Science.gov

Sample records for advanced physics students

  1. Identifying and addressing specific student difficulties in advanced thermal physics

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the

  2. Working with Advanced Primary School Students in Physics

    NASA Astrophysics Data System (ADS)

    Jankovic, Ljiljana; Cucic, Dragoljub

    2010-01-01

    Working with students who have special needs is the type of work that requires special engagement and skills of those who perform it. Working with gifted children requires outstanding knowledge of a teacher and above all the teachers should be very well informed on the subject they teach, Physics in our case. This work also requires great pedagogical and psychological skills so that these talented students would be approached in a suitable way. In this paper we will present to you our methods of teaching Physics to these talented children (13 years old), in the Regional Center for Talents "Mihajlo Pupin" in Pancevo.

  3. How Gender and Reformed Introductory Physics Impacts Student Success in Advanced Physics Courses and Continuation in the Physics Major

    ERIC Educational Resources Information Center

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-01-01

    Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., "Proc. Natl. Acad. Sci. U.S.A. 111," 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of…

  4. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  5. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  6. COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.

    2012-12-01

    The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;

  7. Improving Advanced High School Physics

    NASA Astrophysics Data System (ADS)

    Spital, Robin David

    2003-04-01

    A National Research Council study committee recently commissioned a "Physics Panel" to evaluate and make recommendations for improving advanced physics education in American high schools [1]. The Physics Panel recommends the creation of a nationally standardized Newtonian Mechanics Unit that would form the foundation of all advanced physics programs. In a one-year program, the Panel recommends that advanced physics students study at most one other major area of physics, so that sufficient time is available to develop the deep conceptual understanding that is the primary goal of advanced study. The Panel emphasizes that final assessments must be improved to focus on depth of understanding, rather than technical problem-solving skill. The Physics Panel strongly endorses the inclusion of meaningful real-world experiences in advanced physics programs, but believes that traditional "cook-book" laboratory exercises are not worth the enormous amount of time and effort spent on them. The Physics Panel believes that the talent and preparation of teachers are the most important ingredients in effective physics instruction; it therefore calls for a concerted effort by all parts of the physics community to remedy the desperate shortage of highly qualified teachers. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  8. Advanced Undergraduate and Early Graduate Physics Students' Misconception about Solar Wind Flow: Evidence of Students' Difficulties in Distinguishing Paradigms

    ERIC Educational Resources Information Center

    Gross, Nicholas A.; Lopez, Ramon E.

    2009-01-01

    Anecdotal evidence has suggested that advanced undergraduate students confuse the spiral structure of the interplanetary magnetic field with the flow of the solar wind. Though it is a small study, this paper documents this misconception and begins to investigate the underlying issues behind it. We present evidence that the traditional presentation…

  9. The Use of Textbooks for Advanced-Level GCE Courses in Physics, Chemistry and Biology by Sixth-Form Students.

    ERIC Educational Resources Information Center

    Newton, D. P.

    1984-01-01

    A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)

  10. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  11. Advancing Student Achievement

    ERIC Educational Resources Information Center

    Walberg, Herbert J.

    2010-01-01

    For the last half century, higher spending and many modern reforms have failed to raise the achievement of students in the United States to the levels of other economically advanced countries. A possible explanation, says Herbert Walberg, is that much current education theory is ill informed about scientific psychology, often drawing on fads and…

  12. Effect of the science teaching advancement through modeling physical science professional development workshop on teachers' attitudes, beliefs and content knowledge and students' content knowledge

    NASA Astrophysics Data System (ADS)

    Dietz, Laura

    The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.

  13. Her Physics, His Physics: Gender Issues in Israeli Advanced Placement Physics Classes.

    ERIC Educational Resources Information Center

    Zohar, Anat; Sela, David

    2003-01-01

    Investigates gender issues in Israeli advanced placement physics classes. Analyzes matriculation exam scores from approximately 400 high schools over 12 years. Conducts semi-constructed interviews with 50 advanced placement physics students (25 girls and 25 boys). Discusses changes in the ratio of girls, performance, and factors that are…

  14. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  15. Student Blogging about Physics

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.

    2010-09-01

    In traditional introductory physics classes, there is often limited opportunity for students to contribute their own ideas, interests, and experiences as they engage with the subject matter. This situation is exacerbated in university lecture-format classes, where students may not feel comfortable speaking during class. In the last few years, Internet blogs have become a decentralized format for diarists, independent journalists, and opinion makers to both post entries and allow commentary from their readers. Below, I will describe some techniques for using student blogging about physics to engage students from two different classroom environments: a calculus-based introductory mechanics class for scientists and engineers, and an honors seminar for first-year students. These assignments required them to make their own connections between classroom knowledge and situations where it might find applications. A second goal of including blogging in the introductory physics course was to induce students to write about the physics content of the class in a more substantive way than was previously part of the class.

  16. Use of the Berkeley Physics Laboratory to Teach an Advanced Physics Course

    ERIC Educational Resources Information Center

    Logan, James David

    1973-01-01

    Discusses a course, centered around 32 experiments taught for advanced students, designed to develop a laboratory strongly suggestive of contemporary research using relatively sophisticated apparatus. Its unique advantage lies in enriching advanced physics curriculum. (DF)

  17. Preface: Advances in solar physics

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Nakariakov, Valery M.

    2015-12-01

    The idea for this special issue of Advances in Space Research (ASR) was formulated during the 14th European Solar Physics Meeting (ESPM-14) that took place in Dublin, Ireland in September 2014. Since ASR does not publish conference proceedings, it was decided to extend a general call to the international solar-physics community for manuscripts pertinent to the following thematic areas: New and upcoming heliospheric observational and data assimilation facilities.

  18. Physics in advanced GNVQ Science

    NASA Astrophysics Data System (ADS)

    Sang, D.

    1995-07-01

    GNVQ Science is a vocational qualification for students in England, with a demand equivalent to traditional GCE A-levels. This article looks at the approach adopted by GNVQ to physics, and discusses the way in which appropriate teaching resources have been developed by the Nuffield Science in Practice project.

  19. Förster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students.

    PubMed

    Sanchez, Katheryn M; Schlamadinger, Diana E; Gable, Jonathan E; Kim, Judy E

    2008-09-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Förster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model protein; comparison of conformational stabilities ( ΔGH2O∘) measured via two chemical denaturants, urea and guanidinium hydrochloride, illustrate important concepts in protein folding and intermolecular interactions. In addition, the determination of intraprotein distances based upon the FRET pair Trp-59 and the heme group for unfolded states of cytochrome c highlights the evolution of the protein structure under unfolding conditions. Analysis and discussion of these results provide opportunities to gain in-depth understanding of models for protein folding while enhancing students' skills with optical techniques. Collectively, the combination of optical spectroscopy, rigorous quantitative analysis, and a focus on biophysics illustrates the significance of fundamental research at the growing intersection of chemistry, biology, and physics.

  20. Recent advances in medical physics.

    PubMed

    Kalender, Willi A; Quick, Harald H

    2011-03-01

    Some of the major interests in medical physics over the last few years have concerned the technical advances in Computed Tomography and high field Magnetic Resonance Imaging. This review discusses the introduction of Dual Source CT and explains how it can not only offer faster data acquisition but also operate with lower radiation doses. This provides enormous benefits for all patients, but for cardiac and pediatric examinations in particular. The advances in MRI at 7 T esla are also impressive, with better signal to noise; cardiac and musculoskeletal applications are discussed; technical improvements are work-in-progress for other applications.

  1. How Students Understand Physics Equations.

    ERIC Educational Resources Information Center

    Sherin, Bruce L.

    2001-01-01

    Analyzed a corpus of videotapes in which university students solved physics problems to determine how students learn to understand a physics equation. Found that students learn to understand physics equations in terms of a vocabulary of elements called symbolic forms, each associating a simple conceptual schema with a pattern of symbols. Findings…

  2. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract

  3. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  4. Physical Education for Deaf Students.

    ERIC Educational Resources Information Center

    Stewart, David A.; Ellis, M. Kathleen

    1999-01-01

    This article reviews the literature on the state of physical fitness among students with deafness, which indicates that students with deafness have poorer balance skills and cardiorespiratory fitness than their hearing peers, and describes an exemplary physical education program that was implemented at a school for students with deafness.…

  5. Advanced Physics Lab at TCU

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.

    2009-04-01

    The one semester, one credit hour Modern Physics Lab is viewed as a transition between the structured Physics 1 and 2 labs and junior/senior research. The labs focus on a variety of experiments built around a multichannel analyzer, various alpha, beta and gamma ray detectors and weak radioactive sources. Experiments include radiation safety and detection with a Geiger counter and NaI detector, gamma ray spectroscopy with a germanium detector, beta spectrum, alpha energy loss, gamma ray absorption, Compton effect, nuclear and positron annihilation lifetime, speed of gamma rays. Other experiments include using the analog oscilloscope, x-ray diffraction of diamond and using an SEM/EDX. Error analysis is emphasized throughout. The semester ends with an individual project, often an extension of one of the earlier experiments, and students present their results as a paper and an APS style presentation to the department.

  6. Physics for Educationally Disadvantaged Students

    ERIC Educational Resources Information Center

    Franklin, Allan D.

    1973-01-01

    Results are reported on a one year introductory course for Chicano, Black, American Indian, and Asian-American minority students. Teaching innovations employed were edited lecture notes and a class council. Evaluation of student performance including a comparison with students in other introductory physics courses and student evaluation are…

  7. A phenomenological analysis of the essence of the science education experience as perceived by female high school physics and advanced chemistry students

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Michael

    The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.

  8. Getting students hooked on physics

    NASA Astrophysics Data System (ADS)

    Flinn, Elizabeth; Huber, Michael; McDowell, Alex

    2011-09-01

    I was interested to read the article "Out, damned book" in my father's copy of Physics World (August p16), in which John Hauptman reports that teaching physics from newspaper articles is stimulating and enjoyable for his students.

  9. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  10. Förster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    PubMed Central

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Förster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model protein; comparison of conformational stabilities ( ΔGH2O∘) measured via two chemical denaturants, urea and guanidinium hydrochloride, illustrate important concepts in protein folding and intermolecular interactions. In addition, the determination of intraprotein distances based upon the FRET pair Trp-59 and the heme group for unfolded states of cytochrome c highlights the evolution of the protein structure under unfolding conditions. Analysis and discussion of these results provide opportunities to gain in-depth understanding of models for protein folding while enhancing students’ skills with optical techniques. Collectively, the combination of optical spectroscopy, rigorous quantitative analysis, and a focus on biophysics illustrates the significance of fundamental research at the growing intersection of chemistry, biology, and physics. PMID:19756254

  11. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  12. From students to researchers: The education of physics graduate students

    NASA Astrophysics Data System (ADS)

    Lin, Yuhfen

    This dissertation aims to make two research contributions: (1) In physics education research, this work aims to advance our understanding of physics student learning at the graduate level. This work attempts to better understand how physics researchers and teachers are produced, and what factors support or encourage the process of becoming a researcher and a teacher. (2) In cognitive science research in the domain of expert/novice differences, researchers are interested in defining and understanding what expertise is. This work aims to provide some insight into some of the components of expertise that go into becoming a competent expert researcher in the domain of physics. This in turn may contribute to our general understanding of expertise across multiple domains. Physics graduate students learn in their classes as students, teach as teaching assistants, and do research with research group as apprentices. They are expected to transition from students to independent researchers and teachers. The three activities of learning, teaching, and research appear to be very different and demand very different skill-sets. In reality, these activities are interrelated and have subtle effects on each other. Understanding how students transition from students to researchers and teachers is important both to PER and physics in general. In physics, an understanding of how physics students become researchers may help us to keep on training physicists who will further advance our understanding of physics. In PER, an understanding of how graduate students learn to teach will help us to train better physics teachers for the future. In this dissertation, I examine physics graduate students' approaches to teaching, learning, and research through semi-structured interviews. The collected data is interpreted and analyzed through a framework that focuses on students' epistemological beliefs and locus of authority. The data show how students' beliefs about knowledge interact with their

  13. Screencasts for Physics Students

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2011-01-01

    This paper outlines the use of "how to" videos, in the form of a screencast using a tablet computer, and posting the videos online. These videos are useful for when students miss a class, for those students who need to review a lesson or examples used in class when doing homework or reviewing for a test, for instructors of online classes, and also…

  14. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  15. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  16. Advancements in Solar Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino; Antonelli, Vito

    2013-03-01

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  17. Online Options for Math-Advanced Students

    ERIC Educational Resources Information Center

    Wessling, Suki

    2012-01-01

    Once upon a time, a student well advanced past grade level in math would have had few choices. Advanced students would invariably outpace the skills of their elementary teachers, and due to age wouldn't have options such as going to the middle school or community college for classes. Soon thereafter, students would enter middle school only to find…

  18. Spreadsheets in Advanced Physical Chemistry.

    ERIC Educational Resources Information Center

    Kari, Roy

    1990-01-01

    Described are several spreadsheet templates which use the functions of iteration and logical look-up which allow students to calculate and graph quantum mechanical functions and to simulate rotational and vibrational energy level and spectra. The templates are listed in the appendix. (KR)

  19. All Students Need Advanced Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  20. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  1. Physics for Allied Health Students

    NASA Astrophysics Data System (ADS)

    Goldick, Howard

    2000-04-01

    In this paper I will describe two courses that I have been teaching for the past 6 years to physical therapy and occupational therapy students Emphasis will be paced on those points that distinguish these courses from others with which I am familiar. I will discuss the syllabus: homework, exams, labs and the final grade. I will also present a topic outline of the courses showing how examples are drawn from the human body to illustrate the physics concept under discussion and to stimulate the students's interest in the material. The following basic concepts of physics will be covered (each with human body examples): vectors, components, statics, conservation of energy, efficiency, change of state, heat transfer, electric charge, electric field, voltage and capacitance.

  2. Student's Guide to Undergraduate Physics Major Departments.

    ERIC Educational Resources Information Center

    Llano, Margaret T.

    Provided are data on the physics programs of 622 institutions which offer the baccalaureate degree in physics. The guide is intended for students who aim to become physics majors in college, students interested in science, transfer students, school and community college counselors, and physics faculty. For each institution, information is supplied…

  3. Engaging community college students in physics research

    NASA Astrophysics Data System (ADS)

    Valentine, Megan; Napoli, Maria; Lubin, Arica; Kramer, Liu-Yen; Aguirre, Ofelia; Kuhn, Jens-Uwe; Arnold, Nicholas

    2013-03-01

    Recruiting talent and fostering innovation in STEM (Science, Technology, Engineering and Mathematics) disciplines demands that we attract, educate, and retain a larger and more diverse cohort of students. In this regard, Community Colleges (CC), serving a disproportionate number of underrepresented minority, female and nontraditional students, represent a pool of potential talent that, due to a misguided perception of its students as being less capable, often remains untapped. We will present our strategies to attract and support the academic advancement of CC students in the STEM fields through our NSF-sponsored Research Experience for Undergraduates program entitled Internships in Nanosystems Science Engineering and Technology (INSET). For more than a decade, INSET has offered a physics research projects to CC students. The key components of INSET success are: 1) the involvement of CC faculty with a strong interest in promoting student success in all aspects of program planning and execution; 2) the design of activities that provide the level of support that students might need because of lack of confidence and/or unfamiliarity with a university environment; and 3) setting clear goals and high performance expectations.

  4. High school students' perceptions of physics

    NASA Astrophysics Data System (ADS)

    Checkley, Doug

    There are far fewer high school students enrolled in physics than in chemistry or biology courses within the province of Alberta (Alberta Education, 2007). Students are also completing the highest level math course in larger numbers than those taking physics. It appears that a fear of physics exists within students in our province; this fear seems to be related to a level of difficulty the students associate with physics. Many students either opt to not take physics or enter the course with the expectation of failure. In this study I explored the impact of physics' reputation upon a group of students who chose not to take physics. In addition, I attempted to determine whether the perception of the difficulty of high school physics is accurate. This was done by investigating the perceptions of several students who took physics. I surveyed students from one high school in a small urban school district using group interviews. The students were in grades 10 to 12 and divided into groups of Science 10, Physics 20 and Physics 30 students. The students were interviewed to gain a deeper understanding of what perceptions they have about physics and why they may have them, hoping to identify factors that affect their academic decision to take or not take physics classes. For the students interviewed, I found that the biggest influence on their decisions to take or not take physics was related to their future aspirations. The students were also heavily influenced by their perceptions of physics. The students who took physics claimed that physics was not as difficult as they had believed it to be and they reported that it was interesting, enjoyable and relevant. Those students who had chosen to not take physics perceived it would be difficult, irrelevant and boring. Therefore, a major difference of perception exists between the students who took physics and those that did not.

  5. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  6. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2016-07-12

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  7. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  8. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  9. Physically Disabled Students on the College Campus.

    ERIC Educational Resources Information Center

    Burbach, Harold J.; Babbitt, Charles E.

    1988-01-01

    Interview and questionnaire data derived from 93 physically disabled college students were used to examine: personal background and self concept; student academic orientation; orientation to physical environment; orientation to extracurricular life; and interpersonal relations. (DB)

  10. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  11. Advanced Fencing; Physical Education: 5551.54.

    ERIC Educational Resources Information Center

    McInerney, Marjorie

    GRADES OR AGES: Grades 8-12. SUBJECT MATTER: Strategy, tactics, principles, and fundamentals of advanced fencing skills. ORGANIZATION AND PHYSICAL APPEARANCE: The contents are divided into seven areas, which are Course Guidelines, Course Description and Broad Goal, Course of Study Behavioral Objectives, Course Content, Learning Activities and…

  12. Teacher's Handbook for Advanced Physical Science 2.

    ERIC Educational Resources Information Center

    Chaffee, Everett

    This handbook is an adjunct to the "Laboratory Manual for Advanced Physical Science 2," and is intended to assist teachers in organizing laboratory experiences. Information for each experiment includes (1) Introduction, (2) Scheduling, (3) Time required, (4) Materials needed , (5) Precautions, (6) Laboratory hints, (7) Sample data, and…

  13. Students' Attitudes toward Introductory Physics Course

    ERIC Educational Resources Information Center

    Demirci, Neset

    2004-01-01

    The problem examined in this study deals with students' attitude toward physics among the freshmen and sophomore students who were taking first introductory physics course. In the study there were 176 students, and they were chosen sample of convenience from Florida Institute of Technology, Melbourne, Florida. 125 subjects were male students, and…

  14. Stereotype Threat? Male and Female Students in Advanced High School Courses

    NASA Astrophysics Data System (ADS)

    Corra, Mamadi

    Propositions of stereotype threat theory imply that the social consequences of academic distinction in advanced quantitative areas (such as math and the physical sciences) for women may promote the under representation of female students in advanced quantitative academic courses. The hypothesis that female students will be underrepresented in advanced quantitative (honors and advanced placement math and physical science) courses is tested using academic performance and enrollment data for high school students in a "Student/Parent Informed Choice" (open registration) school district in North Carolina. Results show female students to be overrepresented in both advanced verbal/writing intensive (honors and advanced placement English, foreign language, and social science) and advanced quantitative (honors and advanced placement math and physical science) courses compared to their proportion of the student body. More surprisingly, results also indicate female students (compared to male students) to be overrepresented in advanced courses compared to their proportion of high-performing students. Furthermore, as with patterns observed at the district level, additional analysis of enrollment data for the entire state reveals similar results. Taken together, the findings call into question the prevailing presumption that female students continue to be underrepresented in math and physical science courses. Instead, the changing social context within which females and males experience schooling may provide an explanation for the findings.

  15. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  16. Student Produced Advanced Mathematical Software.

    ERIC Educational Resources Information Center

    Hogben, Leslie

    The intent of this project was to develop a course for mathematics graduate students at Iowa State University. They would design and write computer programs for use by undergraduate mathematics students, and then offer the course and actually produce the software. Phase plane graphics for ordinary differential equations was selected as the topic.…

  17. The Society of Physics Students Summer Internship Program

    NASA Astrophysics Data System (ADS)

    Saldua, Meagan; Rand, Kendra; Clark, Jessica

    2007-10-01

    The Society of Physics Students (SPS) National Office provides internships to undergraduate physics students from around the nation. The focus of these internships ranges from advanced research to outreach programs, including positions with the SPS National Office, the APS, the AAPT, NASA or NIST. I will present my ``D.C.'' experience as a first-time intern and my work at the American Center for Physics in College Park, MD. My position with the APS was in the PhysicsQuest program, where I focused on developing educational kits for middle school classrooms. These kits are made available to teachers at no charge to provide resources and positive experiences in physics for students. The impact of the internship program as well as the theme and experiments of this year's PhysicsQuest kits will be detailed.

  18. Advanced Electron Microscopy in Materials Physics

    SciTech Connect

    Zhu, Y.; Jarausch, K.

    2009-06-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together {approx}100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  19. The Student as a Physical Being

    ERIC Educational Resources Information Center

    Hubble, Jayne; and others

    1969-01-01

    The Study of Student Development at Kansas State University includes a physiological phase. Observations suggest importance of interaction of physical and social-psychological aspects of student development. (Author/CJ)

  20. Teacher's Helper: Physical Fitness for Handicapped Students.

    ERIC Educational Resources Information Center

    Maryland Association for Health, Physical Education, Recreation, and Dance, Towson.

    The booklet, intended for physical and special educators, and occupational, physical, and recreation therapists, deals with physical fitness for handicapped students. Background information on the importance and attainment of fitness is followed by general principles of physical fitness development (such as overload, progression, specificity, and…

  1. Feminist Physics Education: Deconstructed Physics and Students' Multiple Subjectivities

    NASA Astrophysics Data System (ADS)

    Jammula, Diane Crenshaw

    Physics is one of the least diverse sciences; in the U.S. in 2010, only 21% of bachelors degrees in physics were awarded to women, 2.5% to African Americans, and 4% to Hispanic Americans (AIP, 2012). Though physics education reform efforts supporting interactive engagement have doubled students' learning gains (Hake, 1998), gender and race gaps persist (Brewe et al., 2010; Kost, Pollock, & Finkelstein, 2009). When students' subjectivities align with presentations of physics, they are more likely to develop positive physics identities (Hughes, 2001). However, both traditional and reformed physics classrooms may present physics singularly as abstract, elite, and rational (Carlone, 2004). Drawing from feminist science, I argue that binaries including abstract / concrete, elite / accessible, and rational / emotional are hierarchal and gendered, raced and classed. The words on the left define conventional physics and are associated with middle class white masculinity, while the words on the right are associated with femininity or other, and are often missing or delegitimized in physics education, as are females and minorities. To conceptualize a feminist physics education, I deconstructed these binaries by including the words on the right as part of doing physics. I do not imply that women and men think differently, but that broadening notions of physics may allow a wider range of students to connect with the discipline. I used this conceptual framework to modify a popular reformed physics curriculum called Modeling Instruction (Hestenes, 1987). I taught this curriculum at an urban public college in an introductory physics course for non-science majors. Twenty-three students of diverse gender, race, ethnic, immigrant and class backgrounds enrolled. I conducted an ethnography of the classroom to learn how students negotiate their subjectivities to affiliate with or alienate from their perceptions of physics, and to understand how classroom experiences exacerbate or

  2. Exploring Woman University Physics Students "Doing Gender" and "Doing Physics"

    ERIC Educational Resources Information Center

    Danielsson, Anna T.

    2012-01-01

    This article explores what it can mean to be a woman physics student. A case study approach is used to explore how five women who are studying physics at a Swedish university simultaneously negotiate their doing of physics and their doing of gender. By conceptualising both gender and learning as aspects of identity formation, the analysis of the…

  3. Physics and Advanced Technologies 2001 Annual Report

    SciTech Connect

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  4. Physical Education. Essay on Teaching Able Students.

    ERIC Educational Resources Information Center

    Nekton, Kathy N.

    The physical education program at Phillips Exeter Academy (New Hampshire) is designed to benefit students who, while being academically gifted, have the normal range of athletic aptitude and interests. The primary objective of the overall program is to develop individual abilities and promote physical fitness. While some students enjoy and…

  5. Malaysian Students' Motivation towards Physics Learning

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2014-01-01

    The purpose of this survey study was to examine the level of Malaysian students' motivation with regards to the learning of Physics at the secondary school level, and its influencing factors. The study was carried out on 337 Form Four students who took Physics as a subject, from six schools in a northern state of Malaysia--three from urban areas,…

  6. University Students' Attitudes toward Physical Education Teaching

    ERIC Educational Resources Information Center

    Li, Fengjuan; Chen, Junjun; Baker, Miles

    2014-01-01

    While there have been many studies into students' attitudes toward Physical Education at the school level, far fewer studies have been conducted at the university level, especially in China. This study explored 949 students' attitudes toward their university Physical Education experiences in four Chinese universities. An intercorrelated model of…

  7. Factors Influencing Singapore Students' Choice of Physics as a Tertiary Field of Study: A Rasch Analysis

    ERIC Educational Resources Information Center

    Oon, Pey-Tee; Subramaniam, R.

    2013-01-01

    Asian students often perform well in international science and mathematics assessments. Their attitude toward technical subjects, such as physics, remains curious for many. The present study examines Singapore school students' views on various aspects of physics according to whether they intend to choose physics as an advanced field of study. A…

  8. Student Perspectives of Grading in Physical Education

    ERIC Educational Resources Information Center

    Zhu, Xihe

    2015-01-01

    Recent state and federal legislations on educational accountability push evaluation and grading to the frontline. This study examined students' perspectives of grading in physical education. The participants included students (N = 39) from two middle schools. Data were collected through observation, student profile grading sheets and interviews.…

  9. Barriers to Physical Activity on University Student

    NASA Astrophysics Data System (ADS)

    Jajat; Sultoni, K.; Suherman, A.

    2017-03-01

    The purpose of the research is to analyze the factors that become barriers to physical activity in university students based on physical activity level. An internet-based survey was conducted. The participants were 158 University students from Universitas Pendidikan Indonesia. Barriers to Physical Activity Quiz (BPAQ) were used to assessed the factors that become barriers to physical activity in university students. IPAQ (short form) were used to assessed physical activity level. The results show there was no differences BPAQ based on IPAQ level. But when analyzed further based on seven factors barriers there are differences in factors “social influence and lack of willpower” based IPAQ level. Based on this it was concluded that the “influence from other and lack of willpower” an inhibiting factor on students to perform physical activity.

  10. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    ERIC Educational Resources Information Center

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  11. Experiencing Philosophy: Engaging Students in Advanced Theory

    ERIC Educational Resources Information Center

    Blenkinsop, Sean; Beeman, Chris

    2012-01-01

    In this paper, we will argue, predominantly using examples tested in the crucible of our own teaching, that there is a place for experiential education in the teaching of advanced theoretical ideas. As experiential educators trained as philosophers of education and working in faculties of education, we regularly encounter students with little or…

  12. Advanced Placement Economics. Macroeconomics: Student Activities.

    ERIC Educational Resources Information Center

    Morton, John S.

    This book is designed to help advanced placement students better understand macroeconomic concepts through various activities. The book contains 6 units with 64 activities, sample multiple-choice questions, sample short essay questions, and sample long essay questions. The units are entitled: (1) "Basic Economic Concepts"; (2) "Measuring Economic…

  13. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  14. Understanding Female Students' Physics Identity Development

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra

    2017-01-01

    While the gender gap in physics participation is a known problem, practical strategies that may improve the situation are not well understood. As physics education researchers, we draw on evidence to help inform us of what may or may not be working. To this end, physics identity has proven to be a useful framework for understanding and predicting participation in physics. Drawing on data from national surveys of college students, case studies in physics classes, and surveys of undergraduate women in physics, we identify strategies that are predictive of female students' physics identity development from their high school and undergraduate physics experiences. These findings will be discussed as well as future directions for using this research to increase the recruitment of women to physics-related careers. NSF Grant # 1431846.

  15. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  16. BOOK REVIEW: Astrophysics (Advanced Physics Readers)

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-07-01

    Here is a handy and attractive reader to support students on post-16 courses. It covers the astrophysics, astronomy and cosmology that are demanded at A-level and offers anyone interested in these fields an interesting and engaging reference book. The author and the production team deserve credit for producing such an attractive book. The content, in ten chapters, covers what one would expect at this level but it is how it is presented that struck me as the book's most powerful asset. Each chapter ends with a summary of key ideas. Line drawings are clear and convey enough information to make them more than illustrations - they are as valuable as the text in conveying information. Full colour is used throughout to enhance illustrations and tables and to lift key sections of the text. A number of colour photographs complement the material and serve to maintain interest and remind readers that astrophysics is about real observable phenomena. Included towards the end is a set of tables offering information on physical and astronomical data, mathematical techniques and constellation names and abbreviations. This last table puzzled me as to its value. There is a helpful bibliography which includes society contacts and a website related to the text. Perhaps my one regret is that there is no section where students are encouraged to actually do some real astronomy. Astrophysics is in danger of becoming an armchair and calculator interest. There are practical projects that students could undertake either for school assessment or for personal interest. Simple astrophotography to capture star trails, observe star colours and estimate apparent magnitudes is an example, as is a simple double-star search. There are dozens more. However, the author's style is friendly and collaborative. He befriends the reader as they journey together through the ideas. There are progress questions at the end of each chapter. Their style tends to be rather closed and they emphasize factual recall

  17. Student Voice: Student Choice and Participation in Physical Education

    ERIC Educational Resources Information Center

    El-Sherif, Jennifer L.

    2014-01-01

    Secondary students frequently disengage from participating in physical education and physical activity. The Centers for Disease Control and Prevention (CDC) recommends 60 minutes of vigorous aerobic activity per day, as well as muscle and bone strengthening activities on three or more days a week for children (CDC, n.d.). Physical education may be…

  18. Students' Attitudes and Enrollment Trends in Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Banjong, Delphine

    Science, Technology, Engineering, and Mathematics (STEM) fields are critical for meeting ever-increasing demands in the U.S. for STEM and related skills, and for ensuring the global competitiveness of the United States in technological advancement and scientific innovation. Nonetheless, few U.S. students consider a STEM degree after high school and fewer STEM students end up graduating with a STEM degree. In 2012, the United States ranked 35th in math and 27th in science out of 64 participating countries in the Program for International Student Assessment (PISA), sponsored by the Organization for Economic Cooperation and Development (OECD). Considering the significant role physics and engineering play in technological advancement, this work investigates the attitudes of students and recent enrollment trends in these important subject areas.

  19. Student Inquiry in a Physics Class Discussion.

    ERIC Educational Resources Information Center

    Hammer, David

    1995-01-01

    Analyzes a short excerpt from a high school physics class discussion to consider the value of the students' work as inquiry and to illustrate a teacher's negotiation of the tension between inquiry and traditional content-oriented concerns. (MDM)

  20. Reaching the Overlooked Student in Physical Education

    ERIC Educational Resources Information Center

    Esslinger, Keri; Esslinger, Travis; Bagshaw, Jarad

    2015-01-01

    This article describes the use of live action role-playing, or "LARPing," as a non-traditional activity that has the potential to reach students who are not interested in traditional physical education.

  1. Physical Science Rocks! Outreach for Elementary Students

    ERIC Educational Resources Information Center

    McKone, Kevin

    2010-01-01

    Students at Copiah-Lincoln Community College (Co-Lin) have been hesitant to take courses in the physical sciences, mostly because of a lack of exposure to them in K-12 or a bad experience in this area. The college is addressing this need by exposing students to the physical sciences early on in their education. The science division at Co-Lin has…

  2. TEACHING PHYSICS: The quantum understanding of pre-university physics students

    NASA Astrophysics Data System (ADS)

    Ireson, Gren

    2000-01-01

    Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.

  3. Supporting Student Autonomy in Physical Education

    ERIC Educational Resources Information Center

    Perlman, Dana; Webster, Collin A.

