoltaic efficiency was improved average 13% delivered a short-circuit current density of 3.20 mA/cm2, open-circuit voltage of 0.82 V and fill factor of 0.74, leading to an efficiency of 6.54% with respect to prior to annealing.

  5. Effect of annealing on photovoltaic performance of fabricated planar organic-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Baltakesmez, Ali; Biber, Mehmet; Tüzemen, Sebahattin

    2016-04-01

    We fabricated planar perovskite solar cells used CH3NH3PbI3-xClx for light harvesting to investigate effect of annealing on photovoltaic performance of fabricated device. The devices have an architecture of Glass/ITO/Pedot:PSS/Perovskite/PC61BM/Al. Layers of hole transport (Pedot:PSS), active and electron transport (PC61BM) were prepared from solution based one step deposition method by a spin coater and standard annealing procedure. The current-voltage curves of devices were measured inside the glovebox using a Keithley 2400 sourcemeter. The cells were illuminated by a solar simulator have optical intensity value of 300 mW/cm2. For the best cells, while PCE value of 5.78% before the annealing, photovoltaic efficiency was improved average 13% delivered a short-circuit current density of 3.20 mA/cm2, open-circuit voltage of 0.82 V and fill factor of 0.74, leading to an efficiency of 6.54% with respect to prior to annealing.

  6. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  7. Evaluation of critical materials in five additional advance design photovoltaic cells

    SciTech Connect

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  8. Benchmarking concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  9. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  10. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  11. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated.

  12. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated. PMID:27087582

  13. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  14. Methodology for Estimating Solar Potential on Multiple Building Rooftops for Photovoltaic Systems

    SciTech Connect

    Kodysh, Jeffrey B; Omitaomu, Olufemi A; Bhaduri, Budhendra L; Neish, Bradley S

    2013-01-01

    In this paper, a methodology for estimating solar potential on multiple building rooftops is presented. The objective of this methodology is to estimate the daily or monthly solar radiation potential on individual buildings in a city/region using Light Detection and Ranging (LiDAR) data and a geographic information system (GIS) approach. Conceptually, the methodology is based on the upward-looking hemispherical viewshed algorithm, but applied using an area-based modeling approach. The methodology considers input parameters, such as surface orientation, shadowing effect, elevation, and atmospheric conditions, that influence solar intensity on the earth s surface. The methodology has been implemented for some 212,000 buildings in Knox County, Tennessee, USA. Based on the results obtained, the methodology seems to be adequate for estimating solar radiation on multiple building rooftops. The use of LiDAR data improves the radiation potential estimates in terms of the model predictive error and the spatial pattern of the model outputs. This methodology could help cities/regions interested in sustainable projects to quickly identify buildings with higher potentials for roof-mounted photovoltaic systems.

  15. Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments

    SciTech Connect

    Cory, K.; Coughlin, J.; Coggeshall, C.

    2008-05-01

    State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

  16. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  17. Advanced Thin Film Solar Arrays for Space: The Terrestrial Legacy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Hepp, Aloysius; Raffaelle, Ryne; Flood, Dennis

    2001-01-01

    As in the case for single crystal solar cells, the first serious thin film solar cells were developed for space applications with the promise of better power to weight ratios and lower cost. Future science, military, and commercial space missions are incredibly diverse. Military and commercial missions encompass both hundreds of kilowatt arrays to tens of watt arrays in various earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near sun missions and planetary exploration including orbiters, landers, and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. High power missions are particularly attractive for thin film utilization. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the Moon or Mars, space based lasers or radar, or large Earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or potentially beaming power to the Earth itself. This paper will discuss the current state of the art of thin film solar cells and the synergy with terrestrial thin film photovoltaic evolution. It will also address some of the technology development issues required to make thin film photovoltaics a viable choice for future space power systems.

  18. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Mariani, Giacomo

    The sun delivers an amount of energy equivalent to ninety billion hydrogen bombs detonating each second. Despite the fact that only one billionth of that energy falls onto the surface of the Earth, one day of sunlight would be sufficient to power the whole human race energy needs for over half a century. Solar electricity represents an environmentally-benign source of power. However, such technology is still more than twice as expensive as natural gas-fired generators. III-V semiconductor nanopillars are defined as vertically aligned arrays of nanostructures that hold the promise to aggressively diminish the cost of the active photovoltaic cell by exploiting a fraction of material utilized in conventional planar schemes. In this dissertation, we assess the viability of two classes of high-performance nanopillar-based solar cells. We begin with the incorporation of dedicated conjugated polymers to achieve a hybrid organic/inorganic heterojunction. Such configuration introduces a high optical absorption arising from the polymeric layer in conjunction with an efficient carrier transport resulting from the semiconductor nanopillar array. We extend the controllability of the heterojunction properties by replacing traditional spin-casting methods with an electrodeposition technique where the polymer is formed and doped in-situ directly onto the nanopillar facets. The rational tuning of the electrical conductivity and energy level of the polymer translates into an enhanced photocurrent and open-circuit voltage, achieving 4.11% solar power conversion efficiency. We then turn our attention to all-semiconductor radial p-n homojunctions embedded in the nanopillars. The first architecture focuses on ex-situ ammonium-sulfide passivation and correlates the optoelectronic properties of the solar cell once two different types of transparent conducting oxides are adopted. The barrier formed at the contact/semiconductor interface greatly depends on the Hall polarity of the

  19. Deuterium isotope effect on bulk heterojunction solar cells. Enhancement of organic photovoltaic performances using monobenzyl substituted deuteriofullerene acceptors.

    PubMed

    Lu, Shirong; Jin, Tienan; Yasuda, Takeshi; Si, Weili; Oniwa, Kazuaki; Alamry, Khalid A; Kosa, Samia A; Asiri, Abdullah Mohamed; Han, Liyuan; Yamamoto, Yoshinori

    2013-11-15

    A series of novel monobenzyl-substituted deuteriofullerenes (BnDCs) were synthesized efficiently through Co-catalyzed selective monofunctionalization of C60. Bulk heterojunction solar cells, based on poly(3-hexylthiophene) as the donor and BnDCs as the acceptors, exhibited higher photovoltaic performances as compared to the corresponding protonated BnHCs devices.

  20. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

  1. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  2. Impacts of Air Pollution on Solar Photovoltaic Electricity Generation in China

    NASA Astrophysics Data System (ADS)

    Li, X.; Mauzerall, D. L.; Wagner, F.; Yang, J.

    2015-12-01

    Solar photovoltaic (PV) electricity generation has been expanding rapidly in China with total capacity quadrupled from 8 to 32 GW between 2012 and 2014. Studies find that China has the potential to increase solar PV in total energy generation up towards 10% (about 300 GW in total capacity) by 2030. However, severe air pollution in China reduces the productivity of solar PV panels by scattering and absorbing sunlight before it reaches the surface. In this study, we first calculate the surface radiative forcing of anthropogenic aerosols (considering only the direct effect) over China from 2003 to 2013 using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis dataset constrained by satellite derived greenhouse gas, reactive gases and aerosols. Our results indicate that, from 2003-2013, the attenuation of sunlight by aerosols over Eastern China averaged about -25 W m-2 compared with the global mean effect of -4.4 W m-2. The largest attenuation is found in Northern China in spring when mean attenuation reached as high as -57 W m-2. This attenuation reduced surface radiative flux by approximately 10%. In Southeastern China, maximum attenuation also occurred in spring, but had a smaller -40 W m-2 monthly mean. Western China is pristine in comparison, featuring no more than a -15 W m-2 monthly mean attenuation. These results imply a potentially large benefit for solar PV efficiency of improving air quality in eastern regions of China. We estimate that, if anthropogenic aerosols were entirely removed in China, solar PV generation would (1) increase 4.5-6.7% (varying among provinces) in Northeastern China where there is abundant solar resource,; (2) reduce the payback period by up to 1 year, increasing investment incentives particularly for distributed PV in Eastern China; and (3) increase total electricity generation in China in 2030 by up to 34 TWh/yr if the total capacity reaches 480 GW, equivalent to one-third of current annual electricity generation

  3. Recent advances in the ITO/InP solar cell

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Wanlass, M. W.; Coutts, T. J.