    2011-01-01

    The lack of motivation among students is a common challenge in physical education. Studies drawing on the self-determination theory consistently show that perceived autonomy facilitates adaptive motivation in students, which can lead to a wide range of desired educational outcomes. However, instructional strategies designed to support student…

  4. Student Advancement Programs: Shaping Tomorrow's Alumni Leaders Today.

    ERIC Educational Resources Information Center

    Todd, Barbara Tipsord, Ed.

    This volume discusses the ways to get college students involved in helping advance their college both before and after graduation. The book's five sections contain papers on student advancement programs, their focus and structure, advising student advancement programs, programs and events, and preparing for the future. Paper titles are: (1)…

  5. Advanced physical fine coal cleaning: Final report

    SciTech Connect

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination of Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.

  6. Engaging Physics Students Using Environmental Lab Modules

    NASA Astrophysics Data System (ADS)

    Pratte, John M.

    2006-05-01

    This paper discusses multi-week activity modules that use civic engagement to increase student interest and learning in physics. The modules consist of a mixture of hands-on, field, and Internet-based activities that allow students to investigate their impact on the environment and to examine changes that they can make in their lifestyle to lessen this impact. Assessments of student learning and interest using the modules show that they achieved their goals.

  7. A mathematical physics for all students

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart E.

    1999-12-01

    For 23 years I have been teaching physics and other subjects in science and math in Chicago public high schools. In the 1970s, an integration consent decree issued in federal court mandated that, except for impaired learners, all students in the high school where I was teaching must take four years of science and mathematics. The students at Robeson High were poor African-American students, most of whom had weak reading and math backgrounds.

  8. Physical Activity among Community College Students

    ERIC Educational Resources Information Center

    Young, Sarah J.; Sturts, Jill R.; Ross, Craig M.

    2015-01-01

    This exploratory study provides insight into the perceived physical activity levels of students attending a Midwestern 2-year community college. Over 60% of respondents were classified as overweight or obese based on a BMI measurement. The majority of respondents were not participating regularly in physical activity to gain any health benefits,…

  9. Community Travel for Physically Impaired Students.

    ERIC Educational Resources Information Center

    Millet Learning Center, Saginaw, MI.

    The community travel program for physically impaired children at the Millet Learning Center (Saginaw, Michigan) blends skills from two professions: orientation and mobility, and physical therapy. Program goals include enabling students to overcome travel fears, to learn travel skills, to learn to make adaptations necessary for successful travel,…

  10. Developing Quality Physical Education through Student Assessments

    ERIC Educational Resources Information Center

    Fisette, Jennifer L.; Placek, Judith H.; Avery, Marybell; Dyson, Ben; Fox, Connie; Franck, Marian; Graber, Kim; Rink, Judith; Zhu, Weimo

    2009-01-01

    The National Association of Sport and Physical Education (NASPE) is committed to providing teachers with the support and guiding principles for implementing valid assessments. Its goal is for physical educators to utilize PE Metrics to measure student learning based on the national standards. The first PE Metrics text provides teachers with…

  11. Preparing students for degree-level physics

    NASA Astrophysics Data System (ADS)

    Fairhurst, David; Lloyd, Steve

    2013-11-01

    On behalf of the physics department at Nottingham Trent University (NTU), I would like to reply to the letter from Helen Hare on the need for foundation programmes to prepare students for degree-level physics courses ("Firm foundations", September p23).

  12. Reaching the Next Stephen Hawking: Five Ways to Help Students with Disabilities in Advanced Placement Science Classes

    ERIC Educational Resources Information Center

    Howard, Lori A.; Potts, Elizabeth A.; Linz, Ed

    2013-01-01

    As the federal government encourages all students to attempt advanced math and science courses, more students with disabilities are enrolling in Advanced Placement (AP) science classes. AP science teachers can better serve these students by understanding the various types of disabilities (whether physical, learning, emotional, or behavioral),…

  13. A New Curriculum for Physics Graduate Students

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.

    2012-03-01

    Effective Fall 2008, GW Physics implemented a new graduate curriculum, addressing nation-wide problems: (1) wide gap between 50-year-old curricula and the proficiencies expected to start research; (2) high attrition rates and long times to degree; (3) limited resources in small departments to cover all topics deemed essential. The new curriculum: (1) extends each course to 4 hours weekly for better in-depth coverage and cautious additions; (2) decreases the number of core-courses per semester to 2, with less ``parallel-processing'' of only loosely correlated lectures; (3) increases synergies by stricter logical ordering and synchronisation of courses; (4) frees faculty to regularly offer advanced courses; (5) integrates examples tied to ongoing research in our department; (6) integrates computational methods into core-lectures; (7) encourages focusing on concepts and ``meta-cognitive skills'' in studio-like settings. The new curriculum and qualifying exam, its rationale and assessment criteria will be discussed. This concept is tailored to the needs of small departments with only a few research fields and a close student-teacher relationship.

  14. Advanced physical assessment skills: implementation of a module.

    PubMed

    Aldridge-Bent, Sharon

    2011-02-01

    This article aims to explore and examine advanced physical assessment skills and the role of the district nurse. It will particularly highlight district nurses' perceptions of how they may implement skills learnt on a new module introduced into the Community Health Care Nursing degree at a university in London. Physical assessment skills have traditionally been viewed as part of a doctor's role; however, with the advancement of nursing roles, it is argued that it has become a key nursing skill. As Government policy continues to expect health professionals to keep patients in the community who have complex health and social care needs, the role of the district nurse presents as 'best placed' to take on this challenge (Department of Health (DH), 2005a; 2005b). Evaluation of the district nurses' perceptions of their practice is shared here, highlighting some of the challenges that they face. The article will address the complexity of developing a curriculum in response to the DH initiatives and the importance of listening to students on courses.

  15. Assessing Student Understanding of Physical Hydrology

    NASA Astrophysics Data System (ADS)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2

  16. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  17. Physics and Advanced Technologies 2003 Annual Report

    SciTech Connect

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  18. Student resources for learning physics

    NASA Astrophysics Data System (ADS)

    Hammer, David

    2015-04-01

    Careful observations of learners' reasoning belie simple characterizations of their knowledge or abilities: Students who appear to lack understanding or abilities at one moment show evidence of them at another. Detecting this variability generally requires close examination of what and how students are thinking, moment-to-moment, which makes research difficult. But the findings challenge unitary accounts of intelligence, stages of development, and misconceptions. Joe Redish and others have been working from a more complex theoretical framework of innumerable, fine-grained cognitive structures we call ``resources.'' They are, roughly, ways of thinking people have that may apply or not in any particular moment. (Thinking about energy, for example, may involve resources for understanding location or conservation, or oscillations in time, or differential symmetry.) The variability we observe in student reasoning reflects variability in resource activation. Resources are to models of mind what partons used to be to models of hadrons: We know we should be thinking of entities and dynamics at a smaller scale than we've been considering, even if we don't know their particular properties. Understanding minds in this way has profound implications for research and for teaching.

  19. Reaching More Students Through Thinking in Physics

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.

    2017-02-01

    Thinking in Physics (TIP) is a new curriculum that is more effective than commonly used interactive engagement methods for students who have the greatest difficulty learning physics. Research has shown a correlation between learning in physics and other factors, including scientific reasoning ability. The TIP curriculum addresses those factors. Features of the curriculum and evidence of its effectiveness are described. The most recent version of the TIP curriculum has greatly reduced a substantial gender gap that previously existed. More details and sample materials are provided in Thinking in Physics, a book intended for instructors of introductory physics, published in 2014 by Pearson as part of its Educational Innovation series. Additional materials, both for students and instructors, are provided on the website http://thinkinginphysics.com. Both the book and the website are free.

  20. Physics Thirst? A Survey of Ninth-Grade Physics Students

    ERIC Educational Resources Information Center

    Korsunsky, Boris; Huckins, Grace

    2011-01-01

    In 2008, this magazine ran an article describing the results of a survey of the eighth-graders who were about to begin their first physics course at Weston High School. The results helped this coauthor (BK) and his high school colleagues better understand the expectations of the incoming students. It seemed useful, however, to conduct another…

  1. Association of Quality Physical Education Teaching with Students' Physical Fitness.

    PubMed

    Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Hammond-Bennett, Austin

    2016-06-01

    This study examined the extent to which four essential dimensions of quality physical education teaching (QPET) were associated with healthy levels of physical fitness in elementary school students. Participants were nine elementary PE teachers and 1, 201 fourth- and fifth-grade students who were enrolled in nine elementary schools. The students' physical fitness were assessed using four FITNESSGRAM tests. The PE teachers' levels of QPET were assessed using the Assessing Quality Teaching Rubrics (AQTR). The AQTR consisted of four essential dimensions including Task Design, Task Presentation, Class Management, and Instructional Guidance. Codes were confirmed through inter-rater reliability (82.4% and 84.5%). Data were analyzed through descriptive statistics, multiple R-squared regression models, and independent sample t-tests. The four essential teaching dimensions of QPET were significantly associated with the students' cardiovascular endurance, muscular strength and endurance, and flexibility. However, they accounted for relatively low percentage of the total variance in PACER test, followed by Curl-up test, while explaining very low portions of the total variance in Push-up and Trunk Lift tests. This study indicated that the students who had experienced high level of QPET were more physically fit than their peers who did not have this experience in PACER and Curl-up tests, but not in Push-up and Trunk lift tests. In addition, the significant contribution of the four essential teaching dimensions to physical fitness components was gender-specific. It was concluded that the four teaching dimensions of QPET were significantly associated with students' health-enhancing physical fitness. Key pointsAlthough Task Design, Task Presentation, Class Management, and Instructional Guidance has its unique and critical teaching components, each essential teaching dimensions is intertwined and immersed in teaching practices.Four essential teaching dimensions all significantly

  2. Physics in Films: Student Performance and Expectations

    NASA Astrophysics Data System (ADS)

    Maronde, Dan

    2005-11-01

    During the past three years an ambitious, long term, pilot project, given the sobriquet ``Physics in Films,'' has been developed and implemented at UCF. The goal of the project is to revitalize the traditional general education Physical Science course typically included in the curricula of most colleges and universities. The transformation of the course introducing clips from popular Hollywood movies to illustrate principles of physical science has been very successful. It has been praised by the students and has attracted the attention of both scientific and public media. In this talk, we present data to support the claims that the course is more interesting for the students and that their performance is superior to that of students in the traditional course.

  3. Computer-based physics and students' physics conceptual growth

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang

    This study was designed to explore the process of students' conceptual change and investigate the effectiveness of computer simulations in fostering students' conceptual change. Since the 1980s students' preconceptions have been an interesting topic in science education, and many scholars have been trying to formulate effective approaches to address students' preconceptions. In Chapter 2 and Chapter 3, I examine the two dimensions of constructivism, radical and social, reflected on the most popular model of conceptual change, Posner's model, and propose an argument format of science instruction that includes six steps. According to this approach, teaching should start from where students are. Students are given enough opportunities to express their ideas and defend and examine their positions through argument with others. Instead of forcing students to buy scientific concepts, the instructor moves to the position of persuading students to appreciate science. In Chapters 4, 5, 6, and 7, I investigate the effectiveness of computer-based simulations in addressing students' preconceptions through qualitative and quantitative methods. This investigation lasted four terms, with 10 classes and a total of approximately 800 students involved. Interactive computer simulations, as demonstration and phenomena that require students to explain or make a prediction, were proved to be a helpful device in fostering conceptual change. Students' attitudes toward physics were somewhat independent of the use of simulations, although most of the students studied showed a preference for the use of simulations in physics classes. My theoretical study on teaching for conceptual change suggests that the events that are applied to foster conceptual change, including simulations, would be better used in the construction or invention stage of a new concept rather than in the application stage. My findings from the evaluation of the use of computer applets supported this prediction. I

  4. Student-Centered Physical Education on a Shoestring Budget

    ERIC Educational Resources Information Center

    Treadwell, Sheri M.

    2013-01-01

    Nationwide, only 56% of students attended physical education class on one or more days per week, and only 33% of students attended physical education daily in 2009. Physical educators have the responsibility to create positive experiences in physical education, as well as to develop physical skills and feelings of self-efficacy in their students.…

  5. Physics by Inquiry and Student Learning Styles

    NASA Astrophysics Data System (ADS)

    Wildermuth, Mary; Aubrecht, Gordon J., II

    2001-10-01

    In 1997 we introduced a new Physics by Inquiry course using portions of the Light and Shadows and Astronomy by Sight sections of Physics by Inquiry by Lillian McDermott, et al. The course content requires varied student learning strategies, such as geometric and ratio reasoning to understand similar triangles or the analysis of moon position data to determine cycles of the moon. We decribe our efforts using interviews, written journal entries, and pre and post test questionnaires to discern the epistomological framework used by students for different learning styles.

  6. NEW APPROACHES: Reading in Advanced level physics

    NASA Astrophysics Data System (ADS)

    Fagan, Dorothy

    1997-11-01

    Teachers often report that their A-level pupils are unwilling to read physics-related material. What is it about physics texts that deters pupils from reading them? Are they just too difficult for 16 - 18 year olds, or is it that pupils lack specific reading skills? This article describes some of the results from my research into pupils' reading of physics-related texts and tries to clarify the situation.

  7. Performance of Project Advance Students on the AP Biology Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Project Advance biology students (N=60) with Advanced Placement (AP) candidates (N=15,947) nationally on College Entrance Examination Board AP biology test. The research, conducted to determine comparability of the program as valid measures of academic achievement, determined that Project Advance students scored above the…

  8. Advancing the Relationship between Business School Ranking and Student Learning

    ERIC Educational Resources Information Center

    Elbeck, Matt

    2009-01-01

    This commentary advances a positive relationship between a business school's ranking in the popular press and student learning by advocating market-oriented measures of student learning. A framework for student learning is based on the Assurance of Learning mandated by the Association to Advance Collegiate Schools of Business International,…

  9. Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study

    ERIC Educational Resources Information Center

    Koscianski, Andre; Ribeiro, Rafael Joao; da Silva, Sani Carvalho Rutz

    2012-01-01

    Background: Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose: The study aimed to determine guidelines for the…

  10. Engaging Student Learning in Physical Education.

    ERIC Educational Resources Information Center

    Anderson, Andy

    2002-01-01

    Explores the significance of engagement as a stance toward teaching and learning, noting how engagement can affect the way teachers and students interact in physical education settings and surrounding environments and presenting activities to encourage engagement (develop performance routines, say and switch, roundtable brainstorm, bubble gum…

  11. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  12. Refined Characterization of Student Perspectives on Quantum Physics

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…

  13. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  14. Advanced Science Students' Understandings on Nature of Science in Finland

    ERIC Educational Resources Information Center

    Sormunen, Kari; Köksal, Mustafa Serdar

    2014-01-01

    Majority of NOS studies comprise of determination or assessment studies conducted with ordinary students. In order to gain further understanding on variation in NOS understandings among the students, there should be different research attempts focusing on unconventional students such as academically advanced students. The purpose of this study is…

  15. Broadening horizons: engaging advanced practice nursing students in faculty research.

    PubMed

    Weiss, Josie A

    2009-01-01

    Inviting advanced practice nursing students to participate in faculty research can be an innovative way to interest students in using current evidence as the basis for their practice. The author discusses strategies for effectively engaging graduate nursing students into research projects in ways that broaden the students' perspectives and strengthen their healthcare decision-making skills.

  16. Factors Influencing Singapore Students' Choice of Physics as a Tertiary Field of Study: A Rasch analysis

    NASA Astrophysics Data System (ADS)

    Oon, Pey-Tee; Subramaniam, R.

    2013-01-01

    Asian students often perform well in international science and mathematics assessments. Their attitude toward technical subjects, such as physics, remains curious for many. The present study examines Singapore school students' views on various aspects of physics according to whether they intend to choose physics as an advanced field of study. A sample of 1076 physics students, from 16 secondary schools and junior colleges, participated in this study. The students were categorized as physics choosers or non-choosers according to their indicated intention, as sought in the survey, to study or not to study physics as a major subject at university after their leaving level examinations. Rasch-anchored analysis was employed to interpret the results; the use of Rasch analysis has helped to overcome significantly the psychometric limitations inherent in the treatment of Likert scale type of data using traditional analysis. As expected, the image of physics as a difficult subject surfaced in the samples used in our study. The students recognized unequivocally the utilitarian value of physics: physics is said to enhance career options and is necessary for technological progress to occur in a country. They also showed high interest in school physics-this is so even for students who are not keen to study physics in the future, a finding which is at variance with other studies reported from Western countries. School physics is seen to be relevant, and physics teachers are viewed as being able to foster students' interest in physics. Laboratory work, enrichment activities, and physics textbooks were reported to be important in order to encourage students to like physics. Though the physics choosers showed greater intention in physics, they were generally not inclined to pursue physics-related careers after graduation. Parents and peers at school, on the other hand, are perceived to display unenthusiastic attitudes toward physics. Possible reasons for these are discussed along

  17. General Course and Specialist Physical Education Student Characteristics

    ERIC Educational Resources Information Center

    Hendry, L. B.; Whiting, H. T.A.

    1972-01-01

    Physical Education students tended to be mesomorphic, stable extroverts, with driving, aggressive social responses and authoritarian attitudes as compared with general course college students. (Authors/MB)

  18. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  19. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  20. Student Solutions Manual to accompany Understanding Physics

    NASA Astrophysics Data System (ADS)

    Cummings, Karen; Laws, Priscilla W.; Redish, Edward F.; Cooney, Patrick J.; Christman, J. Richard

    2004-05-01

    Work more effectively and check solutions as you go along with the text! This Student Solutions Manual is designed for use with Cummings' Understanding Physics. Its primary purpose is to show readers by example how to solve various types of problems given at the end of each chapter in the text. Most of the solutions start from definitions or fundamental relationships and the final equation is derived. This technique highlights the fundamentals and at the same time gives readers the opportunity to review the mathematical steps required to obtain a solution. The mere plugging of numbers into equations derived in the text is avoided for the most part. Readers will learn to examine any assumptions that are made in setting up and solving each problem. Using an interactive strategy, Understanding Physics provides a hands-on introduction to the fundamentals of physics. Built on the foundations of Halliday, Resnick, and Walker's Fundamentals of Physics, 6th Edition, this text represents the latest methods in physics instruction. Incorporating new approaches based on Physics Education Research (PER), this text is designed for courses that use computer-based laboratory tools, and promote Activity Based Physics in lectures, labs, and recitations.

  1. High school students' physical education conceptual knowledge.

    PubMed

    Ayers, Suzan F

    2004-09-01

    The value of conceptual physical education knowledge has long been acknowledged (American Alliance for Health, Physical Education, and Recreation, 1969; Kneer, 1981; NASPE, 1995) yet has not been formally measured or assessed. Seven multiple choice tests with established validity and reliability (Ayers, 2001b) were used to assess the concepts identified in Mohnsen's text (1998). Tests were administered to 3,263 high school students at the schools of 17 NASPE Teachers of the Year in 16 states. On all tests, girls outscored boys, and Caucasians outscored all other racial groups. Examinees' average performance on each test was: motor development (65%), exercise physiology (62%), social psychology (60%), biomechanics (57%), aesthetic experiences (56%), motor learning (53%), and historical perspectives (49%). Analyses of each area determined concepts students knew and did not know.

  2. Project for the Institution of an Advanced Course in Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  3. Advanced Software Methods for Physics Analysis

    NASA Astrophysics Data System (ADS)

    Lista, L.

    2006-01-01

    Unprecedented data analysis complexity is experienced in modern High Energy Physics experiments. The complexity arises from the growing size of recorded data samples, the large number of data analyses performed by different users in each single experiment, and the level of complexity of each single analysis. For this reason, the requirements on software for data analysis impose a very high level of reliability. We present two concrete examples: the former from BaBar experience with the migration to a new Analysis Model with the definition of a new model for the Event Data Store, the latter about a toolkit for multivariate statistical and parametric Monte Carlo analysis developed using generic programming.

  4. Becoming Animated When Teaching Physics, Crafts and Drama Together: A Multidisciplinary Course for Student-Teachers

    ERIC Educational Resources Information Center

    Kallunki, Veera; Karppinen, Seija; Komulainen, Kauko

    2017-01-01

    This article examines a physics course for pre-service primary teachers in which physics, crafts and drama were taught together by connecting the standpoints of crafts and drama. The study was carried out by three university educators from these disciplines during an advanced optional course for student-teachers at the University of Helsinki in…

  5. Advanced Physical Chemistry of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jun; Pandey, Gaind P.

    2015-04-01

    The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application.

  6. ALPhA: The Advanced Laboratory Physics Association

    NASA Astrophysics Data System (ADS)

    Black, Eric; McCann, Lowell; Reichert, Jonathan; Spalding, Gabe; Essick, John; van Baak, David; Wonnell, Steve

    2011-03-01

    The Advanced Laboratory Physics Association (ALPhA) is a group of people with a shared interest in teaching physics labs at the advanced undergraduate or graduate level. ALPhA works closely with the American Physical Society (APS), the Optical Society of America (OSA), and the American Association of Physics Teachers (AAPT) to develop new methods for teaching modern experimental physics. In the summer of 2010 we initiated the ALPhA Immersion Program, a three-day short course where instructors visit a lab, do one or more of the local experiments (home-built or commercial) with the local instructor, and learn the experiments well enough to incorporate them into their own programs. These immersions were very well received, with attendees filling up all available slots. In this talk I will describe ALPhA and the Immersions Program and solicit input from the broader community.

  7. Students' Attitudes toward an After-School Physical Activity Programme

    ERIC Educational Resources Information Center

    Agbuga, Bulent; Xiang, Ping; McBride, Ron

    2013-01-01

    Though considerable research on student attitudes has been conducted in physical education, little information exists concerning student attitudes toward after-school physical activity programmes. This study assessed students' attitudes toward their after-school physical activity programme located in southwest Texas, USA. Participants included 158…

  8. Teachers' and Students' Perceptions of Effective Physics Teacher Characteristics

    ERIC Educational Resources Information Center

    Korur, Fikret; Eryilmaz, Ali

    2012-01-01

    Problem Statement: What do teachers and students in Turkey perceive as the common characteristics of effective physics teachers? Purpose of Study: The first aim was to investigate the common characteristics of effective physics teachers by asking students and teachers about the effects of teacher characteristics on student physics achievement and…

  9. Inspiring Students to a Lifetime of Physical Activity.

    ERIC Educational Resources Information Center

    Butler, Lawrence F.; Anderson, Steven P.

    2002-01-01

    Presents strategies that physical education teachers can use to encourage their students to lead physically active lives. The strategies include: focus on lifelong physical activity; use goal setting and self-assessment; inspire students by personal example; model skills (either a teacher or skilled student may do the modeling); and combine…

  10. The Vocabulary of Physics and Its Impact on Student Learning.

    ERIC Educational Resources Information Center

    Itza-Ortiz, Salomon F.; Rebello, N. Sanjay; Zollman, Dean A.

    The everyday meaning and usage of several words can differ significantly from their meaning and usage in physics. Examining these differences, and how students respond to them, may shed some light on students' physical learning difficulties. We surveyed (N=154) students in a conceptual physics course on their use of some words, "force", "momentum"…

  11. Exploring Students' Conception and Expectations of Achievement in Physical Education

    ERIC Educational Resources Information Center

    Zhu, Xihe

    2013-01-01

    Achievement in a domain is normally defined by the experts within the curricula. This exploratory study reported student conception of achievement in physical education, attempting to address two questions: (1) what do students expect to achieve and (2) how do students view the achievement in physical education. Students (N = 48) purposefully…

  12. Students' Motivation, Physical Activity Levels, & Health-Related Physical Fitness in Middle School Physical Education

    ERIC Educational Resources Information Center

    Gao, Zan; Newton, Maria; Carson, Russell L.

    2008-01-01

    This study examines the predictive utility of students' motivation (self-efficacy and task values) to their physical activity levels and health-related physical fitness (cardiovascular fitness and muscular strength/endurance) in middle school fitness activity classes. Participants (N = 305) responded to questionnaires assessing their self-efficacy…

  13. Strategies for Advancing Women in Physics and other Sciences in an Undergraduate Hispanic Institution (abstract)

    NASA Astrophysics Data System (ADS)

    Ramos, Idalia

    2009-04-01

    For the past 15 years, University of Puerto Rico at Humacao (UPRH) has implemented various efforts to increase participation and promote advancement of women in physics and other sciences. The strategies used include mentoring, collaborating, forming women's organizations, and offering training workshops. The physics program at UPRH is the largest in Puerto Rico with approximately 95 undergraduates. Since 1995, female students in the program have increased from 17% to 32%. Efforts to integrate women in undergraduate research as early as possible in their studies show promising results, with the percentage of women in research increasing from 13% to 60% in the last 13 years. The Faculty in Training (FIT) program, begun in 2003, has supported talented women students interested in academic careers. The first FIT physics student will obtain her PhD in 2009. At the faculty level, UPRH received a first-round US National Science Foundation ADVANCE Institutional Transformation Award in 2001. The ADVANCE legacy at UPRH is evident at levels ranging from changes in individual behaviors to the adoption of institutional policies. A strong network of women in science and their supporters continues to advance this legacy.

  14. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  15. Chapter 1: Recent Advances in Solar Physics

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2008-10-01

    For millennia, the Sun (and the universe) has been viewed in the visual light. As the bestower of light and life, the ancients made God out of the Sun. With the Babylonians, or with the multiple origins with the Chinese, Egyptians and Indians, quoting the Rig Veda:"All that exists was born from Sūrya, the God of gods.", we have come a long way to understanding the Sun. In the early seventeenth century, however, Galileo showed that the Sun was not an immaculate object. Thus began our scientific interests in our nearest stellar neighbour, the Sun (cf., Figure 1.1.), with its sunspots and the related solar activity. The observations of the Sun and their interpretations are of universal importance for at least two reasons: First, the Sun is the source of energy for the entire planetary system and all aspects of our life have direct impact on what happens on the Sun; and second, the Sun's proximity makes it unique among the billions of stars in the sky of which we can resolve its surface features and study physical processes at work...

  16. The Role of Rubrics in Advancing and Assessing Student Learning

    ERIC Educational Resources Information Center

    Wolf, Kenneth; Stevens, Ellen

    2007-01-01

    A rubric is a multi-purpose scoring guide for assessing student products and performances. This tool works in a number of different ways to advance student learning, and has great potential in particular for non-traditional, first generation, and minority students. In addition, rubrics improve teaching, contribute to sound assessment, and are an…

  17. The roots of physics students' motivations: Fear and integrity

    NASA Astrophysics Data System (ADS)

    Van Dusen, Ben

    Too often, physics students are beset by feelings of failure and isolation rather than experiencing the creative joys of discovery that physics has to offer. This dissertation research was founded on the desire of a teacher to make physics class exciting and motivating to his students. This work explores how various aspects of learning environments interact with student motivation. This work uses qualitative and quantitative methods to explore how students are motivated to engage in physics and how they feel about themselves while engaging in physics. The collection of four studies in this dissertation culminates in a sociocultural perspective on motivation and identity. This perspective uses two extremes of how students experience physics as a lens for understanding motivation: fear and self-preservation versus integrity and self-expression. Rather than viewing motivation as a property of the student, or viewing students as inherently interested or disinterested in physics, the theoretical perspective on motivation and identity helps examine features of the learning environments that determine how students' experience themselves through physics class. This perspective highlights the importance of feeling a sense of belonging in the context of physics and the power that teachers have in shaping students' motivation through the construction of their classroom learning environments. Findings demonstrate how different ways that students experience themselves in physics class impact their performance and interest in physics. This dissertation concludes with a set of design principles that can foster integration and integrity among students in physics learning environments.

  18. Why Aren't Secondary Students Interested in Physics?

    ERIC Educational Resources Information Center

    Williams, Christopher; Stanisstreet, Martin; Spall, Katie; Boyes, Eddie; Dickson, Dominic

    2003-01-01

    Discusses a questionnaire study to determine why fewer year 10 students are interested in physics than in biology. Finds that students perceive physics as being difficult and irrelevant. Males and females offered different reasons for finding physics boring with males enjoying practical exercises and females valuing areas in which physics can be…

  19. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly

  20. The design, development, and assessment of advanced modeling based projects in introductory physics

    NASA Astrophysics Data System (ADS)

    Ramsdell, Michael W.

    The results of Physics Education Research (PER) have provided much insight into developing more effective learning environments in introductory physics courses. In this dissertation we discuss the design, development, and implementation of two advanced Modeling Based Projects (MBP) that have evolved through research-based criteria. The projects serve as an alternative to the traditional laboratory portion of the introductory calculus-based courses taught at Clarkson University for undergraduate science and engineering majors. Each project has gone through several research-redevelopment cycles, through which the experimental apparatuses and pedagogical approaches have been improved. Details of each projects' pedagogical structure and implementation are presented and discussed within the context of recommendations established through PER. We present a detailed assessment of their effectiveness in terms of students' conceptual learning via the Force Concepts Inventory (FCI) and the Conceptual Survey of Electricity and Magnetism (CSEM), course performance via exam scores, and attitudes via the Maryland Physics Expectations Survey (MPEX). The results show that students who participate in MBP at Clarkson University achieve significant gains over students taught elsewhere with a traditional approach and similar gains to those achieved by others using well tested, research motivated curricula reforms. An internal evaluation was performed to compare students participating in MBP with a control group of statistically comparable students who attended traditional laboratories. The results reveal that students who participated in MBP obtain statistically significant gains over similar students taught with the traditional approach for both courses within the introductory sequence.

  1. Designing physics video hooks for science students

    NASA Astrophysics Data System (ADS)

    McHugh, M.; McCauley, V.

    2016-01-01

    This paper offers an insight into the design structure of physics video hooks that were developed by the Science Education Resource design team in the school of education (SOE) in National University of Ireland, Galway (NUI Galway). A hook, is an instructional technique used to stimulate student attention (Hunter 1994, Lemov 2010), interest (Jewett 2013) and engagement (McCrory 2011, Riendeau 2013). The physics video hooks followed a design framework that is illustrated below by breaking down the centre of gravity (COG) hook. Various design principles and elements embedded within the COG hook are presented with examples and the time they occur within the video. The intention of this article is that the design can be replicated and modified to aid teachers and designers in the development of a multitude of classroom based multimedia resources.

  2. Students' Epistemologies about Experimental Physics: Validating the Colorado Learning Attitudes about Science Survey for Experimental Physics

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-01-01

    Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…

  3. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  4. 2004 Physics and Advanced Technologies In the News

    SciTech Connect

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  5. 2005 Physics and Advanced Technologies in the News

    SciTech Connect

    Hazi, A U

    2006-12-19

    Several outstanding research activities in the Physics and Advanced Technologies Directorate in 2005 were featured in ''Science and Technology Review'', the monthly publication of Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2005. As part of the World Year of Physics commemorating the 100th anniversary of Einstein's ''miraculous year'', we also highlight ongoing physics research that would not be possible without Einstein's pioneering accomplishments.

  6. Content of Curriculum in Physical Education Teacher Education: Expectations of Undergraduate Physical Education Students

    ERIC Educational Resources Information Center

    Spittle, Michael; Spittle, Sharna

    2016-01-01

    This study explored the perceptions of university physical education students of the importance of physical education curriculum content areas and how those perceptions related to the reasons for course choice and motivation. Physical education degree students (n = 188) completed measures of their perceptions of physical education content areas,…

  7. Influence of High School Physical Education on University Student's Physical Activity

    ERIC Educational Resources Information Center

    Kimball, Jessica; Jenkins, Jayne; Wallhead, Tristan

    2009-01-01

    The purpose of this study was to use the Lifelong Physical Activity (LLPA) framework to examine the influence of high school physical education (PE) on university students' level of physical activity (PA). Participants included 365 undergraduate students from the Rocky Mountain West of the USA enrolled in a university physical activity course.…

  8. The Influence of Physical Education on Physical Activity Levels of Urban Elementary Students

    ERIC Educational Resources Information Center

    Dauenhauer, Brian D.; Keating, Xiaofen D.

    2011-01-01

    The purpose of this study was to examine the role of physical education in shaping physical activity patterns. Seventy-one Hispanic and African American elementary students participated in the study. Students attended one 30- and one 60-min physical education class weekly. Pedometer steps were used to estimate physical activity. Data suggest that…

  9. Innovative experimental particle physics through technological advances: Past, present and future

    SciTech Connect

    Cheung, Harry W.K.; /Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  10. Where the girls aren't: High school girls and advanced placement physics enrollment

    NASA Astrophysics Data System (ADS)

    Barton, Susan O'brien

    During the high school years, when many students first have some choice in course selection, research indicates that girls choose to enroll in more math and science courses, take more advanced placement courses, and take more honors courses in English, biology, chemistry, mathematics, and foreign languages than ever before. Yet, not only are boys more likely to take all of the three core science courses (biology, chemistry, and physics), boys enroll in advanced placement physics approximately three times as often as do girls. This study examines the perceptions, attitudes, and aspirations of thirty high school girls enrolled in senior-level science electives in an attempt to understand their high school science course choices, and what factors were influencing them. This is a qualitative investigation employing constructivist grounded theory methods. There are two main contributions of this study. First, it presents a new conceptual and analytical framework to investigate the problem of why some high school girls do not enroll in physics coursework. This framework is grounded in the data and is comprised of three existing feminist perspectives along the liberal/radical continuum of feminist thought. Second, this study illuminates a complex set of reasons why participants avoided high school physics (particularly advanced placement physics) coursework. These reasons emerged as three broad categories related to: (a) a lack of connectedness with physics curriculum and instruction; (b) prior negative experiences with physics and math classroom climates; and (c) future academic goals and career aspirations. Taken together, the findings of this study indicate that the problem of high school girls and physics enrollment---particularly advanced placement physics enrollment---is a problem that cannot be evaluated or considered from one perspective.

  11. Assessing Student Achievement in Physical Education for Teacher Evaluation

    ERIC Educational Resources Information Center

    Mercier, Kevin; Doolittle, Sarah

    2013-01-01

    While many teachers continue to ignore the practice of assessing student achievement in physical education, recent federal pressures to include student assessment data in teacher evaluation systems has shown that assessment of student outcomes is here to stay. Though there is a strong tradition of assessing teacher practice in physical education,…

  12. Individual and Instructional Determinants of Student Engagement in Physical Education

    ERIC Educational Resources Information Center

    Bevans, Katherine; Fitzpatrick, Leslie-Anne; Sanchez, Betty; Forrest, Christopher B.

    2010-01-01

    This study was conducted to identify student characteristics and instructional factors that impact student engagement in physical education (PE). Data were derived from the systematic observation of 124 sessions taught by 31 physical educators and the administration of health and PE engagement questionnaires to 2,018 students in grades 5-8.…

  13. Harnessing Students' Interest in Physics with Their Own Video Games

    ERIC Educational Resources Information Center

    Like, Christopher

    2011-01-01

    Many physics teachers assign projects where students are asked to measure real-world motion. One purpose of this student-centered activity is to cultivate the relevance of physics in their lives. Typical project topics may include measuring the speed of a student's fastball and calculating how much reaction time batters are given. Another student…

  14. Advanced Quantitative Measurement Methodology in Physics Education Research

    ERIC Educational Resources Information Center

    Wang, Jing

    2009-01-01

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and…

  15. Using Student Surveys to Help Choose Physical Education Activities

    ERIC Educational Resources Information Center

    Hill, Grant M.; Cleven, Brian

    2005-01-01

    Physical education has the potential to provide students with the means to achieve healthier lifestyles and obtain meaningful learning and social experiences. Unfortunately, not all students participate in physical education on a daily basis (Lowry, Wechsler, Kann, & Collins, 2001). This is due partially to the fact that many physical education…

  16. How Students Use Physics to Reason about Calculus Tasks

    ERIC Educational Resources Information Center

    Marrongelle, Karen A.

    2004-01-01

    The present research study investigates how undergraduate students in an integrated calculus and physics class use physics to help them solve calculus problems. Using Zandieh's (2000) framework for analyzing student understanding of derivative as a starting point, this study adds detail to her "paradigmatic physical" context and begins to address…

  17. Scaffolding Vector Representations for Student Learning inside a Physics Game

    ERIC Educational Resources Information Center

    D'Angelo Cynthia

    2010-01-01

    Vectors and vector addition are difficult concepts for many introductory physics students and traditional instruction does not usually sufficiently address these difficulties. Vectors play a major role in most topics in introductory physics and without a complete understanding of them many students are unable to make sense of the physics topics…

  18. University Students' Views on the Utility of Psychiatric Advance Directives

    ERIC Educational Resources Information Center

    Scheyett, Anna M.; Rooks, Adrienne

    2012-01-01

    Objective: Rates of serious mental illnesses (SMIs) among university students are increasing, and universities are struggling with how to respond to students who show SMI symptoms. Psychiatric advance directives (PADs) allow individuals, when well, to document their wishes for treatment during a psychiatric crisis. This project explored the…

  19. Blending Technology and Face-to-Face: Advanced Students' Choices

    ERIC Educational Resources Information Center

    Trinder, Ruth

    2016-01-01

    It has been suggested that current research in computer-assisted language learning (CALL) should seek to understand the conditions and circumstances that govern students' use of technology (Steel & Levy, 2013). This paper attempts to identify critical factors accounting for student choices, first, by investigating advanced learners' reported…

  20. Using Advance Organizers to Enhance Students' Motivation in Learning Biology

    ERIC Educational Resources Information Center

    Shihusa, Hudson; Keraro, Fred N.

    2009-01-01

    This study investigated the effect of using advance organizers on students' motivation to learn biology. The research design used was quasi-experimental design where the non-randomised Solomon Four group was adopted. The focus was on the topic pollution. The sample comprised of 166 form three (third grade in the secondary school cycle) students in…

  1. Harnessing Students' Interest in Physics with Their Own Video Games

    NASA Astrophysics Data System (ADS)

    Like, Christopher

    2011-04-01

    Many physics teachers assign projects where students are asked to measure real-world motion. One purpose of this student-centered activity is to cultivate the relevance of physics in their lives. Typical project topics may include measuring the speed of a student's fastball and calculating how much reaction time batters are given. Another student may find the trajectory of her dive off the blocks at the pool and its effect on race time. Leaving the experimental design to the student's imagination allows for a variety of proposals ranging from stopwatches to highly technical video analysis. The past few years have shown an increase in students' eagerness to tackle the physics behind the motion of virtual characters and phenomena in their own video games. This paper puts forth a method of analyzing the physics behind bringing the games students are playing for enjoyment into the physics classroom.

  2. Innovation in Teaching Deaf Students Physics and Astronomy in Bulgaria

    ERIC Educational Resources Information Center

    Zamfirov, Milen; Saeva, Svetoslava; Popov, Tsviatko

    2007-01-01

    This paper presents a new strategy to be implemented in Bulgarian schools in teaching physics and astronomy to students with impaired hearing at grades 7 (13-year-old students) and 8 (14-year-old students). The strategy provides effective education for students with hearing disabilities in mainstream schools as well as for those attending…

  3. 150 Student Questions on Solar Physics

    NASA Astrophysics Data System (ADS)

    Lopez, R. E.; Gross, N. A.; Knipp, D. J.

    2010-12-01

    The Center for Integrated Space Weather Modeling (CISM) holds a two-week Space Weather Summer School for introductory graduate students and space weather professionals to gain a system level understanding of the space environment and the effects of space weather. A typical day in the summer school consists of three morning lectures followed by an afternoon lab session. After the morning lectures, the participants are each asked to submit a question about the mornings topics on a question card. The lecturers then take the time to answer these questions prior to afternoon sessions. In the last 5 years over 1000 such question cards have been collected and cataloged. Despite detailed lectures by experts similar questions appear every year. We have analyzed over 150 questions related to the introductory lectures on solar physics and solar activity. Questions content was categorized using the AGU Index, and question sophistication was categorized using Bloom’s Taxonomy of Educational Objectives. Specific analysis results along with lists of questions will be presented. We hope that these results can be used to improve the lecture and classroom content and allow students to move beyond low level education objectives and ask more sophisticated questions.

  4. Underachievement in Gifted Students: A Case Study of Three College Physics Students in Taiwan

    ERIC Educational Resources Information Center

    Tsai, Kuei-Fang; Fu, Guopeng

    2016-01-01

    This case study provides an explanatory account on the underachievement of three gifted students studying physics in a Taiwanese university. The students' physics underachievement was diagnosed by Sato's student-problem analysis chart. These students were invited to complete a questionnaire and a follow-up interview in order to (1) understand the…

  5. System studies for quasi-steady-state advanced physics tokamak

    SciTech Connect

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated.

  6. Blogging in the physics classroom: A research-based approach to shaping students' attitudes towards physics

    NASA Astrophysics Data System (ADS)

    Garrett, Katherine; Duda, Gintaras

    2008-04-01

    Even though there has been a tremendous amount of research done in how to help students learn physics, students are still coming away missing a crucial piece of the puzzle: why bother with physics? Students learn fundamental laws and how to calculate, but come out of a general physics course without a deep understanding of how physics has transformed the world around them. In other words, they get the ``how" but not the ``why". Studies have shown that students leave introductory physics courses almost universally less excited about the topic than when they came in. This presentation will detail an experiment to address this problem: a course weblog or ``blog" which discusses real-world applications of physics and engages students in discussion and thinking outside of class. Student response to the blog was overwhelmingly positive, with students claiming that the blog made the things we studied in the classroom come alive for them and seem much more relevant.

  7. Short animation movies as advance organizers in physics teaching: a preliminary study

    NASA Astrophysics Data System (ADS)

    Koscianski, André; João Ribeiro, Rafael; Carvalho Rutz da Silva, Sani

    2012-11-01

    Background : Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose : The study aimed to determine guidelines for the construction of an instructional short animation movie, with the role of an advance organizer. A film was created in order to evaluate the effectiveness of the approach, making part of a physics lesson and concerning the subject 'moment of a force'. Sample : The study took place in a Brazilian school in the city of Arapoti, in the south region of the country. Thirty-eight students participated, having an average age of 16 and following the third year of high school. Design and methods : Criteria drawn from a literature review directed the construction of the movie and the lesson. Data were collected using pre- and post-tests; registers of oral comments were also done during the class. The post-test included open-ended questions, allowing students to write remarks concerning the lesson and the animation. Conclusions : The article describes steps and guidelines to orient the process of designing an animation movie with the role of advance organizer. Data indicated that the movie facilitated the construction of links between pre-existent knowledge and the new information presented in the lesson. The proposed methodology can be considered a valid framework to derive similar approaches.

  8. ADAPTED PHYSICAL EDUCATION, PRINCIPLES AND PRACTICE OF PHYSICAL EDUCATION FOR EXCEPTIONAL STUDENTS. SECOND EDITION.

    ERIC Educational Resources Information Center

    DANIELS, ARTHUR S.; DAVIES, EVELYN A.

    THIS BOOK HAS THREE PURPOSES--(1) TO SHOW HOW PHYSICAL EDUCATION ACTIVITIES MAY BE ADAPTED FOR EXCEPTIONAL STUDENTS AT ALL LEVELS OF SCHOOL, (2) TO SERVE AS A PRACTICAL GUIDE TO PHYSICAL EDUCATION PERSONNEL WHO WISH TO WORK FOR FULL DEVELOPMENT OF EACH STUDENT, AND (3) TO SERVE AS A TEXT FOR STUDENTS IN TRAINING, TEACHERS, AND THERAPISTS. PART ONE…

  9. Advanced Swimming, Phase II--Advanced Swimmer; Physical Education: 5551.48.

    ERIC Educational Resources Information Center

    Gutting, Dick

    GRADES OR AGES: Grades 7-12. SUBJECT MATTER: Advanced swimming. ORGANIZATION AND PHYSICAL APPEARANCE: The first two sections of the guides are devoted to course guidelines, description, and broad goal statement. The next two sections list behavioral and skill objectives and course content. The fifth section presents learning activities and…

  10. Analytic framework for students' use of mathematics in upper-division physics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Caballero, Marcos D.; Rehn, Daniel A.; Pollock, Steven J.

    2013-12-01

    Many students in upper-division physics courses struggle with the mathematically sophisticated tools and techniques that are required for advanced physics content. We have developed an analytical framework to assist instructors and researchers in characterizing students’ difficulties with specific mathematical tools when solving the long and complex problems that are characteristic of upper division. In this paper, we present this framework, including its motivation and development. We also describe an application of the framework to investigations of student difficulties with direct integration in electricity and magnetism (i.e., Coulomb’s law) and approximation methods in classical mechanics (i.e., Taylor series). These investigations provide examples of the types of difficulties encountered by advanced physics students, as well as the utility of the framework for both researchers and instructors.

  11. Physical Education Lesson Content and Teacher Style and Elementary Students' Motivation and Physical Activity Levels

    ERIC Educational Resources Information Center

    Erwin, Heather E.; Stellino, Megan Babkes; Beets, Michael W.; Beighle, Aaron; Johnson, Christine E.

    2013-01-01

    Obesity levels among American children are increasing at an alarming rate, due in part to a lack of regular physical activity (PA). Physical education (PE) is one way to facilitate student PA. The overarching PA goal for physical educators is 50% PA for students. Self-determination theory suggests that PA levels in PE and a variety of other…

  12. Prevalence of Physical Disability and Accommodation Needs among Students in Physical Therapy Education Programs

    ERIC Educational Resources Information Center

    Hinman, Martha R.; Peterson, Cathryn A.; Gibbs, Karen A.

    2015-01-01

    Most research on graduate students with disabilities (SWDs) has focused on medical education. The purposes of this study were to: (1) estimate the prevalence of students with physical disabilities (SWPDs) in physical therapy programs, (2) identify common types of physical disabilities, (3) document the types of accommodations requested by SWPDs,…

  13. The Importance of High School Physics Teachers for Female Students' Physics Identity and Persistence

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Brewe, Eric; Goertzen, Renee Michelle; Hodapp, Theodore

    2017-02-01

    Given the historic and continued underrepresentation of women in physics, it is important to understand the role that high school physics might play in attracting female students to physics careers. Drawing on data from over 900 female undergraduates in physics, we examine when these women became interested in physics careers and different sources of recognition (important for physics identity development) that may have affected their choices at certain time points. The results provide optimism since many of these female students, even those not previously intending science careers, began to intend physics careers in high school and recognition from high school physics teachers had a significant effect on predicting these intentions.

  14. Investigating how students think about and learn quantum physics: An example from tunneling

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey T.

    Much of physics education research (PER) has focused on introductory courses and topics, with less research done into how students learn physics in advanced courses. Members of The University of Maine Physics Education Research Laboratory (PERL) have begun studying how students in advanced physics courses reason about classical mechanics, thermal physics, and quantum physics. Here, we describe an investigation into how students reason about quantum mechanical tunneling, and detail how those findings informed a portion of a curriculum development project. Quantum mechanical tunneling is a standard topic discussed in most modern physics and quantum physics courses. Understanding tunneling is crucial to making sense of several topics in physics, including scanning tunneling microscopy and nuclear decay. To make sense of the standard presentation of tunneling, students must track total, potential, and kinetic energies. Additionally, they must distinguish between the ideas of energy, probability density, and the wave function. They need to understand the complex nature of the wave function, as well as understand what can and cannot be inferred from a solution to the time-independent Schrodinger equation. Our investigations into student understanding of these ideas consisted of a series of interviews, as well as a survey. Both centered around asking students to reason about energy, probability, and the wave function solutions for the standard square potential energy barrier scenario presented in most textbooks. We describe ideas that students seem to successfully learn following standard instruction, as well as common difficulties that remain. Additionally, we present multiple data points from a small population of physics majors over three years and describe how some of their reasoning about tunneling changed, while other portions seemed to remain unaffected by instruction. We used the results of these investigations to write tutorials on tunneling and applications of

  15. High School Students' Approaches to Learning Physics with Relationship to Epistemic Views on Physics and Conceptions of Learning Physics

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Lee, Min-Hsien; Tsai, Chin-Chung

    2013-01-01

    Background and purpose: Knowing how students learn physics is a central goal of physics education. The major purpose of this study is to examine the strength of the predictive power of students' epistemic views and conceptions of learning in terms of their approaches to learning in physics. Sample, design and method: A total of 279 Taiwanese high…

  16. The Seventh Annual National Conference of Black Physics Students

    NASA Technical Reports Server (NTRS)

    Crawley, Gerard M.

    1993-01-01

    The National Conference of Black Physics Students began in 1986 when several Black physics graduate students at MIT and Harvard decided to address the 'pipeline problem' of African Americans in physics by organizing a conference for Black physics undergraduates. The goals of the conference were: (1) to develop a network within the Black physics community, (2) to make Black students in physics, particularly at graduate level, aware of academic and professional opportunities and (3) to bring important issues and developments in the field to the attention of these students. We are pleased to announce the Seventh Annual National Conference of Black Physics Students held February 12 and 13, 1993 served the largest population of students so far. The largest conference previous to this one hosted 150 students. We registered and prepared for 240 students with 210 actually attenting. We received so many qualified abstracts for technical talks by students that instead of NCBPS's tradition of 3-4 student presentations, we ran 4 parallel sessions in different rooms with 4-5 presentations in each room. In response to comments from previous conferences, the program contained 3 workshop/discussion sessions. The topics for the interactive discussion workshops were: 'Getting Ready for Graduate School,' 'How to Succeed in Graduate School,' and 'Issues Facing Black Scientists.'

  17. Audiovisual Physics Reports: Students' Video Production as a Strategy for the Didactic Laboratory

    ERIC Educational Resources Information Center

    Pereira, Marcus Vinicius; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; de A. Fauth, Leduc Hermeto

    2012-01-01

    Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory…

  18. Zimbabwean Female Participation in Physics: Factors of Identity Formation Considered as Contributing to Developing an Orientation to Physics by Female Students

    ERIC Educational Resources Information Center

    Gudyanga, Anna

    2016-01-01

    The study investigated the Zimbabwean female participation in physics, with special emphasis on the factors of identity formation considered as contributing to developing an orientation to physics by female students. The main study from which this paper was taken explored the influence of identity formation on the Zimbabwean Advanced Level…

  19. Interprofessional Peer Teaching of Pharmacy and Physical Therapy Students

    PubMed Central

    Sadowski, Cheryl A.; Li, Johnson Ching-hong; Pasay, Darren

    2015-01-01

    Objective. To evaluate an interprofessional peer-teaching activity during which physical therapy students instructed undergraduate pharmacy students on 3 ambulatory devices (canes, crutches, walkers). Design. The pre/post evaluation of 2 pharmacy undergraduate classes included 220 students, 110 per year. After pharmacy students completed a 10-point, knowledge-based pretest, they participated in a hands-on activity with physical therapy students teaching them about sizing, use, and safety of canes, crutches, and walkers. A 10-point posttest was completed immediately afterward. Assessment. The mean difference of pre/post scores was 3.5 (SD 1.9) for the peer-led teaching, and 3.8 (SD 2.2) for the peer learning group. Students had positive responses regarding the learning exercise and recommended further peer teaching. Conclusion. The peer-learning activity involving physical therapy students teaching pharmacy students was an effective method of improving knowledge and skills regarding basic ambulatory devices. PMID:26889067

  20. A comparative study of middle school and high school students' views about physics and learning physics

    NASA Astrophysics Data System (ADS)

    Ding, Lin

    2013-01-01

    Previous studies of student epistemological beliefs about physics and learning physics focused on college and post-college students in Western countries. However, little is known about early-grade students in Asian countries. This paper reports Chinese middle and high school students' views about the nature of physics and learning physics, measured by the Colorado Learning Attitudes Survey about Science (CLASS). Two variables—school level and gender—are examined for a series of comparative analyses. Results show that although middle school students received fewer years of education in physics, they demonstrated more expert-like conceptions about this subject matter than high school students. Also, male students in general exhibited more expert-like views than their female counterparts. While such a gender difference remained constant across both middle and high schools, for the most part it was a small-size difference.

  1. Experiences that influence a student's choice on majoring in physics

    NASA Astrophysics Data System (ADS)

    Dobbin, Donya Rae

    Currently the production of college graduates with science and engineering degrees is insufficient to fill the increasing number of jobs requiring these skills. This study focuses on physics majors with an in-depth examination of student transitions from high school to college. Many different areas of influence could affect a student's decision to major in physics. The first phase of this study addresses all of the potential areas of influence identified from the literature. The goal was to identify common influences that might be used to increase students' interest in majoring in physics. Subjects (N=35) from the first phase were recruited from physics majors at diverse Michigan colleges and universities. The second phase of this study explored, in more depth, important areas of influence identified in the first phase of the study. Subjects (N=94) from the second phase were recruited from diverse colleges and universities in Indiana, Illinois, and Ohio. The interviews were also conducted via email. Approximately half of the students in the study decided to major in physics while still in high school. Their reasons relate to many of the areas of influence. For example, high school physics teachers were cited as a strong influence in many students' decisions to major in physics. Influential physics teachers were described as being helpful, encouraging and interesting. The teachers also need to be their students' number one cheerleader and not their number one critic. Some areas of influence were found to be different for males vs. females. A high percentage of all physics majors had influential adults with careers in physical or biological science fields. This percentage was even larger for female physics majors. Female students also showed a greater initial interest in astronomy than the male students. Thus, high school and college physics teachers should seek to expose students to science-related careers and adults with these careers. Astronomy is also an

  2. Exposing Calculus Students to Advanced Mathematics

    ERIC Educational Resources Information Center

    Griffiths, Barry J.; Haciomeroglu, Erhan Selcuk

    2014-01-01

    To ensure the competitiveness of the USA in the global economy, and its role as a leader in science and engineering, it is important to cultivate the next generation of home grown mathematicians. However, while universities across the USA offer calculus classes to thousands of undergraduate students each year, very few of them go on to major in…

  3. Let's Get Moving! Physical Activity and Students with Physical Disabilities

    ERIC Educational Resources Information Center

    Menear, Kristi Sayers; Shapiro, Deborah R.

    2004-01-01

    Roughly 39% of children and youth with disabilities are physically active (Longmuir & Bar-Or, 2000). Increasing the number of individuals with disabilities who are physically active is a public health priority (Kosma, Cardinal & Rintala, 2002). This paper will highlight the current status of physical activity for persons with a disability by…

  4. Student Use of Energy Concepts from Physics in Chemistry Courses

    ERIC Educational Resources Information Center

    Nagel, Megan L.; Lindsey, Beth A.

    2015-01-01

    This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical and…

  5. Physical Education for Students with Autism: Teaching Tips and Strategies

    ERIC Educational Resources Information Center

    Menear, Kristi Sayers; Smith, Shannon

    2008-01-01

    Students with autism have needs during physical education that resemble their needs throughout other parts of the day. Many students with autism work with a structured and consistent routine, visual boundaries, and reduced negative sensory stimulation. Meeting these needs requires much effort on the part of physical educator because the physical…

  6. Phenomenographic Study of Students' Problem Solving Approaches in Physics

    ERIC Educational Resources Information Center

    Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

  7. Possibilities: A Framework for Modeling Students' Deductive Reasoning in Physics

    ERIC Educational Resources Information Center

    Gaffney, Jonathan David Housley

    2010-01-01

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning…

  8. NEW APPROACHES: Developing students' physics problem-solving skills

    NASA Astrophysics Data System (ADS)

    Bolton, John; Ross, Shelagh

    1997-05-01

    This paper describes a protocol designed to help students taking their first undergraduate physics course in acquiring the basic skills of physics problem-solving. The educational effectiveness of this protocol for mature students in distance education has been extensively evaluated, and it is now being used as the basis for an interactive multimedia learning package.

  9. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  10. College Students' Perceptions of Wellness and Physical Activity

    ERIC Educational Resources Information Center

    Klepfer, Shaley DePolo

    2013-01-01

    College students are increasingly less physically active. Investigation into this problem is important because individuals develop lifelong habits during the college time period. College students' perceptions regarding physical activity and overall wellness are important factors in creating positive change toward healthier lifestyle habits. Based…

  11. Student Motivation in Physical Education: Breaking down Barriers

    ERIC Educational Resources Information Center

    Mowling, Claire M.; Brock, Sheri J.; Eiler, Kim K.; Rudisill, Mary E.

    2004-01-01

    A fundamental characteristic of a successful physical education program is that the students are interested and motivated to learn the intended objectives. Unfortunately, in many cases, students begin losing interest in physical education as they progress through school. In order to better understand this phenomenon, the authors explored the…

  12. Promoting Physical Activity through Student Life and Academics

    ERIC Educational Resources Information Center

    McDaniel, Tyler; Melton, Bridget F.; Langdon, Jody

    2014-01-01

    Objective: A physical activity passport (PAP) was developed to increase student's physical activity through the collaboration of student life and academics. The purpose was to measure the effectiveness of the PAP. Design: The research design used was a quantitative, descriptive, quasi-experimental design with experimental and control groups.…

  13. Student Perceptions of a Conceptual Physical Education Activity Course

    ERIC Educational Resources Information Center

    Jenkins, Jayne M.; Jenkins, Patience; Collums, Ashley; Werhonig, Gary

    2006-01-01

    Conceptual physical education (CPE) courses are typically included in university course work to provide students knowledge and skills to engage in physical activity for life. The purpose of this study was to identify CPE course characteristics that contributed to positive and negative student perceptions. Participants included 157 undergraduates…

  14. Physical Education for Students with Special Needs. Curriculum Support Series.

    ERIC Educational Resources Information Center

    Mahon, Michael J.

    The guide is intended to assist Manitoba physical education teachers in the process of integrating students with disabilities into regular physical education classes. The manual provides an introduction to students with special needs, stresses the need to create an accepting environment, discusses various teaching tips, and highlights resources…

  15. Instructors' Support of Student Autonomy in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  16. Attitude Changes of Specialist Students of Physical Education towards Physical Activity during Teacher-Training Courses.

    ERIC Educational Resources Information Center

    Barrell, G. V.; Holt, D.

    1982-01-01

    A longitudinal investigation of the attitudes towards physical activity of specialist students of physical education was undertaken during a course of training teachers. Significant changes of attitude with time were noted, particularly in the Vertigo and Ascetic dimensions. (Author)

  17. Measuring Students' Beliefs about Physics in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alhadlaq, H.; Alshaya, F.; Alabdulkareem, S.; Perkins, K. K.; Adams, W. K.; Wieman, C. E.

    2009-11-01

    Over the last decade, science education researchers in the US have studied students' beliefs about science and learning science and measured how these beliefs change in response to classroom instruction in science. In this paper, we present an Arabic version of the Colorado Learning Attitudes about Science Survey (CLASS) which was developed to measure students' beliefs about physics at King Saud University (KSU) in Riyadh, Saudi Arabia. We describe the translation process, which included review by four experts in physics and science education and ten student interviews to ensure that the statements remained valid after translation. We have administered the Arabic CLASS to over 300 students in introductory physics courses at KSU's men's and women's campuses. We present a summary of students' beliefs about physics at KSU and compare these results to similar students in the US.

  18. Research Projects In Introductory Physics: Impacts On Student Learning

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew ``Sandy''; Moll, Rachel; Kotlicki, Andrzej

    2009-11-01

    Over the last two years UBC has completely revamped their introductory course for non-physics majors to present physics in terms of everyday situations and to reinforce connections between classroom physics and real-world phenomena throughout the course. One of the key changes was the incorporation of a final project where groups of students research and present on a topic of their choice related to the course. Students were asked to quantitatively model a real-world situation to make a choice or settle a dispute. At the midpoint and end of the 2008 course students were surveyed with a single transfer problem that tested students' ability to apply physics concepts in real-world contexts. The post-test showed students were more likely to engage in simple (rate)*(time) estimates rather than applying more sophisticated physics principles. Implications for instruction and future work are discussed.

  19. Identity statuses in upper-division physics students

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Sayre, Eleanor C.

    2016-12-01

    We use the theories of identity statuses and communities of practice to describe three different case studies of students finding their paths through undergraduate physics and developing a physics subject-specific identity. Each case study demonstrates a unique path that reinforces the link between the theories of communities of practice and identity statuses. The case studies also illustrate how students progress and regress in their commitment to their subject-specific identities and their professional identities. The progression/regression is dependent on their willingness to explore different aspects of a physics professional identity and their availability to carry out such exploration. Identity status and future identity crises can manifest in students' behavior in the classroom. Allowing students to engage in more legitimate practices of the physics community, especially in the form of undergraduate research, helps students to explore their opportunities and inform the level of commitment they wish to make to physics.

  20. Instructors' Support of Student Autonomy in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Hall, Nicholas; Webb, David

    2014-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their…

  1. Redesigning Physical Geography 101: Bringing Students into the Discussion

    ERIC Educational Resources Information Center

    Tasch, Jeremy; Tasch, Weiwei C.

    2016-01-01

    This article analyses student-learning outcomes from the redesign of Introduction to Physical Geography 101. Among the purposes of the redesigned course were to enhance student learning by providing rich interactive online content, provide more meaningful instructor-student and peer-peer exchanges, and to promote attitudes that facilitate student…

  2. Student Satisfaction in Interactive Engagement-Based Physics Classes

    ERIC Educational Resources Information Center

    Gaffney, Jon D. H.; Gaffney, Amy L. Housley

    2016-01-01

    Interactive engagement-based (IE) physics classes have the potential to invigorate and motivate students, but students may resist or oppose the pedagogy. Understanding the major influences on student satisfaction is a key to successful implementation of such courses. In this study, we note that one of the major differences between IE and…

  3. Loving and Loathing Physical Education: An Exploration of Students' Beliefs

    ERIC Educational Resources Information Center

    Robinson, Daniel B.