    1991-01-01

    It was demonstrated that Indium Tin Oxide (ITO)/InP solar cells can now be made on as-received p(-) bulk substrates which are of nearly equal quality to those which could previously only be made on epitaxially grown p(-) InP base layers. Although this advancement is due in part to both increases in substrate quality and a better understanding of back contact formation, it appears that the passivation/compensation effects resulting from having H2 in the sputtering gas tends to reduce significantly the performance differences previously observed between these two substrates. It is shown that since high efficiency ITO/InP cells can be made from as-received substrates, and since the type conversion process is not highly spatially dependent, large area ITO/InP cells (4 sq cm) with efficiencies approaching 17 percent (Global) can be made. Furthermore, the measured open circuit voltages (V sub OC) and quantum efficiencies (QEs) from these large cells suggest that, when they are processed using optimum grid designs, the efficiencies will be nearly equal to that of the smaller cells thus far produced. It has been shown, through comparative experiments involving ITO/InP and IO/InP cells, that Sn may not be the major cause of type conversion of the InP surface and thus further implies that the ITO may not be an essential element in this type of device. Specifically, very efficient photovoltaic solar cells were made by sputtering (Sn free) In2O3 showing that type conversion and subsequent junction formation will occur even in the absence of the sputtered SN species. The result suggests that sputter damage may indeed be the important mechanism(s) of type conversion. Finally, an initial study of the stability of the ITO/InP cell done over the course of about one year has indicated that the J(sub SC) (short circuit current) and the fill factor (FF) are measurably stable within experimental certainty.

  4. Photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Groth, H.

    1982-11-01

    The utilization of photovoltaic generators in measuring and signalling installations, communication systems, water pumping, and electric power plants is discussed. The advantages of solar generators over conventional power supply equipment are outlined.

  5. Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells

    SciTech Connect

    Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

    2012-01-01

    One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

  6. Photovoltaics information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  7. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    PubMed

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery.

  8. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  9. What Changed in Article 690-Solar Photovoltaic Systems- of the 1999 National Electrical Code?

    SciTech Connect

    Bower, W.; Wiles, J.

    1999-01-12

    Article 690, Solar Photovoltaic Power Systems, has been in the National Electrical Code (NEC) since 1984. An NFPA-appointed Task Group for Article 690 proposed changes to Article 690 for both the 1996 and 1999 codes. The Task Group, supported by more than 50 professionals from throughout the photovoltaic (PV) industry, met seven times during the 1999 code cycle to integrate the needs of the industry with the needs of electrical inspectors and end users to ensure the safety of PV systems. The Task Group proposed 57 changes to Article 690, and all the changes were accepted in the review process. The performance and cost of PV installations were always a consideration as these changes were formed but safety was the number-one priority. All of the proposals were well substantiated and coordinated throughout the PV industry and with representatives of Underwriters Laboratories, Inc (UL). The most significant changes that were made in Article 690 for the 1999 NEC along with some of the rationale are discussed in the remainder of this article.

  10. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    PubMed

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. PMID:26852396

  11. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  12. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    PubMed

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  13. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    PubMed

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz). PMID:26023811

  14. 18th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L. (Compiler)

    2005-01-01

    The 18th Space Photovoltaic Research and Technology (SPRAT XVIII) Conference was held September 16 to 18, 2003, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year s conference continued to build on many of the trends shown in SPRAT XVII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.

  15. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  16. Quantitative separation of mechanisms for power dissipation in solar cells by photoacoustic and photovoltaic measurements

    NASA Astrophysics Data System (ADS)

    Flaisher, Harvey; Wolf, Martin; Cahen, David

    1989-08-01

    Photoacoustics is used as a calorimetric method in conjunction with electrical measurements to determine which mechanisms are involved in the conversion of most of the absorbed radiation to thermal energy in (mainly Si p-n) solar cells. The major mechanisms that are identified and quantified include local cooling, near the junction of the cells. Quantification is made possible by the use of a model for internal energy fluxes in a photovoltaic cell, which takes into account the different spatial distributions of heat generated by photogenerated and injected carriers. The experimental results agree well with calculations based on the model also in the case of thin-film CdS/CuInSe2 cells.

  17. Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Yuan; Liu, Wen; Li, Zhao-Feng; Liu, Min; Liu, Yu-Sheng; Wang, Xiao-Dong; Yang, Fu-Hua

    2016-10-01

    We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation. With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 mA/cm2 is obtained. Moreover, by adding an Ag mirror under the whole structure, a short-circuit current density of 37.9 mA/cm2 is attained. It is understood that the optical absorption enhancement mainly results from three aspects. First, the silicon nanocone holes provide a highly efficient antireflection effect. Second, after breaking the geometric symmetry, the slanted silicon nanocone hole supports more resonant absorption modes than vertical structures. Third, the Fabry-Perot resonance enhances the light absorption after adding an Ag mirror. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274066, 61474115, and 61504138) and the National High Technology Research and Development Program of China (Grant No. 2014AA032602).

  18. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.

    2015-10-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  19. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    NASA Technical Reports Server (NTRS)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  20. Molecular design and photovoltaic performance of organic dyes containing phenothiazine for dye-sensitized solar cells.

    PubMed

    Jo, Hyo Jeong; Nam, Jung Eun; Sim, Kyoseung; Kim, Dae-Hwan; Kim, Jae Hong; Kang, Jin-Kyu

    2014-10-01

    We synthesized novel organic photosensitizers based on fluorine-substituted phenothiazine with thiophene bridge units in the chromophore for application in dye-sensitized solar cells (DSSCs). Furthermore, organic dyes with different acceptors exhibited higher molar extinction coefficients, and better light absorption at longer wavelengths. The photovoltaic properties of organic dyes composed of different acceptors in their chromophores were measured to identify their effects on the DSSC performance. The organic dye, PFSCN2 containing multi-cyanoacrylic acid as the electron acceptor, showed a power conversion efficiency of 4.67% under AM 1.5 illumination (100 mW/cm2). The retarded recombination kinetics from TiO2 electrode to electrolyte enhanced the electron life time of the organic dye, PFSCN2 in the photoanode of the DSSC. This was confirmed with impedance analysis.

  1. Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method.

    PubMed

    Wang, Wei-Li; Zou, Xian-Shao; Zhang, Bin; Dong, Jun; Niu, Qiao-Li; Yin, Yi-An; Zhang, Yong

    2014-06-01

    A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

  2. Materials for the active layer of organic photovoltaics: ternary solar cell approach.

    PubMed

    Chen, Yung-Chung; Hsu, Chih-Yu; Lin, Ryan Yeh-Yung; Ho, Kuo-Chuan; Lin, Jiann T

    2013-01-01

    Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.