    2012-01-01

    This article describes a recent study that investigated the physical education (PE) beliefs of a particular population of students (i.e., female and male students in Grades 4 through 10 from a single school stream). Through their completion of an adapted survey, students (N = 506) were able to share their PE beliefs in relation to five separate…

  4. Physics Practical Work and Its Influence on Students' Academic Achievement

    ERIC Educational Resources Information Center

    Musasia, Amadalo Maurice; Ocholla, Alphayo Abacha; Sakwa, Thomas Welikhe

    2016-01-01

    In Kenyan secondary schools, form two is an important class for all students. The students choose relevant subjects to study in form three and four. Physics is compulsory at form one and two but optional thereafter. Performance in the subject at the end of the secondary school is usually dismal. Majority of students lack motivation for most…

  5. Science Sampler: Enhancing Student Understanding of Physical and Chemical Changes

    ERIC Educational Resources Information Center

    McIntosh, Julie; White, Sandra; Suter, Robert

    2009-01-01

    Students within the Findlay, Ohio, City School District, as well as students across the country, struggle with understanding physical and chemical changes. Therefore, in this article, the authors suggest some standards-based activities to clarify misconceptions and provide formative assessments to measure your students' progress as they determine…

  6. Tobacco abuse and physical activity among medical students

    PubMed Central

    2009-01-01

    Objective This lifestyle is mainly determined during childhood and connected with poor public prophylactic health policy. The aim of this study was to estimate physical activity and level of tobacco abuse, as well as knowledge about health behaviours, among medical students. Methods Questionnaires were completed by Polish (243) and foreign medical students (80). Results It was stated that about 20% of the students smoked cigarettes. Female students from Norway took up smoking significantly more often than other participants, whereas there were more smokers among those from Poland. There was a significantly larger percentage of smoking males from Norway than among male Polish students. The same students presented a low level of physical activity. The smallest level of physical activity was characteristic of the Polish women. Conclusion This situation requires an intensification of activities aimed at supporting pro-health lifestyles and the elimination of unfavourable effects, especially among medical students. PMID:20156733

  7. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    SciTech Connect

    Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed; Pederson, Clark; Brown, Justin; Burrill, Daniel; Feinblum, David; Hyde, David; Levick, Nathan; Lyngaas, Isaac; Maeng, Brad; Reed, Richard LeRoy; Sarno-Smith, Lois; Shohet, Gil; Skarda, Jinhie; Stevens, Josey; Zeppetello, Lucas; Grossman-Ponemon, Benjamin; Bottini, Joseph Larkin; Loudon, Tyson Shane; VanGessel, Francis Gilbert; Nagaraj, Sriram; Price, Jacob

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  8. Using Recent Planetary Science Data to Develop Advanced Undergraduate Physics and Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Lindell, Rebecca

    2016-10-01

    Teaching science by having students manipulate real data is a popular trend in astronomy and planetary science education. However, many existing activities simply couple this data with traditional "cookbook" style verification labs. As with most topics within science, this instructional technique does not enhance the average students' understanding of the phenomena being studied. Here we present a methodology for developing "science by doing" activities that incorporate the latest discoveries in planetary science with up-to-date constructivist pedagogy to teach advanced concepts in Physics and Astronomy. In our methodology, students are first guided to understand, analyze, and plot real raw scientific data; develop and test physical and computational models to understand and interpret the data; finally use their models to make predictions about the topic being studied and test it with real data.To date, two activities have been developed according to this methodology: Understanding Asteroids through their Light Curves (hereafter "Asteroid Activity"), and Understanding Exoplanetary Systems through Simple Harmonic Motion (hereafter "Exoplanet Activity"). The Asteroid Activity allows students to explore light curves available on the Asteroid Light Curve Database (ALCDB) to discover general properties of asteroids, including their internal structure, strength, and mechanism of asteroid moon formation. The Exoplanet Activity allows students to investigate the masses and semi-major axes of exoplanets in a system by comparing the radial velocity motion of their host star to that of a coupled simple harmonic oscillator. Students then explore how noncircular orbits lead to deviations from simple harmonic motion. These activities will be field tested during the Fall 2016 semester in an advanced undergraduate mechanics and astronomy courses at a large Midwestern STEM-focused university. We will present the development methodologies for these activities, description of the

  9. Effectiveness of School-Initiated Physical Activity Program on Secondary School Students' Physical Activity Participation

    ERIC Educational Resources Information Center

    Gråstén, Arto; Yli-Piipari, Sami; Watt, Anthony; Jaakkola, Timo; Liukkonen, Jarmo

    2015-01-01

    Background: The promotion of physical activity and health has become a universal challenge. The Sotkamo Physical Activity as Civil Skill Program was implemented to increase students' physical activity by promoting supportive psychological and physical school environment. The aim of this study was to evaluate the effectiveness of the…

  10. Identifying Taiwanese University Students' Physics Learning Profiles and Their Role in Physics Learning Self-Efficacy

    ERIC Educational Resources Information Center

    Lin, Tzung-Jin; Liang, Jyh-Chong; Tsai, Chin-Chung

    2015-01-01

    The main purposes of this study were to identify Taiwanese university students' physics learning profiles in terms of their critical conceptions of learning physics and to compare their physics learning self-efficacy with the different learning profiles. A total of 250 Taiwanese undergraduates who were majoring in physics participated in this…

  11. Resource Letter ANP-1: Advances in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Goodman, Maury C.

    2016-12-01

    Three of the twelve fundamental fermions in particle physics are neutrinos. It was long thought that neutrinos might be massless, but we now know through the phenomenon of neutrino oscillations that neutrinos have mass. This resource letter will cover the history of the growth in our knowledge about neutrinos since they were first proposed in the 1930s, and also covers some up the upcoming experiments which will further our understanding of neutrino properties. Results from experiments are described that use various sources of neutrinos including nuclear reactors, cosmic rays, accelerators, and supernovae. In this resource letter, the resources that can be used to trace the past, present, and anticipated future advances in neutrino physics are reviewed.

  12. Examining issues of underrepresented minority students in introductory physics

    NASA Astrophysics Data System (ADS)

    Watkins, Jessica Ellen

    In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

  13. Effects of Online Games on Student Performance in Undergraduate Physics

    ERIC Educational Resources Information Center

    Sadiq, Irfan

    2010-01-01

    The present state of physics teaching and learning is a reflection of the difficulty of the subject matter which has resulted in students' low motivation toward physics as well as lack of meaningful and deeper learning experiences. In light of an overall decline in interest in physics, an investigation of alternate teaching and learning methods…

  14. Correlates of School-Day Physical Activity in Preschool Students

    ERIC Educational Resources Information Center

    Robinson, Leah E.; Wadsworth, Danielle D.; Peoples, Christina M.

    2012-01-01

    This study examined the relationship among sex, body mass index, motor skill competence (MSC), perceived physical competence (PPC), and school-day physical activity in preschool students (N = 34). Physical activity was assessed by steps accumulated during the school day, while MSC and PPC were assessed with the Test of Gross Motor Development--2nd…

  15. Middle School Physical Education Teachers' Perspectives on Overweight Students

    ERIC Educational Resources Information Center

    Doolittle, Sarah A.; Rukavina, Paul B.; Li, Weidong; Manson, Mara; Beale, Angela

    2016-01-01

    Using the Social Ecological Constraints model, a qualitative multiple case study design was used to explore experienced and committed middle school physical education teachers' perspectives on overweight and obese students (OWS), and how and why they acted to include OWS in physical education and physical activity opportunities in their school…

  16. Physical Activity & Sport for the Secondary School Student. Fifth Edition.

    ERIC Educational Resources Information Center

    Dougherty, Neil J., Ed.

    This collection of papers offers a comprehensive text about contemporary physical activities and sports forms. It provides students with an overview of the various physical activities, skill technique required, safety, scoring, rules and etiquette, strategies, equipment, and related terminology. The 26 papers are: (1) "Physical Fitness"…

  17. Blogging in the physics classroom: A research-based approach to shaping students' attitudes toward physics

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras; Garrett, Katherine

    2008-11-01

    Although there has been much research on how to help students learn physics, students still come away without a deep understanding of how physics has transformed the world around them and almost all leave with decreased expectations and a more negative attitude toward physics. We discuss an experiment to address this problem: a course weblog which discusses real-world applications of physics and engages students in discussion and thinking outside of class. Students' attitudes toward the value of physics and its applicability to the real-world were probed using a 26-question Likert scale survey over the course of four semesters in an introductory physics course. We found that students who did not participate in the blog generally exhibited a deterioration in attitude toward physics as seen previously. Students who read, commented, and were involved with the blog maintained their initially positive attitudes toward physics. Student response to the blog was overwhelmingly positive, with students claiming that the blog made the subjects studied in the classroom come alive for them and seem more relevant.

  18. "Why Do I Slog through the Physics?" Understanding High School Students' Difficulties in Learning Physics

    ERIC Educational Resources Information Center

    Ekici, Erhan

    2016-01-01

    The aim of this study is to develop a valid and reliable instrument to assess why physics courses are perceived as one of the most difficult courses among high school students and to investigate the reasons why students have difficulty in learning physics through this scale. This study includes the development and validation studies of the…

  19. Secondary School Students' Physical Activity Participation across Physical Education Classes: The Expectancy-Value Theory Approach

    ERIC Educational Resources Information Center

    Gråstén, Arto; Watt, Anthony; Hagger, Martin; Jaakkola, Timo; Liukkonen, Jarmo

    2015-01-01

    The primary purpose of this study was to analyze the link between students' expectancy beliefs, subjective task values, out-of-school activity, and moderate to vigorous physical activity (MVPA) participation across secondary school physical education (PE) classes. The sample comprised 96 students (58 girls, 38 boys; Mage = 15.03, SD = 0.94) from…

  20. Student satisfaction in interactive engagement-based physics classes

    NASA Astrophysics Data System (ADS)

    Gaffney, Jon D. H.; Gaffney, Amy L. Housley

    2016-12-01

    Interactive engagement-based (IE) physics classes have the potential to invigorate and motivate students, but students may resist or oppose the pedagogy. Understanding the major influences on student satisfaction is a key to successful implementation of such courses. In this study, we note that one of the major differences between IE and traditional physics classes lies in the interpersonal relationships between the instructor and students. Therefore, we introduce the interpersonal communication constructs of instructor credibility and facework as possible frameworks for understanding how instructors and students navigate the new space of interactions. By interpreting survey data (N =161 respondents in eight sections of an IE introductory algebra-based physics course), we found both frameworks to be useful in explaining variance in student ratings of their satisfaction in the course, although we are unable to distinguish at this point whether instructor credibility acts as a mediating variable between facework and course satisfaction.

  1. Ego Network Analysis of Upper Division Physics Student Survey

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2017-01-01

    We present the analysis of student networks derived from a survey of upper division physics students. Ego networks focus on the connections that center on one person (the ego). The ego networks in this talk come from a survey that is part of an overall project focused on understanding student retention and persistence. The theory underlying this work is that social and academic integration are essential components to supporting students continued enrollment and ultimately graduation. This work uses network analysis as a way to investigate the role of social and academic interactions in retention and persistence decisions. We focus on student interactions with peers, on mentoring interactions with physics department faculty, and on engagement in physics groups and how they influence persistence. Our results, which are preliminary, will help frame the ongoing research project and identify ways in which departments can support students. This work supported by NSF grant #PHY 1344247.

  2. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  3. MLA FOREIGN LANGUAGE PROFICIENCY TESTS FOR TEACHERS AND ADVANCED STUDENTS.

    ERIC Educational Resources Information Center

    STARR, WILMARTH H.

    THE DEVELOPMENT AND EVALUATION OF THE MODERN LANGUAGE ASSOCIATION (MLA) FOREIGN LANGUAGE PROFICIENCY TESTS FOR TEACHERS AND ADVANCED STUDENTS ARE THE SUBJECTS OF THIS FINAL PROJECT REPORT. FOLLOWING AN ACCOUNT OF THE EVENTS THAT LED TO THE AWARDING OF A GOVERNMENT CONTRACT TO MLA TO DEVELOP NATIONALLY STANDARDIZED QUALIFICATION TESTS AND A…

  4. Advanced Learning Space as an Asset for Students with Disabilities

    ERIC Educational Resources Information Center

    Císarová, Klára; Lamr, Marián; Vitvarová, Jana

    2015-01-01

    The paper describes an e-learning system called Advanced Learning Space that was developed at the Technical University of Liberec. The system provides a personalized virtual work space and promotes communication among students and their teachers. The core of the system is a module that can be used to automatically record, store and playback…

  5. Advanced Placement United States History: A Student's Perspective.

    ERIC Educational Resources Information Center

    Neutuch, Eric

    1999-01-01

    Reflects on the experience of being in an Advanced Placement (AP) U.S. history course in high school. Stresses that the intent of the course was only to prepare students to score well on the AP examination. Asserts that the course should have aimed beyond teaching to the test. (CMK)

  6. Secondary School Advanced Mathematics, Chapter 3, Formal Geometry. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the second of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This volume is devoted to a rigorous development of theorems in plane geometry from 22…

  7. Influencing students' relationships with physics through culturally relevant tools

    NASA Astrophysics Data System (ADS)

    Van Dusen, Ben; Otero, Valerie

    2013-01-01

    This study investigates how an urban, high school physics class responded to the inclusion of a classroom set of iPads and associated applications, such as screencasting. The participatory roles of students and the expressions of their relationships to physics were examined. Findings suggest that iPad technology altered classroom norms and student relationships to include increased student agency and use of evidence. Findings also suggest that the iPad provided a connection between physics, social status, and play. Videos, observations, interviews, and survey responses were analyzed to provide insight into the nature of these changes.

  8. Engaging Students In Modeling Instruction for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  9. Improving student learning and views of physics in a large enrollment introductory physics class

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction

  10. Quality of Undergraduate Physics Students' Written Scientific Arguments: How to Promote Students' Appropriation of Scientific Discourse in Physics Laboratory Reports?

    NASA Astrophysics Data System (ADS)

    Aydeniz, Mehmet; Yeter-Aydeniz, Kubra

    2015-03-01

    In this study we challenged 18 undergraduate physics students to develop four written scientific arguments across four physics labs: 1) gravity-driven acceleration, 2) conservation of mechanical energy, 3) conservation of linear momentum and 4) boyle's law, in a mechanics and thermodynamics laboratory course. We evaluated quality of the written scientific arguments developed by the participants using the Claim, Evidence, Reasoning and Rebuttal (CERR) rubric. The results indicate that while students developed adequate scientific explanations that summarized the findings of their experiments, they experienced unique difficulties in using a persuasive and critical discourse in their written arguments. Students experienced the most difficulty in considering alternative explanations in formulating their written scientific arguments. We elaborate on the implications of these findings for teaching physics laboratories and assessing students' learning in physics laboratories. We especially focus on the importance of framing in helping students to appropriate the epistemic norms of science in writing scientific arguments.

  11. Students' Help Seeking during Physical Education

    ERIC Educational Resources Information Center

    Nye, Susan B.

    2008-01-01

    Seeking help with academic tasks has been regarded as an important strategy to enhance student learning (Newman, 1994; Ryan, Gheen, & Midgley, 1998; Zimmerman & Martinez-Pons, 1986). Seeking help is conceptualized as student-initiated efforts to secure task information or solicit advice when a deficiency in their understanding of the content…

  12. Student Presentation as a Means of Learning English for Upper Intermediate to Advanced Level Students

    ERIC Educational Resources Information Center

    Lee, Eunpyo; Park, Mira

    2008-01-01

    This study observes and examines how upper intermediate to advanced level college students perform and perceive one-topic-for-each student presentation as a means of learning English. It is also to have the prospective medical doctors ready for their future use of English presentation and paper writing since such demand is on the rise in the…

  13. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    SciTech Connect

    Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils; Collier, Angela; Dumas, William; Fankell, Douglas; Ferris, Natalie; Gonzalez, Francisco; Griffith, Alec; Guston, Brandon; Kenyon, Connor; Li, Benson; Mookerjee, Adaleena; Parkinson, Christian; Peck, Hailee; Peters, Evan; Poondla, Yasvanth; Rogers, Brandon; Shaffer, Nathaniel; Trettel, Andrew; Valaitis, Sonata Mae; Venzke, Joel Aaron; Black, Mason; Demircan, Samet; Holladay, Robert Tyler

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  14. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-01-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group), offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  15. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  16. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  17. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  18. Obscuring Power Structures in the Physics Classroom: Linking Teacher Positioning, Student Engagement, and Physics Identity Development

    ERIC Educational Resources Information Center

    Hazari, Zahra; Cass, Cheryl; Beattie, Carrie

    2015-01-01

    In the process of reforming physics education over the last several decades, a tension has developed between engaging students with the content in more conceptually challenging ways and helping them identify with physics so they are personally motivated in their learning. Through comparative case studies of four high school physics teachers, we…

  19. How Physics Instruction Impacts Students' Beliefs about Learning Physics: A Meta-Analysis of 24 Studies

    ERIC Educational Resources Information Center

    Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.

    2015-01-01

    In this meta-analysis, we synthesize the results of 24 studies using the Colorado Learning Attitudes about Science Survey (CLASS) and the Maryland Physics Expectations Survey (MPEX) to answer several questions: (1) How does physics instruction impact students' beliefs? (2) When do physics majors develop expert-like beliefs? and (3) How do…

  20. How can we help students appreciate physics education?

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Ling; Zaki, Eman; Schmidt, Jason; Woolston, Don

    2004-03-01

    Helping students appreciate physics education is a formidable task, considering that many students struggle to pass introductory physics courses. Numerous efforts have been made for this undertaking because it is an important step leading to successful learning. In an out-of-classroom academic program, the Supplemental Instruction (SI) Program, we have used the approach, INSPIRE (inquiry, network, skillfulness, perseverance, intuition, reasoning, and effort), to help more students value their experiences in these courses. The method basically includes key elements outlined by experts in physics education [1]. Student responses have been encouraging. Having undergraduates as facilitators in the program is advantageous in promoting principles of physics education. Their training emphasizes tenacity, resourcefulness, understanding, support, and teamwork, i.e. TRUST. We present the organization and focus of the SI Program, and discuss how these improve learning atmosphere and facilitate learning. [1] Edward F. Redish et al, Am J. Phys. 66(3), March 1998.

  1. Screening for Physical Problems in Classrooms for Severely Handicapped Students.

    ERIC Educational Resources Information Center

    Dever, Richard; Knapczyk, Dennis

    1980-01-01

    The authors present a screening device with which teachers of severely handicapped students may detect the presence of a physical problem. The screening approach covers vision, auditory problems, seizures, orthopedic problems, and pain. (CL)

  2. Building knowledge for teaching: Three cases of physics graduate students

    NASA Astrophysics Data System (ADS)

    Frank, Brian W.; Speer, Natasha

    2013-01-01

    Over the past two decades education researchers have demonstrated that various types of knowledge, including pedagogical content knowledge, influence teachers' instructional practices and their students' learning opportunities. Findings suggest that by engaging in the work of teaching, teachers acquire knowledge of how students think, but the education research community has not yet captured this learning as it occurs. During an investigation of whether novice physics instructors can develop such knowledge via the activities of attending to student work, we captured instances of knowledge development and have identified several mechanisms that supported instructors in building this knowledge. We analyzed data from interviews with physics graduate teaching assistants as they examined and discussed students' written work. During those discussions, some instructors appeared to develop new knowledge-either about students' thinking or about the physics content-and others did not. We compare and contrast three cases representing a range of outcomes and identify factors that influenced the development of new knowledge.

  3. Preparing Students for a Physically Literate Life

    ERIC Educational Resources Information Center

    Roetert, E. Paul; Kriellaars, Dean; Ellenbecker, Todd S.; Richardson, Cheryl

    2017-01-01

    The term "physical literacy" has been embraced by a number of different countries around the world. Although the concept has regained momentum over the past few decades, little has been written about specific activities that may assist in providing the foundation for physical literacy as a life-long journey. This article introduces…

  4. High School Students' Physical Education Conceptual Knowledge

    ERIC Educational Resources Information Center

    Ayers, Suzan F.

    2004-01-01

    The value of conceptual physical education knowledge has long been acknowledged (American Alliance for Health, Physical Education, and Recreation, 1969; Kneer, 1981; NASPE, 1995) yet has not been formally measured or assessed. Seven multiple choice tests with established validity and reliability (Ayers, 2001b) were used to assess the concepts…

  5. Quantum Mechanics for Beginning Physics Students

    ERIC Educational Resources Information Center

    Schneider, Mark B.

    2010-01-01

    The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…

  6. Fundamentals of Physics, Student's Solutions Manual

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2000-07-01

    No other book on the market today can match the success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style the book offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving.

  7. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  8. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  9. The Effects of Grade Level and Other Factors on the Achievement in Project Physics among High School Physics Students.

    ERIC Educational Resources Information Center

    Fletcher, Richard Kenard, Jr.

    This study was designed to determine experimentally the relationship between achievement and grade level for 64 tenth-grade students, 48 eleventh-grade students, and 95 twelfth-grade physics students. All students were enrolled in the Project Physics course in their respective schools. The Physics Achievement Test (PAT) and the algebra I and II…

  10. The influence of physics teacher gender on college students' pursuit of careers in the physical sciences

    NASA Astrophysics Data System (ADS)

    Lung, Florin; Potvin, Geoff; Sadler, Philip M.; Sonnert, Gerhard

    2012-03-01

    In science disciplines, students develop career goals based in part on their high school experiences. Science teachers and their personal characteristics are a part of this experience. In the case of physics, teacher gender is believed to modulate the interplay between student's own gender and their gender-related perceptions of physics. Using national data from college students (PRiSE Project, N=7505), we analyze the physics teacher gender effects on the choice of a career in the physical sciences by both male and female students. We examine three sub-samples of the data: students who have not taken any high school physics courses (about 60 percent of the total), those who have taken one physics course (teacher female or male), and those who have taken two physics courses (two female, two male, or one female and one male teacher). A correspondence analysis reveals an exploratory picture of the association between primary and confounding factors. Subsequently, a linear regression on students' physical science career choices is used as a confirmatory analysis of this picture.

  11. Using Physical Education to Improve Literacy Skills in Struggling Students

    ERIC Educational Resources Information Center

    Wachob, David A.

    2014-01-01

    Literacy skills are an essential part of academic performance. When physical educators collaborate with classroom teachers to address these skills, student engagement in the learning process can greatly improve. This article begins by reviewing the growing issues surrounding student literacy and its impact on academic performance. The discussion…

  12. Using the Web to Increase Physical Activity in College Students

    ERIC Educational Resources Information Center

    Magoc, Dejan; Tomaka, Joe; Bridges-Arzaga, Amber

    2011-01-01

    Objectives: To evaluate the effectiveness of a theoretically based and Web-delivered intervention using common course technology for increasing physical activity in a college student sample. Methods: One hundred four students randomly participated in either a Web-based intervention involving 7 theory-based learning lessons or a control group that…

  13. Students' Use of the Interactive Whiteboard during Physics Group Work

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm; Bungum, Berit

    2015-01-01

    This paper presents a case study of how the interactive whiteboard (IWB) may facilitate collective meaning-making processes in group work in engineering education. In the case, first-year students attended group-work sessions as an organised part of a basic physics course at a Norwegian university college. Each student group was equipped with an…

  14. Effect of Instructional Environment on Physics Students' Representational Skills

    ERIC Educational Resources Information Center

    Kohl, Patrick B.; Finkelstein, Noah D.

    2006-01-01

    In a recent study we showed that physics students' problem-solving performance can depend strongly on problem representation, and that giving students a choice of problem representation can have a significant impact on their performance [ P. B. Kohl and N. D. Finklestein, Phys. Rev. ST. Phys. Educ. Res. 1, 010104 (2005) ] In this paper, we…

  15. Using Soda Cans to Teach Physical Science Students about Density

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Humphreys, Teari C.; LaPorte, Mark M.

    2009-01-01

    In this experiment, physical science students measured the mass of several soda cans, measured the mass and volume of water displaced when these cans were placed in water, and determined whether these cans sank or floated in water. Then, the students plotted graphs of the mass of displaced water versus the volume of displaced water, the mass of…

  16. Engineering Students' Experiences from Physics Group Work in Learning Labs

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm

    2014-01-01

    Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…

  17. Modelling Students' Construction of Energy Models in Physics.

    ERIC Educational Resources Information Center

    Devi, Roshni; And Others

    1996-01-01

    Examines students' construction of experimentation models for physics theories in energy storage, transformation, and transfers involving electricity and mechanics. Student problem solving dialogs and artificial intelligence modeling of these processes is analyzed. Construction of models established relations between elements with linear causal…

  18. Multiple Intelligence Levels of Physical Education and Sports School Students

    ERIC Educational Resources Information Center

    Ekici, Summani

    2011-01-01

    The purpose of this research is to analyze the multiple intelligence levels of academies of physical education and sports students according to some demographic factors. To obtain data about multiple intelligence levels in the research, the multiple intelligence inventory, developed by Ozden (2003), was applied to a total of 1.199 students, of…

  19. Enhancing Student Performance through Cooperative Learning in Physical Sciences

    ERIC Educational Resources Information Center

    Gupta, Madan L.

    2004-01-01

    Students in a physical sciences course were introduced to cooperative learning at the University of Queensland, Gatton Campus. Groups of four to five students worked together in tutorial and practical sessions. Mid-term and practical examinations were abolished and 40% of total marks were allocated to the cooperative learning activities. A peer-…

  20. Investigating Visually Disabled Students' Attitudes about Physical Education and Sport

    ERIC Educational Resources Information Center

    Dalbudak, Ibrahim; Gürkan, Alper C.; Yigit, Sih Mehmet; Kargun, Mehmet; Hazar, Gürkan; Dorak, Feridun

    2016-01-01

    This study aims to investigate visually disabled students', who study in the level of primary education, high school, university, attitudes about physical education and sport in terms of different variables. Totally 100 visually disabled students who are individual and team athletes and study in Izmir, (8 visually disabled athletes study in…

  1. Physics Students' Epistemologies and Views about Knowing and Learning.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Roychoudhury, Anita

    1994-01-01

    A study involving 42 students enrolled in a physics course was conducted to document students' epistemologies and their concurrent views about knowing and learning. Analyses revealed a spectrum of epistemological commitments commensurable with positions from objectivism to relativism. Implications to classroom environment are discussed. (ZWH)

  2. Reading Fluency Instruction with Students Who Have Physical Disabilities

    ERIC Educational Resources Information Center

    Heller, Kathryn Wolff; Rupert, Jenny Hayes; Coleman-Martin, Mari Beth; Mezei, Peter J.; Calhoon, Mary Beth

    2007-01-01

    Although fluency instruction is an essential part of teaching reading, there is limited information on providing this type of instruction with students who have physical disabilities. This article examines three case studies across two students, one with cerebral palsy and the other with both arthrogryposis and spina bifida. In the first study,…

  3. Prospective Physical Education Teachers' Attitudes Toward Teaching Students with Disabilities.

    ERIC Educational Resources Information Center

    Hodge, Samuel R.

    1998-01-01

    Investigated the attitudes of prospective physical education (PE) teachers toward teaching students with disabilities, before and after matriculation in introductory adapted PE (APE) courses and with and without practicum experiences. Surveys of students from seven universities nationwide indicated that participation in APE courses, with or…

  4. Partial Possible Models: An Approach To Interpret Students' Physical Representation.

    ERIC Educational Resources Information Center

    Camacho, Fernando Flores; Cazares, Leticia Gallegos

    1998-01-01

    Illustrates the construction of conceptual models on pressure and flotation using high school students' previous ideas on these concepts. Identifies three models and uses them to analyze students' ideas about physical phenomena and to recognize the inferential structure they use. Contains 28 references. (DDR)

  5. Autonomy and the Student Experience in Introductory Physics

    ERIC Educational Resources Information Center

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  6. Physics of Space: the 43d Annual Student Scientific Conference

    NASA Astrophysics Data System (ADS)

    Zakharova, P. E.; Kuznetsov, E. D.; Ostrovskii, A. B.; Salii, S. V.; Sobolev, A. M.; Kholshevnikov, K. V.; Shustov, B. M.

    2014-02-01

    The 43d annual student scientific conference "Physics of Space" aims to overcome the gap between modern scientific research and basic education in astronomy. The main purpose of the conference is to introduce the students to modern problems and directions of scientific research. The working languages of the conference are Russian and English.

  7. Physics of Space: the 41st Annual Student Scientific Conference

    NASA Astrophysics Data System (ADS)

    Zakharova, P. E.; Kuznetsov, E. D.; Ostrovskii, A. B.; Salii, S. V.; Sobolev, A. M.; Kholshevnikov, K. V.; Shustov, B. M.

    2012-01-01

    The 41st annual student scientific conference "Physics of Space" aims to overcome the gap between modern scientific research and basic education in astronomy. The main purpose of the conference is to introduce the students to modern problems and directions of scientific research. The working languages of the conference are Russian and English.

  8. Gender Differences in High School Students' Interests in Physics

    ERIC Educational Resources Information Center

    Baran, Medine

    2016-01-01

    The aim of this research was to determine the interests of high school students in Physics and variable of how the influential factors on their interests depending on gender. The research sample included 154 (F:78 M:76) high school students. A structured interview form was used as the data collection tool in the study. The research data were…

  9. High School Student Physics Research Experience Yields Positive Results

    ERIC Educational Resources Information Center

    Podolak, K. R.; Walters, M. J.

    2016-01-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a…

  10. Race and Sex Differences in College Student Physical Activity Correlates

    ERIC Educational Resources Information Center

    McArthur, Laura H.; Raedeke, Thomas D.

    2009-01-01

    Objectives: To assess sex/race differences on psychosocial correlates of physical activity among college students. Methods: Survey research protocol. Results: Students (n = 636) exercised an average of 3.5 days per week, with black females being the least active. Across subgroups, health/fitness was rated as the most important motive for exercise,…

  11. Greek Undergraduate Physical Education Students' Basic Computer Skills

    ERIC Educational Resources Information Center

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  12. Understanding Student Use of Differentials in Physics Integration Problems

    ERIC Educational Resources Information Center

    Hu, Dehui; Rebello, N. Sanjay

    2013-01-01

    This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In this…

  13. Students' Perspectives of Urban Middle School Physical Education Programs

    ERIC Educational Resources Information Center

    Dyson, Ben; Coviello, Nicole; DiCesare, Emma; Dyson, Lisa

    2009-01-01

    The purpose of this study was to explore and interpret students' perspectives of their experiences in four urban middle school physical education programs. Focus group interviews with 76 students were supported by field notes and researchers' reflective journals. Researchers used constant comparison methods (Lincoln & Guba, 1985) to identify seven…

  14. Activity Preferences of Middle School Physical Education Students.

    ERIC Educational Resources Information Center

    Greenwood, Michael; Stillwell, Jim; Byars, Allyn

    2001-01-01

    Investigated the physical education activity preferences of middle school students who completed a checklist featuring a variety of activities. Overall, middle school boys and girls both differed and agreed on their interests for specific activities. Most students liked basketball, bicycling, roller skating, soccer, swimming, and volleyball but…

  15. How to Stimulate Students' Interest in Nuclear Physics?

    ERIC Educational Resources Information Center

    Elbanowska-Ciemuchowska, Stefania; Giembicka, Magdalena Anna

    2011-01-01

    Teaching nuclear physics in secondary schools offers us a unique possibility to increase our students' awareness of the influence that modern science and its achievements have on the everyday life of contemporary people. Students gain an opportunity to learn in what ways the outcome of laboratory research is put to use in such fields as medicine,…

  16. Ensuring the Success of Deaf Students in Inclusive Physical Education

    ERIC Educational Resources Information Center

    Schultz, Jessica L.; Lieberman, Lauren J.; Ellis, M. Kathleen; Hilgenbrinck, Linda C.

    2013-01-01

    Approximately 85% of all deaf and hard-of-hearing students in the United States are educated in public school programs. This high percentage makes it very likely that physical educators will at some point have to teach a student who is deaf or hard-of-hearing. It is considered best practice for all educators to be aware of Deaf culture,…

  17. Investigating Student Understanding of Quantum Physics: Spontaneous Models of Conductivity.

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2002-01-01

    Investigates student reasoning about models of conduction. Reports that students often are unable to account for the existence of free electrons in a conductor and create models that lead to incorrect predictions and responses contradictory to expert descriptions of the physics involved. (Contains 36 references.) (Author/YDS)

  18. Reaction Time of a Group of Physics Students

    ERIC Educational Resources Information Center

    Saxena, Charu; Kaur, Rini; Arun, P.

    2008-01-01

    The reaction time of a group of students majoring in physics is reported here. Strong correlation between fatigue, reaction time and performance has been observed and may be useful for academicians and administrators responsible for working out timetables, course structures, student counsellings, etc. (Contains 5 figures, 1 table, and 1 footnote.)

  19. Students' Views About Potentially Offering Physics Courses Online

    NASA Astrophysics Data System (ADS)

    Ramlo, Susan E.

    2016-06-01

    Nationally, many public universities have started to move into the online course and program market that is most often associated with for-profit institutions of higher education. Administrators in public universities make statements regarding benefits to students' desire for flexibility and profit margins related to online courses. But do students attending a large public university want to take courses online especially science courses perceived to be difficult such as freshmen-level physics courses? This study took place at a large, public, Midwestern university and involved students enrolled in the first semester of a face-to-face, flipped physics course for engineering technology majors. Statements were collected from comments about online courses made by the university's administration and students in the course. Twenty students sorted 45 statements. Two student views emerged with one rejecting online courses in general and the other primarily rejecting online math, science, and technology courses, including physics. Students' descriptions of their previous online course experiences were used to inform the analyses and to assist in describing the two views that emerged in conjunction with the distinguishing statements. Consensus among the two views is also discussed. Overall, the results indicate a potential divergence between student views and what university administrators believe students want.