  3. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  4. The lateral photovoltaic effect in CdS-Cu2S heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Haque, M. A.

    1982-06-01

    The lateral photovoltaic effect has been observed in CdS-Cu2S thin-film solar cells. The effect is more pronounced on the CdS side than on the Cu2S side of the cells. On the CdS side, where the contacts were formed by soldering Cu wire by indium and then applying Ag paint, the photovoltage developed were found to increase as the point of illumination was moved towards the contact. The spectral response of photovoltage for coevaporated cells shows a peak at λ=0.5μm (2.45 eV). But for topotaxial cells two peaks, one at λ=0.5μm and the other at λ=0.65μm (1.89eV) were observed. A band model has been proposed for the heat-treated optimized cells.

  5. The lateral photovoltaic effect in CdS-Cu2S heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Haque, M. A.

    1982-06-01

    The lateral photovoltaic effect has been observed in CdS-Cu2S thin-film solar cells. The effect is more pronounced on the CdS side than on the Cu2S side of the cells. On the CdS side, where the contacts were formed by soldering Cu wire by indium and then applying Ag paint, the photovoltage developed were found to increase as the point of illumination was moved towards the contact. The spectral response of photovoltage for coevaporated cells shows a peak at 0.5 micron (2.45 eV). But for topotaxial cells two peaks, one at 0.5 micron and the other at 0.65 micron (1.89 eV) were observed. A band model has been proposed for the heat-treated optimized cells.

  6. Safety procedures for the 100-kW solar photovoltaic system at Natural Bridges National Monument

    SciTech Connect

    Hopkinson, R.F.

    1981-09-01

    The 100-kWp solar photovoltaic power system at Natural Bridges National Monument is a unique electrical power-generation system and special safety guidelines have been developed to govern its operation. General safety requirements have been set forth to safeguard newcomers to the PV system at Natural Bridges National Monument. Procedures to be used in event of emergency, including a recommended shutdown procedure, are included together with specific safety hazards inherent in the array field, battery room, control room, and inverter room. It is the intention of this book to inform guides for visitors, operators, and maintenance personnel of the nature of these safety hazards and to detail means of effectively dealing with them.

  7. The development and utilization of solar photovoltaic cells: An assessment of the potential for a new energy technology

    NASA Technical Reports Server (NTRS)

    Cyr, K. J.

    1981-01-01

    The Government set the goal of accelerating the adaptation of photovoltaics by reducing system costs to a competitive level and overcoming the technical, institutional, legal, environmental, and social barriers impeding the diffusion of photovoltaic technology. The technology of silicon solar arrays was examined and the status of development efforts are reviewed. The political, legal, economic, social, and environmental issues are discussed, and several methods for selecting development projects are described. A number of market forecasting techniques, including time trend, judgemental, and econometric methods, were reviewed, and the results of these models are presented.

  8. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  9. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong; Wang, Ping; Rong, Xin; Wang, Tao; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2016-08-01

    We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.

  10. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  11. PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards

    SciTech Connect

    Basso, T. S.; Chalmers, S.; Barikmo, H. O.

    2005-11-01

    This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

  12. University Crystalline Silicon Photovoltaics Research and Development

    SciTech Connect

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  13. Advanced research in solar-energy storage

    SciTech Connect

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  14. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    ERIC Educational Resources Information Center

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  15. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV

  16. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  17. Advances in simulation study on organic small molecular solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Wenge; Li, Ming; Ma, Wentao; Meng, Sen

    2015-02-01

    Recently, more focuses have been put on organic semiconductors because of its advantages, such as its flexibility, ease of fabrication and potential low cost, etc. The reasons we pay highlight on small molecular photovoltaic material are its ease of purification, easy to adjust and determine structure, easy to assemble range units and get high carrier mobility, etc. Simulation study on organic small molecular solar cells before the experiment can help the researchers find relationship between the efficiency and structure parameters, properties of material, estimate the performance of the device, bring the optimization of guidance. Also, the applicability of the model used in simulation can be discussed by comparison with experimental data. This paper summaries principle, structure, progress of numerical simulation on organic small molecular solar cells.

  18. Adi Quala: application of solar photovoltaic generation in rural medical centres.

    PubMed

    Allen, P; Welstead, J

    1994-01-01

    Adi Quala is an Eritrean agricultural town of 14,000 people, and is situated about 70 km south of the capital, Asmara and 30 km from the border with Tigray, Ethiopia. On good days electricity was received from Asmara between 0600 h and 2300 h with nothing available outside these hours. These conditions meant the electricity supply had been a constant problem for the Adi Quala hospital which caters for about 50,000 people with 21 staff. It was for this reason that it was chosen for the first solar system, which provides all essential requirements completely independently from the grid connection. This will in turn enable the hospital to increase the range and reliability of services on offer. Three weeks after the arrival of the equipment the elders were able to have a guided tour of their new local facilities. This included 2kW of photovoltaic panels (installed on the roof), batteries and control equipment powering a range of hospital equipment used in the Mother and Child Health Centre, delivery room, wards, dispensary, clinic and laboratory. Their enormous appreciation was very moving and well articulated in an afternoon of music, speeches and feasting. Eritrea's first solar powered hospital was welcomed into capable hands. The pilot project was successfully installed and commissioned in February 1992, and has performed well to date.

  19. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  20. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  1. Adi Quala: application of solar photovoltaic generation in rural medical centres.

    PubMed

    Allen, P; Welstead, J

    1994-01-01

    Adi Quala is an Eritrean agricultural town of 14,000 people, and is situated about 70 km south of the capital, Asmara and 30 km from the border with Tigray, Ethiopia. On good days electricity was received from Asmara between 0600 h and 2300 h with nothing available outside these hours. These conditions meant the electricity supply had been a constant problem for the Adi Quala hospital which caters for about 50,000 people with 21 staff. It was for this reason that it was chosen for the first solar system, which provides all essential requirements completely independently from the grid connection. This will in turn enable the hospital to increase the range and reliability of services on offer. Three weeks after the arrival of the equipment the elders were able to have a guided tour of their new local facilities. This included 2kW of photovoltaic panels (installed on the roof), batteries and control equipment powering a range of hospital equipment used in the Mother and Child Health Centre, delivery room, wards, dispensary, clinic and laboratory. Their enormous appreciation was very moving and well articulated in an afternoon of music, speeches and feasting. Eritrea's first solar powered hospital was welcomed into capable hands. The pilot project was successfully installed and commissioned in February 1992, and has performed well to date. PMID:8134930

  2. History of Public Policies for Research, Development and Deployment for Solar Photovoltaics in Japan

    NASA Astrophysics Data System (ADS)

    Kimura, Osamu

    Developing new renewable energy sources, such as solar photovoltaics (PV), is a key to establishing climate-friendly economy. Japan has been one of the centers of research, development, and diffusion (RD&D) of PV since the 1970's. While it is true that Japan was outnumbered by Germany in installed capacity and by US and Chinese companies in production in recent years, Japan still retains an important position in the world PV market. This paper examines the history of public policies for RD&D of PV in Japan, focusing on two kinds of policies, namely, public support for R&D under the Sunshine Program and various market creation policies in the early 1990's. Based on literature survey and interviews with key persons involved, the paper reveals that those support policies played an indispensable role to accelerate RD&D of PV technology. The Sunshine Program provided stable R&D budgets and space for technology learning throughout the 1980's to 1990's, and contributed to the progress of solar cell efficiency and cost reduction. The various market creation policies in the early 1990's also created regulatory and economic conditions that were necessary to commercialize residential PV systems, and became the direct driver to launch the initial PV market.