  20. Opportunities for Regenerative Rehabilitation and Advanced Technologies in Physical Therapy: Perspective From Academia.

    PubMed

    Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh

    2016-04-01

    As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020.

  1. Students' Motivation toward Learning Physical Science--A Case from Four Classes of Taiwanese Students.

    ERIC Educational Resources Information Center

    Tuan, Hsiao-Lin; Chin, Chi-Chin

    The purpose of this study was to explore four classes of junior high school students' learning motivation toward a physical science course in central Taiwan. Both qualitative and quantitative methods were applied in the study. Students' physical science learning motivation questionnaire (SPSLMQ), modified from multiple dimensions of a motivation…

  2. XII Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, Thomas; Carminati, Federico; Werlen, Monique

    November 2008 will be a few months after the official start of LHC when the highest quantum energy ever produced by mankind will be observed by the most complex piece of scientific equipment ever built. LHC will open a new era in physics research and push further the frontier of Knowledge This achievement has been made possible by new technological developments in many fields, but computing is certainly the technology that has made possible this whole enterprise. Accelerator and detector design, construction management, data acquisition, detectors monitoring, data analysis, event simulation and theoretical interpretation are all computing based HEP activities but also occurring many other research fields. Computing is everywhere and forms the common link between all involved scientists and engineers. The ACAT workshop series, created back in 1990 as AIHENP (Artificial Intelligence in High Energy and Nuclear Research) has been covering the tremendous evolution of computing in its most advanced topics, trying to setup bridges between computer science, experimental and theoretical physics. Conference web-site: http://acat2008.cern.ch/ Programme and presentations: http://indico.cern.ch/conferenceDisplay.py?confId=34666

  3. Teachers' and Students' Preliminary Stages in Physics Problem Solving

    ERIC Educational Resources Information Center

    Mansyur, Jusman

    2015-01-01

    This paper describes the preliminary stages in physics problem-solving related to the use of external representation. This empirical study was carried out using a phenomenographic approach to analyze data from individual thinking-aloud and interviews with 8 senior high school students and 7 physics teachers. The result of this study is a set of…

  4. The Challenge of Teaching Introductory Physics to Premedical Students

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd

    2007-01-01

    Most physics instructors are motivated by a genuine interest in their subject area and in using physics to understand real-world phenomena. While many premedical students may share these interests, most are motivated by fulfilling their degree requirements and gaining admittance into medical school. To achieve this latter goal, they need excellent…

  5. Nordic Walking: A Simple Lifetime Physical Activity for Every Student

    ERIC Educational Resources Information Center

    Santos, Luis; Fernandez-Rio, Javier

    2013-01-01

    Children who become competent in a wide variety of motor skills and movement patterns are more likely to remain physically active for life. Physical education can achieve this goal by providing an extensive selection of activities and by including learning units that encourage students to increase their skill level and stay active year-round.…

  6. Undergraduate Students' Perceptions of an Inquiry-Based Physics Course

    ERIC Educational Resources Information Center

    Duran, Lena Ballone; McArthur, Julia; Van Hook, Stephen

    2004-01-01

    The purpose of this study was to examine middle childhood students' perceptions of the learning environment in a reform-based physics course. A lecture-style, introductory physics course was modified into an inquiry-based course designed for preservice middle childhood teachers through the collaborative efforts of faculty in the Colleges of…

  7. The physics of Copenhagen for students and the general public

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Johansson, K. E.; Nilsson, Ch

    2001-09-01

    The play Copenhagen has attracted the attention of a large audience in several countries. The hypothetical discussion in Copenhagen between two of the giants in physics, Niels Bohr and Werner Heisenberg, has inspired us to start a theoretical and experimental exploration of quantum physics. This theme has been used in Stockholm Science Laboratory for audiences of both students and the general public.

  8. Students' Epistemological Beliefs, Expectations, and Learning Physics: An International Comparison

    ERIC Educational Resources Information Center

    Sharma, Sapna; Ahluwalia, P. K.; Sharma, S. K.

    2013-01-01

    It has been established by physics education researchers that there is a correlation between the learner's behavior, their epistemological beliefs with which they come to the classrooms, and their success in a course. This study of Indian students and teachers explores expectations and beliefs in learning physics at the secondary and tertiary…

  9. Setting the Stage for Physical Activity for Secondary Students

    ERIC Educational Resources Information Center

    Ciccomascolo, Lori; Riebe, Deborah

    2006-01-01

    Despite the positive long-term physiological and psychological effects of exercise, many young adults between the ages of 12 and 21 years do not participate in regular physical activity. With the time constraints and other challenges in teaching and assessing students, physical educators need realistic strategies that will help in their efforts to…

  10. Physical Activity, Sports Participation, and Suicidal Behavior among College Students.

    ERIC Educational Resources Information Center

    Brown, David R.; Blanton, Curtis J.

    2002-01-01

    Used data from the 1995 National College Health Risk Behavior Survey to evaluate the relationship between physical activity, sports participation, and suicide among college students. Overall, selected physical activity patterns were associated in a non-systematic manner with decreased or increased odds of suicidal behavior among male and female…

  11. Identity Statuses in Upper-Division Physics Students

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2016-01-01

    We use the theories of identity statuses and communities of practice to describe three different case studies of students finding their paths through undergraduate physics and developing a physics subject-specific identity. Each case study demonstrates a unique path that reinforces the link between the theories of communities of practice and…

  12. Textbook Images: How Do They Invite Students into Physics?

    ERIC Educational Resources Information Center

    Bungum, Berit

    2013-01-01

    This paper presents a study of images in Norwegian physics textbooks for upper secondary school, and how they invite students into physics by means of visual communication. The concept of "framing" is used to investigate how the perspective in the image provides a sense of participation. It is found that older textbooks, where objects…

  13. School Physical Environment and Structure: Their Relationship to Student Outcomes.

    ERIC Educational Resources Information Center

    Stevenson, Kenneth

    2001-01-01

    Better physical conditions produce better student outcomes. Other factors affecting a school's physical environment and academic productivity include school structure, school size, teacher-pupil ratio, school location, grade-level configuration, and classroom size. Building or remodeling schools according to obsolete images is fiscally and…

  14. Students' Individual and Social Behaviors with Physical Education Teachers' Personality

    ERIC Educational Resources Information Center

    Arbabisarjou, Azizollah; Sourki, Mehdi Sadeghian; Bonjar, Seyedeh Elaham Hashemi

    2016-01-01

    The main objective for this survey is to assess the relationship between physical education teachers' personality and students' individual with social behaviors. The statistical population of the study was all the teachers of physical education working at high schools in the academic year 2012-2013. The sample consisted of sixty teachers that were…

  15. Physics and Everyday Life--New Modules to Motivate Students

    ERIC Educational Resources Information Center

    Holubova, Renata

    2013-01-01

    The question "how to improve the interest of students to study physics" has been discussed in the author's previous papers too. Within the framework of the project, the author prepared various new interdisciplinary projects to demonstrate how inventions in physics are used in everyday life. Now, about one year later, the author found out…

  16. Let Students Discover an Important Physical Property of a Slinky

    ERIC Educational Resources Information Center

    Gash, Philip

    2016-01-01

    This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.

  17. Students' Notions regarding "Covariance" of a Physical Theory

    ERIC Educational Resources Information Center

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    A physical theory is said to be covariant with respect to a certain class of transformations when its basic equations retain their "form" under those transformations. It is one of the basic notions encountered in physics, particularly in the domain of relativity. In this paper we study in some detail how students deal with this notion in different…

  18. Teaching Physical Education to Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Menear, Kristi Sayers; Smith, Shannon C.

    2011-01-01

    The U.S. Centers for Disease Control and Prevention (2007) estimates that one in every 110 children is affected by an autism spectrum disorder (ASD). The prevalence of ASDs makes it very likely that every physical education teacher is teaching at least one student with an ASD. This article will provide physical educators with a brief overview of…

  19. Improving Physical Education Activities for Students with Disabilities.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing.

    This document is designed to assist physical education teachers to design curricula which can help students with learning disabilities, emotional impairments, and educable mental impairments achieve Michigan's essential goals and objectives for physical education. Chapter I discusses legal mandates, terminology, movement characteristics of the…

  20. Physics. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 36 physics investigations which focus on concepts related to: movement; vectors; falling objects; force and acceleration; a…

  1. Photography & Physics: A Way to Enhance Student Learning

    NASA Astrophysics Data System (ADS)

    Meyers, Fred

    2007-10-01

    A teaching/learning strategy that I have developed over the years for high school students involves the use of photographic images of ordinary objects or scenes to help engage students in the intrigue and beauty of physics. The images help focus classroom discussions, raise curiosity levels among students, and promote creativity of thinking. The photographs can be used in a variety of ways, including assessment, framing discussions, homework assignment, and constructive classroom games. This presentation will describe the various ways photography can be used and will model some techniques. Dozens of ``physics images'' will be shown.

  2. The covered wagon journey: student chronicles in advanced holistic nursing.

    PubMed

    Purnell, Marguerite J; Lange, Bernadette; Bailey, Christie; Drozdowicz, Aleida; Eckes, Shirley; Kinchen, Elizabeth; Smith-Atkinson, Nikkisha

    2013-01-01

    This article recounts the experiences of a first cohort of graduate students in a newly implemented advanced holistic nursing (AHN) track, one of only a handful in the nation, and the first in Florida. The increasing popularity of complementary and alternative healing processes represents the insufficiency of a health system of fragmented care and a desire for holistic healing that is beyond mainstream allopathic care. Graduate holistic nurse education equips nurses to explore the commitment needed to advance the evolution of health care. The covered wagon journey is a metaphor for this meaningful participation. Students journaled their experiences as cotravelers in a lone wagon: embarking on a courageous journey, forging a path of discovery, and reaching their destination as pioneers. This cohort experience embodied the central tenets of holistic nursing, thus creating conscious change and unity within a learning community. The future of AHN is addressed in the context of the contemporary health care environment.

  3. Toward understanding writing to learn in physics: Investigating student writing

    NASA Astrophysics Data System (ADS)

    Demaree, Dedra

    It is received wisdom that writing in a discipline helps students learn the discipline, and millions of dollars have been committed at many universities to supporting such writing. We show that evidence for effectiveness is anecdotal, and that little data-based material informs these prejudices. This thesis begins the process of scientific study of writing in the discipline, in specific, in physics, and creates means to judge whether such writing is effective. The studies culminating in this thesis are an aggressive start to addressing these complex questions. Writing is often promoted as an activity that, when put into classrooms in specific disciplines, not only helps students learn to write in the methods of that discipline but also helps students learn content knowledge. Students at the Ohio State University are being asked to write more in introductory courses, and the Engineering schools want their students to have more writing skills for the job market. Combined with the desire of many educators to have students be able to explain the course content knowledge clearly, it would seem that writing activities would be important and useful in physics courses. However, the question of whether writing helps learning or whether students learn writing within a non-English classroom helps learning in the discipline are open to debate, and data are needed before such claims can be made. This thesis presents several studies aimed at understanding the correlation of writing and content, and tracking and characterizing student writing behaviors to see how they are impacted by writing in physics courses. It consists of four parts: summer and autumn 2005 focus on writing in introductory physics labs with and without explicit instruction, while winter and spring 2006 focus on tracking and analyzing student writing and revising behavior in Physics by Inquiry (PbI). With these related projects, we establish three main results. First, there is a need for quantitative studies of

  4. Space Physics for Graduate Students: An Activities-Based Approach

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Arge, N.; Bruntz, R.; Burns, A. G.; Hughes, W. J.; Knipp, D.; Lyon, J.; McGregor, S.; Owens, M.; Siscoe, G.; Solomon, S. C.; Wiltberger, M.

    2009-01-01

    The geospace environment is controlled largely by events on the Sun, such as solar flares and coronal mass ejections, which generate significant geomagnetic and upper atmospheric disturbances. The study of this Sun-Earth system, which has become known as space weather, has both intrinsic scientific interest and practical applications. Adverse conditions in space can damage satellites and disrupt communications, navigation, and electric power grids, as well as endanger astronauts. The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the U.S. National Science Foundation (see http://www.bu.edu/cism/), is developing a suite of integrated physics-based computer models that describe the space environment from the Sun to the Earth for use in both research and operations [Hughes and Hudson, 2004, p. 1241]. To further this mission, advanced education and training programs sponsored by CISM encourage students to view space weather as a system that encompasses the Sun, the solar wind, the magnetosphere, and the ionosphere/thermosphere. This holds especially true for participants in the CISM space weather summer school [Simpson, 2004].

  5. Colorado School of Mines Society of Physics Students Outreach Program

    NASA Astrophysics Data System (ADS)

    Moore, Shirley; Otzenberger, Marty

    2009-10-01

    Since the reinstatement of CSM's chapter of the Society of Physics Students last year, we have been dedicated to spreading the knowledge of physics through outreach while providing both social and professional events for students and the community. We did many things last year that we intend to repeat this year. In August we participate in Celebration of Mines, doing interesting demonstrations while informing new students about our organization. In autumn, a haunted physics lab is built, SPS and the CSM Physics Department hold Physics Week, and volunteers judge science fairs at local schools. In spring, a workshop is held for students to apply for summer internships and REUs and students enjoy a fun night of bowling. SPS also prepares demonstrations for the Associated Students of CSM to use in their Into the Streets volunteer event and co-organizes Mitchell Elementary School's Family Math and Science Night. Last year, we hosted the Colorado/Wyoming AAPT and SPS Zone 14 meeting. This year, we will host an E-days dunk tank and soapbox derby. At the end of the year, a department barbeque is held to finish off the spring semester. For our efforts, we accepted a Marsh White award for demonstrations in addition to a SOCK and outstanding chapter award from SPS national.

  6. Graduate Students' Initial Exploration of Teaching Students with Disabilities in Physical Education

    ERIC Educational Resources Information Center

    Sato, Takahiro; Haegele, Justin A.

    2016-01-01

    The purpose of this study was to explore the meaning master's degree students ascribed to their first semester of experience teaching students with severe and profound disability (SPD) in a physical education (PE) practicum. This study utilized a narrative inquiry design and interviews were conducted with four graduate students focusing on their…

  7. Situated Self-efficacy in Introductory Physics Students

    NASA Astrophysics Data System (ADS)

    Henderson, Rachel; DeVore, Seth; Michaluk, Lynnette; Stewart, John

    2017-01-01

    Within the general university environment, students' perceived self-efficacy has been widely studied and findings suggest it plays a role in student success. The current research adapted a self-efficacy survey, from the ``Self-Efficacy for Learning Performance'' subscale of the Motivated Learning Strategies Questionnaire and administered it to the introductory, calculus-based physics classes (N=1005) over the fall 2015 and spring 2016 semesters. This assessment measured students' self-efficacy in domains including the physics class, other science and mathematics classes, and their intended future career. The effect of gender was explored with the only significant gender difference (p < . 001) existing within the physics domain. A hierarchical linear regression analysis indicated that this gender difference was not explained by a student's performance which was measured by test average. However, a mediation analysis showed that students' overall academic self-efficacy, measured by their math and science self-efficacy, acts as a mediator for the effect of test average on self-efficacy towards the physics class domain. This mediation effect was significant for both female (p < . 01) and male students (p < . 001) however, it was more pronounced for male students.

  8. Portuguese Students' Knowledge of Radiation Physics

    ERIC Educational Resources Information Center

    Rego, Florbela; Peralta, Luis

    2006-01-01

    Radiation is an important aspect of daily life. We interact with radiation from several sources, both natural and manmade, and in fact life on Earth depends on it. Although the general population, and students in particular, can recognize its importance, it is not clear whether they understand its meaning. Bearing these considerations in mind, a…

  9. Fostering Critical Thinking in Physical Education Students

    ERIC Educational Resources Information Center

    Lodewyk, Ken R.

    2009-01-01

    Critical thinking is essentially "better thinking." When students think critically they consider complex information from numerous sources and perspectives in order to make a reasonable judgment that they can justify. It has been associated with academic qualities such as decision-making, creativity, reasoning, problem-solving, debating,…

  10. Physical Appearance and Student/Teacher Interactions

    ERIC Educational Resources Information Center

    Perlmutter, David L.

    2005-01-01

    Scientific and cultural research suggests that attractiveness does affect the ways that people perceive and respond to each other. In this paper, the author talks about the impact of one's appearance in academe as well as in the relationship between students and professors. From the research literature, popular writings, and many comments from his…

  11. Moving High School Students toward Physical Literacy

    ERIC Educational Resources Information Center

    MacDonald, Lynn Couturier

    2015-01-01

    This article addresses teaching for skill and knowledge competency in high school based on the National Standards and grade-level outcomes. The outcomes guide teachers away from a curriculum that emphasizes competition through team sports, which appeals to just the highly-skilled and competitive students, toward one that is inclusive of all skill…

  12. Textbook images: how do they invite students into physics?

    NASA Astrophysics Data System (ADS)

    Bungum, Berit

    2013-09-01

    This paper presents a study of images in Norwegian physics textbooks for upper secondary school, and how they invite students into physics by means of visual communication. The concept of ‘framing’ is used to investigate how the perspective in the image provides a sense of participation. It is found that older textbooks, where objects and experimental setups dominate the images, involve the reader in terms of weak framing. This is to some degree resembled in newer textbooks with the increased use of photographs of learners in some physics activity. This does, however, invite the learner into school physics rather than professional physics. Connections made to physics in society and everyday life in images can also be seen as inviting the learner into physics, by exhibiting how modern physicists work and by referring to the relevance of physics, respectively.

  13. Autonomy and the Student Experience in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  14. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  15. Advancing Information and Communication Technology Knowledge for Undergraduate Nursing Students

    PubMed Central

    Procter, Paula M

    2012-01-01

    Nursing is a dynamic profession; for registered nurses their role is increasingly requiring greater information process understanding and the effective management of information to ensure high quality safe patient care. This paper outlines the design and implementation of Systems of eCare. This is a course which advances information and communication technology knowledge for undergraduate nursing students within a Faculty of Health and Wellbeing appropriately preparing nurses for their professional careers. Systems of eCare entwines throughout the three year programme mapping to the curriculum giving meaning to learning for the student. In conclusion comments from students convey their appreciation of the provision of this element of the undergraduate programme. PMID:24199114

  16. Comparison of Principles of Technology and Traditional Physics Secondary Students' Scores on a Physics Examination.

    NASA Astrophysics Data System (ADS)

    Lewis, Beacher Bert

    1990-01-01

    The purpose of this study was to evaluate comparatively the performance of students enrolled in principles of technology and traditional physics classes in Alabama on a physics examination. The subjects included 226 students enrolled in the first year of the principles of technology course at eight pilot school systems in Alabama during the 1988 -89 year as well as 251 students enrolled in randomly selected, intact physics classes from the same school systems. Data were collected utilizing demographic questionnaires developed by the researcher and a physics examination developed by a jury of Auburn University physics professors. Six graduate assistants, including the researcher, administered the examination and the demographic questionnaires in the school systems. Data pertaining to the students' standardized scores were obtained from school counselors. The data were statistically analyzed by a multivariate analysis of variance (MANOVA) test and by a multivariate analysis of partial variance model. Results from the statistical analyses indicate that no significant difference in the two groups of students exist after adjustment for pre-existing differences and selected student and teacher variables. Significant interactions between course and both mathematics and science scores exists. While the physics students' scores were above the grand mean for both mathematics and science and the principles of technology students' scores were below the mean in both cases, the interactions indicate that the relationship between the scores on mathematics and science and course vary more than would be expected by chance for the two groups of students. The most significant conclusion was that the principles of technology course appears to be academically sound and may be the kind of course to successfully bridge the gap between academics and vocational education for a large segment of students.

  17. Student Learning and Motivation in Physical Education

    ERIC Educational Resources Information Center

    Richards, K. Andrew R.; Levesque-Bristol, Chantal

    2014-01-01

    In a previous "Advocacy in Action" article, Richards and Wilson (2012) discussed quality physical education (PE) as a precursor to advocacy. It was argued that, before PE teachers can be effective advocates, they must first develop a high-quality PE program for which to advocate. This article extends the points made by Richards and…

  18. PET/CT: underlying physics, instrumentation, and advances.

    PubMed

    Torres Espallardo, I

    2017-01-12

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  19. Gender Differences in College Students' Perceptions of Same-Sex Sexual Harassment: The Influence of Physical Attractiveness and Attitudes toward Lesbians and Gay Men

    ERIC Educational Resources Information Center

    Castillo, Yenys; Muscarella, Frank; Szuchman, Lenore T.

    2011-01-01

    This study examined college students' perceptions of same-sex harassment as a function of the observer's gender, the initiator's physical attractiveness, and observers' attitudes toward lesbians and gay men. Ninety-six college students read a scenario portraying a professor's sexual advances toward a student. The Perception of Harassment…

  20. A Student View of Experimental Physics

    NASA Astrophysics Data System (ADS)

    Bu, Frank; Marlowe, Robert Lloyd; Whitson, Kristin

    2017-03-01

    This is the story of how an enterprising high school student came to my lab one afternoon, asking if there were any way that he could gain "hands-on" lab experience by working with me. While I had some doubts about allowing him to work in an area with an expensive 150-mW focused laser beam, I eventually said yes. I was well aware that a couple of weeks of lab work could lead to interesting investigations for him….

  1. Physics, Dyslexia and Learning: A Collaboration for Disabled Students

    NASA Astrophysics Data System (ADS)

    Moskal, Barbara M.; Wright, Lyndsey; Taylor, P. C.

    2014-03-01

    Researchers have found that children with dyslexia reason differently with respect to language from those who do not have dyslexia. Dyslexic students' brains work differently than do students without dyslexia. Some researchers speculate that these differences provide dyslexic students with an advantage in science. The presentation will describe an outreach activity which developed and delivered instructional modules in physics to students in grades kindergarten through sixth. These modules were tested on thirty students who attended a summer camp designed for students who have been diagnosed with dyslexia. Eighty percent of students who have learning disabilities have dyslexia. Many of the students who attended this camp have experienced repeated failure in the traditional school system, which emphasizes literacy with little attention to science. A number of science and engineering professors collaborated with this camp to build instructional modules that were delivered one hour per day, during two weeks of this five week summer camp (ten hours of hands-on physics instruction). Both quantitative and qualitative data were collected with respect to the impact that this camp had on students' understanding and interests in science. The results of these efforts will be presented.

  2. Students' network integration vs. persistence in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  3. Enjoyment Fosters Engagement: The Key to Involving Middle School Students in Physical Education and Physical Activity

    ERIC Educational Resources Information Center

    Pharez, Emily S.

    2016-01-01

    This article describes the challenges faced by a middle school teacher who inherited a recreation-based physical education program in which students had been accustomed to choosing what they wanted to do. Stressing the importance of implementing a standards-based program in which students of all skill levels and activity preferences were able to…

  4. Students' epistemologies about experimental physics: Validating the Colorado Learning Attitudes about Science Survey for experimental physics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-06-01

    Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder and elsewhere, we developed the Colorado Learning Attitudes about Science Survey for experimental physics (E-CLASS). Previous work with this assessment has included establishing the accuracy and clarity of the instrument through student interviews and preliminary testing. Several years of data collection at multiple institutions has resulted in a growing national data set of student responses. Here, we report on results of the analysis of these data to investigate the statistical validity and reliability of the E-CLASS as a measure of students' epistemologies for a broad student population. We find that the E-CLASS demonstrates an acceptable level of both validity and reliability on measures of item and test discrimination, test-retest reliability, partial-sample reliability, internal consistency, concurrent validity, and convergent validity. We also examine students' responses using principal component analysis and find that, as expected, the E-CLASS does not exhibit strong factors (a.k.a. categories).

  5. Physics in Context--A Means to Encourage Student Interest in Physics

    ERIC Educational Resources Information Center

    Waltner, Christine; Wiesner, Hartmut; Rachel, Alexander

    2007-01-01

    Physics instruction that is student oriented will generate a long-term individual interest and therefore a lifelong openness to science. Phenomena of nature are part of the fields of interest which provide context leading to greater student interest. In this paper we present the locomotion of fish and sperm in a way which can be used to teach in…

  6. Who Is Joining Physics and Why? Factors Influencing the Choice of Physics among Ethiopian University Students

    ERIC Educational Resources Information Center

    Semela, Tesfaye

    2010-01-01

    This paper investigates the enrolment trends and the critical factors that impinge on students' choice of physics as major field of study. The data were generated from primary and secondary sources. Primary data was acquired based on a semi-structured interview with 14 sophomore and 11 senior students and five instructors of the department of…

  7. Physics Identity Development: A Snapshot of the Stages of Development of Upper-Level Physics Students

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2013-01-01

    As part of a longitudinal study into identity development in upper-level physics students a phenomenographic research method is employed to assess the stages of identity development of a group of upper-level students. Three categories of description were discovered which indicate the three different stages of identity development for this group…

  8. How physics instruction impacts students' beliefs about learning physics: A meta-analysis of 24 studies

    NASA Astrophysics Data System (ADS)

    Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.

    2015-06-01

    In this meta-analysis, we synthesize the results of 24 studies using the Colorado Learning Attitudes about Science Survey (CLASS) and the Maryland Physics Expectations Survey (MPEX) to answer several questions: (1) How does physics instruction impact students' beliefs? (2) When do physics majors develop expert-like beliefs? and (3) How do students' beliefs impact their learning of physics? We report that in typical physics classes, students' beliefs deteriorate or at best stay the same. There are a few types of interventions, including an explicit focus on model-building and (or) developing expertlike beliefs that lead to significant improvements in beliefs. Further, small courses and those for elementary education and nonscience majors also result in improved beliefs. However, because the available data oversamples certain types of classes, it is unclear whether these improvements are actually due to the interventions, or due to the small class size, or student populations typical of the kinds of classes in which these interventions are most often used. Physics majors tend to enter their undergraduate education with more expertlike beliefs than nonmajors and these beliefs remain relatively stable throughout their undergraduate careers. Thus, typical physics courses appear to be selecting students who already have strong beliefs, rather than supporting students in developing strong beliefs. There is a small correlation between students' incoming beliefs about physics and their gains on conceptual mechanics surveys. This suggests that students with more expertlike incoming beliefs may learn more in their physics courses, but this finding should be further explored and replicated. Some unanswered questions remain. To answer these questions, we advocate several specific types of future studies: measuring students' beliefs in courses with a wider range of class sizes, student populations, and teaching methods, especially large classes with very innovative pedagogy and

  9. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  10. Quantum Mechanics for Beginning Physics Students

    NASA Astrophysics Data System (ADS)

    Schneider, Mark B.

    2010-10-01

    The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For example, Halliday, Resnick, and Walker describe the origin of atomic quantum numbers as such: "The restrictions on the values of the quantum number for the hydrogen atom, as listed in Table 39-2, are not arbitrary but come out of the solution to Schrödinger's equation." They give no further justification, but do point out the values are in conflict with the predictions of the Bohr model.

  11. Association between Physical Activity Levels and Physical Symptoms or Illness among University Students in Korea

    PubMed Central

    Ahn, Sang-Hyun; Um, Yoo-Jin; Kim, Young-Ju; Kim, Hyun-Joo; Oh, Seung-Won; Lee, Cheol Min; Kwon, Hyuktae

    2016-01-01

    Background Low levels of physical activity can cause various physical symptoms or illness. However, few studies on this association have been conducted in young adults. The aim of this study was to investigate the association between physical activity levels and physical symptoms or illness in young adults. Methods Subjects were university students who participated in a web-based self-administered questionnaire in a university in Seoul in 2013. We obtained information on physical activities and physical symptoms or illness in the past year. Independent variables were defined as symptoms or illness which were associated with decreased academic performance. Logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of each physical symptom or illness with adjustment for covariables. Results A total of 2,201 participants were included in the study. The main physical symptoms or illness among participants were severe fatigue (64.2%), muscle or joint pain (46.3%), gastrointestinal problems (43.1%), headache or dizziness (38.6%), frequent colds (35.1%), and sleep problems (33.3%). Low physical activity levels were significantly associated with high ORs of physical symptoms or illness. Multivariable-adjusted ORs (95% CIs) in the lowest vs. highest tertile of physical activity were 1.45 (1.14–1.83) for severe fatigue, 1.35 (1.07–1.70) for frequent colds, and 1.29 (1.02–1.63) for headaches or dizziness. We also found that lower levels of physical activity were associated with more physical symptoms or bouts of illness. Conclusion Low physical activity levels were significantly associated with various physical symptoms or illness among university students. Also, individuals in the lower levels of physical activity were more likely to experience more physical symptoms or bouts of illness than those in the highest tertile of physical activity. PMID:27688861

  12. A Physics Show Performed by Students for Kids: "From Mechanics to Elementary Particle Physics"

    ERIC Educational Resources Information Center

    Dreiner, Herbi K.

    2008-01-01

    Physics students spend the early part of their training attending physics and mathematics lectures, solving problem sets, and experimenting in laboratory courses. The program is typically intensive and fairly rigid. They have little opportunity to follow their own curiosity or apply their knowledge. There have been many attempts to address this…

  13. Improving Student Learning and Views of Physics in a Large Enrollment Introductory Physics Class

    ERIC Educational Resources Information Center

    Shan, Kathy J.

    2013-01-01

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage…

  14. Physical Activity Levels of Overweight and Nonoverweight High School Students during Physical Education Classes

    ERIC Educational Resources Information Center

    Hannon, James C.

    2008-01-01

    Background: This study examined physical activity (PA) levels of overweight and nonoverweight African American and Caucasian students (n = 198) during game play in physical education classes. Methods: Body fat percentages (%BFs) were determined using the skinfold technique and Slaughter et al prediction equations. Girls were classified as…

  15. Structure of Physical Self-Concept: Elite Athletes and Physical Education Students.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; And Others

    1997-01-01

    The Physical Self-Description Questionnaire (PSDQ) was administered to 1,514 elite athletes and nonelite high school students. Physical self-concept was higher for the elite athletes, but gender differences were smaller in this group. Results support the usefulness of the PSDQ and extend understanding of self-concept in school settings. (SLD)

  16. Increasing Student Physical Activity during the School Day: Opportunities for the Physical Educator

    ERIC Educational Resources Information Center

    Brewer, Joan D.; Luebbers, Paul E.; Shane, Shawna D.

    2009-01-01

    America is facing an obesity epidemic--one that is difficult to ignore. In order to combat the nation's obesity crisis, it is imperative that schools find ways to increase the physical activity levels of students during the school day, as well as encourage additional activity outside of school. By teaching youth to incorporate physical activity…

  17. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  18. Assessing college students' retention and transfer from calculus to physics

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    Many introductory calculus-based physics students have difficulties when solving physics problems involving calculus. This study investigates students' retention and transfer from calculus to physics. While retention is the ability to recall your knowledge at a later point in time, transfer of learning is defined as the ability to apply what one has learned in one situation to a different situation. In this dissertation we propose a theoretical framework to assess students' transfer of learning in the context of problem solving. We define two kinds of transfer---horizontal transfer and vertical transfer. Horizontal transfer involves applying previously learned ideas in a problem. Vertical transfer involves constructing new ideas to solve the problem. Students need to employ both horizontal and vertical transfer when they solve any problem. This framework evolves through this research and provides a lens that enables us to examine horizontal and vertical transfer. Additionally, this proposed framework offers researchers a vocabulary to describe and assess transfer of learning in any problem solving context. We use a combination of qualitative and quantitative methods to examine transfer in the context of problem solving. The participants in this study were students enrolled in a second-semester physics course taken by future engineers and physicists, calculus instructors and physics instructors. A total of 416 students' exam sheets were collected and reviewed. Statistical methods were used to analyze the quantitative data. A total of 28 students and nine instructors were interviewed. The video and audio recordings were transcribed and analyzed in light of the aforementioned theoretical framework. A major finding from this study is that a majority of students possess the requisite calculus skills, yet have several difficulties in applying them in the context of physics. These difficulties included: deciding the appropriate variable and limits of integration; not

  19. Students' epistemological beliefs, expectations, and learning physics: An international comparison

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna; Ahluwalia, P. K.; Sharma, S. K.