  3. Photovoltaic Installation Data from the Open PV Project: Real-time Status of the Solar Photovoltaic Market in the U.S.

    DOE Data Explorer

    The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project are voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of the US solar power market. The database allows searching by state or zipcode, size or date ranges, and organization name. The results include the cost of each solar install and an average of cost per power watt in that specific state. The Open PV Visualization Gallery features four interactive data maps that instantly reconfigure to display updated information as soon as an individual or organization uploads new data.

  4. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  5. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR. PMID:21060220

  6. Brayton cycle solarized advanced gas turbine

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Described is the development of a Brayton Engine/Generator Set for solar thermal to electrical power conversion, authorized under DOE/NASA Contract DEN3-181. The objective was to design, fabricate, assemble, and test a small, hybrid, 20-kW Brayton-engine-powered generator set. The latter, called a power conversion assembly (PCA), is designed to operate with solar energy obtained from a parobolic dish concentrator, 11 meters in diameter, or with fossil energy supplied by burning fuels in a combustor, or by a combination of both (hybrid model). The CPA consists of the Brayton cycle engine, a solar collector, a belt-driven 20-kW generator, and the necessary control systems for automatic operation in solar-only, fuel-only, and hybrid modes to supply electrical power to a utility grid. The original configuration of the generator set used the GTEC Model GTP36-51 gas turbine engine for the PCA prime mover. However, subsequent development of the GTEC Model AGT101 led to its selection as the powersource for the PCA. Performance characteristics of the latter, thermally coupled to a solar collector for operation in the solar mode, are presented. The PCA was successfully demonstrated in the fuel-only mode at the GTEC Phoenix, Arizona, facilities prior to its shipment to Sandia National Laboratory in Albuquerque, New Mexico, for installation and testing on a test bed concentractor (parabolic dish). Considerations relative to Brayton-engine development using the all-ceramic AGT101 when it becomes available, which would satisfy the DOE heat engine efficiency goal of 35 to 41 percent, are also discussed in the report.

  7. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.

    PubMed

    De Angelis, Filippo

    2014-11-18

    CONSPECTUS: Over the last 2 decades, researchers have invested enormous research effort into hybrid/organic photovoltaics, leading to the recent launch of the first commercial products that use this technology. Dye-sensitized solar cells (DSCs) have shown clear advantages over competing technologies. The top certified efficiency of DSCs exceeds 11%, and the laboratory-cell efficiency is greater than 13%. In 2012, the first reports of high efficiency solid-state DSCs based on organohalide lead perovskites completely revolutionized the field. These materials are used as light absorbers in DSCs and as light-harvesting materials and electron conductors in meso-superstructured and flat heterojunction solar cells and show certified efficiencies that exceed 17%. To effectively compete with conventional photovoltaics, emerging technologies such as DSCs need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSC field have relied on the computational design and screening of new materials, with researchers examining material characteristics that can improve device performance or stability. Suitable modeling strategies allow researchers to observe the otherwise inaccessible but crucial heterointerfaces that control the operation of DSCs, offering the opportunity to develop new and more efficient materials and optimize processes. In this Account, we present a unified view of recent computational modeling research examining DSCs, illustrating how the principles and simulation tools used for these systems can also be adapted to study the emerging field of perovskite solar cells. Researchers have widely applied first-principles modeling to the DSC field and, more recently, to perovskite-based solar cells. DFT/TDDFT methods provide the basic framework to describe most of the desired materials and interfacial properties, and Car-Parrinello molecular dynamics allow researchers the further ability to sample local minima and

  8. Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells.

    PubMed

    Zhou, Ke; Zhang, Rui; Liu, Jiangang; Li, Mingguang; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2015-11-18

    The correlated donor/acceptor (D/A) molecular orientation plays a crucial role in solution-processed all-polymer solar cells in term of photovoltaic performance. For the conjugated polymers PTB7-th and P(NDI2OD-T2), the preferential molecular orientation of neat PTB7-th films kept face-on regardless of the properties of processing solvents. However, an increasing content of face-on molecular orientation in the neat P(NDI2OD-T2) films could be found by changing processing solvents from chloronaphthalene (CN) and o-dichlorobenzene (oDCB) to chlorobenzene (CB). Besides, the neat P(NDI2OD-T2) films also exhibited a transformation of preferential molecular orientation from face-on to edge-on when extending film drying time by casting in the same solution. Consequently, a distribution diagram of molecular orientation for P(NDI2OD-T2) films was depicted and the same trend could be observed for the PTB7-th/P(NDI2OD-T2) blend films. By manufacture of photovoltaic devices with blend films, the relationship between the correlated D/A molecular orientation and device performance was established. The short-circuit current (Jsc) of devices processed by CN, oDCB, and CB enhanced gradually from 1.24 to 8.86 mA/cm(2) with the correlated D/A molecular orientation changing from face-on/edge-on to face-on/face-on, which could be attributed to facile exciton dissociation at D/A interface with the same molecular orientation. Therefore, the power conversion efficiency (PCE) of devices processed by CN, oDCB, and CB improved from 0.53% to 3.52% ultimately.

  9. InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Hashem, Islam E.; Zachary Carlin, C.; Hagar, Brandon G.; Colter, Peter C.; Bedair, S. M.

    2016-03-01

    Raising the efficiency ceiling of multi-junction solar cells (MJSCs) through the use of more optimal band gap configurations of next-generation MJSC is crucial for concentrator and space systems. Towards this goal, we propose two strain balanced multiple quantum well (SBMQW) structures to tune the bandgap of InGaP-based solar cells. These structures are based on InxGa1-xAs1-zPz/InyGa1-yP (x > y) and InxGa1-xP/InyGa1-yP (x > y) well/barrier combinations, lattice matched to GaAs in a p-i-n solar cell device. The bandgap of InxGa1-xAs1-zPz/InyGa1-yP can be tuned from 1.82 to 1.65 eV by adjusting the well composition and thickness, which promotes its use as an efficient subcell for next generation five and six junction photovoltaic devices. The thicknesses of wells and barriers are adjusted using a zero net stress balance model to prevent the formation of defects. Thin layers of InGaAsP wells have been grown thermodynamically stable with compositions within the miscibility gap for the bulk alloy. The growth conditions of the two SBMQWs and the individual layers are reported. The structures are characterized and analyzed by optical microscopy, X-ray diffraction, photoluminescence, current-voltage characteristics, and spectral response (external quantum efficiency). The effect of the well number on the excitonic absorption of InGaAsP/InGaP SBMQWs is discussed and analyzed.

  10. Progress to Develop an Advanced Solar-Selective Coating

    SciTech Connect

    Kennedy, C. E.

    2008-03-01

    The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

  11. Urban solar photovoltaics potential: An inventory and modelling study applied to the San Fernando Valley region of Los Angeles

    NASA Technical Reports Server (NTRS)

    Angelici, G. L.; Bryant, N. A.; Freta, R. K.; Friedman, S. Z.