    2013-06-01

    It has been established by physics education researchers that there is a correlation between the learner’s behavior, their epistemological beliefs with which they come to the classrooms, and their success in a course. This study of Indian students and teachers explores expectations and beliefs in learning physics at the secondary and tertiary levels by making use of the Maryland Physics Expectation (MPEX) survey, which has been tested for both its validity and its reliability. The MPEX was administered to a sample of 265 Indian students at three different levels of study: (i) XII standard (high school), (ii) undergraduate (Bachelor of Science), and (iii) master’s degree (Master of Science in Physics, MS). In India, a pre-post instruction difference between the attitudes of class XII, undergraduate, and master’s students is observed with favorable improvement in master’s students as compared to deterioration in both class XII and undergraduate students. A comparison of these results with those reported in similar studies conducted in four other countries (U.S., Turkey, Philippines, and Thailand) indicates that there is a difference between the U.S. students and those of the other three countries and also between U.S. experts and Indian teachers. In all countries (U.S., India, Turkey, Thailand, and Philippines) the basic trend of expectation from pre to post test remained the same—there was a deterioration observed in all levels of students. Indian MS students were an exception. A significant difference was observed in the expectations of U.S. experts and Indian teachers. The score of favorable views of Indian class XII and undergraduate students was observed to be less than U.S. students in many clusters. No significant difference was found between Indian male and female students’ expectations at any level of study. This study shows that most Indian students have nowhere near an expert’s expectations even after instruction, which might affect their

  20. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  1. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  2. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  3. Popular Science: Introductory Physics Textbooks for Home Economics Students

    NASA Astrophysics Data System (ADS)

    Behrman, Joanna

    2014-03-01

    For many decades now there has been an ongoing debate about the way and extent to which physics ought to be popularized by appealing to a student's every day experience. Part of this debate has focused on how textbooks, a major factor shaping students' education, ought to be written and presented. I examine the background, passages, and problems of two examples drawn from the special genre of ``Household Physics'' textbooks which were published largely between 1910 and 1940. The pedagogy of applying or relating physics to the everyday experience engenders values defining how and by whom science is to be applied. These books are particularly evocative, as well, of the extent to which gender can be tied to differing everyday experiences and the consequences therefore of using experiential examples. Using popular science textbooks can alienate students by drawing an implicit division between the reader and the practicing scientist.

  4. Perceived barriers to physical activity in university students.

    PubMed

    Arzu, Daskapan; Tuzun, Emine Handan; Eker, Levent

    2006-01-01

    Many studies which were published in other countries identified certain benefits and barriers to physical activity among young people. But there is no data about the subject pertaining to Turkish adolescents. This study tries to rectify this with a study of Turkish university students. Undergraduate university students (n = 303) were recruited to the study. Current exercise habits and perceived barriers to physical activity were assessed in the sample. Using a Likert Type scale, participants responded an instrument with 12 items representing barriers to physical activity. Mean scores were computed. External barriers were more important than internal barriers. "Lack of time due to busy lesson schedule", "My parents give academic success priority over exercise. "and "lack of time due to responsibilities related to the family and social environment "were most cited items for physical activity barriers. There is a need for future research, which will be carried out with larger sample groups to develop national standardized instrument. It will be helpful for accurately identify perceived barriers and then recommend changes to enhance physical activity among young people. Key PointsThe purpose of this study was to analyze perceived barriers to physical activity in the university students.The results showed that not having enough time was the most important barrier for not participating in physical activity among our samples.This study with relatively small sample must be considered as pilot study for related studies in the future.

  5. Innovation in teaching deaf students physics and astronomy in Bulgaria

    NASA Astrophysics Data System (ADS)

    Zamfirov, Milen; Saeva, Svetoslava; Popov, Tsviatko

    2007-01-01

    This paper presents a new strategy to be implemented in Bulgarian schools in teaching physics and astronomy to students with impaired hearing at grades 7 (13-year-old students) and 8 (14-year-old students). The strategy provides effective education for students with hearing disabilities in mainstream schools as well as for those attending specialized schools. A multimedia CD has been developed, which offers a large number of basic terms from the corresponding fields of physics and astronomy, accompanied by textual explanation and various illustrations. The terms are explained in Bulgarian, Bulgarian Sign Language and English. This multimedia product can be used by children with hearing disabilities, as well as by children without disorders.

  6. The Correlation between Physical Environment and Student Engagement

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Wang, Li; Matthews, Lorin; Cook, Mike; Hyde, Truell

    2016-10-01

    In its second year of an educational research collaboration on the convergence between physical environment, pedagogical methods, student attainment and academic performance, CASPER along with the Region 12 Education Service Center and Huckabee Inc. have completed their initial quantitative study. This project examined the impact of the physical environment on student engagement, employing a flexibility construct and examination of teacher mobility and places of centeredness. Data analysis showed a positive correlation between student engagement and classroom flexibility for two locations having statistically significant differences in flexibility scores. The research is now being extended to examine a laboratory setting (in this case, a complex plasma lab) where the results will be used to enhance student work efficiency while also increasing safety within the lab. Details will be discussed in this presentation. Region 12 and Huckabee funding is gratefully acknowledged.

  7. Impacting university physics students through participation in informal science

    NASA Astrophysics Data System (ADS)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  8. Investigating Students' Reflective Thinking in the Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2010-10-01

    Over the past 30 years, physics education research has guided the development of instructional strategies that can significantly enhance students' functional understanding of concepts in introductory physics. Recently, attention has shifted to instructional goals that, while widely shared by teachers of physics, are often more implicit than explicit in our courses. These goals involve the expectations and attitudes that students have about what it means to learn and understand physics, together with the behaviors and actions students think they should engage in to accomplish this learning. Research has shown that these ``hidden'' elements of the curriculum are remarkably resistant to instruction. In fact, traditional physics courses tend to produce movement away from expert-like behaviors. At Western Washington University, we are exploring ways of promoting metacognition, an aspect of the hidden curriculum that involves the conscious monitoring of one's own thinking and learning. We have found that making this reflective thinking an explicit part of the course may not be enough: adequate framing and scaffolding may be necessary for students to meaningfully engage in metacognition. We have thus taken the basic approach of developing metacognition, like conceptual understanding, through guided inquiry. During our teaching experiments, we have collected written and video data, with twin goals of guiding iterative modifications to the instruction as well as contributing to the knowledge base about student metacognition in introductory physics. This talk will provide examples of metacognition activities from course assignments and labs, and will present written data to assess the effectiveness of instruction and to illustrate specific modes of students' reflective thinking.

  9. Beliefs of chinese physical educators on teaching students with disabilities in general physical education classes.

    PubMed

    Wang, Lijuan; Qi, Jing; Wang, Lin

    2015-04-01

    This study examined the behavioral beliefs of physical education (PE) teachers about teaching students with disabilities in their general PE (GPE) classes and to identify the factors that contribute to their beliefs. A total of 195 PE teachers from a region in eastern China were surveyed. Results of the Physical Educators' Attitudes Toward Teaching Individuals With Disabilities-III survey indicate that although some teachers felt that including students with disabilities in GPE classes provides benefit for them, they were concerned about the practical difficulties of teaching students with disabilities in GPE classes, the lack of support, and the possible rejection of students with disabilities by their peers. Moreover, the behavioral beliefs of teachers vary according to the disability conditions of the students. Results show that there is no significant effect of demographic factors on the beliefs of PE teachers. Quality of experience predicts positive beliefs. The study has important implication for teacher training, provision of equipment, and support from teacher assistants.

  10. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  11. Replicating effective pedagogical approaches from introductory physics to improve student learning of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayer, Ryan Thomas

    Upper-level undergraduate students entering a quantum mechanics (QM) course are in many ways similar to students entering an introductory physics course. Numerous studies have investigated the difficulties that novices face in introductory physics as well as the pedagogical approaches that are effective in helping them overcome those difficulties. My research focuses on replicating effective approaches and instructional strategies used in introductory physics courses to help advanced students in an upper-level QM course. I have investigated the use of Just-in-time Teaching (JiTT) and peer discussion involving clicker questions in an upper-level quantum mechanics course. The JiTT approach including peer discussions was effective in helping students overcome their difficulties and improve their understanding of QM concepts. Learning tools, such as a Quantum Interactive Learning Tutorial (QuILT) based on the Doubleslit Experiment (DSE) which I helped develop, have been successful in helping upper-level undergraduate students improve their understanding of QM. Many students have also demonstrated the ability to transfer knowledge from a QuILT based on the Mach-Zehnder interferometer while working on the DSE QuILT. In addition, I have been involved in implementing research-based activities during our semester-long professional development course for teaching assistants (TAs). In one intervention, TAs were asked to grade student solutions to introductory physics problems first using their choice of method, then again using a rubric designed to promote effective problem-solving approaches, then once more at the end of the semester using their choice of method. This intervention found that many TAs have ingrained beliefs about the purposes of grading which include placing the burden of proof on the instructor as well as a belief that grading cannot serve as a formative assessment. I also compared TAs grading practices and considerations when grading student solutions to QM

  12. Student Solutions Manual to accompany Physics, 6th Edition

    NASA Astrophysics Data System (ADS)

    Cutnell, John D.; Johnson, Kenneth W.

    2003-07-01

    Work more effectively and check solutions as you go along with the text! Written by the authors, this indispensable Student Solutions Manual provides complete worked-out solutions to 25% of the end-of-chapter problems in Cutnell & Johnson's Physics, 6th Edition. These problems are specifically indicated in the text. For the 6th Edition of their best-selling Physics, the authors have added both print and online material to encourage readers to engage in the material more interactively. Physics research clearly shows that active learning is much more effective than passive learning. The 6th edition helps readers understand the interrelationships among basic physics concepts and how they fit together to describe our physical world. Throughout the text, the authors emphasize the relevance of physics to our everyday lives.

  13. A Framework for Understanding Physics Students' Computational Modeling Practices

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  14. Teachers' Understanding of Students' Attitudes and Values toward Physical Activity in Physical Education Dropout Rates and Adolescent Obesity

    ERIC Educational Resources Information Center

    Landolfi, Emilio

    2014-01-01

    Structured interviews were used to explore 10th grade teachers' understanding of students' attitudes and values toward physical education and physical activity as a variable in students' probability of dropping physical education and adolescent obesity. When asked how school-based physical education could help combat the problem of students…

  15. Fundamentals of Physics, Student Study Guide, Extended 7th Edition

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2004-06-01

    No other book on the market today can match the 30-year success of Halliday, Resnick and Walker's Fundamentals of Physics! Fundamentals of Physics, 7th Edition and the Extended Version, 7th Edition offer a solid understanding of fundamental physics concepts, helping readers apply this conceptual understanding to quantitative problem solving, in a breezy, easy-to-understand style. A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.

  16. Possibilities: A framework for modeling students' deductive reasoning in physics

    NASA Astrophysics Data System (ADS)

    Gaffney, Jonathan David Housley

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning process, I have developed a new framework, which is based on the mental models framework in psychology championed by P. N. Johnson-Laird. My new framework models how students search possibility space when thinking about conceptual physics problems and suggests that errors arise from failing to flesh out all possibilities. It further suggests that instructional interventions should focus on making apparent those possibilities, as well as all physical consequences those possibilities would incur. The possibilities framework emerged from the analysis of data from a unique research project specifically invented for the purpose of understanding how students use deductive reasoning. In the selection task, participants were given a physics problem along with three written possible solutions with the goal of identifying which one of the three possible solutions was correct. Each participant was also asked to identify the errors in the incorrect solutions. For the study presented in this dissertation, participants not only performed the selection task individually on four problems, but they were also placed into groups of two or three and asked to discuss with each other the reasoning they used in making their choices and attempt to reach a consensus about which solution was correct. Finally, those groups were asked to work together to perform the selection task on three new problems. The possibilities framework appropriately models the reasoning that students use, and it makes useful predictions about potentially helpful instructional interventions. The study reported in this dissertation emphasizes the useful insight the

  17. Identity development in upper-level physics students: transitions in and out of physics

    NASA Astrophysics Data System (ADS)

    Irving, Paul

    2016-03-01

    In this era of unprecedented attention from the White House and Congress, the STEM community must rise to the challenge of recruiting and retaining students to achieve the mandate of producing one million additional college graduates with degrees in STEM. However, the number of students choosing to pursue and persist with physics as a degree has had a stagnated growth rate when compared to other STEM fields, and some institutions are experiencing dramatic shifts in the demographics of the students entering their programs. The development of a subject-specific identity is a strong influence on students' persistence in a discipline and is a productive lens from which to understand the stagnated growth rate of physics majors and how to support a shift in student demographics. In this presentation, ongoing research is presented that aims to understand identity development in STEM with a focus on the transition from physics student to physicist. Community development and exposure to authentic practice are established as crucial factors that contribute to the development of a professional identity. How these findings can be implemented into course design is discussed with an outline of the P3 learning environment. The P3 learning environment blends the regular focus of reform-based teaching practices on deep conceptual understanding with a focus on students obtaining understanding through engagement with authentic scientific practices. By establishing and studying learning environments similar to P3 we can further explore the development of subject-specific identity while also developing effective teaching practices.

  18. Effects of California community college students' gender, self-efficacy, and attitudes and beliefs toward physics on conceptual understanding of Newtonian mechanics

    NASA Astrophysics Data System (ADS)

    Said, Asma

    Despite the advances made in various fields, women are still considered as minorities in the fields of science and mathematics. There is a gender gap regarding women's participation and achievement in physics. Self-efficacy and attitudes and beliefs toward physics have been identified as predictors of students' performance on conceptual surveys in physics courses. The present study, which used two-way analysis of variance and multiple linear regression analyses at a community college in California, revealed there is no gender gap in achievement between male and female students in physics courses. Furthermore, there is an achievement gap between students who are enrolled in algebra-based and calculus-based physics courses. The findings indicate that attitudes and beliefs scores can be used as predictors of students' performance on conceptual surveys in physics courses. However, scores of self-efficacy cannot be used as predictors of students' performance on conceptual surveys in physics courses.

  19. Advanced Course Enrollment and Performance among English Learner Students in Washington State. REL 2017-187

    ERIC Educational Resources Information Center

    Hanson, Havala; Bisht, Biraj; Motamedi, Jason Greenberg

    2016-01-01

    Taking advanced high school courses (for example, honors, Advanced Placement, and dual-credit courses that offer college credits in high school) can help prepare students for postsecondary education and careers. English learner students, however, face unique obstacles to taking advanced courses because they must divide their time between acquiring…

  20. Measuring Students' Physical Activity Levels: Validating SOFIT for Use with High-School Students

    ERIC Educational Resources Information Center

    van der Mars, Hans; Rowe, Paul J.; Schuldheisz, Joel M.; Fox, Susan

    2004-01-01

    This study was conducted to validate the System for Observing Fitness Instruction Time (SOFIT) for measuring physical activity levels of high-school students. Thirty-five students (21 girls and 14 boys from grades 9-12) completed a standardized protocol including lying, sitting, standing, walking, running, curl-ups, and push-ups. Heart rates and…

  1. Student Perceptions of Instructional Choices in Middle School Physical Education

    ERIC Educational Resources Information Center

    Agbuga, Bulent; Xiang, Ping; McBride, Ron E.; Su, Xiaoxia

    2016-01-01

    Purpose: Framed within self-determination theory, this study examined relationships among perceived instructional choices (cognitive, organizational, and procedural), autonomy need satisfaction, and engagement (behavioral, cognitive, and emotional) among Turkish students in middle school physical education. Methods: Participants consisted of 246…

  2. Physical Student-Robot Interaction with the ETHZ Haptic Paddle

    ERIC Educational Resources Information Center

    Gassert, R.; Metzger, J.; Leuenberger, K.; Popp, W. L.; Tucker, M. R.; Vigaru, B.; Zimmermann, R.; Lambercy, O.

    2013-01-01

    Haptic paddles--low-cost one-degree-of-freedom force feedback devices--have been used with great success at several universities throughout the US to teach the basic concepts of dynamic systems and physical human-robot interaction (pHRI) to students. The ETHZ haptic paddle was developed for a new pHRI course offered in the undergraduate…

  3. Engaging Students in Physical Education: Recommendations for Secondary Programs

    ERIC Educational Resources Information Center

    Thorp, Jennifer L.

    2013-01-01

    A review of the literature identifies three main factors that influence student motivation to participate in physical education activities: (1) gender; (2) body image; and (3) enjoyment (Azzarito & Solmon, 2005, 2006, 2009; Lodewyk et al., 2009; Smith & St. Pierre, 2009). Males and females are motivated differently because of their…

  4. University Students' Understanding of Thermal Physics in Everyday Contexts

    ERIC Educational Resources Information Center

    Georgiou, Helen; Sharma, Manjula Devi

    2012-01-01

    Thermal physics is in the realm of everyday experience, underlies current environmental concerns, and underpins studies in sciences, health and engineering. In the state of NSW in Australia, the coverage of thermal topics in high school is minimal, and, hence, so is the conceptual understanding of students. This study takes a new approach at…

  5. Yoga for PE: Engaging High School Students Physically and Mentally

    ERIC Educational Resources Information Center

    Otto, Victoria

    2014-01-01

    The administration and community used to place little or no value on physical education and attendance, and attitudes toward our profession were stereotypical and disrespectful. Yet, at some level, there were people quietly longing for a change. This article describes how the author used her passion for yoga to win over her students and,…

  6. Educational Trajectories of Graduate Students in Physics Education Research

    ERIC Educational Resources Information Center

    Van Dusen, Ben; Barthelemy, Ramón S.; Henderson, Charles

    2014-01-01

    Physics education research (PER) is a rapidly growing area of PhD specialization. In this article we examine the trajectories that led respondents into a PER graduate program as well as their expected future trajectories. Data were collected in the form of an online survey sent to graduate students in PER. Our findings show a lack of visibility of…

  7. Physical Health and Stress in Entering Dental Students.

    ERIC Educational Resources Information Center

    Rubenstein, Loretta K.; And Others

    1989-01-01

    A study of the health and exercise habits of first-year dental students found that a large proportion had a healthy lifestyle and, somewhat more males than females, regular exercise. A significant negative correlation appeared between trait anxiety and physical activity level. Implications are discussed. (MSE)

  8. Japanese Physical Education Teachers' Beliefs about Teaching Students with Disabilities

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel R.; Murata, Nathan M.; Maeda, Julienne K.

    2007-01-01

    The purpose of this study was to describe Japanese physical education (PE) teachers' beliefs about teaching students with disabilities in integrated classes. Participants were five Japanese PE teachers (one women and four men). The research was descriptive and qualitative, using an interviewing method. Data were gathered in interviews, analysed…

  9. Modeling the 2004 Indian Ocean Tsunami for Introductory Physics Students

    ERIC Educational Resources Information Center

    DiLisi, Gregory A.; Rarick, Richard A.

    2006-01-01

    In this paper we develop materials to address student interest in the Indian Ocean tsunami of December 2004. We discuss the physical characteristics of tsunamis and some of the specific data regarding the 2004 event. Finally, we create an easy-to-make tsunami tank to run simulations in the classroom. The simulations exhibit three dramatic…

  10. Consumer Education. Information Supplements for Physically Disabled Students. Teacher's Guide.

    ERIC Educational Resources Information Center

    Tipsord, Barbara; And Others

    This manual contains supplementary information for use by instructors who teach consumer education and resources management to physically handicapped students in regular classes. It is subdivided according to typical consumer education topics and handicapping conditions. Addressed in the individual sections of the manual are the folowing topics:…

  11. Workshop on Energy Research for Physics Graduate Students and Postdocs

    SciTech Connect

    Cole, Ken

    2015-03-01

    One-day workshop for a small group of graduate students and post-docs to hear talks and interact with experts in a variety of areas of energy research. The purpose is to provide an opportunity for young physicists to learn about cutting-edge research in which they might find a career utilizing their interest and background in physics.

  12. College Students' Attitudes towards Social, Physical and Political Deviancy.

    ERIC Educational Resources Information Center

    Fox, Louise W.

    This study identifies the attitudes of college students toward a variety of persons, each of whom deviated from the normal in one specific way--either in terms of social status, physical condition, or political point of view. A questionnaire was devised, employing the Bogardus Social Distance Scale. Respondents included 184 undergraduates and 51…

  13. General Education Teachers and Students with Physical Disabilities: A Revisit

    ERIC Educational Resources Information Center

    Singh, Delar K.; Sakofs, Mitchell

    2006-01-01

    This article reports the findings of a research study that investigated the knowledge base and the perceptions of professional competence of 115 general education teachers as they relate to the inclusion of students with physical disabilities. Members of the sample represented elementary and secondary teachers who were teaching in rural, urban,…

  14. General Education Teachers and Students with Physical Disabilities

    ERIC Educational Resources Information Center

    Singh, Delar K.

    2007-01-01

    This article reports the findings of a research study that investigated the knowledge base and the perceptions of professional competence of 115 general education teachers as they relate to the inclusion of students with physical disabilities. Members of the sample represented elementary and secondary teachers who were teaching in rural, urban,…

  15. Student Teachers' Use of Instructional Choice in Physical Education

    ERIC Educational Resources Information Center

    Xiang, Ping; Gao, Zan; McBride, Ron E.

    2011-01-01

    Guided by self-determination theory and research on teacher beliefs, we examined student teachers' (STs) use of instructional choices in teaching physical education classes. Participants included 131 STs (52 men and 79 women) from a major university in the United States. STs completed questionnaires assessing three types of instructional choices…

  16. Restructuring Conceptions of Motion in Physics--Naive Students.

    ERIC Educational Resources Information Center

    Ranney, Michael

    Students lacking formal training in physics have great difficulty predicting the paths of various projectiles. With respect to pendulum-bobs that are released from various points in a swing, a previous experiment found that empirical feedback (i.e., resultant trajectories) produced transfer-of-training to other pendular-based tasks. However, such…

  17. Educating Pharmacy Students about Nutrition and Physical Activity Counseling

    ERIC Educational Resources Information Center

    Kotecki, Jerome E.; Clayton, Bruce D.

    2003-01-01

    The current study provides measures of association between self-reported beliefs of currently practicing pharmacists and pharmacy students' beliefs about, willingness to provide, and preparedness to provide counseling on nutrition and physical activity following completion of a health education unit. A 3-week health education unit focusing on the…

  18. The Physically/Medically Handicapped Student in the Regular Classroom.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    The guide outlines modifications, adaptations, and social interaction approaches for school staff to use with physically handicapped and regular students in integrated classrooms in the province of Alberta, Canada. Guidelines are provided for the following main categories and subsets (in parentheses): lifting and transferring techniques (methods…

  19. The Educational Interaction between Physical Therapy and Occupational Therapy Students.

    ERIC Educational Resources Information Center

    Cleary, Kimberly K.; Howell, Dana M.

    2003-01-01

    A survey of occupational therapy (OT) and physical therapy (PT) program directors (n=123) to identify the prevalence of shared learning found that two-thirds shared some coursework; most OT and PT students do not have opportunities to practice interdisciplinary teamwork; and some perceived benefits of shared learning also posed barriers. (Contains…

  20. Hispanic Student Performance on Advanced Placement Exams: A Multiyear, National Investigation

    ERIC Educational Resources Information Center

    Jara, Teresa Dianne

    2013-01-01

    Purpose: The purpose of this study was to analyze the Advanced Placement exams that Hispanic students complete and to compare their overall performance with the performance of White students from 2000 to 2012. A second purpose was to determine which Advanced Placement exams were the most difficult exams for Hispanic students and which Advanced…

  1. Astrophysical Orientation of Physics Students through Seminars in Rural Mexico

    NASA Astrophysics Data System (ADS)

    Chatterjee, T. K.; Vera, D.; Fourier, R.; Pedroza, A.

    In a developing country, science teaching is oriented towards subjects having a bearing on national utility and development of technological skills; thus it is necessary to justify astronomy education. This is conveniently done by introducing an astrophysically oriented course for physics students and connecting it with a sanctioned astronomical project. We have done this at the Faculty and Institute of Science of the Puebla University. This university, in collaboration with other universities and institutes has a (sanctioned) satellite program --SATEX.I (whose objective is to launch communication satellites for data relay in the UHF band and experiment in the K-alpha band). The students of this project (from our university) were in urgent need of a course on "Astrodynamics" and so we opened one; but we invited students (with appropriate knowledge of physics and mathematics) from the entire science faculty, and extended the scope of the course to introduce astrophysical concepts to science students. We also prepared a series of very comprehensive introductory lecture notes, computer-printed them and distributed them (free) amongst students. We have been successful in getting a substantial number of very good students.

  2. Teachers' and Students' Perceptions of Students' Problem-Solving Difficulties in Physics: Implications for Remediation

    ERIC Educational Resources Information Center

    Ogunleye, Ayodele O.

    2009-01-01

    In recent times, science education researchers have identified a lot of instruments for evaluating conceptual understanding as well as students' attitudes and beliefs about physics; unfortunately however, there are no broad based evaluation instruments in the field of problem-solving in physics. This missing tool is an indication of the complexity…

  3. Health status, physical activity, and orthorexia nervosa: A comparison between exercise science students and business students.

    PubMed

    Malmborg, Julia; Bremander, Ann; Olsson, M Charlotte; Bergman, Stefan

    2017-02-01

    Orthorexia nervosa is described as an exaggerated fixation on healthy food. It is unclear whether students in health-oriented academic programs, highly focused on physical exercise, are more prone to develop orthorexia nervosa than students in other educational areas. The aim was to compare health status, physical activity, and frequency of orthorexia nervosa between university students enrolled in an exercise science program (n = 118) or a business program (n = 89). The students completed the Short Form-36 Health Survey (SF-36), the International Physical Activity Questionnaire (IPAQ), and ORTO-15, which defines orthorexia nervosa as a sensitive and obsessive behavior towards healthy nutrition. The SF-36 showed that exercise science students scored worse than business students regarding bodily pain (72.8 vs. 82.5; p = 0.001), but better regarding general health (83.1 vs. 77.1; p = 0.006). Of 188 students, 144 (76.6%) had an ORTO-15 score indicating orthorexia nervosa, with a higher proportion in exercise science students than in business students (84.5% vs. 65.4%; p = 0.002). Orthorexia nervosa in combination with a high level of physical activity was most often seen in men in exercise science studies and less often in women in business studies (45.1% vs. 8.3%; p < 0.000). A high degree of self-reporting of pain and orthorexia nervosa in exercise science students may cause problems in the future, since they are expected to coach others in healthy living. Our findings may be valuable in the development of health-oriented academic programs and within student healthcare services.

  4. Foundation physics: A developmental approach to preparing disadvantaged students for mainstream physics

    NASA Astrophysics Data System (ADS)

    Grayson, Diane J.

    1997-03-01

    Many students in South Africa come from communities and schools in which they have had little or no exposure to science in general and physics in particular. Given that physics is a prerequisite for so many careers in the sciences and applied sciences, it is important that such students should not have their career options severely limited because university physics courses are beyond their grasp. The foundation physics course at the University of Natal has been designed to meet academically talented but disadvantaged students where they are when they emerge from their under-resourced high schools and, during the course of one year, get them to where they need to be in order to cope with first-year university physics. The foundation course is developmental in nature, starting slow and low, and increasing both in pace and level of difficulty as the year progresses. In this paper I shall describe the overall philosophy of the course as well as its four main elements, namely: concepts, cognitive skills, practical skills, and familiarity with certain specific pieces of equipment. I shall also include students' responses to the course.

  5. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  6. The Impact of the History of Physics on Student Attitude and Conceptual Understanding of Physics

    NASA Astrophysics Data System (ADS)

    Garcia, Sarah; Hankins, April; Sadaghiani, Homeyra

    2010-10-01

    The purpose of this study is to investigate student learning of Newtonian Mechanics through the study of its history and the development of the relevant ideas since the time of ancient Greece. The hypothesis is that not only will students learn the basic concepts of mechanics, but also will develop a more positive attitude and appreciation for physics. To assess the students' conceptual understanding, we administer Force Concept Inventory (FCI) and for the measurement of student attitude change, we employed the Colorado Learning Attitudes about Science Survey (CLASS); both were given as pre and post-tests. Additionally, at the end of the quarter, a survey was given out to see how students perceived the different course components and which ones they found helpful in their learning. This paper will present our preliminary results on such a study.

  7. Angelo State Society of Physics Students Road Tour 2011

    NASA Astrophysics Data System (ADS)

    Parker, Stephen; Sauncy, Toni

    2011-10-01

    For the past seven years at the end of each spring semester, the ASU Society of Physics Students has journied throughout Texas for a week long outreach to various K-12 schools. During the week long outreach effort, a variety of physics demonstrations were presented to over 1300 students, teachers and school administrators. The goal of this public engagement activity is to both encourage younger students to consider following STEM related career paths and to spark an overall interest in science. Demonstrations focused on several aspects of physics. For the 2011 Road Tour, we paid special homage to the 100th anniversary of Ernest Rutherford's postulation of his model of the atom by explaining his results and their implications in 1911. In addition to adding several new demonstrations, the tradition of having a custom laser light show for each school was continued. As always, the fan favorite ``Nitrogen Bomb'' and a new nitrogen thunder cloud were added to our grand finales. The team, consisting of two faculty advisors and eleven students, was able to leave lasting impressions in a new and exciting way across central Texas.

  8. Metacognitive gimmicks and their use by upper level physics students

    NASA Astrophysics Data System (ADS)

    White, Gary; Sikorski, Tiffany-Rose; Landay, Justin

    2017-01-01

    We report on the initial phases of a study of three particular metacognitive gimmicks that upper-level physics students can use as a tool in their problem-solving kit, namely: checking units for consistency, discerning whether limiting cases match physical intuition, and computing numerical values for reasonable-ness. Students in a one semester Griffiths electromagnetism course at a small private urban university campus are asked to respond to explicit prompts that encourage adopting these three methods for checking answers to physics problems, especially those problems for which an algebraic expression is part of the final answer. We explore how, and to what extent, these students adopt these gimmicks, as well as the time development of their use. While the term ``gimmick'' carries with it some pejorative baggage, we feel it describes the essential nature of the pedagogical idea adequately in that it gets attention, is easy for the students to remember, and represents, albeit perhaps in a surface way, some key ideas about which professional physicists care.