    1980-01-01

    Procedures for analyzing the potential of solar photovoltaic collectors to meet energy requirements in a metropolitan region are described and a modeling effort is applied to the San Fernando Valley region of Los Angeles. The procedure involves a series of steps designed to produce maps and tabulations revealing the amount of rooftop area available for establishing solar collectors and the proportion of energy requirement that could be potentially supplied by solar photovoltaics within each of the 533 mainline feeder service areas in the study area. For the sixty five square mile study area, the results showed that, with half the available flat and south facing roofs used and assuming the availability of energy storage, 52.7 percent of the actual kWh energy requirements could have been met in 1978 using photovoltaic collectors. Hourly, daily, weekly, and monthly fluctuations in potential supply and actual loads and recommendations of avenues for further research are discussed. Some further potential applications of the modeling technique are suggested.

  12. Recent Advances on Solar Global Magnetism and Variability

    NASA Astrophysics Data System (ADS)

    Brun, A. S.; Browning, M. K.; Dikpati, M.; Hotta, H.; Strugarek, A.

    2015-12-01

    We discuss recent observational, theoretical and numerical progress made in understanding the solar global magnetism and its short and long term variability. We discuss the physical process thought to be at the origin of the solar magnetic field and its 22-yr cycle, namely dynamo action, and the nonlinear interplay between convection, rotation, radiation and magnetic field, yielding modulations of the solar constant or of the large scale flows such as the torsional oscillations. We also discuss the role of the field parity and dynamo families in explaining the complex multipolar structure of the solar global magnetic field. We then present some key MHD processes acting in the deep radiative interior and discuss the probable topology of a primordial field there. Finally we summarize how helioseismology has contributed to these recent advances and how it could contribute to resolving current unsolved problems in solar global dynamics and magnetism.

  13. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  14. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Astrophysics Data System (ADS)

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  15. Predictability of Solar Radiation for Photovoltaics systems over Europe: from short-term to seasonal time-scales

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Petitta, Marcello; Ruti, Paolo

    2014-05-01

    Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."

  16. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  17. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable

  18. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  19. Advanced amorphous materials for photovoltaic conversion. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect

    Griffith, R.W.; Delahoy, A.E.; Hirsch, M.D.; Kampas, F.J.; Vanier, P.E.

    1980-01-01

    The primary objectives of this project are twofold: (i) to investigate new amorphous semiconductor (a-Sc) materials, in which recombination centers are passivated, using plasma deposition techniques; and (ii) to characterize the optoelectronic properties pertaining to both majority-carrier and minority-carrier transport in as-deposited films and in devices. The specific goals in FY 1980 are: (i) to continue investigations of the effects of atmospheric impurities, i.e., nitrogen and oxygen, on the optoelectronic properties of a-Si:H alloys; and (ii) to initiate a study of the effects of these impurities upon the photovoltaic conversion efficiencies of diagnostic devices that are fabricated using such alloys. The following activities were emphasized in the program: (i) an expansion of plasma studies using optical emission spectroscopy in order to identify emitting reactive species due to impurities; and (ii) electrical and optical measurements on alloys with calibrated impurity levels by measurments of photoconductivity, photoluminescence, vibrational spectroscopy, etc.; and (iii) completing the apparatus for device measurements of spectral response, dark I-V characteristics, illuminated I-V characteristics, etc. Associated with the last activity, the fabrication of solar cells was begun using low-impurity a-Si:H materials and various a-Si:(H,O,N) alloys. Progress is reported. (WHK)

  20. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  1. Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.

    PubMed

    Cristino, Vito; Berardi, Serena; Caramori, Stefano; Argazzi, Roberto; Carli, Stefano; Meda, Laura; Tacca, Alessandra; Bignozzi, Carlo Alberto

    2013-08-21

    Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(iii) oxides gave the best results, leading to photoanodes capable of efficiently splitting water, with photocurrent densities up to 6 ± 1 mA cm(-2) at 0 V vs. the reversible hydrogen electrode (RHE) under AM 1.5 G simulated sunlight illumination. The resulting Solar To Hydrogen (STH) conversion efficiencies, measured in two electrodes configuration, were in the range 3.7-5%, depending on the counter electrode that was employed. Investigations on the stability showed that these photoanodes were able to sustain 120 minutes of continuous illumination with a < 10% photocurrent loss at 0 V vs. RHE. Pristine photoanodic response of the cells could be fully restored by an additional SILAR cycle, evidencing that the observed loss is due to the detachment of the more weakly surface bound catalyst.

  2. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  3. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.

    2013-06-01

    Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.

  4. Ultra-high efficiency photovoltaic cells for large scale solar power generation.

    PubMed

    Nakano, Yoshiaki

    2012-01-01

    The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III-V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.

  5. Computational Analysis of Energy Pooling to Harvest Low-Energy Solar Energy in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Lacount, Michael; Shaheen, Sean; Rumbles, Garry; van de Lagemaat, Jao; Hu, Nan; Ostrowski, Dave; Lusk, Mark

    2014-03-01

    Current photovoltaic energy conversions do not typically utilize low energy sunlight absorption, leaving large sections of the solar spectrum untapped. It is possible, though, to absorb such radiation, generating low-energy excitons, and then pool them to create higher energy excitons, which can result in an increase in efficiency. Calculation of the rates at which such upconversion processes occur requires an accounting of all possible molecular quantum electrodynamics (QED) pathways. There are two paths associated with the upconversion. The cooperative mechanism involves a three-body interaction in which low energy excitons are transferred sequentially onto an acceptor molecule. The accretive pathway, requires that an exciton transfer its energy to a second exciton that subsequently transfers its energy to the acceptor molecule. We have computationally modeled both types of molecular QED obtaining rates using a combination of DFT and many-body Green function theory. The simulation platform is exercised by considering upconversion events associated with material composed of a high energy absorbing core of hexabenzocoronene (HBC) and low energy absorbing arms of oligothiophene. In addition, we make estimates for all competing processes in order to judge the relative efficiencies of these two processes.

  6. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    PubMed

    Highfield, James

    2015-04-15

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.

  7. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    PubMed

    Highfield, James

    2015-01-01

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered. PMID:25884553

  8. Advanced methods for light trapping in optically thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption

  9. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. PMID:26615488

  10. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk.

  11. Concepts for thin-film GaAs concentrator cells. [for solar photovoltaic space power systems

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Gale, R. P.; Mcclelland, R.; King, B.; Dingle, J.

    1989-01-01

    The development of advanced GaAs concentrator solar cells, and in particular, the use of CLEFT (cleavage of lateral epitaxial films for transfer) processes for formation of thin-film structures is reported. The use of CLEFT has made possible processing of the back, and cells with back surface grids are discussed. Data on patterned junction development are presented; such junctions are expected to be useful in back surface applications requiring point contacts, grating structures, and interdigitated back contacts. CLEFT concentrator solar cells with grids on the front and back surfaces are reported here; these cells are 4 microns thick and are bonded to glass covers for support. Air mass zero efficiency of 18.8 percent has been obtained for a CLEFT concentrator operating at 18.5 suns.

  12. Eco green flexible hybrid photovoltaic-thermoelectric solar cells with nanoimprint technology and roll-to-roll manufacturing

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Choi, Sang H.

    2010-04-01

    This paper explores the technical and commercial feasibility of nanotechnology based, high-efficiency, photovoltaic-thermoelectric hybrid solar cells as an environmentally-friendly, renewable energy source for residential and commercial buildings. To convert as much as possible of the usable photovoltaic (58% of the Energy Density) and thermoelectric (42% of the Energy Density) solar spectrum into electricity, a hybrid multilayer system is presented which comprises of 1) carbon nanotube (CNT) embedded in conducting polymers such as P3HT (poly(3-hexylthiophene) or P3OT (poly3-octylthiophene), 2) 3D gold nanostructures exhibiting plasmonic resonances for energy conversion, 3) nanoantenna architecture to capture IR energy, 4) a composite of Bi2Te3, SiGe nanocrystals and Au nanoshells as thermoelectric energy conversion layer, 5) configuration of the above items engineered in the form of meta-material designs that by virtue of their 3D structures ensure that incident light is neither reflected nor transmitted, but is rather all absorbed, 6) a multilayer arrangement of the above layers in a fractal architecture to capture all the wavelengths from 200 to 3000 nm8 and the matching electronic interface for each layer. The roll-to-roll manufacturing method presented will enable economical large-scale production of solar panels. This potentially transformational technology has the ability to replace the Si solar cell technology by reducing costs from 0.18/KWh to 0.003/KWh while introducing a more environmentally-friendly manufacturing process.

  13. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  14. Recent Advances in Solar Sail Propulsion Systems at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion has the potential to provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn s Space Power Facility at Plum Brook Station Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. The sail designs are robust enough for deployments in a one atmosphere, one gravity environment and are scalable to much larger solar sails - perhaps as large as 150 meters on a side. In addition, computational modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (150 meters) required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum environment testing.

  15. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures. PMID:26856789

  16. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  17. Chapter 1: Recent Advances in Solar Physics

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2008-10-01

    For millennia, the Sun (and the universe) has been viewed in the visual light. As the bestower of light and life, the ancients made God out of the Sun. With the Babylonians, or with the multiple origins with the Chinese, Egyptians and Indians, quoting the Rig Veda:"All that exists was born from Sūrya, the God of gods.", we have come a long way to understanding the Sun. In the early seventeenth century, however, Galileo showed that the Sun was not an immaculate object. Thus began our scientific interests in our nearest stellar neighbour, the Sun (cf., Figure 1.1.), with its sunspots and the related solar activity. The observations of the Sun and their interpretations are of universal importance for at least two reasons: First, the Sun is the source of energy for the entire planetary system and all aspects of our life have direct impact on what happens on the Sun; and second, the Sun's proximity makes it unique among the billions of stars in the sky of which we can resolve its surface features and study physical processes at work...

  18. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  19. Polarization Calibration of the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elmore, D. F.

    2014-10-01

    The Advanced Technology Solar Telescope (ATST) will be the World's largest solar polarimeter with a number of polarimetric instruments simultaneously sharing the ATST light beam. Polarization calibration requires determination of the polarization properties of the telescope optics that are shared by all instruments and the polarization response of each instrument. Hundreds of parameters are required to fully specify the telescope optics but by grouping successive optical elements separated at the Gregorian focus, the elevation rotation, and the Coudé - azimuth rotation and performing calibrations over the course of a day, it is possible to infer the polarization properties of each of the groups, and the instruments themselves with many fewer parameters.

  20. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  1. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  2. Residential solar-photovoltaic power systems: the need for battery storage

    SciTech Connect

    Mueller, R. O.; Cha, B. K.; Giese, R. F.; Maslowski, C.

    1980-01-01

    Benefits of battery storage used in conjunction with residential solar photovoltaic (PV) power systems were evaluated for a representative set of utility service areas. The PV systems were assumed capable of exporting excess power to the utility grid, and the batteries sited at the substation level were operated as a form of load-leveling utility storage. A cost-allocation model, SIMSTOR, was employed to determine utility fuel and capital cost savings resulting from the addition of batteries as a function of PV system penetration level. These benefits were compared with the savings of batteries used alone without introduction of the PV systems. Battery storage capacities and discharge rates were varied to determine the battery configurations that maximize net utility savings as a function of battery costs. Installed (rated) PV device capacities up to 20 percent of the generation peak load in each service area were considered. Findings indicate that batteries and PV systems are complementary rather than competing technologies, when attached to the electric supply grid. The utility benefits of the PV systems are primarily fuel savings, while those of the battery are primarily due to savings in utility capacity. The economic rationale for batteries does not change significantly as the penetration level for the PV systems increases. In some of the service areas, the addition of the PV systems tended to sharpen rather than flatten the peaks in the utility's load curves, with the magnitude of the effect becoming more pronounced at the higher PV system penetration levels. As a result of these load shape changes, batteries with higher discharge rates and larger storage capacities were favored.

  3. Recent advances in solar dynamic power for space

    SciTech Connect

    Binz, E.F.; Grosskopf, W.J.; Hallinan, G.J.

    1986-01-01

    The development of a hybrid power system for the Space Station is discussed. The hybrid system consists of photovoltaic modules, solar dynamic modules, and power management and distribution subsystems; the design and components of the modules and subsystems are described. The capabilities of closed Brayton cycle (CBC) and organic Rankine cycle (ORC) solar receivers are examined. The behavior of phase-change materials (PCMs) for ORC and CBC is characterized. It is observed that LiOH with a melting point of 471 C is appropriate for an ORC that operates in the 399 C range, and the LiOH which has a heat fusion of 877 kJ/g can be contained with Ni and Ni-Cr alloys. A mixture of CaF2-LiF was selected for CBC which operates at 732 C; the salt mixture has a melting point of 768 C, a heat fusion of 791 kJ/kg, and can be contained with Ni-Cr and Co-base alloys. Large-scale system tests with PCMs in cylindrical canisters were conducted using a parabolic concentrator to evaluate thermodynamic performance in a LEO environment. The data reveal that the PCM can convert the sunlight of LEO to the constant energy stream necessary for dynamic engine operation.

  4. Photovoltaic Materials

    SciTech Connect

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  5. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    SciTech Connect

    Li, Weixin; Yang, Junyou Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  6. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  7. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  8. Proceedings of the 19th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie (Compiler); Morton, Thomas (Compiler)

    2007-01-01

    The 19th Space Photovoltaic Research and Technology Conference (SPRAT XIX) was held September 20 to 22, 2005, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT Conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year's conference continued to build on many of the trends shown in SPRAT XVIII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.

  9. A Space Testbed for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1998-01-01

    The Ohio Aerospace Institute and the NASA Lewis Research Center are designing and building a solar-cell calibration facility, the Photovoltaic Engineering Testbed (PET) to fly on the International Space Station to test advanced solar cell types in the space environment. A wide variety of advanced solar cell types have become available in the last decade. Some of these solar cells offer more than twice the power per unit area of the silicon cells used for the space station power system. They also offer the possibilities of lower cost, lighter weight, and longer lifetime. The purpose of the PET facility is to reduce the cost of validating new technologies and bringing them to spaceflight readiness. The facility will be used for three primary functions: calibration, measurement, and qualification. It is scheduled to be launched in June of 2002.

  10. Solar photovoltaics: Stand alone applications. [NASA Lewis Research Center research and development

    NASA Technical Reports Server (NTRS)

    Deyo, J. N.

    1980-01-01

    The Lewis Research Center involvement in space photovoltaic research and development and in using photovoltaics for terrestrial applications is described with emphasis on applications in which the normal source of power may be a diesel generator, batteries, or other types of power not connected to a utility grid. Once an application is processed, technology is developed and demonstrated with a user who participates in the cost and furnishes the site. Projects completed related to instruments, communication, refrigeration, and highways, are described as well as warning systems, weather stations, fire lookouts, and village power systems. A commercially available photovoltaic powered electric fence charger is the result of Lewis research and development.