  9. Assessing Students' Misclassifications of Physics Concepts: An Ontological Basis for Conceptual Change.

    ERIC Educational Resources Information Center

    Slotta, James D.; And Others

    1995-01-01

    A comparison of the physics concepts explanations of ninth graders and of physics graduates and graduate students found that physics novices were strongly inclined to conceptualize physics concepts as material substances, whereas experts' protocols revealed distinctly nonmaterialistic representations. (MDM)

  10. The Impact of Physics Laboratory on Students Offering Physics in Ethiope West Local Government Area of Delta State

    ERIC Educational Resources Information Center

    Godwin, Oluwasegun; Adrian, Ohwofosirai; Johnbull, Emagbetere

    2015-01-01

    The impact of Physics laboratory on students was carried out among senior secondary school students offering Physics in Ethiope West Local Government Area of Delta State using descriptive survey. Five public schools were random-even samplying technique was adopted for precision. Fifty questionnaires were distributed to students in each school,…

  11. Physical Activity Patterns and Psychological Correlates of Physical Activity among Singaporean Primary, Secondary, and Junior College Students

    ERIC Educational Resources Information Center

    Wang, C. K. John; Koh, K. T.; Biddle, Stuart J. H.; Liu, W. C.; Chye, Stefanie

    2011-01-01

    The purpose of this research was to examine physical activity patterns and psychological correlates of physical activity among primary, secondary, and junior college students in Singapore. A sample of 3,333 school students aged 10 to 18 years took part in the study. Results showed that the younger students had significantly higher physical…

  12. A study of student perceptions of physics teacher behavior

    NASA Astrophysics Data System (ADS)

    Brekelmans, Mieke; Wubbels, Theo; Créton, Hans

    This study investigates student perceptions of the behavior of physics teachers in relation to some other variables in the classroom situation. The research was carried out as a Dutch option of the Second International Science Study. Data were gathered in 65 classrooms of physics teachers with pupils 15 years old. Some of the teachers (21) used the new PLON curriculum and the others a traditional one. Student perceptions of teacher behavior were measured with a questionnaire based on the interpersonal theory of Leary (1957). The aspect of behavior measured is called interactional teacher behavior. We found remarkably high correlations between student perceptions of teacher behavior and affective outcomes such as appreciation of the lessons and motivation for the subject matter. Also, the correlations with cognitive outcomes measured with a standardized international test were significant. It appears that some differences exist between teacher behaviors that are favorable for high cognitive outcomes and behaviors favorable for high affective outcomes in physics lessons. Hardly any differences were found in teacher behavior between teachers using the traditional and the new physics curriculum.

  13. Designing a New Physics Laboratory Programme for First-Year Engineering Students.

    ERIC Educational Resources Information Center

    Kirkup, L.; Johnson, S.; Hazel, E.; Cheary, R. W.; Green, D. C.; Swift, P.; Holliday, W.

    1998-01-01

    Explores the issue of physics laboratory work for engineering students and discusses the design, implementation, and evaluation of a laboratory program developed for first year engineering students. (DDR)

  14. High school student physics research experience yields positive results

    NASA Astrophysics Data System (ADS)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  15. Following student gaze patterns in physical science lectures

    NASA Astrophysics Data System (ADS)

    Rosengrant, David; Hearrington, Doug; Alvarado, Kerriann; Keeble, Danielle

    2012-02-01

    This study investigates the gaze patterns of undergraduate college students attending a lecture-based physical science class to better understand the relationships between gaze and focus patterns and student attention during class. The investigators used a new eye-tracking product; Tobii Glasses. The glasses eliminate the need for subjects to focus on a computer screen or carry around a backpack-sized recording device, thus giving an investigator the ability to study a broader range of research questions. This investigation includes what students focus on in the classroom (i.e. demonstrations, instructor, notes, board work, and presentations) during a normal lecture, what diverts attention away from being on task as well as what keeps a subject on task. We report on the findings from 8 subjects during physical science lectures designed for future elementary school teachers. We found that students tended not to focus on the instructor for most parts of the lecture but rather the information, particularly new information presented on PowerPoint slides. Finally, we found that location in the classroom also impacted students' attention spans due to more distractors.

  16. Validity of Processes of Change in Physical Activity Among College Students in the TIGER Study

    PubMed Central

    Jackson, Andrew S.; Bray, Molly S.

    2011-01-01

    Objective To test the factorial validity and measurement equivalence/invariance of scales used to measure processes of change derived from the Transtheoretical Model (TTM) applied to physical activity. Methods Confirmatory factor analysis of questionnaire responses obtained from a diverse sample (N=1,429) of students enrolled in the Training Interventions and Genetics of Exercise Response (TIGER) Study at the University of Houston during academic years 2004–2005 through 2007–2008. Cohorts of students (N=1,163) completed the scales at the beginning and end of each Fall semester, permitting longitudinal analysis. Results Theoretically and statistically sound models were developed that support the factorial validity of nine of the ten hypothesized 1st-order factors. A structure of nine correlated 1st order factors or a hierarchical structure of those factors subordinate to two correlated 2nd-order factors were each defensible. Multi-group invariance of each model was confirmed across race/ethnicity groups (African American, Hispanic, non-Hispanic White), gender, age, BMI levels, employment status, physical activity level, and study adherence. Longitudinal invariance across the semester was also confirmed. Conclusion The scores from the scales provide valid assessments that can be used in observational studies of naturally occurring change or in interventions designed to test the usefulness of TTM processes as mediators of change in physical activity among college students. Item content and factor structure require further evaluation in other samples in order to advance TTM theory applied to physical activity. PMID:20734174

  17. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  18. A Comparison of the Fitness, Obesity, and Physical Activity Levels of High School Physical Education Students across Race and Gender

    ERIC Educational Resources Information Center

    Davis, Kathryn L.; Wojcik, Janet R.; DeWaele, Christi S.

    2016-01-01

    Introduction: Little is known about the physical fitness, obesity, and physical activity (PA) levels of high school students in physical education classes when comparing racial and gender groups. Purpose: To compare the fitness, obesity, and PA levels of female and male students of different racial groups in 6 high schools in the southeastern…

  19. The Four-Year Investigation of Physical and Physiological Features of Students in a Physical Education and Sports Department

    ERIC Educational Resources Information Center

    Ocak, Yucel

    2016-01-01

    Problem Statement: Student candidates who want to be a Physical Education Teacher in Turkey should take special ability exams of Physical Education and Sports Schools. In this exam, it is required to have a high physical capability apart from a high level of special branch skills. For this reason, the students who pass and start their education at…

  20. CURRICULUM GUIDES IN PHYSICS--GENERAL ADVANCED PLACEMENT, COLLEGE LEVEL.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.

    THE GENERAL PHYSICS CURRICULUM IS PLANNED FOR THOSE WHOSE GENERAL ABILITY IS BETTER THAN AVERAGE AND IS OFFERED IN GRADES 11 OR 12. GENERAL OBJECTIVES ARE, TO DEVELOP CRITICAL THINKING THROUGH THE SCIENTIFIC METHOD, TO UNDERSTAND BASIC PHYSICAL LAWS AND MAN'S PLACE IN THE UNIVERSE, AND TO DEVELOP A SCIENTIFIC ABILITY AND INTEREST. ELEVEN UNITS OF…

  1. Interactive fundamental physics. [THE REAL STUFF: The New Expanded Media Physics Course for secondary school students

    SciTech Connect

    Rubin, E.L.

    1992-11-24

    THE REAL STUFF is an Expanded Media Physics Course aimed at students still in the formative early years of secondary school. Its consists of a working script for an interactive multimedia study unit in basic concepts of physics. The unit begins with a prologue on the Big Bang that sets the stage, and concludes with a lesson on Newton's first law of motion. The format is interactive, placing the individual student in control of a layered hypermedia'' structure that enables him or her to find a level of detail and difficulty that is comfortable and meaningful. The intent is to make physics relevant, intellectually accessible and fun. On-screen presenters and demonstrators will be females and males of various ages, ethnicities and backgrounds, and will include celebrities and physicists of note. A lean, layered design encourages repeated, cumulative study and makes the material useful for self-directed Teaming even by college students. THE REAL STUFF introduces a new science teaching paradigm, a way to teach science that will engage even students who have declined'' to be interested in science in the past. Increased participation in science by women, African-Americans and Spanish-speaking students is a particular goal.

  2. Promoting Physical Activity for Students with Autism Spectrum Disorder: Barriers, Benefits, and Strategies for Success

    ERIC Educational Resources Information Center

    Menear, Kristi S.; Neumeier, William H.

    2015-01-01

    Many students with autism spectrum disorder (ASD) fall short of the recommended physical activity levels and experience challenges in physical activity and physical education settings. This article reviews factors that can improve the physical activity statistics of students with ASD, outlines the researched benefits of physical activity for…

  3. Testing Batteries as a Student Project in Industrial Physics

    NASA Astrophysics Data System (ADS)

    Ballester, Jorge; Pheatt, C.

    2007-05-01

    Consumer product testing can be an appealing subject area for applications-oriented physics students. The students’ interests in destructive testing can be upgraded to a real-world investigation of industrial standards (e.g. ANSI standards). Battery lifetime testing represents one such subject area. A set of battery testing activities will be offered for use in the physics curriculum. These activities are implemented with a Vernier Digital Control Unit and specific battery monitoring software (BATMON). The software and project details are available at http://batmon.emporia.edu.

  4. Success Stories of Undergraduate Retention: A Pathways Study of Graduate Students in Solar and Space Physics

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Stoll, W.; Moldwin, M.; Gross, N. A.

    2012-12-01

    This presentation describes results from an NSF-funded study of the pathways students in solar and space physics have taken to arrive in graduate school. Our Pathways study has documented results from structured interviews conducted with graduate students attending two, week-long, NSF-sponsored scientific workshops during the summer of 2011. Our research team interviewed 48 solar and space physics students (29 males and 19 females currently in graduate programs at US institutions,) in small group settings regarding what attracted and retained them along their pathways leading to grad school. This presentation addresses what these students revealed about the attributes and influences that supported completion of their undergraduate experience and focused their aspirations toward graduate school. In advance of the interview process, we collected 125 on-line survey responses from students at the two workshops. This 20-item survey included questions about high school and undergraduate education, as well as about research and graduate experience. A subset of the 125 students who completed this on-line survey volunteered to be interviewed. Two types of interview data were collected from the 48 interviewees: 1) written answers to a pre-interview questionnaire; and 2) detailed notes taken by researchers during group interviews. On the pre-interview questionnaire, we posed the question: "How did you come to be a graduate student in your field?" Our findings to date are based on an analysis of responses to this question, cross correlated with the corresponding on-line survey data. Our analysis reveals the importance of early research experiences. About 80% of the students participating in the Pathways study cited formative undergraduate research experiences. Moreover, about 50% of participants reported undergraduate research experiences that were in the field of their current graduate studies. Graduate students interviewed frequently cited a childhood interest in science

  5. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    ERIC Educational Resources Information Center

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  6. Deriving Accessible Science Books for the Blind Students of Physics

    NASA Astrophysics Data System (ADS)

    Kouroupetroglou, Georgios; Kacorri, Hernisa

    2010-01-01

    We present a novel integrated methodology for the development and production of accessible physics and science books from the elementary up to tertiary educational levels. This language independent approach adopts the Design-for-All principles, the available international standards for alternative formats and the Universal Design for Learning (UDL) Guidelines. Moreover it supports both static (embossed and refreshable tactile) and dynamic (based on synthetic speech and other sounds) accessibility. It can produce Tactile Books (Embossed Braille and Tactile Graphics), Digital Talking Books (or Digital Audio Books), Large Print Books as well as Acoustic-Tactile Books for the blind and visually impaired students as well as but for the print-disabled. This methodology has been successfully applied in the case of blind students of the Physics, Mathematics and Informatics Departments in the University of Athens.

  7. Assessing Overweight, Obesity, Diet, and Physical Activity in College Students

    ERIC Educational Resources Information Center

    Huang, Terry T.-K.; Harris, Kari Jo; Lee, Rebecca E.; Nazir, Niaman; Born, Wendi; Kaur, Harsohena

    2003-01-01

    The authors surveyed 738 college students aged 18 to 27 years to assess over weight, obesity, dietary habits, and physical activity. They used BMI (body mass index) [greater than or equal to] 25 kg/m[squared] or BMI [greater than or equal to] 85th percentile and BMI [greater than or equal to] 30 kg/m[squared] or BMI [greater than or equal to] 95th…

  8. Undergraduate physics course innovations and their impact on student learning

    NASA Astrophysics Data System (ADS)

    Iverson, Heidi Louise

    Over the last several decades, the efficacy of the traditional lecture-based instructional model for undergraduate physics courses has been challenged. As a result, a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses around the globe---all with the intended purpose of improving student learning. This thesis satisfies the need for a comprehensive synthesis of the effectiveness of these course innovations by analyzing: (1) the types of innovations that have been enacted, (2) the impact of these innovations on student learning, and (3) the common features of effective innovations. An exhaustive literature search for studies published after 1990 on undergraduate physics course innovations yielded 432 articles which were then coded with respect to the characteristics of the innovations used as well as the methodological characteristics of the studies. These codes facilitated a descriptive analysis which characterized the features of the pool of studies. These studies were then meta-analyzed in order to evaluate the effect of innovations on student learning. Finally, a case-study analysis was conducted in order to identify the critical characteristics of effective innovations. Results indicate that most innovations focus on introductory mechanics and use some combination of conceptually oriented tasks, collaborative learning, and technology. The overall effect of course innovations has been positive, but with the caveat that a large number of studies suffer from poor methodological designs and potential threats to validity. In addition, over half of the studies had to be eliminated from the meta-analysis because they did not report the data necessary for an effect size to be calculated. Despite these limitations the results of the meta-analysis indicated that there was one innovation which had particularly high effect sizes---Workshop/Studio Physics---an innovation which involves an

  9. Teachers' Views about the Nuffield Advanced Physics Course.

    ERIC Educational Resources Information Center

    Tebbutt, M. J.

    1981-01-01

    Summarizes results of a survey on teachers' views of the Nuffield A-level physics course (NAP) including, among others, course content, philosophy, examinations, organization, and individual units. Suggests that most teachers surveyed were satisfied with their NAP course. (SK)

  10. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  11. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  12. Assessing Students' Attitudes In A College Physics Course In Mexico

    NASA Astrophysics Data System (ADS)

    de la Garza, Jorge; Alarcon, Hugo

    2010-10-01

    Considering the benefits of modeling instruction in improving conceptual learning while students work more like scientists, an implementation was made in an introductory Physics course in a Mexican University. Recently Brewe, Kramer and O'Brien have observed positive attitudinal shifts using modeling instruction in a course with a reduced number of students. These results are opposite to previous observations with methodologies that promote active learning. Inspired in those results, the Colorado Learning Attitudes about Science Survey (CLASS) was applied as pre and post tests in two Mechanics courses with modeling. In comparison to the different categories of the CLASS, significant positive shifts have been determined in Overall, Sophistication in Problem Solving, and Applied Conceptual Understanding in a sample of 44 students.

  13. Academic performance and student engagement in level 1 physics undergraduates

    NASA Astrophysics Data System (ADS)

    Casey, M. M.; McVitie, S.

    2009-09-01

    At the beginning of academic year 2007-08, staff in the Department of Physics and Astronomy at the University of Glasgow started to implement a number of substantial changes to the administration of the level 1 physics undergraduate class. The main aims were to improve the academic performance and progression statistics. With this in mind, a comprehensive system of learning support was introduced, the main remit being the provision of an improved personal contact and academic monitoring and support strategy for all students at level 1. The effects of low engagement with compulsory continuous assessment components had already been observed to have a significant effect on students sitting in the middle of the grade curve. Analysis of data from the 2007-08 class showed that even some nominally high-achieving students achieved lowered grades due to the effects of low engagement. Nonetheless, academic and other support measures put in place during 2007-08 played a part in raising the passrate for the level 1 physics class by approximately 8% as well as raising the progression rate by approximately 10%.

  14. Initial Understanding of Vector Concepts among Students in Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Nguyen, Ngoc-Loan; Meltzer, David E.

    2003-01-01

    Investigates physics students' understanding of vector addition, magnitude, and direction for problems presented in graphical form. Indicates that many students retained significant conceptual difficulties regarding vector methods that are heavily employed throughout the physics curriculum. (Author/KHR)

  15. SOFTWARE REVIEW: The Advanced Physics Virtual Laboratory Series: CD-ROM Thermodynamics and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    1998-09-01

    The program installed easily although the inexperienced might be as terrified as I was by the statements threatening to delete various files it had found on my machine. However, I ignored these and all went well. The user is faced with a menu of 14 simulations covering molecular topics such as the Kinetic Model of an Ideal Gas, Diffusion (through a variable diameter aperture) and a Semi-permeable Membrane, the Maxwell Distribution and Brownian Motion. Thermodynamics is covered by simulations of ideal-gas behaviour at constant pressure, volume and temperature. This is extended to deal with adiabatic changes, the work done by and on a gas, specific heats, work cycles, and to the behaviour of real gases in evaporation and condensation. Finally there are short video-clips of actual experiments showing gas and vapour behaviour. Each simulation is displayed in a `picture window' which gives a qualitative display of how molecules are moving in a container, or how a parameter changes as conditions are varied, as appropriate. Attached (somewhat loosely as it turned out) to these are relevant graphs showing how the important variables such as temperature, volume and pressure change as conditions are changed. The simulations are dynamic and set off by clicking on a RUN button. The simulation can be stopped at any stage and reset to change parameters. It is easy to change the conditions of the simulation by moving sliders along a scale. I particularly liked the simulations of molecular behaviour and the isotherms of a real gas - an ideal case for animation. Each simulation has a short spoken commentary which you can switch in, a brief drop-down text describing the simulation, and a single question. This is where, I felt, things started to go wrong. The simulation displays are informative and give a good visual impression of a part of physics that students find abstract and difficult. But the supporting commentary and text are much too thin for, say, `supported self

  16. An Advanced Objective Structured Clinical Examination Using Patient Simulators to Evaluate Pharmacy Students’ Skills in Physical Assessment

    PubMed Central

    Takamura, Norito; Ogata, Kenji; Setoguchi, Nao; Utsumi, Miho; Kourogi, Yasuyuki; Osaki, Takashi; Ozaki, Mineo; Sato, Keizo; Arimori, Kazuhiko

    2014-01-01

    Objective. To implement an advanced objective structured clinical examination (OSCE) in the curriculum and to evaluate Japanese pharmacy students’ skills in physical assessment such as measuring pulse and blood pressure, and assessing heart, lung, and intestinal sounds. Design. An advanced OSCE was implemented in a hospital pharmacy seminar as a compulsory subject. We programmed patient simulators with 21 different patient cases in which normal and abnormal physiological conditions were produced. The virtual patients were then used to evaluate the physical assessment skills of fifth-year pharmacy students. Assessment. Significant differences were observed between the average of all the detailed evaluations and the mean results for the following skills: pulse measurement, blood pressure measurement, deflating the cuff at a rate of 2-3 mmHg/sec, listening to heart sounds, and listening to lung sounds. Conclusion. Administering an advanced OSCE using virtual patients was an effective way of assessing pharmacy students’ skills in a realistic setting. Several areas in which pharmacy students require further training were identified. PMID:25657371

  17. Using Computer-Assisted Argumentation Mapping to develop effective argumentation skills in high school advanced placement physics

    NASA Astrophysics Data System (ADS)

    Heglund, Brian

    Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument

  18. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    nonequilibrium. For example, the plasma transport may transition between rarefied and continuum flow , requiring appropriate models for each case through...AFRL-AFOSR-UK-TR-2011-0023 Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics...2010 4. TITLE AND SUBTITLE Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics 5a

  19. Roadrunner physics: using cartoons to challenge student preconceptions

    NASA Astrophysics Data System (ADS)

    Huxford, Rachael; Ridge, Mathew; Overduin, James; Selway, Jim

    The cartoon universe is governed by laws that differ radically from those in the real world, but also mirror some of our preconceptions of how the world ``should'' work. We all know that Wile E. Coyote will never be able to catch the Roadrunner with a fan attached to a sailboard, or an outboard motor submerged in a pail of water--but why, exactly? Can we attach some numbers to this knowledge? We have designed some classroom demonstrations accompanied by personal-response-type questions that use classic cartoon clips to challenge student thinking in introductory courses, prompting them to rediscover the truths of physics for themselves. We extend this idea to intermediate-level modern physics, showing that some phenomena in the cartoon universe can be reconciled with standard physics if the values of fundamental constants such as c , G and h differ radically from those in the real world. Such an approach can both heighten student interest and deepen understanding in various physics topics.

  20. The Efficacy of Advance Organizers and Behavioral Objectives for Improving Achievement in Physics.

    ERIC Educational Resources Information Center

    Hershman, Kenneth Eugene

    This research investigates the utility of advance organizers and behavioral objectives in a traditional introductory physics class at the college level. The advance organizer was designed to compare and contrast content to be learned with content previously studied or with assumed common knowledge. Behavioral objectives listed the expected…

  1. The Influence of Student Teaching on Physical Education Student Teachers' Self-Efficacy and Outcome Expectancy Beliefs

    ERIC Educational Resources Information Center

    Gao, Zan; Xiang, Ping; Chen, Senlin; McBride, Ron

    2014-01-01

    This study was designed to determine the impact of 12-week student teaching semesters on student teachers' self-efficacy and outcome expectancy beliefs in teaching physical education classes. A pre-post design was used to examine changes in beliefs of 107 physical education student teachers. Self-efficacy (instructional strategies, class…

  2. Correlation between the Physical Activity Level and Grade Point Averages of Faculty of Education Students

    ERIC Educational Resources Information Center

    Imdat, Yarim

    2014-01-01

    The aim of the study is to find the correlation that exists between physical activity level and grade point averages of faculty of education students. The subjects consist of 359 (172 females and 187 males) under graduate students To determine the physical activity levels of the students in this research, International Physical Activity…

  3. Discussing Underrepresentation as a Means to Facilitating Female Students' Physics Identity Development

    ERIC Educational Resources Information Center

    Lock, Robynne M.; Hazari, Zahra

    2016-01-01

    Despite the fact that approximately half of high school physics students are female, only 21% of physics bachelor's degrees are awarded to women. In a previous study, drawn from a national survey of college students in introductory English courses, five factors commonly proposed to positively impact female students' choice of a physical science…

  4. Problems Faced by Physical Handicapped Students in Educational Institutions in District Kohat

    ERIC Educational Resources Information Center

    Hussain, Ishtiaq; Bashir, Muhammad; ud Din, Muhammad Naseer; Butt, Muhammad Naeem; Akhter, Shagufa; Inamullah, Hafiz

    2011-01-01

    The purpose of the study was to explore the problems faced by physical handicapped students in normal educational institutions and to find solutions to the problems faced by physical handicapped students. All the physical handicapped students studying in educational institutions in District Kohat constituted the population of the study. The study…

  5. Recent Advances in Indirect Drive ICF Target Physics

    SciTech Connect

    Hammel, B; Lindl, J; Amendt, P A; Bernat, G W; Collins, G W; Glenzer, S H; Koch, S H; Haan, S; Landen, O L; Suter, L J

    2002-10-08

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a lEnergie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  6. Recent advances in indirect drive ICF target physics at LLNL

    SciTech Connect

    Bernat, T P; Collins, G W; Haan, S; Hammel, B A; Landen, O L; MacGowan, B J; Sutter, L J

    1998-01-13

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a 1'Energie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  7. Remote Sensing: Radio Frequency Detection for High School Physics Students

    NASA Astrophysics Data System (ADS)

    Huggett, Daniel; Jeandron, Michael; Maddox, Larry; Yoshida, Sanichiro

    2011-10-01

    In an effort to give high school students experience in real world science applications, we have partnered with Loranger High School in Loranger, LA to mentor 9 senior physics students in radio frequency electromagnetic detection. The effort consists of two projects: Mapping of 60 Hz noise around the Laser Interferometer Gravitational Wave Observatory (LIGO), and the construction of a 20 MHz radio telescope for observations of the Sun and Jupiter (Radio Jove, NASA). The results of the LIGO mapping will aid in strategies to reduce the 60 Hz line noise in the LIGO noise spectrum. The Radio Jove project will introduce students to the field of radio astronomy and give them better insight into the dynamic nature of large solar system objects. Both groups will work together in the early stages as they learn the basics of electromagnetic transmission and detection. The groups will document and report their progress regularly. The students will work under the supervision of three undergraduate mentors. Our program is designed to give them theoretical and practical knowledge in radiation and electronics. The students will learn how to design and test receiver in the lab and field settings.

  8. Academic Dishonesty among Physical Therapy Students: A Descriptive Study

    PubMed Central

    Montuno, Eli; Davidson, Alex; Iwasaki, Karen; Jones, Susan; Martin, Jay; Brooks, Dina; Gibson, Barbara E.

    2012-01-01

    ABSTRACT Purpose: To examine academically dishonest behaviours based on physical therapy (PT) students' current practices and educators' prior behaviours as PT students. Method: A Web-based questionnaire was sent to 174 students and 250 educators from the PT programme at the University of Toronto. The questionnaire gathered data on demographics as well as on the prevalence of, seriousness of, and contributing factors to academic dishonesty (AD). Results: In all, 52.4% of educators and 44.3% of students responded to the questionnaire over a 6-week data-collection period. Scenarios rated the most serious were the least frequently performed by educators and students. The impact of generation on attitudes and prevalence of AD was not significant. The factors most commonly reported as contributing to AD were school-related pressure, disagreement with evaluation methods, and the perception that “everyone else does it.” Conclusion: This study parallels the findings of similar research conducted in other health care programmes: AD does occur within the PT curriculum. AD was more prevalent in situations associated with helping peers than in those associated with personal gain. The consistency in behaviours reported across generations suggests that some forms of cheating are accepted as the social norm and may be a function of the environment. PMID:23729959

  9. The University of Michigan Student Health Physics Society's Radiation and Health Physics World Wide Web Site.

    PubMed

    Dreyer, Jonathan G; West, W Geoffrey; Wagner, Eric; Kearfott, Kimberlee J

    2005-05-01

    The University of Michigan Student Health Physics Society's (UMSHPS) Radiation and Health Physics World Wide Web Site is an informative database of radiation and health physics related topics. With over 1,000 visitors each day, the UMSHPS web site provides professionals and the general public with a valuable resource for information and research. Users of this site can either search for information by topic or submit questions directly to the qualified members the national Health Physics Society. During the past year, progress has been made in replacing the site's older, less versatile framework with new search engines and refined submittal forms, as well as a "Frequently Asked Questions" section. Within the database, references will include brief summaries of the site's available information and target audience. Although these changes have been beneficial for the site, the UMSHPS continuously seeks professional opinions and ideas to further the services that this online resource can provide to the profession and to the general public.

  10. Examining the Conceptual Organization of Students in an Integrated Algebra and Physical Science Class.

    ERIC Educational Resources Information Center

    Westbrook, Susan L.

    1998-01-01

    Compares the conceptual organization of students in an integrated algebra and physical science class (SAM 9) with that of students in a discipline-specific physical science class (PSO). Analysis of students' concept maps indicates that the SAM9 students used a greater number of procedural linkages to connect mathematics and science concepts than…

  11. Student-Centred Learning and Disciplinary Enculturation: An Exploration through Physics

    ERIC Educational Resources Information Center

    Sin, Cristina

    2015-01-01

    This study argues that student-centred methods in the teaching of physics can be beneficial for students' enculturation into the discipline and into a physicist's profession. Interviews conducted with academics and students from six master degrees in physics in three different European countries suggest that student-driven classroom activities,…

  12. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  13. Recent advances in understanding physical properties of metallurgical slags

    NASA Astrophysics Data System (ADS)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  14. Assessing and Addressing Students' Scientific Literacy Needs in Physical Geology

    NASA Astrophysics Data System (ADS)

    Campbell-Stone, E. A.; Myers, J. D.

    2005-12-01

    Exacting excellence equally from university students around the globe can be accomplished by providing all students with necessary background tools to achieve mastery of their courses, even if those tools are not part of normal content. As instructors we hope to see our students grasp the substance of our courses, make mental connections between course material and practical applications, and use this knowledge to make informed decisions as citizens. Yet many educators have found that students enter university-level introductory courses in mathematics, science and engineering without adequate academic preparation. As part of a FIPSE-funded project at the University of Wyoming, the instructors of the Physical Geology course have taken a new approach to tackling the problem of lack of scientific/mathematic skills in incoming students. Instead of assuming that students should already know or will learn these skills on their own, they assess students' needs and provide them the opportunity to master scientific literacies as they learn geologic content. In the introductory geology course, instructors identified two categories of literacies, or basic skills that are necessary for academic success and citizen participation. Fundamental literacies include performing simple quantitative calculations, making qualitative assessments, and reading and analyzing tables and graphs. Technical literacies are those specific to understanding geology, and comprise the ability to read maps, visualize changes through time, and conceptualize in three dimensions. Because these skills are most easily taught in lab, the in-house lab manual was rewritten to be both literacy- and content-based. Early labs include simple exercises addressing literacies in the context of geological science, and each subsequent lab repeats exposure to literacies, but at increasing levels of difficulty. Resources available to assist students with literacy mastery include individual instruction, a detailed

  15. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    ERIC Educational Resources Information Center

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  16. Observation, Understanding and Belief: guiding students through the great texts of physics and astronomy

    NASA Astrophysics Data System (ADS)

    Kuehn, Kerry

    2014-03-01

    Questions such as ``Is Newton's theory of gravity correct?'' and ``How do you know?'' appeal to the innate sense of inquisitiveness and wonder that attracted many students (and professors) to the study of natural science in the first place. Seeking to answer such questions, one must typically acquire a deeper understanding of the technical aspects of the theory. In this way, broadly posed questions can serve as a motivation and guide to understanding scientific theories. During the past decade, I have developed and taught a four-semester introductory physics curriculum to undergraduate students at Wisconsin Lutheran College which is based on the careful reading, analysis and discussion of foundational texts in physics and astronomy--texts such as Newton's Principia, Huygens' Treatise on Light, and Pascal's Equilibrium of Liquids. This curriculum is designed to encourage a critical and circumspect approach to natural science, while at the same time developing a suitable foundation for advanced coursework in physics. In this talk, I will discuss the motivation, organization, unique features, and target audience of an undergraduate physics textbook, recently submitted for publication, which is based on this curriculum.

  17. Integrating Advanced Physical Training Programs into the Marine Corps

    DTIC Science & Technology

    2009-02-20

    the CrossFit program and consequently a fee is required to participate in the CrossFit 3 P90X , Extreme Body Workout, (unknown... P90X , Extreme Body Workout n.d.) , P90X is a home based DVD workout program designed to achieve results in 90 days at a cost of $119.85. 4...PFT and is characterized by anaerobic (short burst) energy demands”.13 By coincidence, many of the advanced training programs, such as P90X , CrossFit

  18. Advances on modelling of ITER scenarios: physics and computational challenges

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Imbeaux, F.; Peysson, Y.; Schneider, M.

    2011-12-01

    Methods and tools for design and modelling of tokamak operation scenarios are discussed with particular application to ITER advanced scenarios. Simulations of hybrid and steady-state scenarios performed with the integrated tokamak modelling suite of codes CRONOS are presented. The advantages of a possible steady-state scenario based on cyclic operations, alternating phases of positive and negative loop voltage, with no magnetic flux consumption on average, are discussed. For regimes in which current alignment is an issue, a general method for scenario design is presented, based on the characteristics of the poloidal current density profile.

  19. An Introduction to Tensors for Students of Physics and Engineering

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2002-01-01

    Tensor analysis is the type of subject that can make even the best of students shudder. My own post-graduate instructor in the subject took away much of the fear by speaking of an implicit rhythm in the peculiar notation traditionally used, and helped us to see how this rhythm plays its way throughout the various formalisms. Prior to taking that class, I had spent many years "playing" on my own with tensors. I found the going to be tremendously difficult but was able, over time, to back out some physical and geometrical considerations that helped to make the subject a little more transparent. Today, it is sometimes hard not to think in terms of tensors and their associated concepts. This article, prompted and greatly enhanced by Marlos Jacob, whom I've met only by e-mail, is an attempt to record those early notions concerning tensors. It is intended to serve as a bridge from the point where most undergraduate students "leave off" in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and higher vector products. The reader must be prepared to do some mathematics and to think. For those students who wish to go beyond this humble start, I can only recommend my professor's wisdom: find the rhythm in the mathematics and you will fare pretty well.

  20. Identifying the Elements of Physics Courses that Impact Student Learning: Curriculum, Instructor, Peers, and Assessment

    ERIC Educational Resources Information Center

    West, Emily Lincoln Ashbaugh

    2009-01-01

    Prior research across hundreds for introductory physics courses has demonstrated that traditional physics instruction does not generally lead to students learning physics concepts in a meaningful way, but that interactive-engagement physics courses do sometimes promote a great deal more student learning. In this work I analyze a reform effort in a…

  1. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  2. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  3. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  4. Audiovisual physics reports: students' video production as a strategy for the didactic laboratory

    NASA Astrophysics Data System (ADS)

    Vinicius Pereira, Marcus; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; Fauth, Leduc Hermeto de A.