  11. Optical absorption enhancement with low structural-parameter sensitivity in three-dimensional silicon nanocavity array for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Fuqiang; Sun, Ruinan; Hu, Ya; Peng, Kui-Qing

    2016-01-01

    Effective light trapping is essential for improving the efficiency and reducing the cost of thin-film silicon solar cells. Here, we numerically study the optical characteristics of periodic three-dimensional (3D) silicon nanocavity arrays. We found that the 3D silicon nanocavity array shows low sensitivity to geometric structural parameters for photon capture and achieves an outstanding efficiency superior to those of previously reported silicon nanostructures such as a nanowire and a nanohole with the same thickness. This excellence is attributed to a better antireflection capability and more resonant modes. The 3D silicon nanocavity array provides a new light-trapping strategy for thin-film photovoltaic devices.

  12. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  13. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    SciTech Connect

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; Nykypanchuk, Dmytro; Nam, Chang -Yong

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  14. Estimated performance and future potential of solar dynamic and photovoltaic power systems for selected LEO and HEO missions

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Lu, Cheng Y.

    1989-01-01

    Solar photovoltaic and thermal dynamic power systems for application to selected low-earth-orbit (LEO) and high-earth-orbit (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied to correspond to anticipated introduction of improved or new technologies. A comparative assessment is made of the two power system types for emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage and thermal management. The assessment is made to common ground rules and assumptions. The four missions (Space Station, sun-synchronous, Van Allen belt, and GEO) are representative of the anticipated range of multikilowatt earth-orbit missions. The results give the expected performance, mass and drag of multikilowatt earth-orbiting solar power systems and show how the overall system figure of merit will improve as new component technologies are incorporated.

  15. Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting

    NASA Astrophysics Data System (ADS)

    Ayala, Silvana; Wu, Yuechen; Vorndran, Shelby; Santiago, Raphael P.; Kostuk, Raymond K.

    2015-09-01

    In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.

  16. High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array.

    PubMed

    Hayashi, Nobuhiko; Inoue, Daijiro; Matsumoto, Mitsuhiro; Matsushita, Akio; Higuchi, Hiroshi; Aya, Youichirou; Nakagawa, Tohru

    2015-06-01

    We propose a thin and compact concentrator photovoltaic (CPV) module, about 20 mm thick, one tenth thinner than those of conventional CPVs that are widely deployed for mega-solar systems, to broaden CPV application scenarios. We achieved an energy conversion efficiency of 37.1% at a module temperature of 25 °C under sunlight irradiation optimized for our module. Our CPV module has a lens array consisting of 10 mm-square unit lenses and micro solar cells that are directly attached to the lens array, to reduce the focal length of the concentrator and to reduce optical losses due to reflection. The optical loss of the lens in our module is about 9.0%, which is lower than that of conventional CPV modules with secondary optics. This low optical loss enables our CPV module to achieve a high energy conversion efficiency.

  17. SEPServer advances overview on Solar Energetic Particle events

    NASA Astrophysics Data System (ADS)

    Malandraki, O.

    2013-09-01

    SEPServer hosted activities related to the scientific analysis of SEP event observations, including data analysis using both data-driven and simulation-based methods. The scientific conclusions of this effort are drawn with the implementation and release to the SEP community of multiple SEP event catalogs based on different spacecrafts and instruments, covering a broad timescale from 1975 to 2013 as well as a variety of distances from 0.3 to ~5 AU in the heliosphere. SEP events from Helios A & B missions, going back to 1975, at distances 0.3-1 AU, together with their Electromagnetic (EM) counterpart from OSRA data are being released for the first time. A catalog covering solar cycle 23 based upon the Solar and Heliospheric Observatory (SOHO)/ Energetic and Relativistic Nuclei and Electron (ERNE) highenergy (~68 MeV) protons at 1 AU with parallel analysis of SOHO/ Electron Proton Helium Instrument (EPHIN) and Advanced Composition Explorer (ACE) / Electron, Proton and Alpha Monitor (EPAM) data, including the relevant EM associations has also been delivered. Furthermore, the first complete Solar TErrestrial RElations Observatory (STEREO) SEP catalog based on the Low Energy Telescope (LET) protons (610 MeV) and the Solar Electron Proton Telescope (SEPT) electrons (65-105 keV) covering the rising phase of solar cycle 24 has been implemented. Moreover, the Cosmic Ray and Solar Particle Investigation (COSPIN) Kiel Electron Telescope (KET) data of 38-125 MeV has been used to identify a new catalog of SEP events observed in and out of the ecliptic plane over solar cycle 23, with simultaneous analysis of electrons recorded by the Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies (HISCALE). For selected cases simulation based analysis has been applied in order to identify the timing of the injection history and to provide a cross reference to the EM emissions, leading to a comprehensive treatment of these events and to the corresponding testing of

  18. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    PubMed

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-01

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  19. Dye sensitized photovoltaic miniaturized solar cells, used as optical sensors for line of sight detection

    NASA Astrophysics Data System (ADS)

    Cesar, Cortes Torres Carlos; Sampei, Kota; Miho, Ogawa; Masataka, Ozawa; Norihisa, Miki

    2014-11-01

    Dye sensitized photovoltaic devices have been studied as transparent and low-cost solar cells. Our group have miniaturized the cells and used them as transparent optical sensors. This paper reports the design and fabrication of the cells and avoids the cross talk among cells, which was found recently and such effect provokes hardware instability. We use these optical sensors as an eye tracking device. The sensor array detects the difference in the intensity of light reflected from the pupil and the sclera and then determines the pupil position. Each sensor consists of two electrodes and electrolyte; hence our device conformed by only four semi-circular shaped sensors on eyeglasses can detect the view angle in both horizontal and vertical directions. Manufacturing process gives us freedom to easily re-arrange, add or remove sensors. In our prior work we had good performance in stand-alone configuration. We used specialized equipment from National Instruments for our measurements. However we found that: A cell is not 100% independent from the others, is affected by the absence or presence of light at the neighbour cells. When our device is connected to other electronic devices (for data processing), all cells have the same voltage among them; therefore, all cells behave the same way when any of them is affected by light. The root cause is, due to all sensors were interconnected via a micro channel and filled with electrolyte, due to its conductive properties, electrolyte does neither need electrodes nor physical paths to conduct electricity, so it creates a liquid wire between sensors, hence the gap between them become inexistent, consequently when our device is connected to other electronic devices, due to this unique channel and by sharing a common electronic ground, this connection provokes the voltage to be the same among all sensors in the array. Our device becomes four separate voltage lines in a parallel circuit. The device was also in short circuit provoked

  20. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2011-11-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  1. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2012-02-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  2. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial

  3. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  4. Photovoltaic research and development in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  5. The application of LiDAR to assessment of rooftop solar photovoltaic deployment potential in a municipal district unit.

    PubMed

    Nguyen, Ha T; Pearce, Joshua M; Harrap, Rob; Barber, Gerald

    2012-01-01

    A methodology is provided for the application of Light Detection and Ranging (LiDAR) to automated solar photovoltaic (PV) deployment analysis on the regional scale. Challenges in urban information extraction and management for solar PV deployment assessment are determined and quantitative solutions are offered. This paper provides the following contributions: (i) a methodology that is consistent with recommendations from existing literature advocating the integration of cross-disciplinary competences in remote sensing (RS), GIS, computer vision and urban environmental studies; (ii) a robust methodology that can work with low-resolution, incomprehensive data and reconstruct vegetation and building separately, but concurrently; (iii) recommendations for future generation of software. A case study is presented as an example of the methodology. Experience from the case study such as the trade-off between time consumption and data quality are discussed to highlight a need for connectivity between demographic information, electrical engineering schemes and GIS and a typical factor of solar useful roofs extracted per method. Finally, conclusions are developed to provide a final methodology to extract the most useful information from the lowest resolution and least comprehensive data to provide solar electric assessments over large areas, which can be adapted anywhere in the world.

  6. The Application of LiDAR to Assessment of Rooftop Solar Photovoltaic Deployment Potential in a Municipal District Unit

    PubMed Central

    Nguyen, Ha T.; Pearce, Joshua M.; Harrap, Rob; Barber, Gerald

    2012-01-01

    A methodology is provided for the application of Light Detection and Ranging (LiDAR) to automated solar photovoltaic (PV) deployment analysis on the regional scale. Challenges in urban information extraction and management for solar PV deployment assessment are determined and quantitative solutions are offered. This paper provides the following contributions: (i) a methodology that is consistent with recommendations from existing literature advocating the integration of cross-disciplinary competences in remote sensing (RS), GIS, computer vision and urban environmental studies; (ii) a robust methodology that can work with low-resolution, incomprehensive data and reconstruct vegetation and building separately, but concurrently; (iii) recommendations for future generation of software. A case study is presented as an example of the methodology. Experience from the case study such as the trade-off between time consumption and data quality are discussed to highlight a need for connectivity between demographic information, electrical engineering schemes and GIS and a typical factor of solar useful roofs extracted per method. Finally, conclusions are developed to provide a final methodology to extract the most useful information from the lowest resolution and least comprehensive data to provide solar electric assessments over large areas, which can be adapted anywhere in the world. PMID:22666044

  7. The application of LiDAR to assessment of rooftop solar photovoltaic deployment potential in a municipal district unit.

    PubMed

    Nguyen, Ha T; Pearce, Joshua M; Harrap, Rob; Barber, Gerald

    2012-01-01

    A methodology is provided for the application of Light Detection and Ranging (LiDAR) to automated solar photovoltaic (PV) deployment analysis on the regional scale. Challenges in urban information extraction and management for solar PV deployment assessment are determined and quantitative solutions are offered. This paper provides the following contributions: (i) a methodology that is consistent with recommendations from existing literature advocating the integration of cross-disciplinary competences in remote sensing (RS), GIS, computer vision and urban environmental studies; (ii) a robust methodology that can work with low-resolution, incomprehensive data and reconstruct vegetation and building separately, but concurrently; (iii) recommendations for future generation of software. A case study is presented as an example of the methodology. Experience from the case study such as the trade-off between time consumption and data quality are discussed to highlight a need for connectivity between demographic information, electrical engineering schemes and GIS and a typical factor of solar useful roofs extracted per method. Finally, conclusions are developed to provide a final methodology to extract the most useful information from the lowest resolution and least comprehensive data to provide solar electric assessments over large areas, which can be adapted anywhere in the world. PMID:22666044

  8. Advanced component research in the solar thermal program

    NASA Astrophysics Data System (ADS)

    Brown, C. T.

    The capabilities, equipment, and programs of the DoE advanced components test facility (ACTF) for developing solar thermal technologies are reviewed. The ACTF has a heliostat field, a rigid structural steel test tower at the geometric center of the heliostat field, an experiment platform on the tower, a heat rejection system, and computerized instrumentation. Tests have been performed on a directly-heated fluidized-bed solar receiver, a high pressure single-pass-to-superheat steam generator, a liquid Na heat pipe receiver, a flash pyrolysis biomass gasifier, and a grid-connected Stirling engine powered electrical generator. Helium served as the 720 C working fluid in the Stirling engine, and 18.8 kWe continuous was produced for the grid. Verified components qualified for further development are subjected to larger scale testing at a 5 MW facility in Albuquerque, NM.

  9. Correction: Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Dajung; An, Jongdeok; Im, Chan; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2016-02-21

    Correction for 'Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells' by Kyung-Jun Hwang et al., Phys. Chem. Chem. Phys., 2015, 17, 21974-21981.

  10. Advanced solar concentrator development in the United States

    SciTech Connect

    Alpert, D.J.

    1990-01-01

    Sandia National Laboratories is the lead laboratory for the United States Department of Energy's program to develop, build, and test advanced solar concentrators that are low in cost, have high performance, and demonstrate a long lifetime. The principal focus of DOE's concentrator program is on the development of heliostats for central receiver power plants and point focus parabolic dishes for use with a 25-kWe Stirling engine. The status and future plans of DOE's program in each area are reviewed. 29 refs., 7 figs.

  11. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    PubMed

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  12. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these

  13. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  14. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  15. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  16. A novel advanced box-type solar cooker

    SciTech Connect

    Grupp, M.; Montagne, P.; Wackernagel, M. )

    1991-01-01

    An advanced version of the box-type solar cooker is presented: a fixed cooking vessel in good thermal contact with a conductive absorber plate is set into the glazing; the results are improved thermal performance, easier access to the cooking vessel and less frequent maintenance due to protection of all absorbing and reflecting surfaces. Outdoor tests show that 5 liters of water per sq m of opening surface can be brought to full boiling in less than one hour. A finite element simulation model of the advanced box cooker is presented. It is shown that the most decisive parameters are absorber-to-pot heat transfer and absorber conductivity. Field tests in Ethiopia and India are under way, local production in India has started.

  17. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  18. Photovoltaic Subcontract Program. Annual report, FY 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  19. Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties.

    PubMed

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Eskandari, Mortaza

    2015-03-01

    We report on the theoretical and experimental studies of the new dye-sensitized solar cells functionalized with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin zinc(II) complexes bearing 2- and 8-bromo substituents at the β positions. In agreement with the results of TD-DFT calculations, the absorption maxima of di- and octa-brominated Zn(II) complexes, ZnTCPPBr2 and ZnTCPPBr8, exhibited large red-shift compared to that of the non-brominated free base porphyrin (H2TCPP). Furthermore, DFT calculations showed that the higher stabilization of the LUMO levels relative to the HOMO ones makes the HOMO-LUMO gap of the brominated Zn-porphyrins models smaller compared to that of the nonbrominated counterparts, which explains the red shifts of the Soret and Q bands of the brominated compounds. Solar cells containing the new saddle-shaped Zn(II) porphyrins were subjected to analysis in a photovoltaic calibration laboratory to determine their solar to electric energy conversion. In this regard, we found that the overall conversion efficiency of ZnTCPPBr8 adsorbed on TiO2 nanocrystalline films was 5 times as large as that of ZnTCPPBr2 adsorbed on the same films. The effect of the increasing number of Br groups on the photovoltaic performance of the complexes was compared to the results of computational methods using ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer (IET) in TCPPBrx/TiO2-anatase nanostructures. Better IET in ZnTCPPBr8 compared to ZnTCPPBr2, and in H2TCPP was evaluated from interfacial electron transfer (IET) simulations. The IET results indicate that electron injection in ZnTCPPBr8-TiO2 (τ = 25 fs) can be up to 5 orders of magnitude faster than ZnTCPPBr2-TiO2 (τ = 125 fs). Both experimental and theoretical results demonstrate that the increase of the number of bromo-substituents at the β-pyrrole positions of the porphyrin macrocycle created a new class of

  20. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.