    2012-01-01

    Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory classes resulting in 22 videos which are considered as audiovisual reports and analysed under two components: theoretical and experimental. This kind of project allows the students to spontaneously use features such as music, pictures, dramatization, animations, etc, even when the didactic laboratory may not be the place where aesthetic and cultural dimensions are generally developed. This could be due to the fact that digital media are more legitimately used as cultural tools than as teaching strategies.

  5. Advances in atomic physics: Four decades of contribution of the Cairo University - Atomic Physics Group.

    PubMed

    El-Sherbini, Tharwat M

    2015-09-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  6. Student evaluations of their physics teachers: Evaluative bias and its relationship to classroom pedagogy and students' career aspirations

    NASA Astrophysics Data System (ADS)

    Potvin, Geoff

    2013-04-01

    Using data collected from a nationally-representative sample of college students, the evaluation of high school physics teachers by their students is examined. Confirming earlier work, student evaluations (of both male and female students) exhibit bias with respect to the gender of their teacher. Pedagogical practices that impact student evaluations are explored, but these factors do not change the gender bias effect. We also consider how this evaluative bias is affected by students' career intentions. Grouping students according to their career intentions (e.g. physics majors, engineering majors, and health/medical science majors) shows that physics and engineering majors exhibit this bias to the same extent as the general population, but health/medical science majors exhibit a bias with nearly twice the size as average. The implications of this research for our understanding of physics culture regarding stereotypes and students' gendered expectations of teacher behavior is discussed. This work was supported by NSF Grant # 1036617.

  7. A Study of the Effect Introductory Physical Science Produces in Students' Abilities in Selected Areas of Physics.

    ERIC Educational Resources Information Center

    Robertson, Harold Frederick, Jr.

    This study, conducted at Northeast Catholic High School for Boys in Philadelphia, was designed to determine if a significant difference existed between ninth-grade students experienced in Introductory Physical Science and ninth-grade students experienced in conventional General Science in ability to manipulate basic physics laboratory equipment,…

  8. Computer-Tailored Student Support in Introductory Physics.

    PubMed

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a 'better-than-expected' measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century.

  9. Computer-Tailored Student Support in Introductory Physics

    PubMed Central

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a ‘better-than-expected’ measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century. PMID:26352403

  10. Educational trajectories of graduate students in physics education research

    NASA Astrophysics Data System (ADS)

    Van Dusen, Ben; Barthelemy, Ramón S.; Henderson, Charles

    2014-12-01

    Physics education research (PER) is a rapidly growing area of PhD specialization. In this article we examine the trajectories that led respondents into a PER graduate program as well as their expected future trajectories. Data were collected in the form of an online survey sent to graduate students in PER. Our findings show a lack of visibility of PER as a field of study, a dominance of work at the undergraduate level, and a mismatch of future desires and expectations. We suggest that greater exposure is needed so PER is known as a field of inquiry for graduates, that more emphasis should be placed on research beyond the undergraduate level, and that there needs to be stronger communication to graduate students about potential careers.

  11. The Role of Collaboration and Feedback in Advancing Student Learning in Media Literacy and Video Production

    ERIC Educational Resources Information Center

    Casinghino, Carl

    2015-01-01

    Teaching advanced video production is an art that requires great sensitivity to the process of providing feedback that helps students to learn and grow. Some students experience difficulty in developing narrative sequences or cause-and-effect strings of motion picture sequences. But when students learn to work collaboratively through the revision…

  12. Measuring Success: Examining Achievement and Perceptions of Online Advanced Placement Students

    ERIC Educational Resources Information Center

    Johnston, Sharon; Barbour, Michael K.

    2013-01-01

    The purpose of the research was to compare student performance on Advanced Placement (AP) exams from 2009 to 2011 at Florida Virtual School and to explore student perceptions of their online course experience compared with the classroom-based AP experiences. The data indicated that students performed at levels comparable to the national sample but…

  13. Teacher's Feedback and Student's Preferences in an Advanced Writing Course: A Case Study

    ERIC Educational Resources Information Center

    Aliakbari, Mohammad; Raeesi, Hossein

    2014-01-01

    This paper was intended to examine teacher's corrective feedback and student's preferences in an advanced writing course. The study was conducted using a questionnaire as the instrument and 15 MA TEFL students from Ilam state university in Iran as the participants. The students were asked to prioritize among a list of ten aspects of error…

  14. Self-Regulation of Physical Education Teacher Education Students' Attitudes towards Exercise and Diet

    ERIC Educational Resources Information Center

    Wilkinson, Carol; Prusak, Keven

    2013-01-01

    The purpose of this study was to assess differences in self-regulation of attitudes towards engaging in exercise and eating a healthy diet between physical education teacher education (PETE) students and general education (GE) students, and between male students and female students. Participants were university students (n = 194) at a university…

  15. Mathematics in Physics - Which Way Forward: The Influence of Mathematics On Students' Attitudes to the Teaching of Physics.

    ERIC Educational Resources Information Center

    Ogunsola-Bandele, Mercy F.

    Physics has been reported to be the least popular of the science subjects among high school students in Nigeria. In fact the low enrollment and poor grades even for majority students that enroll has been a great concern to most science teachers and curriculum planners. This study examined students' attitudes on the teaching and learning of…

  16. The relation between student motivation and student grades in physical education: A 3-year investigation.

    PubMed

    Barkoukis, V; Taylor, I; Chanal, J; Ntoumanis, N

    2014-10-01

    Enhancing students' academic engagement is the key element of the educational process; hence, research in this area has focused on understanding the mechanisms that can lead to increased academic engagement. The present study investigated the relation between motivation and grades in physical education (PE) employing a 3-year longitudinal design. Three hundred fifty-four Greek high school students participated in the study. Students completed measures of motivation to participate in PE on six occasions; namely, at the start and the end of the school year in the first, second, and third year of junior high school. Students' PE grades were also recorded at these time points. The results of the multilevel growth models indicated that students' PE grades increased over the 3 years and students had better PE grades at the end of each year than at the beginning of the subsequent year. In general, students and classes with higher levels of controlling motivation achieved lower PE grades, whereas higher levels of autonomous motivation were associated with higher PE grades. These findings provide new insight on the associations between class- and individual-level motivation with objectively assessed achievement in PE.

  17. The Student-Centered Classroom Made Real: Transforming Student Presentations in an Advanced Course on Technical German

    ERIC Educational Resources Information Center

    Rarick, Damon O.

    2010-01-01

    This article describes how the author has successfully combined polling with more traditional instructional strategies to enhance student presentation skills in an advanced course teaching technical German. By helping students select and prepare topics, anticipate questions and engage the audience, instructors can eliminate some of the root causes…

  18. Disruptive behavior among elementary students in physical education.

    PubMed

    López Jiménez, José; Valero-Valenzuela, Alfonso; Anguera, M Teresa; Díaz Suárez, Arturo

    2016-01-01

    The aim of this study was to determine which disruptive behaviors occur most often in physical education (PE) classes, and to identify the existence of a pattern of behavior that leads to this disruptive behavior. With this in mind, we analyzed five PE sessions taken by pupils at different elementary school in the region of Murcia. The total sample size was 96 students aged between 10 and 13. Data was recorded using an observation instrument (a combination of a field format and a categorical system) and was then analyzed using the "HOISAN" software tool, with a sequential analysis and polar coordinates being conducted. The results of the study revealed that disruptive behaviors (52 %) occur more frequently than non-relevant behaviors (48 %), the most common of them being disinterested behavior (29 %), followed by indiscipline (15 %), with no statistically significant differences being detected in violent behavior. As regards patterns of behavior, disinterested behavior is stimulated by "no eye contact", "middle distance", "inside the task", "no use of material", "giving orders" and "registering of activities", while indiscipline is stimulated by "no eye contact", "far distance", "outside the task", "use of material", "grouping in pairs" and "preparation of material". In conclusion, it can be stated that disruptiveness is far more common in physical education sessions, affects the development of sessions and has a negative impact on student learning. A solution to this problem should therefore be sought immediately in order to ensure quality education.

  19. Advanced Course Enrollment and Performance in Washington State: Comparing Spanish-Speaking Students with Other Language Minority Students and English-Only Speakers. REL 2017-220

    ERIC Educational Resources Information Center

    Hanson, Havala; Bisht, Biraj; Motamedi, Jason Greenberg

    2017-01-01

    Students who take advanced courses in high school are more likely to enroll and persist in college. This report describes patterns in advanced coursetaking among three groups of students in Washington state: Spanish-speaking students, other language minority students whose primary or home language is not Spanish, and English-only speakers. This…

  20. Physical Health: Individualized Health Incentive Program Modules for Physically Disabled Students for Grades Kindergarten Through Twelve. Teacher's Edition.

    ERIC Educational Resources Information Center

    Reggio, Kathryn D.; And Others

    Physical health is the focus of the third in a series of health education curriculum guides for physically handicapped students (grades K-12). An introductory section touches on physical health activities at the Human Resources School (Albertson, New York) and includes photographs of good health habits. The remainder of the document provides…

  1. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  2. Advances in computed radiography systems and their physical imaging characteristics.

    PubMed

    Cowen, A R; Davies, A G; Kengyelics, S M

    2007-12-01

    Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors.

  3. Evolution in students' understanding of thermal physics with increasing complexity

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  4. Sports injuries in physical education teacher education students.

    PubMed

    Goossens, L; Verrelst, R; Cardon, G; De Clercq, D

    2014-08-01

    Sports injuries could be highly detrimental to the career of a physical education teacher education (PETE) student. To enable the development of future sports injury prevention programs, sports injuries in 128 first-year academic bachelor PETE students were registered prospectively during one academic year. Common risk factors for sports injuries, taken from the literature, were also evaluated by means of logistic regression analysis. We found an incidence rate of 1.91 and an injury risk of 0.85, which is higher than generally found in a sports-active population. Most injuries involved the lower extremities, were acute, newly occurring injuries, and took place in non-contact situations. More than half of all injuries lead to an inactivity period of 1 week or more and over 80% of all injuries required medical attention. A major part of these injuries happened during the intracurricular sports classes. Few differences were seen between women and men. A history of injury was a significant risk factor (P = 0.018) for the occurrence of injuries, and performance of cooling-down exercises was significantly related to a lower occurrence of ankle injuries (P = 0.031). These data can inform future programs for the prevention of sports injuries in PETE students.

  5. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    NASA Astrophysics Data System (ADS)

    Huwe, Paul; Field, Scott

    2015-05-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables high-precision mapping of dark matter distributions in galaxies and galaxy clusters, provides insight into large-scale cosmic structure of the universe, aids in the search for exo-planets, and may offer valuable insight toward understanding the evolution of dark energy. In this article we describe a gravitational lensing lab and associated lecture/discussion material that was highly successful, according to student feedback. The gravitational lens unit was developed as part of a two-week summer enrichment class for junior and senior high school students. With minor modifications, this lab can be used within a traditional classroom looking to incorporate topics of modern physics (such as in a unit on optics).

  6. School time physical activity of students with and without autism spectrum disorders during PE and recess.

    PubMed

    Pan, Chien-Yu

    2008-10-01

    This study compared moderate-to-vigorous physical activity (MVPA) of students with autism spectrum disorders (ASD) and students without disabilities during inclusive physical education and recess. Students (7-12 years) wore a uniaxial accelerometer in school for 5 consecutive school days. Results indicated a significant difference between settings, F(1,46) = 15.94, p < .01, partial eta2 = 0.26, observed power = 0.97. Students with and without ASD spent a higher proportion of time in MVPA during physical education than during recess, relative to the amount of time spent in those settings. In addition, structured physical education offers opportunities to increase students' MVPA engagement.

  7. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    ERIC Educational Resources Information Center

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  8. An Investigation of the Factors Influencing Student Performance in Physical Chemistry.

    ERIC Educational Resources Information Center

    Nicoll, Gayle; Francisco, Joseph S.

    2001-01-01

    Studies students in two physical chemistry classes to determine what factors influenced their performance, what their perceptions were of their own abilities, and what factors they believe influence student performance. Concludes that achievement in a physical chemistry course designed for chemistry fields is significantly related to students'…

  9. Teachers' Perceptions of Physical Aggression among Secondary School Students: A New Zealand View

    ERIC Educational Resources Information Center

    Marsh, Louise; Williams, Sheila; McGee, Rob

    2009-01-01

    Previous research has found differences between adults' and students' perceptions of adolescents' aggressive behaviour. This study examines teachers' perceptions of physical aggression among New Zealand secondary school students. A survey assessed teachers' perceptions of problematic behaviour, and physical aggression by students towards teachers.…

  10. Effects of Medicine Ball Training on Fitness Performance of High-School Physical Education Students

    ERIC Educational Resources Information Center

    Faigenbaum, Avery D.; Mediate, Patrick

    2006-01-01

    The purpose of this study was to examine the effects of medicine ball training on the fitness performance of high-school physical education students. Sixty-nine high-school students participated in a 6-week medicine training program during the first 10 to 15 minutes of each physical education class. A group of 49 students who participated in…

  11. Evaluating High School Students' Conceptions of the Relationship between Mathematics and Physics: Development of a Questionnaire

    ERIC Educational Resources Information Center

    Kapucu, S.; Öçal, M. F.; Simsek, M.

    2016-01-01

    The purposes of this study were (1) to develop a questionnaire measuring high school students' conceptions of the relationship between mathematics and physics, (2) and to determine the students' conceptions of the relationship between mathematics and physics. A total of 718 high school students (343 male, 375 female) participated in this study.…

  12. Attendant Care for College Students with Physical Disabilities Using Wheelchairs: Transition Issues and Experiences

    ERIC Educational Resources Information Center

    Burwell, Nequel R.; Wessel, Roger D.; Mulvihill, Thalia

    2015-01-01

    From preschool through high school, accommodation and success, rather than self-advocacy and student development, are the predominant frameworks for students with physical disabilities. Many students with physical disabilities who use wheelchairs are assisted by their family members with daily life activities such as getting out of bed, showering,…

  13. Relationships among Physical Activity Levels, Psychomotor, Psychosocial, and Cognitive Development of Primary Education Students.

    ERIC Educational Resources Information Center

    Isler, Ayse Kin; Asci, F. Hulya; Kosar, S. Nazan

    2002-01-01

    Investigated the relationships of physical activity levels and psychomotor, psychosocial, and cognitive development among Turkish elementary school students. Student evaluations indicated that physical activity level was an important factor in determining student psychomotor development, but it was not important in determining psychosocial and…

  14. Students' Understanding and Application of the Area under the Curve Concept in Physics Problems

    ERIC Educational Resources Information Center

    Nguyen, Dong-Hai; Rebello, N. Sanjay

    2011-01-01

    This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving…

  15. Students' Physical and Psychological Reactions to Forensic Dissection: Are There Risk Factors?

    ERIC Educational Resources Information Center

    Sergentanis, Theodoros N.; Papadodima, Stavroula A.; Evaggelakos, Christos I.; Mytilinaios, Dimitrios G.; Goutas, Nikolaos D.; Spiliopoulou, Chara A.

    2010-01-01

    The reactions of students to forensic dissection encompass psychologico-emotional and physical components. This exploratory study aimed to determine risk factors for students' adverse physical and psychological reactions to forensic dissection. All sixth-year medical students (n = 304) attending the compulsory practical course in forensic medicine…

  16. Photography as a Means of Narrowing the Gap between Physics and Students

    ERIC Educational Resources Information Center

    Bagno, Esther; Eylon, Bat-Sheva; Levy, Smadar

    2007-01-01

    Many teachers would agree that not all their A-level students appreciate the beauty of physics or enjoy solving complex problems. In this article, we describe a photo-contest activity aimed at narrowing the gap between physics and students. The photo contest, involving both students and teachers, is guided by the National Center of Physics…

  17. In the physics class: university physics students' enactment of class and gender in the context of laboratory work

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.

    2014-06-01

    This article explores how the doing of social class and gender can intersect with the learning of science, through case studies of two male, working-class university students' constitutions of identities as physics students. In doing so, I challenge the taken-for-granted notion that male physics students have an unproblematic relation to their chosen discipline, and nuance the picture of how working-class students relate to higher education by the explicit focus on one disciplinary culture. Working from the perspective of situated learning theory, the interviews with the two male students were analysed for how they negotiated the practice of the physics student laboratory and their own classed and gendered participation in this practice. By drawing on the heterogeneity of the practice of physics the two students were able to use the practical and technological aspects of physics as a gateway into the discipline. However, this is not to say that their participation in physics was completely frictionless. The students were both engaged in a continuous negotiation of how skills they had learned to value in the background may or may not be compatible with the ones they perceived to be valued in the university physicist community.

  18. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  19. Student Experiments for Investigations of Physical Controls on Viscosity and the Implications for Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Teasdale, R.; Myers, J.

    2003-12-01

    Interactive laboratory investigations and demonstrations using analog materials can be used to introduce students to the rheologic properties of magmas and lavas. Using such an approach, students investigate the physical, compositional, and thermodynamic controls on viscosity through observations, experimental investigations, calculations, and computer simulations. During lab exercises, which are typically preceded by a reading assignment and brief introduction, students use analog materials (e.g. corn syrup) to experiment with parameters controlling viscosity. They prepare a set of syrup solutions at 3 (or more) temperatures, another set of syrup solutions with varying proportions of particles (e.g. sand), and a final set of syrup solutions mixed with water. A fourth experiment, which produces somewhat more complex results, can be prepared by using a hand mixer to make syrup with varying proportions of bubbles. Students make qualitative observations of the relative force required to blow bubbles into the syrup solutions with a straw as an analog for comparing the effects of viscosity on the formation and bursting behavior of gas bubbles in magma. During class, students observe syrup "lava flows" flowing on a slope. Measured flow characteristics are used to calculate viscosities for each "lava" using a dynamic visual equation (DVE) of the Jeffries equation. The DVE, which was created in Flash MX, allows students to explore interactively and visually how changing various parameters in the Jeffries equation affects fluid viscosity. Before each experiment, a critical set of questions lead students to make predictions and hone their observational skills. The questions also help students generate graphs and sketches and write brief reports to synthesize their observations. Additional activities incorporating volcanic hazards associated with low versus high viscosity flows and highly viscous explosive eruptions bring students back to very real applications of the

  20. Hispanic Academic Advancement Theory: An Ethnographic Study of Urban Students Participating In A High School Advanced Diploma Program

    ERIC Educational Resources Information Center

    Jodry, Liz; Robles-Pina, Rebecca A.; Nichter, Mary

    2005-01-01

    This emergent theory describes the relationships and factors within the context of home, school, and community that enabled six Hispanic students to participate in an advanced diploma program. The research is in keeping with the mandates from several federal initiatives to develop "asset-based" paradigms for educating Hispanic youth.…

  1. Problematizing a general physics class: Understanding student engagement

    NASA Astrophysics Data System (ADS)

    Spaid, Mark Randall

    This research paper describes the problems in democratizing a high school physics course and the disparate engagement students during class activities that promote scientific inquiry. Results from the Learning Orientation Questionnaire (Martinez, 2000) guide the participant observations and semi-formal interviews. Approximately 60% of the participants self-report a "resistant" or "conforming" approach to learning science; they expect to receive science knowledge from the teacher, and their engagement is influenced by affective and conative factors. These surface learners exhibit second order thinking (Kegan, 1994), do not understand abstract science concepts, and learn best from structured inquiry. To sustain engagement, conforming learners require motivational and instructional discourse from their teacher and peers. Resisting learners do not value learning and do not engage in most science class activities. The "performing" learners are able to deal with abstractions and can see relationships between lessons and activities, but they do not usually self-reflect or think critically (they are between Kegan's second order and third order thinking). They may select a deeper learning strategy if they value the knowledge for a future goal; however, they are oriented toward assessment and rely on the science teacher as an authority. They are influenced by affective and conative factors during structured and guided inquiry-based teaching, and benefit from motivational discourse and sustain engagement if they are interested in the topic. The transforming learners are more independent, self-assessing and self-directed. These students are third order thinkers (Kegan, 1994) who hold a sophisticated epistemology that includes critical thinking and reflection. These students select deep learning strategies without regard to affective and conative factors. They value instructional discourse from the teacher, but prefer less structured inquiry activities. Although specific

  2. Possible Link between Medical Students' Motivation for Academic Work and Time Engaged in Physical Exercise

    ERIC Educational Resources Information Center

    Aung, Myo Nyein; Somboonwong, Juraiporn; Jaroonvanichkul, Vorapol; Wannakrairot, Pongsak

    2016-01-01

    Physical exercise results in an active well-being. It is likely that students' engagement in physical exercise keeps them motivated to perform academic endeavors. This study aimed to assess the relation of time engaged in physical exercise with medical students' motivation for academic work. Prospectively, 296 second-year medical students…

  3. Assessing Students' Deep Conceptual Understanding in Physical Sciences: An Example on Sinking and Floating

    ERIC Educational Resources Information Center

    Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi

    2017-01-01

    This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…

  4. Social Environments and Physical Aggression among 21,107 Students in the United States and Canada

    ERIC Educational Resources Information Center

    Pickett, William; Iannotti, Ronald J.; Simons-Morton, Bruce; Dostaler, Suzanne

    2009-01-01

    Background: Physical aggression is an important issue in North American populations. The importance of students' social environments in the occurrence of physical aggression requires focused study. In this study, reports of physical aggression were examined in relation to social environment factors among national samples of students from Canada…

  5. An Expectancy-Value Model for Sustained Enrolment Intentions of Senior Secondary Physics Students

    ERIC Educational Resources Information Center

    Abraham, Jessy; Barker, Katrina

    2015-01-01

    This study investigates the predictive influences of achievement motivational variables that may sustain students' engagement in physics and influence their future enrolment plans in the subject. Unlike most studies attempting to address the decline of physics enrolments through capturing students' intention to enrol in physics before ever…

  6. Preparing Adapted Physical Educators to Teach Students with Autism: Current Practices and Future Directions

    ERIC Educational Resources Information Center

    Healy, Sean; Judge, Joann P.; Block, Martin E.; Kwon, Eun Hye

    2016-01-01

    For many students with autism spectrum disorder, physical education is the responsibility of an adapted physical education specialist. In this study, we examined the training focused on teaching students with autism spectrum disorder received by a sample of 106 adapted physical education specialists. Competencies necessary on a course to train…

  7. Promoting Physical and Mental Health among College Students: A Needs Assessment

    ERIC Educational Resources Information Center

    Bezyak, Jill; Clark, Alena

    2016-01-01

    Purpose: To conduct an initial needs assessment of physical and mental health behavior among college students to improve understanding of physical and mental health needs among future helping professionals. Method: A sample of 24 undergraduate students was used to provide a description of mental health, physical activity, and healthy eating…

  8. Gender Differences in the High School and Affective Experiences of Introductory College Physics Students

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sadler, Philip M.; Tai, Robert H.

    2008-01-01

    The disparity in persistence between males and females studying physics has been a topic of concern to physics educators for decades. Overall, while female students perform as well as or better than male students, they continue to lag considerably in terms of persistence. The most significant drop in females studying physics occurs between high…

  9. The Readiness of High School Students to Pursue First Year Physics

    ERIC Educational Resources Information Center

    Ramnarain, U.; Molefe, P.

    2012-01-01

    A high failure rate at first year physics is often attributed to the lack of readiness of high school students to pursue such studies. This research explores this issue and reports on the perceptions of five physics lecturers at a South African university on the preparedness of high school students for first year physics. Qualitative data was…

  10. Increasing Student Physical Fitness through Increased Choice of Fitness Activities and Student Designed Fitness Activities for Ninth through Twelfth Graders in Physical Education Class

    ERIC Educational Resources Information Center

    Jacob, Margo A.

    2011-01-01

    This action research project report began when the teacher researcher determined that students exhibited physical fitness levels below that of the state and national norms, and also displayed negative attitudes about physical education. The purpose of this action research project was to increase physical fitness and fitness attitudes through…

  11. U.S. Poised to Sit Out TIMSS Test: Physics, Advanced Math Gauged in Global Study

    ERIC Educational Resources Information Center

    Viadero, Debra

    2007-01-01

    This article reports on reactions to the U.S. Department of Education's first time decision to sit out an international study designed to show how advanced high school students around the world measure up in math and science. Mark S. Schneider, the commissioner of the department's National Center for Education Statistics, which normally takes the…

  12. Performance in Physical Science Education by Dint of Advance Organiser Model of Teaching

    ERIC Educational Resources Information Center

    Bency, P. B. Beulahbel; Raja, B. William Dharma

    2010-01-01

    Education should be made painless and the teaching must be made effective. Teaching is an activity, which is designed and performed for multiple objectives, in terms of changes in student behaviours. Models of teaching are just a blue print designed in advance for providing necessary structure and direction to the teacher for realizing the…

  13. An analysis of predictors of enrollment and successful achievement for girls in high school Advanced Placement physics

    NASA Astrophysics Data System (ADS)

    Depalma, Darlene M.

    A problem within science education in the United States persists. U.S students rank lower in science than most other students from participating countries on international tests of achievement (National Center for Education Statistics, 2003). In addition, U.S. students overall enrollment rate in high school Advanced Placement (AP) physics is still low compared to other academic domains, especially for females. This problem is the background for the purpose of this study. This investigation examined cognitive and motivational variables thought to play a part in the under-representation of females in AP physics. Cognitive variables consisted of mathematics, reading, and science knowledge, as measured by scores on the 10th and 11th grade Florida Comprehensive Assessment Tests (FCAT). The motivational factors of attitude, stereotypical views toward science, self-efficacy, and epistemological beliefs were measured by a questionnaire developed with questions taken from previously proven reliable and valid instruments. A general survey regarding participation in extracurricular activities was also included. The sample included 12th grade students from two high schools located in Seminole County, Florida. Of the 106 participants, 20 girls and 27 boys were enrolled in AP physics, and 39 girls and 20 boys were enrolled in other elective science courses. Differences between males and females enrolled in AP physics were examined, as well as differences between females enrolled in AP physics and females that chose not to participate in AP physics, in order to determine predictors that apply exclusively to female enrollment in high school AP physics and predictors of an anticipated science related college major. Data were first analyzed by Exploratory Factor Analysis, followed by Analysis of Variance (ANOVA), independent t-tests, univariate analysis, and logistic regression analysis. One overall theme that emerged from this research was findings that refute the ideas that

  14. A curricular frame for physics education: Development, comparison with students' interests, and impact on students' achievement and self-concept

    NASA Astrophysics Data System (ADS)

    Häussler, Peter; Hoffmann, Lore

    2000-11-01

    This article presents three interlinked studies aimed at: (1) developing a curricular frame for physics education; (2) assessing the students' interest in the contents, contexts, and activities that are suggested by that curricular frame; and (3) developing a curriculum that is in line with that frame and measuring its cognitive and emotional effects on students. The curricular frame was developed by adopting the Delphi technique and drawing on the expertise of 73 persons selected according to specified selection criteria. Interest data of some 8000 students and information of the presently taught physics curriculum were sampled longitudinally as well as cross-sectionally in various German Länder (states) by questionnaire. The third study comprised 23 experimental and 7 control classes. As a result of the comparison between the features of the curricular frame, the interest structure of students, and the current physics curriculum, there is a remarkable congruency between students' interest in physics and the kind of physics education identified in the Delphi study as being relevant. However, there is a considerable discrepancy between students' interest and the kind of physics instruction practiced in the physics classroom. Regression analysis revealed that students' interest in physics as a school subject is hardly related to their interest in physics, but mainly to the students' self-esteem of being good achievers. The data strongly suggest physics be taught so that students have a chance to develop a positive physics-related self-concept and to link physics with situations they encounter outside the classroom. A curriculum based on these principles proved superior compared to a traditional curriculum.

  15. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  16. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  17. A Physics MOSAIC: Scientific Skills and Explorations for Students

    NASA Astrophysics Data System (ADS)

    May, S.; Clements, C.; Erickson, P. J.; Rogers, A.

    2010-12-01

    A 21st century education needs to teach students how to manage information in an ever more digital age. High school students (like all of us) are inundated with information, and informed citizenship increasingly depends on the ability to be a critical consumer of data. In the scientific community, experimental data from remote, high quality systems are becoming increasingly available in real time. The same networks providing data also allow scientists to use the ubiquity of internet access to enlist citizen scientists to help with research. As a means of addressing and leveraging these trends, we describe a classroom unit developed as part of the NSF Research Experience for Teachers (RET) program at MIT Haystack Observatory in the summer of 2010. The unit uses accessible, real-time science data to teach high school physics students about the nature and process of scientific research, with the goal of teaching how to be an informed citizen, regardless of eventual vocation. The opportunity to study the atmosphere provides increased engagement in the classroom, and students have an authentic experience of asking and answering scientific questions when the answer cannot simply be found on the Web. MOSAIC (Mesospheric Ozone System for Atmospheric Investigations in the Classroom) is a relatively inexpensive tool for measuring mesospheric ozone by taking advantage of the sensitivity of commercially produced satellite TV dishes to the 11.072545 GHz rotational transition of ozone. Because the signal from ozone in the lower atmosphere is pressure-broadened, the system is able to isolate the signal from the 1% of Earth’s ozone that comes from the mesosphere. Our teaching unit takes advantage of measurements collected since 2008 from six East Coast observing sites at high schools and colleges. Data are available online within a day of their collection, and an easy to use web interface allows students to track mesospheric ozone in frequency, time of day, or day of year. The

  18. What do students learn about work in physical and virtual experiments with inclined planes?

    NASA Astrophysics Data System (ADS)

    Chini, Jacquelyn J.; Madsen, Adrian; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-02-01

    In previous studies, we have reported a difference in how physical and virtual manipulatives support students' understanding of the physics definition of work in the context of simple machines. We have shown that students who use the virtual manipulative (a computer simulation) before performing a physical experiment provided the correct response to multiple-choice questions about work more frequently than students who first use the physical manipulative. In this paper, we further analyze students' responses to a series of questions about work in the context of inclined planes to explore the models students used to answer the questions. While we had anticipated that students who performed the physical experiment would incorrectly respond to the multiple-choice questions in accordance with their observations (i.e. a longer ramp requires more work due to frictional effects), we actually observed these students more frequently using an alternate model that a longer ramp requires less work.

  19. Who is the competent physics student? A study of students' positions and social interaction in small-group discussions

    NASA Astrophysics Data System (ADS)

    Due, Karin

    2014-06-01

    This article describes a study which explored the social interaction and the reproduction and challenge of gendered discourses in small group discussions in physics. Data for the study consisted of video recordings of eight upper secondary school groups solving physics problems and 15 audiotaped individual interviews with participating students. The analysis was based on gender theory viewing gender both as a process and a discourse. Specifically discursive psychology analysis was used to examine how students position themselves and their peers within discourses of physics and gender. The results of the study reveal how images of physics and of "skilled physics student" were constructed in the context of the interviews. These discourses were reconstructed in the students' discussions and their social interactions within groups. Traditional gendered positions were reconstructed, for example with boys positioned as more competent in physics than girls. These positions were however also resisted and challenged.

  20. Effects of Grouping Forms, Student Gender and Ability Level on the Pleasure Experienced in Physical Education

    ERIC Educational Resources Information Center

    Lentillon-Kaestner, Vanessa; Patelli, Gianpaolo

    2016-01-01

    The purpose of this study was to estimate the main and interaction effects of grouping forms, student gender and ability level on the pleasure experienced in physical education (PE). The participants included 178 secondary school students (M = 13.17, SD = 0.81), with 72 students enrolled in a basketball unit and 106 students enrolled in an…